1
|
Pandey BK, George TS, Cooper HV, Sturrock CJ, Bennett T, Bennett MJ. Root RADAR: how 'rhizocrine' signals allow roots to detect and respond to their soil environment and stresses. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1500-1509. [PMID: 39707161 PMCID: PMC11981895 DOI: 10.1093/jxb/erae490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Agricultural intensification coupled with changing climate are causing soils to become increasingly vulnerable to stresses such as drought, soil erosion, and compaction. The mechanisms by which roots detect and respond to soil stresses remain poorly understood. Recent breakthroughs show that roots release volatile and soluble hormone signals into the surrounding soil, then monitor their levels to sense soil stresses. Our review discusses how hormones can act 'outside the plant' as 'rhizocrine' signals that function to improve plant resilience to different soil stresses. We also propose a novel signalling paradigm which we term 'root RADAR' where 'rhizocrine' levels change in soil in response to environmental stresses, feeding back to roots and triggering adaptive responses.
Collapse
Affiliation(s)
- Bipin K Pandey
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | - Hannah V Cooper
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Craig J Sturrock
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Malcolm J Bennett
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
2
|
de Oliveira MMT, Ko AN, Obersteiner S, Falik O, Rachmilevitch S. Family ties: Root-root communication within Solanaceae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112203. [PMID: 39069008 DOI: 10.1016/j.plantsci.2024.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Root-root communication effects on several physiological and metabolic aspects among Solanaceae relatives were studied. We examined cherry (C) and field (F) tomato (Solanum lycopersicum) and bell pepper (B) (Capsicum annuum), comprising three degrees of relatedness (DOR): high (H-DOR; CC, FF and BB), medium (M-DOR; CF) and low (L-DOR; CB and FB). Plants were grown in pairs of similar or different plants on a paper-based and non-destructive root growth system, namely, rhizoslides. Root growth, including the proliferation of fine roots, and respiration increased as the DOR decreased and were highest in paired L-DOR plants, as was shown for root respiration that increased by 63, 110 and 88 % for C, F, and B when grown with B, B and F, respectively. On the other hand, root exudates of L-DOR plants had significantly lower levels of total organic carbon and protein than those of H-DOR plants, indicating different root-root communication between individuals with different DOR. Our findings indicate, for the first time, that carbon allocation to root growth, exudation and respiration depends on the degree of genetic relatedness, and that the degree of relatedness between individual plants plays a key role in the root-root communication within Solanaceae.
Collapse
Affiliation(s)
- Milena Maria Tomaz de Oliveira
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel; Utah State University, USA.
| | - Aye Nyein Ko
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel
| | - Sophie Obersteiner
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel
| | - Omer Falik
- Achva Academic College, Arugot 7980400, Israel; Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
3
|
Cabal C, Maciel GA, Martinez-Garcia R. Plant antagonistic facilitation across environmental gradients: a soil-resource ecosystem engineering model. THE NEW PHYTOLOGIST 2024; 244:670-682. [PMID: 39165156 DOI: 10.1111/nph.20053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Theory questions the persistence of nonreciprocal interactions in which one plant has a positive net effect on a neighbor that, in return, has a negative net impact on its benefactor - a phenomenon known as antagonistic facilitation. We develop a spatially explicit consumer-resource model for belowground plant competition between ecosystem engineers, plants able to mine resources and make them available for any other plant in the community, and exploiters. We use the model to determine in what environmental conditions antagonistic facilitation via soil-resource engineering emerges as an optimal strategy. Antagonistic facilitation emerges in stressful environments where ecosystem engineers' self-benefits from mining resources outweigh the competition with opportunistic neighbors. Among all potential causes of stress considered in the model, the key environmental parameter driving changes in the interaction between plants is the proportion of the resource that becomes readily available for plant consumption in the absence of any mining activity. Our results align with theories of primary succession and the stress gradient hypothesis. However, we find that the total root biomass and its spatial allocation through the root system, often used to measure the sign of the interaction between plants, do not predict facilitation reliably.
Collapse
Affiliation(s)
- Ciro Cabal
- Global Change Research Institute, Rey Juan Carlos University (IICG-URJC), 28933, Móstoles, Spain
- High Meadows Environmental Institute, Princeton University (HMEI), 08544, Princeton, NJ, USA
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, 28933, Móstoles, Spain
| | - Gabriel A Maciel
- ICTP-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, 01140-070, São Paulo, Brazil
| | - Ricardo Martinez-Garcia
- Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden Rossendorf (CASUS-HZDR), 02826, Görlitz, Germany
- ICTP-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, 01140-070, São Paulo, Brazil
| |
Collapse
|
4
|
Gille CE, Finnegan PM, Hayes PE, Ranathunge K, Burgess TI, de Tombeur F, Migliorini D, Dallongeville P, Glauser G, Lambers H. Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. THE NEW PHYTOLOGIST 2024; 242:1630-1644. [PMID: 38105548 DOI: 10.1111/nph.19489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.
Collapse
Affiliation(s)
- Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Félix de Tombeur
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- CEFE, CNRS, EPHE, IRD, University of Montpellier, 34000, Montpellier, France
| | - Duccio Migliorini
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- National Research Council, Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, 50019, Italy
| | - Paul Dallongeville
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
5
|
Staudinger C, Renton M, Leopold M, Wasaki J, Veneklaas EJ, de Britto Costa P, Boitt G, Lambers H. Interspecific facilitation of micronutrient uptake between cluster-root-bearing trees and non-cluster rooted-shrubs in a Banksia woodland. PLANT AND SOIL 2023; 496:71-82. [PMID: 38510945 PMCID: PMC10948572 DOI: 10.1007/s11104-023-06092-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2023] [Indexed: 03/22/2024]
Abstract
Background and aims Belowground interspecific plant facilitation is supposed to play a key role in enabling species co-existence in hyperdiverse ecosystems in extremely nutrient-poor, semi-arid habitats, such as Banksia woodlands in southwestern-Australia. Manganese (Mn) is readily mobilised by Banksia cluster root activity in most soils and accumulates in mature leaves of native Australian plant species without significant remobilisation during leaf senescence. We hypothesised that neighbouring shrubs are facilitated in terms of Mn uptake depending on distance to surrounding cluster root-forming Banksia trees. Methods We mapped all Banksia trees and selected neighbouring shrubs within a study site in Western Australia. Soil samples were collected and analysed for physical properties and nutrient concentrations. To assesses the effect of Banksia tree proximity on leaf Mn concentrations [Mn] of non-cluster-rooted woody shrubs, samples of similarly aged leaves were taken. We used multiple linear models to test for factors affecting shrub leaf [Mn]. Results None of the assessed soil parameters showed a significant correlation with shrub leaf Mn concentrations. However, we observed a significant positive effect of very close Banksia trees (2 m) on leaf [Mn] in one of the understorey shrubs. We found additional effects of elevation and shrub size. Conclusions Leaf micronutrient concentrations of understorey shrubs were enhanced when growing within 2 m of tall Banksia trees. Our model predictions also indicate that belowground facilitation of Mn uptake was shrub size-dependent. We discuss this result in the light of plant water relations and shrub root system architecture. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06092-6.
Collapse
Affiliation(s)
- Christiana Staudinger
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
- Institute of Agronomy, Institute of Soil Science, University of Natural Resources and Life Sciences, BOKU Vienna, 3400 Tulln, Austria
- Graduate School of Integrated Sciences of Life, Hiroshima University, Higashi-Hiroshima, 739-8521 Japan
| | - Michael Renton
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| | - Matthias Leopold
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| | - Jun Wasaki
- Graduate School of Integrated Sciences of Life, Hiroshima University, Higashi-Hiroshima, 739-8521 Japan
| | - Erik J. Veneklaas
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| | | | - Gustavo Boitt
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| |
Collapse
|
6
|
Wang CY, Li LL, Meiners SJ, Kong CH. Root placement patterns in allelopathic plant-plant interactions. THE NEW PHYTOLOGIST 2023; 237:563-575. [PMID: 36263726 DOI: 10.1111/nph.18552] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Plants actively respond to their neighbors by altering root placement patterns. Neighbor-modulated root responses involve root detection and interactions mediated by root-secreted functional metabolites. However, chemically mediated root placement patterns and their underlying mechanisms remain elusive. We used an allelopathic wheat model system challenged with 60 target species to identify root placement responses in window rhizobox experiments. We then tested root responses and their biochemical mechanisms in incubation experiments involving the addition of activated carbon and functional metabolites with amyloplast staining and auxin localization in roots. Wheat and each target species demonstrated intrusive, avoidant or unresponsive root placement, resulting in a total of nine combined patterns. Root placement patterns were mediated by wheat allelochemicals and (-)-loliolide signaling of neighbor species. In particular, (-)-loliolide triggered wheat allelochemical production that altered root growth and placement, degraded starch grains in the root cap and induced uneven distribution of auxin in target species roots. Root placement patterns in wheat-neighbor interactions were perception dependent and species dependent. Signaling (-)-loliolide induced the production and release of wheat allelochemicals that modulated root placement patterns. Therefore, root placement patterns are generated by both signaling chemicals and allelochemicals in allelopathic plant-plant interactions.
Collapse
Affiliation(s)
- Chao-Yong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei-Lei Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Yu RP, Lambers H, Callaway RM, Wright AJ, Li L. Belowground facilitation and trait matching: two or three to tango? TRENDS IN PLANT SCIENCE 2021; 26:1227-1235. [PMID: 34400074 DOI: 10.1016/j.tplants.2021.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 05/12/2023]
Abstract
High biodiversity increases ecosystem functions; however, belowground facilitation remains poorly understood in this context. Here, we explore mechanisms that operate via 'giving-receiving feedbacks' for belowground facilitation. These include direct effects via root exudates, signals, and root trait plasticity, and indirect biotic facilitation via the effects of root exudates on soil biota and feedback from biota to plants. We then highlight that these two- or three-way mechanisms must affect biodiversity-ecosystem function relationships via specific combinations of matching traits. To tango requires a powerful affinity and harmony between well-matched partners, and such matches link belowground facilitation to the effect of biodiversity on function. Such matching underpins applications in intercropping, forestry, and pasture systems, in which diversity contributes to greater productivity and sustainability.
Collapse
Affiliation(s)
- Rui-Peng Yu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, 2 Yuan Ming Yuan West Road, Beijing 100193, PR China
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia; National Academy of Agriculture Green Development, China Agricultural University, 2 Yuan Ming Yuan West Road, Beijing 100193, PR China
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Long Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, 2 Yuan Ming Yuan West Road, Beijing 100193, PR China.
| |
Collapse
|
8
|
de Tombeur F, Cornelis JT, Lambers H. Silicon mobilisation by root-released carboxylates. TRENDS IN PLANT SCIENCE 2021; 26:1116-1125. [PMID: 34315662 DOI: 10.1016/j.tplants.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Plants have evolved numerous strategies to acquire poorly available nutrients from soil, including the release of carboxylates from their roots. Silicon (Si) release from mineral dissolution increases in the presence of chelating substances, and recent evidence shows that leaf [Si] increases markedly in old phosphorus (P)-depleted soils, where many species exhibit carboxylate-releasing strategies, compared with younger P-richer soils. Here, we propose that root-released carboxylates, and more generally rhizosphere processes, play an overlooked role in plant Si accumulation by increasing soil Si mobilisation from minerals. We suggest that Si mobilisation is costly in terms of carbon but becomes cheaper if those costs are already met to acquire poorly available P. Uptake of the mobilised Si by roots will then depend on whether they express Si transporters.
Collapse
Affiliation(s)
- Félix de Tombeur
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium.
| | - Jean-Thomas Cornelis
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium; Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA 6009, Australia.
| |
Collapse
|
9
|
Bennett T. Plant-plant interactions. PLANT, CELL & ENVIRONMENT 2021; 44:995-996. [PMID: 33576104 DOI: 10.1111/pce.14030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Tom Bennett
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|