1
|
Darriaut R, Roose-Amsaleg C, Vanhove M, Monard C. Microbiome engineering to palliate microbial dysbiosis occurring in agroecosystems. Microbiol Res 2025; 297:128178. [PMID: 40220558 DOI: 10.1016/j.micres.2025.128178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Plant health and productivity are closely tied to the fluctuations of soil microbiomes, which regulate biogeochemical processes and plant-soil interactions. However, environmental and anthropogenic stressors, including climate change, intensive agricultural practices, and industrial activities, disrupt these microbial communities. This microbial imbalance reduces soil fertility, plant health, and biodiversity, threatening agroecosystem sustainability. This review explores the mechanisms driving microbial dysbiosis in soil and plant environments. Plants under stress release chemical signals through root exudates, dynamically recruiting beneficial microbes to counteract microbial imbalances. Moreover, this review evaluates traditional methods to alleviate these stress-induced microbial alterations, such as microbial inoculants and organic soil amendments, alongside innovative strategies like phage therapy, CRISPR, and small RNA-based technologies. Despite these advancements, the practical implementation of microbiome interventions faces significant challenges. These include regulatory hurdles, economic constraints, and the need for long-term field studies to validate efficacy and ensure environmental safety.
Collapse
Affiliation(s)
- Romain Darriaut
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France.
| | - Céline Roose-Amsaleg
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| | - Mathieu Vanhove
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| | - Cécile Monard
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| |
Collapse
|
2
|
Samanta P, Jasrotia RS, Jaiswal S, Iquebal MA, Dey N. The transcriptome landscape of Kumrogarh, a unique rice landrace showing the simultaneous presence of Sub1 and SK loci for submergence tolerance. 3 Biotech 2025; 15:109. [PMID: 40191457 PMCID: PMC11965045 DOI: 10.1007/s13205-025-04277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
To decipher the molecular mechanism behind submergence tolerance in a typical rice genotype (var. Kumrogarh), leaf transcriptome analysis was performed on submerged plant tissue with 7 and 14 days of induced submergence, followed by cataloguing the differentially expressed transcripts. Subsequent bioinformatics analysis identified 5,267 differentially expressed genes (DEGs), of which 2,657 were upregulated and 2,610 were downregulated in four comparative combinations: T7-C7, T14-T7, T14-T7, and C14-C7. A group of 41 co-expressed genes was found across all sets, while 1427, 558 and 83 transcripts were uniquely expressed in the T7-C7, T14-T7, and C14-C7 combinations, respectively. Constructed Ven diagram showed that 1428, 65, and 44 transcripts were commonly expressed in the paired combinations "T7-C7" and "T14-T7", "C14-C7" and "T7-C7", and "C14-C7" and "T14-T7". Gene ontology study functionally categorized the DEGs into molecular functions, biological processes, and cellular components. Additionally, nine transcription factor families were identified, including MYB, WRKY, bZIP, bHLH, SET domain, NAC domain, C2H2 zinc finger, E2F, and HSF, along with a set of differentially regulated signalling genes. Twelve genes related to submergence adaptation were selected for final validation through quantitative real-time PCR-based expression analysis, which demonstrated a strong association with a coefficient (R 2 = 0.716) after aligning with the RNA-Seq data. Derived results showed upregulation of gibberellin receptor GID1L2 (LOC_Os02g35940.1), ethylene-responsive element-binding protein (LOC_Os06g08360.1), glyceraldehyde-3-phosphate dehydrogenase (LOC_Os04g38600.1), decarboxylase (LOC_Os08g04540.1), sucrose synthase (LOC_Os03g22120.1), aldehyde dehydrogenase (LOC_Os12g07810.1), endonuclease/exonuclease/phosphatase family domain-containing protein (LOC_Os01g08780.1), polygalacturonase inhibitor 1 precursor (LOC_Os07g38130.1), transmembrane amino acid transporter protein (LOC_Os01g41420.1), and SAM-dependent carboxyl methyltransferase (LOC_Os02g48770.1). This study provides a comprehensive profile of leaf transcriptomics in a traditionally tall-type rice landrace containing both submergence-tolerant Sub1 and SK alleles, highlighting an area of research that remains largely unexplored. These remarkable findings have driven this investigation to decipher the interplay among these key genetic factors by hypothesizing a model leading to the development of a genetic network associated with improved survival under prolonged deep submergence of such a unique rice genotype. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04277-7.
Collapse
Affiliation(s)
- Pratyasha Samanta
- Rice Biotechnology Laboratory, Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235 India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, Library Avenue, New Delhi, 110012 India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, Library Avenue, New Delhi, 110012 India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, Library Avenue, New Delhi, 110012 India
| | - Narottam Dey
- Rice Biotechnology Laboratory, Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235 India
| |
Collapse
|
3
|
Jaime C, Montes N, Gil-Valle M, Dunger G, Pagán I. The interplay between virus infection and water-related stress is mediated by the plant metabolism of ascorbic acid. THE NEW PHYTOLOGIST 2025. [PMID: 40312997 DOI: 10.1111/nph.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Plants are often subjected to environmental variations in the context of infection such that virus-induced and abiotic stresses co-occur. One such environmental variation is water stress, which strongly impacts plant fitness. Although there is ample evidence of the beneficial effects of plant viruses under drought, the consequences of infection under water excess and its molecular basis are unknown. We analyze the effect of cucumber mosaic virus (CMV) infection on Arabidopsis thaliana growth and reproduction across a reaction norm of watering conditions: from drought to waterlogging. The role of the stress-induced ascorbate-glutathione (AsA-GSH) pathway in modulating the outcome of the plant-virus-environment interaction is explored by quantifying gene expression and by using plants overexpressing monodehydroascorbate reductase (MDHAR), a key component of the pathway. Results show that CMV infection is detrimental to plant fitness under standard watering, nearly neutral under waterlogging, and beneficial under drought. Virus-derived compensation for the negative effects of drought is associated with increased expression of MDHAR. Consistent with this, under water stress plants constitutively overexpressing MDHAR reproduced the phenotypes of CMV-infected plants. This work provides novel information on how the interplay between virus infection and watering conditions shapes plant fitness and highlights the plasticity of the resulting outcome.
Collapse
Affiliation(s)
- Camila Jaime
- Instituto de Ciencias Agropecuarias del Litoral, CONICET, Universidad Nacional del Litoral, Facultad de Ciencias Agrarias, Esperanza, 3080, Santa Fe, Argentina
| | - Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, Madrid, 28668, Spain
- Unidad de Apoyo Metodológico, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-Princesa), Madrid, 28008, Spain
| | - Miriam Gil-Valle
- Centro de Biotecnología y Genómica de Plantas UPM-INIA/CSIC and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Germán Dunger
- Instituto de Ciencias Agropecuarias del Litoral, CONICET, Universidad Nacional del Litoral, Facultad de Ciencias Agrarias, Esperanza, 3080, Santa Fe, Argentina
- Centro de Biotecnología y Genómica de Plantas UPM-INIA/CSIC and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, 3080, Santa Fe, Argentina
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA/CSIC and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| |
Collapse
|
4
|
Secomandi E, De Gregorio MA, Garcia-Perez P, Vaccari F, Puglisi E, Lucini L. Waterlogging alone and combined with other abiotic stresses provides unique metabolic signatures at the plant-rhizosphere interface: A multi-omics perspective on root metabolome, root exudation and rhizomicrobiome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109646. [PMID: 39965412 DOI: 10.1016/j.plaphy.2025.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Despite the growing evidence on unique and unpredictable impact of stress combination over plants, waterlogging-combined stresses effects are still underexplored. Under those conditions, besides the impairment of plant aerial parts, the root system is particularly vulnerable, leading to consequences on plant survival. Here, we report on the short-term exposure of soil-grown Arabidopsis thaliana L. to waterlogging alone and combined with cold, heat, and salinity to inspect their antagonistic, additive or synergistic effects in the rhizosphere. To this aim, root metabolic changes, exudation profiles, and microbial diversity were investigated using a combination of metabolomics and metagenomics, and their interaction was analysed through multi-omics data integration. In roots, waterlogging strongly affected metabolism compared to other single stresses, causing a down-accumulation of targeted classes of compounds including, phenylpropanoids, sterols, terpenoids, and alkaloids. Additive and synergistic effects were reported in roots under waterlogging combined with heat and cold stresses, respectively. Regarding root exudates, flavonoids, terpenoids, and alkaloids were the main classes of compounds affected. Waterlogging caused a down-accumulation of all classes except for coumarins, and mixed trends were observed in waterlogging-combined stresses, with waterlogging-salinity stresses resulting in an ameliorating effect. Even though microbial communities' alpha- and beta-diversity remained stable, suggesting their resilience under short-term exposure, specific taxa modulation was recorded under each condition. Overall, these results contribute to understanding the hierarchical impact of waterlogging on root metabolism and exudation, influencing rhizosphere interactions. This multi-omics approach advances our understanding of plant stress responses and microbial dynamics, paving the way for future studies on adaptive mechanisms.
Collapse
Affiliation(s)
- Elena Secomandi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy; Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Palazzo del Broletto, Piazza della vittoria, 15, Pavia, Italy
| | - Marco Armando De Gregorio
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy; Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy; Institute of Bioimaging and Complex Biological Systems, National Research Council (IBSBC CNR), Via Fratelli Cervi, 93, 20054, Milan, Italy
| |
Collapse
|
5
|
Camisón Á, Monteiro P, Dorado FJ, Sánchez-Bel P, Leitão F, Meijón M, Pinto G. Choosing the right signaling pathway: hormone responses to Phytophthora cinnamomi during compatible and incompatible interactions with chestnut (Castanea spp.). TREE PHYSIOLOGY 2025; 45:tpaf016. [PMID: 39883087 DOI: 10.1093/treephys/tpaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids, which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.-Pc interactions. Susceptible (S) C. sativa and resistant (R) C. sativa × C. crenata ramets were inoculated with Pc in roots and assessed for disease progression, leaf physiology and biochemistry at 1, 3, 5 and 8 days after inoculation (d.a.i.). In S chestnuts, Pc increasingly deteriorated the leaf physiological functioning by decreasing leaf CO2 assimilation, stomatal conductance, transpiration rate, chlorophylls content and the maximum quantum yield of the photosystem II over time, triggering aerial symptoms (leaf wilting and chlorosis) 8 d.a.i. Pc had little impact on the leaf physiological functioning of R chestnuts, which remained asymptomatic. In roots of S chestnuts, Pc transiently induced jasmonates signaling (5 d.a.i.) while impairing root carbohydrates metabolism over time. In leaves, a transient antioxidant burst (5 d.a.i.) followed by abscisic acid (ABA) accumulation (8 d.a.i.) was observed. R chestnuts responded to Pc by up-regulating root salicylic acid (SA) at early (1 d.a.i.) and late (8 d.a.i.) infection stages, in an antagonistic crosstalk with root ABA. Overall, the results pinpoint an important role of SA in mediating the resistant response of chestnuts to Pc, but also show that the specific hormone pathways induced by Pc are genotype dependent. The study also highlights that the dynamic nature of hormone responses over time must be considered when elucidating hormone-regulated responses to Pc.
Collapse
Affiliation(s)
- Álvaro Camisón
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Universidad de Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Pedro Monteiro
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - F Javier Dorado
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Universidad de Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Paloma Sánchez-Bel
- Plant Immunity and Biochemistry Laboratory, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avenida Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Frederico Leitão
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- Faculty of Sciences and Technology, Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, CC Martim de Freitas, Coimbra 3000-456, Portugal
| | - Mónica Meijón
- Faculty of Biology/Biotechnology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Calle Catedrático Rodrigo Uría s/n, 33071 Oviedo, Spain
| | - Gloria Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
6
|
Wall CB, Kajihara K, Rodriguez FE, Vilonen L, Yogi D, Swift SOI, Hynson NA. Symbiotic fungi alter plant resource allocation independent of water availability. AMERICAN JOURNAL OF BOTANY 2025; 112:e16459. [PMID: 39825495 DOI: 10.1002/ajb2.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/20/2025]
Abstract
PREMISE The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress. METHODS We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high). Inoculated and uninoculated plants were grown in controlled conditions for 151 days, then shoot and root biomass were weighed and fungal diversity and community composition determined via amplicon sequencing. RESULTS The source of inoculum and water regime elicited significant changes in plant resource allocation to shoots versus roots, but only specific inocula affected total plant biomass. Shoot biomass increased in the high water treatment but was negatively impacted by all inoculum treatments relative to the controls. The opposite was true for roots, where the low water treatment led to greater proportional root biomass, and plants inoculated with wet site fungi allocated significantly more resources to root growth than dry- or moderate-site inoculated plants and the controls. Fungal communities of shoots and roots partitioned by inoculum source, water treatment, and the interaction of the two. CONCLUSIONS The provenance of fungi can significantly affect total plant biomass and resource allocation above- and belowground, with fungi derived from more extreme environments eliciting the strongest plant responses.
Collapse
Affiliation(s)
- Christopher B Wall
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kacie Kajihara
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Francisca E Rodriguez
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Leena Vilonen
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Danyel Yogi
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Sean O I Swift
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Ngumbi EN. Could flooding undermine progress in building climate-resilient crops? TRENDS IN PLANT SCIENCE 2025; 30:85-94. [PMID: 39168786 DOI: 10.1016/j.tplants.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Flooding threatens crop productivity, agricultural sustainability, and global food security. In this article I review the effects of flooding on plants and highlight three important gaps in our understanding: (i) effects of flooding on ecological interactions mediated by plants both below (changing root metabolites and exudates) and aboveground (changing plant quality and metabolites, and weakening the plant immune system), (ii) flooding impacts on soil health and microorganisms that underpin plant and ecosystems health, and (iii) the legacy impacts of flooding. Failure to address these overlooked aspects could derail and undermine the monumental progress made in building climate-resilient crops and soil-microbe-assisted plant resilience. Addressing the outlined knowledge gaps will enhance solutions developed to mitigate flooding and preserve gains made to date.
Collapse
Affiliation(s)
- Esther Ndumi Ngumbi
- Department of Entomology, University of Illinois Urbana Champaign, 417 Morrill Hall, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Bakshi A, Gilroy S. Calcium signaling in hypoxic response. PLANT PHYSIOLOGY 2024; 197:kiae654. [PMID: 39707915 DOI: 10.1093/plphys/kiae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Plants can experience a lack of oxygen due to environmental conditions, such as flooding events or intense microbial blooms in the soil, and from their own metabolic activities. The associated limit on aerobic respiration can be fatal. Therefore, plants have evolved sensing systems that monitor oxygen levels and trigger a suite of metabolic, physiologic, and developmental responses to endure, or potentially escape, these oxygen-limiting conditions. Low oxygen stress has long been known to trigger changes in cytosolic Ca2+ levels in plants, and recent work has seen some major steps forward in characterizing these events as part of a Ca2+-based signaling system through (1) defining how hypoxia may trigger and then shape the dynamics of these Ca2+ signals, and (2) identifying a host of the downstream elements that allow Ca2+ to regulate a wide-ranging network of hypoxia responses. Calcium transporters such as the CAX family of Ca2+/H+ antiporters at the tonoplast have emerged as important components of the system that forms hypoxia-related Ca2+ signals. Downstream lies a web of Ca2+-responsive proteins such as the calmodulin like proteins, Ca2+-dependent kinases, and the calcineurin-B like proteins along with their interacting kinases. A host of other regulators such as reactive oxygen species and lipid-mediated signals then act in parallel to the Ca2+-dependent events to closely control and coordinate the myriad responses that characterize the plant's low oxygen response.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Department of Botany, University of Wisconsin-Madison, Birge Hall, 430 lincoln Drive, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Birge Hall, 430 lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
9
|
Rolletschek H, Borisjuk L, Gómez-Álvarez EM, Pucciariello C. Advances in seed hypoxia research. PLANT PHYSIOLOGY 2024; 197:kiae556. [PMID: 39471319 PMCID: PMC11852284 DOI: 10.1093/plphys/kiae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
Seeds represent essential stages of the plant life cycle: embryogenesis, the intermittent quiescence phase, and germination. Each stage has its own physiological requirements, genetic program, and environmental challenges. Consequently, the effects of developmental and environmental hypoxia can vary from detrimental to beneficial. Past and recent evidence shows how low-oxygen signaling and metabolic adaptations to hypoxia affect seed development and germination. Here, we review the recent literature on seed biology in relation to hypoxia research and present our perspective on key challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Eva María Gómez-Álvarez
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
10
|
Mohan B, Majeed A, Thingujam D, Burton SS, Cowart KE, Pajerowska-Mukhtar KM, Mukhtar MS. Amplicon Sequencing Analysis of Submerged Plant Microbiome Diversity and Screening for ACC Deaminase Production by Microbes. Int J Mol Sci 2024; 25:13330. [PMID: 39769095 PMCID: PMC11727893 DOI: 10.3390/ijms252413330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations. Additionally, their interactions with microbial communities are increasingly recognized as pivotal in mitigating these environmental stresses. Understanding the diversity of these microbial communities is crucial for comprehending the complex interactions between submerged plants and their environments. This research aims to identify and screen microbes from submerged plant samples capable of producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and to explore microbial diversity through metagenomic analysis. Microbes were isolated and screened for ACC deaminase production, and metagenomic techniques, including co-occurrence network analysis, were used to examine microbial diversity and interactions within the communities. ACC deaminase-producing microbes can significantly enhance plant metabolism under stress conditions. The identification of the culturable bacteria revealed that most of these microbes belong to the genera Pseudomonas, Bacillus, and Acinetobacter. A total of 177 microbial strains were cultured, with molecular identification revealing 79 reductant, 86 non-reductant, and 12 uncultured strains. Among 162 samples screened for ACC deaminase activity, 50 tested positive. To further understand microbial dynamics, samples were collected from both natural sources and artificial pond reservoirs to assess the impact of the location on flood-associated microbiomes in submerged plants. Metagenomic analysis was conducted on both the epiphytic and endophytic samples. By exploring the overall composition and dynamics of microbial communities associated with submerged plants, this research seeks to deepen our understanding of plant-microbe interactions in aquatic environments. The microbial screening helped to identify the diverse microbes associated with ACC deaminase activity in submerged plants and amplicon sequencing analysis paved the way towards identifying the impact of the location in shaping the microbiome and the diversity associated with endophytic and epiphytic microbes. Co-occurrence network analysis further highlighted the intricate interactions within these microbial communities. Notably, ACC deaminase activity was observed in plant-associated microbes across different locations, with distinct variations between epiphytic and endophytic populations as identified through co-occurrence network analysis.
Collapse
Affiliation(s)
- Binoop Mohan
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (B.M.); (A.M.); (D.T.); (S.S.B.); (K.E.C.); (K.M.P.-M.)
| | - Aqsa Majeed
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (B.M.); (A.M.); (D.T.); (S.S.B.); (K.E.C.); (K.M.P.-M.)
- Biosystems Research Complex, Department of Genetics & Biochemistry, Clemson University, 105 Collings St., Clemson, SC 29634, USA
| | - Doni Thingujam
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (B.M.); (A.M.); (D.T.); (S.S.B.); (K.E.C.); (K.M.P.-M.)
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Sethson Silton Burton
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (B.M.); (A.M.); (D.T.); (S.S.B.); (K.E.C.); (K.M.P.-M.)
| | - Katie E. Cowart
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (B.M.); (A.M.); (D.T.); (S.S.B.); (K.E.C.); (K.M.P.-M.)
| | - Karolina M. Pajerowska-Mukhtar
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (B.M.); (A.M.); (D.T.); (S.S.B.); (K.E.C.); (K.M.P.-M.)
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (B.M.); (A.M.); (D.T.); (S.S.B.); (K.E.C.); (K.M.P.-M.)
- Biosystems Research Complex, Department of Genetics & Biochemistry, Clemson University, 105 Collings St., Clemson, SC 29634, USA
| |
Collapse
|
11
|
Boisseaux M, Troispoux V, Bordes A, Cazal J, Cazal SO, Coste S, Stahl C, Schimann H. Are plant traits drivers of endophytic communities in seasonally flooded tropical forests? AMERICAN JOURNAL OF BOTANY 2024; 111:e16366. [PMID: 39010811 DOI: 10.1002/ajb2.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
PREMISE In the Amazon basin, seasonally flooded (SF) forests offer varying water constraints, providing an excellent way to investigate the role of habitat selection on microbial communities within plants. However, variations in the microbial community among host plants cannot solely be attributed to environmental factors, and how plant traits contribute to microbial assemblages remains an open question. METHODS We described leaf- and root-associated microbial communities using ITS2 and 16 S high-throughput sequencing and investigated the stochastic-deterministic balance shaping these community assemblies using two null models. Plant ecophysiological functioning was evaluated by focusing on 10 leaf and root traits in 72 seedlings, belonging to seven tropical SF tree species in French Guiana. We then analyzed how root and leaf traits drove the assembly of endophytic communities. RESULTS While both stochastic and deterministic processes governed the endophyte assembly in the leaves and roots, stochasticity prevailed. Discrepancies were found between fungi and bacteria, highlighting that these microorganisms have distinct ecological strategies within plants. Traits, especially leaf traits, host species and spatial predictors better explained diversity than composition, but they were modest predictors overall. CONCLUSIONS This study widens our knowledge about tree species in SF forests, a habitat sensitive to climate change, through the combined analyses of their associated microbial communities with functional traits. We emphasize the need to investigate other plant traits to better disentangle the drivers of the relationship between seedlings and their associated microbiomes, ultimately enhancing their adaptive capacities to climate change.
Collapse
Affiliation(s)
- Marion Boisseaux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Valérie Troispoux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Alice Bordes
- Université Grenoble Alpes, INRAE, URLESSEM, Saint-Martin-d'Hères, France, Grenoble, France
| | - Jocelyn Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Saint-Omer Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Sabrina Coste
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Heidy Schimann
- INRAE, Université de Bordeaux, BIOGECO, Cestas, 33610, France
| |
Collapse
|
12
|
García P, Singh S, Graciet E. New Insights into the Connections between Flooding/Hypoxia Response and Plant Defenses against Pathogens. PLANTS (BASEL, SWITZERLAND) 2024; 13:2176. [PMID: 39204612 PMCID: PMC11358971 DOI: 10.3390/plants13162176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The impact of global climate change has highlighted the need for a better understanding of how plants respond to multiple simultaneous or sequential stresses, not only to gain fundamental knowledge of how plants integrate signals and mount a coordinated response to stresses but also for applications to improve crop resilience to environmental stresses. In recent years, there has been a stronger emphasis on understanding how plants integrate stresses and the molecular mechanisms underlying the crosstalk between the signaling pathways and transcriptional programs that underpin plant responses to multiple stresses. The combination of flooding (or resulting hypoxic stress) with pathogen infection is particularly relevant due to the frequent co-occurrence of both stresses in nature. This review focuses on (i) experimental approaches and challenges associated with the study of combined and sequential flooding/hypoxia and pathogen infection, (ii) how flooding (or resulting hypoxic stress) influences plant immunity and defense responses to pathogens, and (iii) how flooding contributes to shaping the soil microbiome and is linked to plants' ability to fight pathogen infection.
Collapse
Affiliation(s)
- Pablo García
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
| | - Shreenivas Singh
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
13
|
Cao Y, Du P, Li Z, Xu J, Ma C, Liang B. Melatonin promotes the recovery of apple plants after waterlogging by shaping the structure and function of the rhizosphere microbiome. PLANT, CELL & ENVIRONMENT 2024; 47:2614-2630. [PMID: 38712467 DOI: 10.1111/pce.14903] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/08/2024]
Abstract
The dynamics of the physiological adaptability of plants and the rhizosphere soil environment after waterlogging remain unclear. Here we investigated the mechanisms regulating plant condition and shaping of the rhizosphere microbiome in a pot experiment. In the experiment, we added melatonin to waterlogged plants, which promoted waterlogging relief. The treatment significantly enhanced photosynthesis and the antioxidant capacity of apple plants, and significantly promoted nitrogen (N) utilization efficiency by upregulating genes related to N transport and metabolism. Multiperiod soil microbiome analysis showed the dynamic effects of melatonin on the diversity of the microbial community during waterlogging recovery. Random forest and linear regression analyses were used to screen for potential beneficial bacteria (e.g., Azoarcus, Pseudomonas and Nocardioides) specifically regulated by melatonin and revealed a positive correlation with soil nutrient levels and plant growth. Furthermore, metagenomic analyses revealed the regulatory effects of melatonin on genes involved in N cycling in soil. Melatonin positively contributed to the accumulation of plant dry weight by upregulating the expression of nifD and nifK (N fixation). In summary, melatonin positively regulates physiological functions in plants and the structure and function of the microbial community; it promoted the recovery of apple plants after waterlogging stress.
Collapse
Affiliation(s)
- Yang Cao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Peihua Du
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Zhongyong Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
14
|
Zhang Q, Chen G, Ke W, Peng C. Adaptation of the Invasive Plant Sphagneticola trilobata to Flooding Stress by Hybridization with Native Relatives. Int J Mol Sci 2024; 25:6738. [PMID: 38928441 PMCID: PMC11204346 DOI: 10.3390/ijms25126738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Hybridization is common between invasive and native species and may produce more adaptive hybrids. The hybrid (Sphagneticola × guangdongensis) of Sphagneticola trilobata (an invasive species) and S. calendulacea (a native species) was found in South China. In this study, S. trilobata, S. calendulacea, and Sphagneticola × guangdongensis were used as research materials to explore their adaptability to flooding stress. Under flooding stress, the ethylene content and the expression of key enzyme genes related to ethylene synthesis in Sphagneticola × guangdongensis and S. calendulacea were significantly higher than those in S. trilobata. A large number of adventitious roots and aerenchyma were generated in Sphagneticola × guangdongensis and S. calendulacea. The contents of reactive oxygen species and malondialdehyde in Sphagneticola × guangdongensis and S. calendulacea were lower than those in S. trilobata, and the leaves of S. trilobata were the most severely damaged under flooding stress. The results indicate that hybridization catalyzed the tolerance of Sphagneticola × guangdongensis to flooding stress, and the responses of Sphagneticola × guangdongensis to flooding stress were more similar to that of its native parent. This suggests that hybridization with native relatives is an important way for invasive species to overcome environmental pressure and achieve invasion.
Collapse
Affiliation(s)
- Qilei Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (G.C.); (W.K.)
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Guangxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (G.C.); (W.K.)
| | - Weiqian Ke
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (G.C.); (W.K.)
| | - Changlian Peng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (G.C.); (W.K.)
| |
Collapse
|
15
|
Sun T, Wang M, Li X, Chen Y, Zhang W. Different Phenotypic, Photosynthetic, and Physiological Responses to Flooding between Q. nuttallii and Q. palustris. PLANTS (BASEL, SWITZERLAND) 2024; 13:1658. [PMID: 38931092 PMCID: PMC11207582 DOI: 10.3390/plants13121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Flooding stress is an increasingly serious problem in wetlands, often affecting large areas of crops and timber production areas. The current study aimed to explore the species differences in responses to flooding stress between Q. nuttallii and Q. palustris in an outdoor environment. All the tested plants survived after a 60-day flooding treatment that left 5 cm of water above the soil surface. This suggests that the two species are flood-tolerant, so they can be applied in the construction of riparian protection forests and wetland restoration. Compared with control conditions, flooding treatment significantly decreased seedling height and diameter and the Pn, Gs, Tr, Fv/Fm, ABS/CSm, TR0/CSm, ET0/CSm, RE0/CSm, IAA, and GA3 content and significantly increased the content of MDA, H2O2, soluble sugars, SOD, POD, ADH, ABA, and JA. Under control conditions, Q. nuttallii showed significantly greater growth and photosynthetic capability than Q. palustris. In contrast, Q. palustris exhibited less inhibition of growth and photosynthesis, oxidative stress levels, and antioxidant enzyme activities than Q. nuttallii under flooding conditions. The findings indicate that Q. palustris has better defense mechanisms against the damage caused by flooding stress than Q. nuttallii. Q. nuttallii was more sensitive and responsive to flooding than Q. palustris.
Collapse
Affiliation(s)
- Tiantian Sun
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (M.W.); (X.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Mengzhu Wang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (M.W.); (X.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (M.W.); (X.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wangxiang Zhang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (M.W.); (X.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Gomes Marques I, Vieites-Blanco C, Rodríguez-González PM, Segurado P, Marques M, Barrento MJ, Fernandes MR, Cupertino A, Almeida H, Biurrun I, Corcobado T, Costa E Silva F, Díez JJ, Dufour S, Faria C, Ferreira MT, Ferreira V, Jansson R, Machado H, Marçais B, Moreira AC, Oliva J, Pielech R, Rodrigues AP, David TS, Solla A, Jung T. The ADnet Bayesian belief network for alder decline: Integrating empirical data and expert knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:173619. [PMID: 38825208 DOI: 10.1016/j.scitotenv.2024.173619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
The globalization in plant material trading has caused the emergence of invasive pests in many ecosystems, such as the alder pathogen Phytophthora ×alni in European riparian forests. Due to the ecological importance of alder to the functioning of rivers and the increasing incidence of P. ×alni-induced alder decline, effective and accessible decision tools are required to help managers and stakeholders control the disease. This study proposes a Bayesian belief network methodology to integrate diverse information on the factors affecting the survival and infection ability of P. ×alni in riparian habitats to help predict and manage disease incidence. The resulting Alder Decline Network (ADnet) management tool integrates information about alder decline from scientific literature, expert knowledge and empirical data. Expert knowledge was gathered through elicitation techniques that included 19 experts from 12 institutions and 8 countries. An original dataset was created covering 1189 European locations, from which P. ×alni occurrence was modeled based on bioclimatic variables. ADnet uncertainty was evaluated through its sensitivity to changes in states and three scenario analyses. The ADnet tool indicated that mild temperatures and high precipitation are key factors favoring pathogen survival. Flood timing, water velocity, and soil type have the strongest influence on disease incidence. ADnet can support ecosystem management decisions and knowledge transfer to address P. ×alni-induced alder decline at local or regional levels across Europe. Management actions such as avoiding the planting of potentially infected trees or removing man-made structures that increase the flooding period in disease-affected sites could decrease the incidence of alder disease in riparian forests and limit its spread. The coverage of the ADnet tool can be expanded by updating data on the pathogen's occurrence, particularly from its distributional limits. Research on the role of genetic variability in alder susceptibility and pathogen virulence may also help improve future ADnet versions.
Collapse
Affiliation(s)
- Inês Gomes Marques
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal; cE3c - Center for Ecology, Evolution and Environmental Change & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Cristina Vieites-Blanco
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Patricia M Rodríguez-González
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| | - Pedro Segurado
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Marlene Marques
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Maria J Barrento
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Maria R Fernandes
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Arthur Cupertino
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Helena Almeida
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Idoia Biurrun
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Apdo. 644, 48080 Bilbao, Spain
| | - Tamara Corcobado
- Austrian Research Centre for Forests (BFW), Vienna, Austria; Phytophthora Research Centre, Mendel University, 613 00 Brno, Czech Republic
| | - Filipe Costa E Silva
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Julio J Díez
- iuFOR- Sustainable Forest Management, Research Institute, University of Valladolid, 34004 Palencia, Spain
| | - Simon Dufour
- Université Rennes 2, CNRS, UMR LETG, CA 24307-35043 Rennes Cedex, France
| | - Carla Faria
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Maria T Ferreira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Verónica Ferreira
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Roland Jansson
- Department of Ecology and Environmental Science, Umeå University, 901 87 Umeå, Sweden
| | - Helena Machado
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Benoit Marçais
- Université de Lorraine, INRAE, UMR Interactions arbres/microorganismes, F-54000 Nancy, France
| | - Ana C Moreira
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Jonàs Oliva
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain; Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - Remigiusz Pielech
- Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Poland
| | - Ana P Rodrigues
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Teresa S David
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal; Instituto Nacional de Investigação Agrária e Veterinária I.P., Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Universidad de Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Thomas Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic; Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| |
Collapse
|
17
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
18
|
Vlasselaer L, Crauwels S, Lievens B, De Coninck B. Unveiling the microbiome of hydroponically cultivated lettuce: impact of Phytophthora cryptogea infection on plant-associated microorganisms. FEMS Microbiol Ecol 2024; 100:fiae010. [PMID: 38317643 PMCID: PMC10872686 DOI: 10.1093/femsec/fiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.
Collapse
Affiliation(s)
- Liese Vlasselaer
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Sam Crauwels
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Bart Lievens
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
19
|
Coffman L, Mejia HD, Alicea Y, Mustafa R, Ahmad W, Crawford K, Khan AL. Microbiome structure variation and soybean's defense responses during flooding stress and elevated CO 2. FRONTIERS IN PLANT SCIENCE 2024; 14:1295674. [PMID: 38389716 PMCID: PMC10882081 DOI: 10.3389/fpls.2023.1295674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 02/24/2024]
Abstract
Introduction With current trends in global climate change, both flooding episodes and higher levels of CO2 have been key factors to impact plant growth and stress tolerance. Very little is known about how both factors can influence the microbiome diversity and function, especially in tolerant soybean cultivars. This work aims to (i) elucidate the impact of flooding stress and increased levels of CO2 on the plant defenses and (ii) understand the microbiome diversity during flooding stress and elevated CO2 (eCO2). Methods We used next-generation sequencing and bioinformatic methods to show the impact of natural flooding and eCO2 on the microbiome architecture of soybean plants' below- (soil) and above-ground organs (root and shoot). We used high throughput rhizospheric extra-cellular enzymes and molecular analysis of plant defense-related genes to understand microbial diversity in plant responses during eCO2 and flooding. Results Results revealed that bacterial and fungal diversity was substantially higher in combined flooding and eCO2 treatments than in non-flooding control. Microbial diversity was soil>root>shoot in response to flooding and eCO2. We found that sole treatment of eCO2 and flooding had significant abundances of Chitinophaga, Clostridium, and Bacillus. Whereas the combination of flooding and eCO2 conditions showed a significant abundance of Trichoderma and Gibberella. Rhizospheric extra-cellular enzyme activities were significantly higher in eCO2 than flooding or its combination with eCO2. Plant defense responses were significantly regulated by the oxidative stress enzyme activities and gene expression of Elongation factor 1 and Alcohol dehydrogenase 2 in floodings and eCO2 treatments in soybean plant root or shoot parts. Conclusion This work suggests that climatic-induced changes in eCO2 and submergence can reshape microbiome structure and host defenses, essential in plant breeding and developing stress-tolerant crops. This work can help in identifying core-microbiome species that are unique to flooding stress environments and increasing eCO2.
Collapse
Affiliation(s)
- Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Hector D Mejia
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Yelinska Alicea
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Raneem Mustafa
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Kerri Crawford
- Department of Biological Sciences and Chemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biological Sciences and Chemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
20
|
Gómez-Álvarez EM, Salardi-Jost M, Ahumada GD, Perata P, Dell'Acqua M, Pucciariello C. Seed bacterial microbiota in post-submergence tolerant and sensitive barley genotypes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23166. [PMID: 38266278 DOI: 10.1071/fp23166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Flooding is a predominant abiotic stress for cultivated plants, including barley. This cereal crop shows a large adaptability to different environmental conditions, suggesting the presence of key traits to tolerate adverse conditions. During germination, genetic variations account for dissimilarities in flooding tolerance. However, differences in the seed microbiota may also contribute to tolerance/sensitivity during seedling establishment. This work investigated differences in microbiome among the grains of barley accessions. Two barley phenotypes were compared, each either tolerant or sensitive to a short submergence period followed by a recovery. The study used a metataxonomic analysis based on 16S ribosomal RNA gene sequencing and subsequent functional prediction. Our results support the hypothesis that bacterial microbiota inhabiting the barley seeds are different between sensitive and tolerant barley accessions, which harbour specific bacterial phyla and families. Finally, bacteria detected in tolerant barley accessions show a peculiar functional enrichment that suggests a possible connection with successful germination and seedling establishment.
Collapse
Affiliation(s)
| | | | | | | | - Matteo Dell'Acqua
- Genetics Lab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
21
|
Dong G, Chen S, Liu K, Wang W, Hou H, Gao L, Zhang F, Su H. Spatiotemporal variation in sensitivity of urban vegetation growth and greenness to vegetation water content: Evidence from Chinese megacities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167090. [PMID: 37716675 DOI: 10.1016/j.scitotenv.2023.167090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Understanding the sensitivity of vegetation growth and greenness to vegetation water content change is crucial for elucidating the mechanism of terrestrial ecosystems response to water availability change caused by climate change. Nevertheless, we still have limited knowledge of such aspects in urban in different climatic contexts under the influence of human activities. In this study, we employed Google Earth Engine (GEE), remote sensing satellite imagery, meteorological data, and Vegetation Photosynthesis Model (VPM) to explore the spatiotemporal pattern of vegetation growth and greenness sensitivity to vegetation water content in three megacities (Beijing, Shanghai, and Guangzhou) located in eastern China from 2001 to 2020. We found a significant increase (slope > 0, p < 0.05) in the sensitivity of urban vegetation growth and greenness to vegetation water content (SLSWI). This indicates the increasing dependence of urban vegetation ecosystems on vegetation water resources. Moreover, evident spatial heterogeneity was observed in both SLSWI and the trends of SLSWI, and spatial heterogeneity in SLSWI and the trends of SLSWI was also present among identical vegetation types within the same city. Additionally, both SLSWI of vegetation growth and greenness and the trend of SLSWI showed obvious spatial distribution differences (e.g., standard deviations of trends in SLSWI of open evergreen needle-leaved forest of GPP is 14.36 × 10-2 and standard deviations of trends in SLSWI of open evergreen needle-leaved forest of EVI is 10.16 × 10-2), closely associated with factors such as vegetation type, climatic conditions, and anthropogenic influences.
Collapse
Affiliation(s)
- Guannan Dong
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohui Chen
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Liu
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weimin Wang
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China; Guangdong Greater Bay Area, Change and Comprehensive Treatment of Regional Ecology and Environment, National Observation and Research Station, Shenzhen 518049, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Rapid Urbanization Region, Shenzhen 518049, China
| | - Haoran Hou
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Gao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furong Zhang
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Su
- Department of Civil, Environmental & Geomatics Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
22
|
Leelastwattanagul O, Sutheeworapong S, Khoiri AN, Dulsawat S, Wattanachaisaereekul S, Tachaleat A, Duangfoo T, Paenkaew P, Prommeenate P, Cheevadhanarak S, Jirakkakul J. Soil microbiome analysis reveals effects of periodic waterlogging stress on sugarcane growth. PLoS One 2023; 18:e0293834. [PMID: 37917788 PMCID: PMC10621937 DOI: 10.1371/journal.pone.0293834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Sugarcane is one of the major agricultural crops with high economic importance in Thailand. Periodic waterlogging has a long-term negative effect on sugarcane development, soil properties, and microbial diversity, impacting overall sugarcane production. Yet, the microbial structure in periodically waterlogged sugarcane fields across soil compartments and growth stages in Thailand has not been documented. This study investigated soil and rhizosphere microbial communities in a periodic waterlogged field in comparison with a normal field in a sugarcane plantation in Ratchaburi, Thailand, using 16S rRNA and ITS amplicon sequencing. Alpha diversity analysis revealed comparable values in periodic waterlogged and normal fields across all growth stages, while beta diversity analysis highlighted distinct microbial community profiles in both fields throughout the growth stages. In the periodic waterlogged field, the relative abundance of Chloroflexi, Actinobacteria, and Basidiomycota increased, while Acidobacteria and Ascomycota decreased. Beneficial microbes such as Arthrobacter, Azoarcus, Bacillus, Paenibacillus, Pseudomonas, and Streptomyces thrived in the normal field, potentially serving as biomarkers for favorable soil conditions. Conversely, phytopathogens and growth-inhibiting bacteria were prevalent in the periodic waterlogged field, indicating unfavorable conditions. The co-occurrence network in rhizosphere of the normal field had the highest complexity, implying increased sharing of resources among microorganisms and enhanced soil biological fertility. Altogether, this study demonstrated that the periodic waterlogged field had a long-term negative effect on the soil microbial community which is a key determining factor of sugarcane growth.
Collapse
Affiliation(s)
- Onnicha Leelastwattanagul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Thanawat Duangfoo
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Prasobsook Paenkaew
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
23
|
Khan AL. The phytomicrobiome: solving plant stress tolerance under climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1219366. [PMID: 37746004 PMCID: PMC10513501 DOI: 10.3389/fpls.2023.1219366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
With extraordinary global climate changes, increased episodes of extreme conditions result in continuous but complex interaction of environmental variables with plant life. Exploring natural phytomicrobiome species can provide a crucial resource of beneficial microbes that can improve plant growth and productivity through nutrient uptake, secondary metabolite production, and resistance against pathogenicity and abiotic stresses. The phytomicrobiome composition, diversity, and function strongly depend on the plant's genotype and climatic conditions. Currently, most studies have focused on elucidating microbial community abundance and diversity in the phytomicrobiome, covering bacterial communities. However, least is known about understanding the holistic phytomicrobiome composition and how they interact and function in stress conditions. This review identifies several gaps and essential questions that could enhance understanding of the complex interaction of microbiome, plant, and climate change. Utilizing eco-friendly approaches of naturally occurring synthetic microbial communities that enhance plant stress tolerance and leave fewer carbon-foot prints has been emphasized. However, understanding the mechanisms involved in stress signaling and responses by phytomicrobiome species under spatial and temporal climate changes is extremely important. Furthermore, the bacterial and fungal biome have been studied extensively, but the holistic interactome with archaea, viruses, oomycetes, protozoa, algae, and nematodes has seldom been studied. The inter-kingdom diversity, function, and potential role in improving environmental stress responses of plants are considerably important. In addition, much remains to be understood across organismal and ecosystem-level responses under dynamic and complex climate change conditions.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Houston, TX, United States
| |
Collapse
|
24
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
25
|
Lian T, Cheng L, Liu Q, Yu T, Cai Z, Nian H, Hartmann M. Potential relevance between soybean nitrogen uptake and rhizosphere prokaryotic communities under waterlogging stress. ISME COMMUNICATIONS 2023; 3:71. [PMID: 37433864 PMCID: PMC10336055 DOI: 10.1038/s43705-023-00282-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Waterlogging in soil can limit the availability of nitrogen to plants by promoting denitrification and reducing nitrogen fixation and nitrification. The root-associated microorganisms that determine nitrogen availability at the root-soil interface can be influenced by plant genotype and soil type, which potentially alters the nitrogen uptake capacity of plants in waterlogged soils. In a greenhouse experiment, two soybean genotypes with contrasting capacities to resist waterlogging stress were grown in Udic Argosol and Haplic Alisol soils with and without waterlogging, respectively. Using isotope labeling, high-throughput amplicon sequencing and qPCR, we show that waterlogging negatively affects soybean yield and nitrogen absorption from fertilizer, atmosphere, and soil. These effects were soil-dependent and more pronounced in the waterlogging-sensitive than tolerant genotype. The tolerant genotype harbored more ammonia oxidizers and less nitrous oxide reducers. Anaerobic, nitrogen-fixing, denitrifying and iron-reducing bacteria such as Geobacter/Geomonas, Sphingomonas, Candidatus Koribacter, and Desulfosporosinus were proportionally enriched in association with the tolerant genotype under waterlogging. These changes in the rhizosphere microbiome might ultimately help the plant to improve nitrogen uptake under waterlogged, anoxic conditions. This research contributes to a better understanding of the adaptability of soybean genotypes under waterlogging stress and might help to formulate fertilization strategies that improve nitrogen use efficiency of soybean. Schematic representation of the effects of waterlogging on nitrogen uptake and rhizosphere microbiota in dependence of soil type and soybean genotype.
Collapse
Affiliation(s)
- Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Taobing Yu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Nio SA, Mantilen Ludong DP. Beneficial Root-Associated Microbiome during Drought and Flooding Stress in Plants. Pak J Biol Sci 2023; 26:287-299. [PMID: 37859559 DOI: 10.3923/pjbs.2023.287.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Crop productivity is seriously threatened by the rise in the frequency and severity of drought and flood events around the world. Reduced drought and flooding stress in vulnerable species and ecosystems depends on our ability to comprehend how drought and flooding affect plant physiology and plant-associated microbes. Involvement of both abscisic acid ABA-dependent and ABA-independent pathways has been noted during drought. Hypoxic conditions impede hydraulic conductance, nutrient uptake and plant growth and development, as well as root aerobic respiration. The root microbiome, which works with the roots during drought and flood, is made up of plant growth-promoting rhizosphere, endophytes and mycorrhizas. A large number of phytohormones, primarily auxins, cytokinin and ethylene, as well as enzymes like 1-Aminocyclopropane-1-Carboxylate deaminase (ACC deaminase) and metabolites like exopolysaccharides are produced by rhizospheric microbes. These phytohormones, enzymes and metabolites have role in the induction of systemic drought tolerance in plants. Under hypoxia, anaerobic microbes with the potential to harm the plant due to their pathogenic behavior or soil denitrification ability are more likely to be present in the rhizosphere and roots. This review concentrates on the primary mechanisms of plant-microbe interactions under drought and flood stress as well as the importance of flood and drought-tolerant microbes in maintaining and increasing crop plant productivity under stress.
Collapse
|
27
|
Dorado FJ, Alías JC, Chaves N, Solla A. Warming Scenarios and Phytophthora cinnamomi Infection in Chestnut ( Castanea sativa Mill.). PLANTS (BASEL, SWITZERLAND) 2023; 12:556. [PMID: 36771639 PMCID: PMC9921032 DOI: 10.3390/plants12030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The main threats to chestnut in Europe are climate change and emerging pathogens. Although many works have separately addressed the impacts on chestnut of elevated temperatures and Phytophthora cinnamomi Rands (Pc) infection, none have studied their combined effect. The objectives of this work were to describe the physiology, secondary metabolism and survival of 6-month-old C. sativa seedlings after plants were exposed to ambient temperature, high ambient temperature and heat wave events, and subsequent infection by Pc. Ten days after the warming scenarios, the biochemistry of plant leaves and roots was quantified and the recovery effect assessed. Plant growth and root biomass under high ambient temperature were significantly higher than in plants under ambient temperature and heat wave event. Seven secondary metabolite compounds in leaves and three in roots were altered significantly with temperature. Phenolic compounds typically decreased in response to increased temperature, whereas ellagic acid in roots was significantly more abundant in plants exposed to ambient and high ambient temperature than in plants subjected to heat waves. At recovery, leaf procyanidin and catechin remained downregulated in plants exposed to high ambient temperature. Mortality by Pc was fastest and highest in plants exposed to ambient temperature and lowest in plants under high ambient temperature. Changes in the secondary metabolite profile of plants in response to Pc were dependent on the warming scenarios plants were exposed to, with five compounds in leaves and three in roots showing a significant 'warming scenario' × 'Pc' interaction. The group of trees that best survived Pc infection was characterised by increased quercetin 3-O-glucuronide, 3-feruloylquinic acid, gallic acid ethyl ester and ellagic acid. To the best of our knowledge, this is the first study addressing the combined effects of global warming and Pc infection in chestnut.
Collapse
Affiliation(s)
- F. Javier Dorado
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Avenida Virgen del Puerto 2, Universidad de Extremadura, 10600 Plasencia, Spain
| | - Juan Carlos Alías
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain
| | - Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Avenida Virgen del Puerto 2, Universidad de Extremadura, 10600 Plasencia, Spain
| |
Collapse
|
28
|
Chiaranunt P, White JF. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:400. [PMID: 36679113 PMCID: PMC9861093 DOI: 10.3390/plants12020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.
Collapse
|