1
|
Hu X, Pan L, Fu C, Zhu Q, Hao J, Wang X, Nawaz M, Qu J, Zhang J, Chen Y, Zong J, Liao L, Tang M, Wang Z. A multi-omics analysis reveals candidate genes for Cd tolerance in Paspalum vaginatum. BMC PLANT BIOLOGY 2025; 25:441. [PMID: 40200134 PMCID: PMC11978127 DOI: 10.1186/s12870-025-06478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Cadmium (Cd) pollution in the farmland has become a serious global issue threatening both human health and plant biomass production. Seashore paspalum (Paspalum vaginatum Sw.), a halophytic turfgrass, has been recognized as a Cd-tolerant species. However, the underlying genetic basis of natural variations in Cd tolerance still remains unknown. This study is possibly the first to apply genome-wide association studies (GWAS) and selective sweep analysis to identify potential Cd stress-responsive genes in P. vaginatum. We identified a total of 89 candidate genes and 656 putative selective sweeps regions. Based on the correlation analysis of differentially expressed metabolites (DEMs) and differentially expressed genes (DEGs), we identified the 55 key genes associated with metabolic changes induced by Cd treatment as the Cd tolerance-related genes. These genes showed significantly higher expression in Cd-tolerant accessions as compared to Cd-susceptive accessions. Therefore, our multi-omics study revealed the molecular and genetic basis of Cd tolerance, which may help develop Cd tolerant crop varieties.
Collapse
Affiliation(s)
- Xu Hu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Ling Pan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chunchan Fu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Qing Zhu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jiangshan Hao
- School of Agriculture, Jinhua Polytechnic, Jinhua, 321016, China
| | - Xiaochun Wang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jia Qu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
| | - Jinlin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Li Liao
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China.
| | - Minqiang Tang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China.
| | - Zhiyong Wang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China.
| |
Collapse
|
2
|
Nie X, Wang P, Nie X, Wang J, Wang J, Li X, Tian Z, Guo H, Wang Y. Unraveling cadmium tolerance mechanisms in Betula platyphylla through a hierarchical gene regulatory network in hormone signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109878. [PMID: 40188532 DOI: 10.1016/j.plaphy.2025.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
Cadmium (Cd), a toxic heavy metal, is a significant pollutant that impacts plant productivity. While some studies have been conducted, the underlying mechanisms by which plants respond to Cd stress remain largely unclear. Here, we performed RNA-seq analysis of Betula platyphylla (birch) under CdCl2 treatment. The findings revealed a substantial enrichment of differentially expressed genes (DEGs) in pathways associated with plant hormones. A gene regulatory network (GRN) was constructed, and the regulatory relationships between genes were determined using a partial correlation coefficient algorithm. The GRN comprises 2151 regulatory interactions, including 7 transcription factors (TFs) from the first layer, 25 TFs from the second layer, and 168 structural genes from the third layer, all of which are linked to ten enriched biological processes. ChIP-PCR and qRT-PCR assays validated approximately 85.2 % of the predicted interactions between the first and second layers, along with 88.3 % of the interactions between the second and third layers, supporting the validity of the GRN. Eighteen genes were selected from the third layer of multiple biological pathways to analyze their functions, and the results indicated that these genes can enhance Cd tolerance in birch plants. Additionally, two TFs in the first layer, BpHD-zip7 and BpRAV1, were successfully introduced into birch plants, confirming their role in improving Cd tolerance. Our findings elucidate the regulatory mechanisms and key determinants that function in the adaptation of B. platyphylla to Cd stress.
Collapse
Affiliation(s)
- Xianguang Nie
- College of Horticultural, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Pengyu Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xianhui Nie
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jingxin Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jingwen Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiaofu Li
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhen Tian
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huiyan Guo
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Yucheng Wang
- College of Horticultural, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
3
|
Umar AW, Naeem M, Hussain H, Ahmad N, Xu M. Starvation from within: How heavy metals compete with essential nutrients, disrupt metabolism, and impair plant growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112412. [PMID: 39920911 DOI: 10.1016/j.plantsci.2025.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Nutrient starvation is a critical consequence of heavy metal toxicity, severely impacting plant health and productivity. This issue arises from various sources, including industrial activities, mining, agricultural practices, and natural processes, leading to the accumulation of metals such as aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and nickel (Ni) in soil and water. Heavy metal exposure disrupts key physiological processes, particularly nutrient uptake and transport, resulting in nutrient imbalances within the plant. Essential nutrients are often unavailable or improperly absorbed due to metal chelation and interference with transporter functions, exacerbating nutrient deficiencies. This nutrient starvation, coupled with oxidative stress induced by heavy metals, manifests in impaired photosynthesis, stunted growth, and reduced crop yields. This review presents important insights into the molecular mechanisms driving nutrient deprivation in plants exposed to heavy metals, emphasizing the roles of transporters, transcription factors, and signaling pathways. It also examines the physiological and biochemical effects, such as chlorosis, necrosis, and altered metabolic activities. Lastly, we explore strategies to mitigate heavy metal-induced nutrient starvation, including phytoremediation, soil amendments, genetic approaches, and microbial interventions, offering insights for enhancing plant resilience in contaminated soils.
Collapse
Affiliation(s)
- Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, China.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hamad Hussain
- Department of Agriculture, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23390, Pakistan
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, China; Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, China.
| |
Collapse
|
4
|
Tan J, Zhang L, Liu C, Hong Z, Wu X, Zhang Y, Fahad M, Shen Y, Bian J, He H, Wu D, Shu Q, Bao J, Wu L. UCL23 hierarchically regulated by WRKY51-miR528 mediates cadmium uptake, tolerance, and accumulation in rice. Cell Rep 2025; 44:115336. [PMID: 39985767 DOI: 10.1016/j.celrep.2025.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/28/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
In humans, cadmium (Cd) toxicity caused by contaminated environments is associated with numerous chronic diseases. Breeding rice with low Cd accumulation is now deemed critical for sustainable agriculture development. Here, we elucidate the crucial functions of UCLACYANIN 23 (UCL23), a small copper protein, in Cd absorption, tolerance, and accumulation through modulation of reactive oxygen signals in rice. Additionally, we demonstrate that WRKY51 binds to promoters of UCL23 and miR528, a post-transcriptional regulator of UCL23, thereby contributing to Cd regulation in a dual-modulatory manner. Furthermore, we show that the natural variation of UCL23 is important for the differential accumulation of Cd in rice grains. Finally, we reveal that Indica rice harboring the major Japonica haplotype of UCL23 significantly reduces Cd uptake in roots and Cd accumulation in grains. Together, our study not only reveals a regulatory cascade in Cd regulation but also provides valuable resources for breeding low-Cd rice cultivars.
Collapse
Affiliation(s)
- Jingai Tan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lantian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Chuanjia Liu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Zheyuan Hong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Xia Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqi Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxin Shen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dezhi Wu
- Yuelushan Laboratory, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyao Shu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jinsong Bao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
5
|
Thiruvengadam M, Jin YI, Jang HW, Rekha A, Choi HJ, Jung BS, Kim JW, Lee SB, Lee JM, Kim SH. Calmodulin and calcium signaling in potato tuberization: The role of membrane transporters in stress adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109829. [PMID: 40158478 DOI: 10.1016/j.plaphy.2025.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/25/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Potato tuberization is a complex developmental process influenced by environmental factors, such as light and temperature, as well as genetic and biochemical factors. Tuber formation is responsive to day length, with shorter days inducing tuberization more effectively than longer days. Potato tuber yield is regulated by signaling networks involving hormones, transcriptional regulators, and sugars. Calcium plays a pivotal role in this process. Elevated cytoplasmic calcium is detected by calcium sensors, including calmodulins (CaMs), calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs), and calcineurin-B-like proteins (CBLs), promoting tuberization and growth. This review provides mechanistic insights into calcium signaling in potato tuberization, emphasizing its role in stress adaptation. This review further explores the role of calcium/calmodulin in stress response mechanisms and the membrane transporters that facilitate adaptation to environmental challenges like drought, cold, flooding, and heat stress, which are significant threats to potato production globally. Additionally, calcium signaling helps develop tolerance to both abiotic stresses and pathogens, ultimately enhancing plant immune responses to protect potato tubers.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong-Ik Jin
- R&D Planning Division, Research Policy Bureau, RDA, Jeonju-si, 54875, Republic of Korea
| | - Hae Won Jang
- Department of Food Science and Biotechnology, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Arcot Rekha
- Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pimpri, Pune, 411018, Maharashtra, India
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jang-Won Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung-Bin Lee
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ja-Min Lee
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Tu CY, Zheng L, Yan J, Shen RF, Zhu XF. ACS2 and ACS6, especially ACS2 is involved in MPK6 evoked production of ethylene under Cd stress, which exacerbated Cd toxicity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112354. [PMID: 39672386 DOI: 10.1016/j.plantsci.2024.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
As one of the heavy metal pollutants with strong biological toxicity, cadmium (Cd) is easily absorbed by plant roots, which seriously restricts the growth of plants, causes the quality of agricultural products to decline and threatens human health. Many complex signal transduction pathways are involved in the process of plant response to Cd stress. Among them, plant hormone ethylene is an important signal molecule for plant response to various environmental stresses, and its regulatory mechanism and signal transduction pathway in Cd stress response need to be further clarified. Here, we discovered that Cd stress induced a significant increment in ethylene production in Arabidopsis roots, and the amount of ethylene produced was positively correlated with the inhibition of Arabidopsis root growth and Cd accumulation. Simultaneously, Cd stress stimulated the detoxification mechanism within cells and promoted the expression of METAL TOLERANCE PROTEIN 3 (MTP3), IRON-REGULATED TRANSPORTER2 (IRT2), IRON REGULATED GENE 2 (IREG2) genes implicated in Cd vacuolar compartmentation. However, whether this is associated with ethylene signal transduction remains to be further explored. Further studies have revealed that the Cd induced ethylene burst is attributed to the up-regulation of the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE (ACS) genes that mediated by MITONGEN-ACTIVATED PROTEIN KINASE 6 (MAPK6) in Arabidopsis roots, and among them, ACS2 and ACS6, especially ACS2, are involved in MAPK6-induced ethylene production under Cd stress. The results of this study provide new ideas for understanding the signal transduction pathway of plant response to Cd stress.
Collapse
Affiliation(s)
- Chun Yan Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
7
|
Zeng X, Wei X, Zhan J, Lu Y, Lei Y, Shen X, Ge X, Chen Q, Qu Y, Li F, Zhao H. Uncovering miRNA-mRNA regulatory modules of cotton in response to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109614. [PMID: 40015194 DOI: 10.1016/j.plaphy.2025.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Cadmium (Cd2+), a non-essential heavy metal for plant, adversely effects on crop productivity and food safety. Cotton, predominantly cultivated as a non-food crop, offers the advantage of not transferring Cd2+ into the food chain, making it an effective option for remediating Cd2+contaminated soils. While previous researches have extensively examined the gene expression responses of cotton to Cd2+ stress, insights at the post-transcriptional level remain limited. In this study, a comprehensive methodology was employed, incorporating miRNA sequencing, degradomics, and RNA sequencing, to investigate the responses of the Cd2+-tolerant cotton cultivar XM and the Cd2+-sensitive cotton cultivar ZM24 under Cd2+ exposure. The analysis revealed that these the identified miRNA-target gene pairs predominantly influence various biological processes, including light signaling, cell wall biogenesis, abiotic stress responses, transportation, and hormone signaling pathways in response to Cd2+ stress. Overall, our findings suggest that newly identified miRNAs and their corresponding target genes in cotton may contribute to enhance tolerance to Cd2+ stress through multiple mechanisms, facilitating the breeding of superior cotton cultivars with enhanced tolerance to Cd2+ toxicity.
Collapse
Affiliation(s)
- Xiaolin Zeng
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Industrial Crops Institute of Jiangxi, Nanchang, 330203, China
| | - Xi Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingjing Zhan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yi Lu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yuqi Lei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyi Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China.
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China.
| | - Fuguang Li
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
8
|
Mierek-Adamska A, Kulasek M, Dąbrowska GB, Blindauer CA. Type 4 plant metallothioneins - players in zinc biofortification? Biol Rev Camb Philos Soc 2025. [PMID: 39901667 DOI: 10.1111/brv.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025]
Abstract
Food security is defined as uninterrupted access to food that meets people's dietary needs. One essential trace element of a complete diet is zinc, which is vital for various processes, including growth, development, and the immune response. The estimated global prevalence of zinc deficiency is around 30%. Meat and meat products provide an abundant and also bioavailable source of zinc. However, in developing countries, access to meat is restricted, and in developed countries, meat consumption has declined for ethical and environmental reasons. The potential for zinc deficiency arises from (i) low concentrations of this element in plant-based diets, (ii) poor zinc absorption from plant-based food in the human intestine, and (iii) the risk of uptake of toxic metals together with essential ones. This review summarises the current knowledge concerning type 4 metallothioneins, which represent promising targets for zinc biofortification. We describe their place in the zinc route from soil to seed, their expression patterns, their role in plants, and their three-dimensional protein structure and how this affects their selectivity towards zinc. This review aims to provide a comprehensive theoretical basis for the potential use of type 4 plant metallothioneins to create zinc-biofortified crops.
Collapse
Affiliation(s)
- Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Milena Kulasek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Grażyna B Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | | |
Collapse
|
9
|
Soviguidi DRJ, Duan Z, Pan B, Lei R, Liang G. Function, structure, and regulation of Iron Regulated Transporter 1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109457. [PMID: 39733729 DOI: 10.1016/j.plaphy.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Iron (Fe) is an essential mineral for the growth and development of plants, as it serves as a vital co-factor for a multitude of enzymes that participate in a variety of physiological processes. Plants obtain Fe from the soil through their Fe uptake systems. Non-graminaceous plants utilize a reduction-based system for Fe uptake, which involves the conversion of Fe(III) to Fe(II) and subsequent absorption of Fe(II). Iron-Regulated Transporter 1 (IRT1), a predominant transporter of Fe(II), is a central element of the Fe uptake mechanism in plants. In Arabidopsis thaliana, IRT1 exhibits a broad-spectrum of substrate specificity and functions as a transceptor, capable of sensing the levels of its non-Fe metal substrates. Over the past two decades, significant advancements have been achieved in understanding the functions and regulatory mechanisms of IRT1 and its orthologs across various plant species. This review provides a systematic overview of the functional attributes of IRT1, with a particular focus on the intricate regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels that are pivotal in modulating the expression and activity of IRT1. Moreover, we offer insights and directions for future research on this important transporter.
Collapse
Affiliation(s)
- Deka Reine Judesse Soviguidi
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Zhijie Duan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China; The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bangzhen Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Rihua Lei
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China.
| |
Collapse
|
10
|
Zhang X, Wang J, Wang Y, Jiang C, Yang A, Li F. NtWRKY33 involved in senescence-induced nornicotine synthesis by activating NtE4 in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109391. [PMID: 39705864 DOI: 10.1016/j.plaphy.2024.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Nornicotine is an undesirable alkaloid in tobacco due to its unpleasant taste and potential toxicity. The accumulation of nornicotine in tobacco leaves is related to the development of the leaves, with very low amounts present in green leaves and a dramatic increase after senescence. While it is known that the NtE4 is a key enzyme involved in nicotine to nornicotine conversion in tobacco leaves, the specific genes regulating the expression of NtE4 during leaf senescence remain unclear. In this study, we identified a WRKY transcription factor, NtWRKY33, as being involved in nornicotine accumulation during senescence. NtWRKY33 is a nuclear protein and its expression is induced by senescence. Knocking out NtWRKY33 significantly decreased nornicotine levels in senescent leaves, whereas overexpressing NtWRKY33 significantly increased nornicotine accumulation. RT-qPCR analysis demonstrated that NtWRKY33 positively regulates the expression of NtE4 without significantly affecting other key enzyme genes involved in nornicotine biosynthesis. Yeast one-hybrid (Y1H) and dual-luciferase analysis (DLA) revealed that NtWRKY33 directly promotes NtE4 expression by binding to its promoter. Therefore, NtWRKY33 is a transcription factor involved in senescence-induced nornicotine accumulation. This study provides novel insights into the molecular mechanisms by which senescence induces nornicotine formation and identifies a new target for regulating nornicotine levels.
Collapse
Affiliation(s)
- Xingzi Zhang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China; Graduate School of Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Jin Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China; Graduate School of Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Yaqi Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China; Graduate School of Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Caihong Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Fengxia Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China.
| |
Collapse
|
11
|
Chen X, Zhang Y, Cheng Y, Yu W, Yang L, Shu P, Zhou J, Fayyaz P, Luo Z, Deng S, Shi W. PcWRKY1 Represses Transcription of Yellow Stripe-Like 3 (PcYSL3) to Negatively Regulate Radial Cadmium Transport in Poplar Stems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405492. [PMID: 39527694 PMCID: PMC11714223 DOI: 10.1002/advs.202405492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
A considerable amount of cadmium (Cd) can accumulate in the bark of poplar stems, but the Cd transport pathway and its underlying molecular mechanisms remain unknown. Here, a Cd radial transport pathway in poplar stems and a previously unrecognized PcWRKY1-Yellow Stripe-Like 3 (PcYSL3) module that regulates Cd transport are identified in Populus × canescens (Aiton) Sm. Cadmiun-nicotianamine (Cd-NA) in xylem vessels in poplar stem-wood is unloaded to adjacent ray parenchyma cells and further radially transported to bark-phloem. PcYSL3 is putatively identified as involved in Cd radial transport in poplar stems. PcYSL3 is highly expressed in ray parenchyma cells adjacent to xylem vessels and the encoded protein localizes on the plasma membrane. Cd accumulation is greater in the wood and bark of PcYSL3-overexpressing poplars than the wild type, whereas the opposite is observed in PcYSL3-knockdown plants. PcWRKY1 can bind to the PcYSL3 promoter sequence and represses its expression. PcWRKY1 inhibits Cd accumulation in the wood and bark of plants. Thus, PcWRKY1 suppresses PcYSL3 transcription to negatively regulate Cd-NA unloading from xylem vessels to adjacent ray parenchyma cells and its radial transport in poplar stem. The findings have provided new insights into breeding of poplars for more effective remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Yao Cheng
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Wenjian Yu
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Lingyu Yang
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Peiqi Shu
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Payam Fayyaz
- Forest, Range and Watershed Management DepartmentAgriculture and Natural Resources FacultyYasouj UniversityYasuj75919 63179Iran
| | - Zhi‐Bin Luo
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
- Institute of Ecological Conservation and RestorationChinese Academy of ForestryBeijing100091P. R. China
- Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River DeltaDongyingShandong257000P. R. China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| |
Collapse
|
12
|
Chen Y, Zhang J. Multiple functions and regulatory networks of WRKY33 and its orthologs. Gene 2024; 931:148899. [PMID: 39209179 DOI: 10.1016/j.gene.2024.148899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis thaliana WRKY33 is currently one of the most studied members of the Group I WRKY transcription factor family. Research has confirmed that WRKY33 is involved in the regulation of various biological and abiotic stresses and occupies a central position in the regulatory network. The functional studies of orthologous genes of WRKY33 from other species are also receiving increasing attention. In this article, we summarized thirty-eight orthologous genes of AtWKRY33 from twenty-five different species. Their phylogenetic relationship and conserved WRKY domain were analyzed and compared. Similar to AtWKRY33, the well-studied orthologous gene members from rice and tomato also have multiple functions. In addition to playing important regulatory roles in responding to their specific pathogens, they are also involved in regulating various abiotic stresses and development. AtWKRY33 exerts its multiple functions through a complex regulatory network. Upstream transcription factors or other regulatory factors activate or inhibit the expression of AtWKRY33 at the chromatin and transcriptional levels. Interacting proteins affect the transcriptional activity of AtWKRY33 through phosphorylation, ubiquitination, SUMOylation, competition, or cooperation. The downstream genes are diverse and include three major categories: transcription factors, synthesis, metabolism, and signal transduction of various hormones, and disease resistance genes. In the regulatory network of AtWRKY33 orthologs, many conserved regulatory characteristics have been discovered, such as self-activation and phosphorylation by MAP kinases. This can provide a comparative reference for further studying the functions of other orthologous genes of AtWKRY33.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
13
|
Hasegawa Y, Luo Y, Sato T. Recent Advances in Ubiquitin Signals Regulating Plant Membrane Trafficking. PLANT & CELL PHYSIOLOGY 2024; 65:1907-1924. [PMID: 39446594 DOI: 10.1093/pcp/pcae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Ubiquitination is a reversible post-translational modification involving the attachment of ubiquitin, a 76-amino acid protein conserved among eukaryotes. The protein 'ubiquitin' was named after it was found to be ubiquitously expressed in cells. Ubiquitination was first identified as a post-translational modification that mediates energy-consuming protein degradation by the proteasome. After half a century, the manifold functions of ubiquitin are widely recognized to play key roles in diverse molecular pathways and physiological processes. Compared to humans, the number of enzymes related to ubiquitination is almost twice as high in plant species, such as Arabidopsis and rice, suggesting that this modification plays a critical role in many aspects of plant physiology including development and environmental stress responses. Here, we summarize and discuss recent knowledge of ubiquitination focusing on the regulation of membrane trafficking in plants. Ubiquitination of plasma membrane-localized proteins often leads to endocytosis and vacuolar targeting. In addition to cargo proteins, ubiquitination of membrane trafficking regulators regulates the morphodynamics of the endomembrane system. Thus, throughout this review, we focus on the physiological responses regulated by ubiquitination and their underlying mechanisms to clarify what is already known and what would be interesting to investigate in the future.
Collapse
Affiliation(s)
- Yoko Hasegawa
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Yongming Luo
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | - Takeo Sato
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| |
Collapse
|
14
|
Noor I, Sohail H, Akhtar MT, Cui J, Lu Z, Mostafa S, Hasanuzzaman M, Hussain S, Guo N, Jin B. From stress to resilience: Unraveling the molecular mechanisms of cadmium toxicity, detoxification and tolerance in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176462. [PMID: 39332719 DOI: 10.1016/j.scitotenv.2024.176462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Soil contamination with cadmium (Cd) has become a global issue due to increasing human activities. Cd contamination poses threats to plant growth as well as jeopardizing food safety and human health through the accumulation of Cd in edible parts of plants. Unraveling the Cd toxicity mechanisms and responses of plants to Cd stress is critical for promoting plant growth and ensuring food safety in Cd-contaminated soils. Toxicological research on plant responses to heavy metal stress has extensively studied Cd, as it can disrupt multiple physiological processes. In addition to morpho-anatomical, hormonal, and biochemical responses, plants rapidly initiate transcriptional modifications to combat Cd stress-induced oxidative and genotoxic damage. Various families of transcription factors play crucial roles in triggering such responses. Moreover, epigenetic modifications have been identified as essential players in maintaining plant genome stability under genotoxic stress. Plants have developed several detoxification strategies to mitigate Cd-induced toxicity, such as cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. This review provides a comprehensive update on understanding of molecular mechanisms involved in Cd uptake, transportation, and detoxification, with a particular emphasis on the signaling pathways that involve transcriptional and epigenetic responses in plants. This review highlights the innovative strategies for enhancing Cd tolerance and explores their potential application in various crops. Furthermore, this review offers strategies for increasing Cd tolerance and limiting Cd bioavailability in edible parts of plants, thereby improving the safety of food crops.
Collapse
Affiliation(s)
- Iqra Noor
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Hamza Sohail
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Muhammad Tanveer Akhtar
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Jiawen Cui
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Zhaogeng Lu
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Salma Mostafa
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sajjad Hussain
- Citrus Centre, Texas A&M University-Kingsville, Weslaco 78599, United States of America
| | - Nan Guo
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Biao Jin
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China.
| |
Collapse
|
15
|
Chen Z, Xu M, Quan C, Lin S, Li J, Wei F, Tang D. Genome-wide identification and expression analysis of the WRKY gene family reveal essential roles in abiotic stress responses and polysaccharides and flavonoids biosynthesis in Platostoma palustre (Blume) A. J. Paton. BMC PLANT BIOLOGY 2024; 24:1122. [PMID: 39587501 PMCID: PMC11590458 DOI: 10.1186/s12870-024-05835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Platostoma palustre (Blume) A. J. Paton is an economic crop with medicinal and edible properties. WRKY transcription factors are widely involved in the growth and development, response to adversity stress, and hormone transduction of plants. The identification of the WRKY gene family has been completed in many plants, however, it has not yet been identified and analyzed at the genome-wide level in P. palustre. RESULTS In this study, we identified 133 PpWRKY gene family members (PpWRKYs) at the whole genome level of P. palustre, which were unevenly distributed on 15 chromosomes. Based on their protein structure and phylogenetic characteristics, the 133 PpWRKYs were divided into 3 subgroups. Segmental duplication events might play a crucial role in the expansion of the PpWRKY gene family. Through the transcriptome expression data analysis, the expression profiles of PpWRKY genes under Cd, red light, salt, and drought stresses were analyzed in this study, suggesting that WRKY transcription factors may play a crucial role in responding to different abiotic stresses in P. palustre. Notably, PpWRKY92 exhibited simultaneous responses to Cd, light intensity, salt, and drought stresses. Additionally, PpWRKY21, 75, 90, 52, 124, 39, 115, 122, 20, and 76 demonstrated a strong correlation with both monosaccharides and flavonoids. Taken together, PpWRKY20, 39, 75, 76, 90, 92, 115, 122, and 124 were found to be associated with the abiotic stress response and polysaccharides and flavonoids biosynthesis in P. palustre, except the low-expressed PpWRKY21 and 52. CONCLUSION The present study laid the foundation for the abiotic stress response and metabolite regulation of this gene family in P. palustre.
Collapse
Affiliation(s)
- Zhining Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/ Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210000, China
| | - Meihua Xu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/ Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/ Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Shu Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/ Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jingchun Li
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/ Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210000, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/ Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/ Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210000, China.
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
16
|
Ma H, Fu M, Xu Z, Chu Z, Tian J, Wang Y, Zhang X, Han Z, Wu T. Allele-specific expression of AP2-like ABA repressor 1 regulates iron uptake by modulating rhizosphere pH in apple. PLANT PHYSIOLOGY 2024; 196:2121-2136. [PMID: 39197038 DOI: 10.1093/plphys/kiae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/30/2024]
Abstract
Genetic variation within a species can result in allelic expression for natural selection or breeding efforts. Here, we identified an iron (Fe) deficiency-inducible gene, AP2-like ABA repressor 1 (MdABR1), in apple (Malus domestica). MdABR1 exhibited differential expression at the allelic level (MdABR131A and MdABR131G) in response to Fe deficiency. The W-box insertion in the promoter of MdABR131A is essential for its induced expression and its positive role under Fe deficiency stress. MdABR1 binds to the promoter of basic helix-loop-helix 105 (MdbHLH105), participating in the Fe deficiency response, and activates its transcription. MdABR131A exerts a more pronounced transcriptional activation effect on MdbHLH105. Suppression of MdABR1 expression leads to reduced rhizosphere acidification in apple, and MdABR131A exhibits allelic expression under Fe deficiency stress, which is substantially upregulated and then activates the expression of MdbHLH105, promoting the accumulation of plasma membrane proton ATPase 8 (MdAHA8) transcripts in response to proton extrusion, thereby promoting rhizosphere acidification. Therefore, variation in the ABR1 alleles results in variable gene expression and enables apple plants to exhibit a wider tolerance capability and Fe deficiency response. These findings also shed light on the molecular mechanisms of allele-specific expression in woody plants.
Collapse
Affiliation(s)
- Huaying Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengmeng Fu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhen Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zicheng Chu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Yuan JJ, Zhao YN, Yu SH, Sun Y, Li GX, Yan JY, Xu JM, Ding WN, Benhamed M, Qiu RL, Jin CW, Zheng SJ, Ding ZJ. The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter. Nat Commun 2024; 15:9537. [PMID: 39496660 PMCID: PMC11535502 DOI: 10.1038/s41467-024-53898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Cadmium (Cd) is a detrimental heavy metal propagated from soil to the food chain via plants, posing a great risk to human health upon consumption. Despite the understanding of Cd tolerance mechanisms in plants, whether and how plants actively respond to Cd and in turn restrict its uptake and accumulation remain elusive. Here, we identify a cell wall-associated receptor-like kinase 4 (WAKL4) involved in specific tolerance to Cd stress. We show that Cd rapidly and exclusively induces WAKL4 accumulation by promoting WAKL4 transcription and blocking its vacuole-dependent proteolysis in roots. The accumulated WAKL4 next interacts with and phosphorylates the Cd transporter NRAMP1 at Tyr488, leading to the enhanced ubiquitination and vacuole-dependent degradation of NRAMP1, and consequently reducing Cd uptake. Our findings therefore uncover a mechanism conferred by the WAKL4-NRAMP1 module that enables plants to actively respond to Cd and limit its uptake, informing the future molecular breeding of low Cd accumulated crops or vegetables.
Collapse
Affiliation(s)
- Jun Jie Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Ya Nan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Hang Yu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Sun
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Gui Xin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Rong Liang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
19
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
20
|
Cao L, Ren W, Liu L, Zheng J, Tao C, Zhu W, Xiang M, Wang L, Liu Y, Zheng P. CDR1, a DUF946 domain containing protein, positively regulates cadmium tolerance in Arabidopsis thaliana by maintaining the stability of OPT3 protein. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135313. [PMID: 39067296 DOI: 10.1016/j.jhazmat.2024.135313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Industrial and agricultural production processes lead to the accumulation of cadmium (Cd) in soil, resulting in crops absorb Cd from contaminated soil and then transfer it to human body through the food chain, posing a serious threat to human health. Thus, it is necessary to explore novel genes and mechanisms involved in regulating Cd tolerance and detoxification in plants. Here, we found that CDR1, a DUF946 domain containing protein, localizes to the plasma membrane and positively regulates Cd stress tolerance. The cdr1 mutants exhibited Cd sensitivity, accumulated excessive Cd in the seeds and roots, but decreased in leaves. However, CDR1-OE transgenic plants not only showed Cd tolerance but also significantly reduced Cd in seeds and roots. Additionally, both in vitro and in vivo assays demonstrated an interaction between CDR1 and OPT3. Cell free protein degradation and OPT3 protein level determination assays indicated that CDR1 could maintain the stability of OPT3 protein. Moreover, genetic phenotype analysis and Cd content determination showed that CDR1 regulates Cd stress tolerance and affect the distribution of Cd in plants by maintaining the stability of OPT3 protein. Our discoveries provide a key candidate gene for directional breeding to reduce Cd accumulation in edible seeds of crops.
Collapse
Affiliation(s)
- Lei Cao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wangmei Ren
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Linyao Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Xiang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Liu C, Wen L, Cui Y, Ahammed GJ, Cheng Y. Metal transport proteins and transcription factor networks in plant responses to cadmium stress. PLANT CELL REPORTS 2024; 43:218. [PMID: 39153039 DOI: 10.1007/s00299-024-03303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.
Collapse
Affiliation(s)
- Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Lang Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Yijia Cui
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Yuan Cheng
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China.
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
22
|
Niekerk LA, Gokul A, Basson G, Badiwe M, Nkomo M, Klein A, Keyster M. Heavy metal stress and mitogen activated kinase transcription factors in plants: Exploring heavy metal-ROS influences on plant signalling pathways. PLANT, CELL & ENVIRONMENT 2024; 47:2793-2810. [PMID: 38650576 DOI: 10.1111/pce.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Due to their stationary nature, plants are exposed to a diverse range of biotic and abiotic stresses, of which heavy metal (HM) stress poses one of the most detrimental abiotic stresses, targeting diverse plant processes. HMs instigate the overproduction of reactive oxygen species (ROS), and to mitigate the adverse effects of ROS, plants induce multiple defence mechanisms. Besides the negative implications of overproduction of ROS, these molecules play a multitude of signalling roles in plants, acting as a central player in the complex signalling network of cells. One of the ROS-associated signalling mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signalling pathway which transduces extracellular stimuli into intracellular responses. Plant MAPKs have been implicated in signalling involved in stress response, phytohormone regulation, and cell cycle cues. However, the influence of various HMs on MAPK activation has not been well documented. In this review, we address and summarise several aspects related to various HM-induced ROS signalling. Additionally, we touch on how these signals activate the MAPK cascade and the downstream transcription factors that influence plant responses to HMs. Moreover, we propose a workflow that could characterise genes associated with MAPKs and their roles during plant HM stress responses.
Collapse
Affiliation(s)
- Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mihlali Badiwe
- Plant Pathology Department, AgriScience Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Mbukeni Nkomo
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, KwaDlangezwa, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
23
|
Gu Y, Fan X, Jiang K, Liu P, Chang H, Andom O, Cheng J, Li Z. Omics analysis of 'Shine Muscat' grape grafted on different rootstocks in response to cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173472. [PMID: 38788947 DOI: 10.1016/j.scitotenv.2024.173472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Cadmium (Cd) is detrimental to grape growth, development, and fruit quality. Grafting is considered to be a useful method to improve plant adaptability to Cd stress in grape production. However, little information is available on how Cd stress affects grafted grapes. In this study, the effects of Cd on Shine Muscat grapes (Vitis vinifera L. cv. 'Shine Muscat') were studied under different "Cd treatments" concentrations (0, 0.2, 0.4, 0.8, 1.6, 3.2 mg kg-1) and "rootstock treatments" (SO4, 5BB, and 3309C). The results showed that low levels of Cd had hormesis effect and activated the grape antioxidant system to eliminate the ROS induced by Cd stress. The antioxidant capacity of the SM/3309C rootstock combination was stronger than that of the other two groups under low-concentration Cd stress. Moreover, the rootstock effectively sequestered a substantial amount of Cd, consequently mitigating the upward translocation of Cd to the aboveground portions. Transcriptomic and metabolomic analysis revealed several important pathways enriched in ABC transporters, flavonoid biosynthesis, Plant hormone signal transduction, phenylpropanoid biosynthesis, and glutathione metabolism under Cd stress. WGCNA analysis identified a hub gene, R2R3-MYB15, which could promote the expression of several genes (PAL, 4CL, CYP73A, ST, CHS, and COMT), and alleviate the damage caused by Cd toxicity. These findings might shed light on the mechanism of hormesis triggered by low Cd stress in grapes at the transcriptional and metabolic levels.
Collapse
Affiliation(s)
- Yafeng Gu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, Shandong Province, China; Yantai Institute, China Agricultural University, 2006 Binhaizhong Road, Yantai 264670, Shandong Province, China
| | - Xiaobin Fan
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, Shandong Province, China
| | - Ke Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, Shandong Province, China
| | - Pin Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, Shandong Province, China
| | - Huiqing Chang
- College of Agriculture, Henan University of Science and Technology, 263 Kaiyuanda Road, Luoyang 471003, Henan Province, China
| | - Okbagaber Andom
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jieshan Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, Shandong Province, China.
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
24
|
Wu X, Lin T, Zhou X, Zhang W, Liu S, Qiu H, Birch PRJ, Tian Z. Potato E3 ubiquitin ligase StRFP1 positively regulates late blight resistance by degrading sugar transporters StSWEET10c and StSWEET11. THE NEW PHYTOLOGIST 2024; 243:688-704. [PMID: 38769723 DOI: 10.1111/nph.19848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.
Collapse
Affiliation(s)
- Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Tianyu Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Xiaoshuang Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Wenjun Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| |
Collapse
|
25
|
Shi X, Du J, Wang X, Zhang X, Yan X, Yang Y, Jia H, Zhang S. NtGCN2 confers cadmium tolerance in Nicotiana tabacum L. by regulating cadmium uptake, efflux, and subcellular distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172695. [PMID: 38663613 DOI: 10.1016/j.scitotenv.2024.172695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
General control non-derepressible-2 (GCN2) is widely expressed in eukaryotes and responds to biotic and abiotic stressors. However, the precise function and mechanism of action of GCN2 in response to cadmium (Cd) stress in Nicotiana tabacum L. (tobacco) remains unclear. We investigated the role of NtGCN2 in Cd tolerance and explored the mechanism by which NtGCN2 responds to Cd stress in tobacco by exposing NtGCN2 transgenic tobacco lines to different concentrations of CdCl2. NtGCN2 was activated under 50 μmol·L-1 CdCl2 stress and enhanced the Cd tolerance and photosynthetic capacities of tobacco by increasing chlorophyll content and antioxidant capacity by upregulating NtSOD, NtPOD, and NtCAT expression and corresponding enzyme activities and decreasing malondialdehyde and O2·- contents. NtGCN2 enhanced the osmoregulatory capacity of tobacco by elevating proline (Pro) and soluble sugar contents and maintaining low levels of relative conductivity. Finally, NtGCN2 enhanced Cd tolerance in tobacco by reducing Cd uptake and translocation, promoting Cd efflux, and regulating Cd subcellular distribution. In conclusion, NtGCN2 improves the tolerance of tobacco to Cd through a series of mechanisms, namely, increasing antioxidant, photosynthetic, and osmoregulation capacities and regulating Cd uptake, translocation, efflux, and subcellular distribution. This study provides a scientific basis for further exploration of the role of NtGCN2 in plant responses to Cd stress and enhancement of the Cd stress signaling network in tobacco.
Collapse
Affiliation(s)
- Xiaotian Shi
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jiao Du
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xu Wang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoquan Zhang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoxiao Yan
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yongxia Yang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hongfang Jia
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Songtao Zhang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
26
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
27
|
Anwar A, Wang Y, Chen M, Zhang S, Wang J, Feng Y, Xue Y, Zhao M, Su W, Chen R, Song S. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133829. [PMID: 38394894 DOI: 10.1016/j.jhazmat.2024.133829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) pollution threatens plant physiological and biochemical activities and crop production. Significant progress has been made in characterizing how nanoparticles affect Cd stress tolerance; however, the molecular mechanism of nZVI nanoparticles in Cd stress remains largely uncharacterized. Plants treated with nZVI and exposed to Cd had increased antioxidant capacity and reduced Cd accumulation in plant tissues. The nZVI treatment differentially affected the expression of genes involved in plant environmental responses, including those associated with the ERF transcription factor. SlEFR1 was upregulated by Cd stress in nZVI-treated plants when compared with the control and the predicted protein-protein interactions suggested SlERF1 interacts with proteins associated with plant hormone signaling pathway and related to stress. Yeast overexpressing SlEFR1 grew faster after Cd exposure and significantly had higher Cd stress tolerance when compared with empty vector controls. These results suggest that nZVI induces Cd stress tolerance by activating SlERF1 expression to improve plant growth and nutrient accumulation. Our study reveals the molecular mechanism of Cd stress tolerance for improved plant growth and will support new research on overcoming Cd stress and improving vegetable crop production.
Collapse
Affiliation(s)
- Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mengqing Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinmiao Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunqiang Feng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanxu Xue
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mingfeng Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
28
|
Jia W, Guo Z, Lv S, Lin K, Li Y. SbYS1 and SbWRKY72 regulate Cd tolerance and accumulation in sweet sorghum. PLANTA 2024; 259:100. [PMID: 38536457 DOI: 10.1007/s00425-024-04388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
MAIN CONCLUSION SbYS1 and its upstream transcription factor SbWRKY72 were involved in Cd tolerance and accumulation and are valuable for developing sweet sorghum germplasm with high-Cd tolerance or accumulation ability through genetic manipulation. Cadmium (Cd) is highly toxic and can severely affect human health. Sweet sorghum, as an energy crop, shows great potential in extracting cadmium from Cd-contaminated soils. However, its molecular mechanisms of Cd-tolerance and -accumulation remain largely unknown. Here, we isolated a YSL family gene SbYS1 from the sweet sorghum genotype with high Cd accumulation ability and the expression of SbYS1 in roots was induced by cadmium. GUS staining experiment exhibited that SbYS1 was expressed in the epidermis and parenchyma tissues of roots. Further subcellular localization analysis suggested that SbYS1 was localized in the endoplasmic reticulum and plasma membrane. Yeast transformed with SbYS1 exhibited a sensitive phenotype compared to the control when exposed to Cd-NA (chelates of cadmium and nicotianamine), indicating that SbYS1 may absorb cadmium in the form of Cd-NA. Arabidopsis overexpressing SbYS1 had a longer root length and accumulated less Cd in roots and shoots. SbWRKY72 bound to the promoter of SbYS1 and negatively regulated the expression of SbYS1. Transgenic Arabidopsis of SbWRKY72 showed higher sensitivity to cadmium and increased cadmium accumulation in roots. Our results provide references for improving the phytoremediation efficiency of sweet sorghum by genetic manipulation in the future.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401122, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
29
|
Feng Q, Zhao L, Jiang S, Qiu Y, Zhai T, Yu S, Yang W, Zhang S. The C2H2 family protein ZAT17 engages in the cadmium stress response by interacting with PRL1 in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133528. [PMID: 38237437 DOI: 10.1016/j.jhazmat.2024.133528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cadmium (Cd) is a heavy metal and a toxic substance. Soil Cd pollution has emerged as a significant environmental issue that jeopardizes both the safety of agricultural products and human health. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) has been identified as a crucial factor in Cd stress and a series of defence mechanisms. However, the mechanism through which PRL1 mediates its downstream signalling has remained poorly understood. Here, we discovered a prl1-2 suppressor (sup8) for prl1-2 that complemented the defective development phenotype of prl1-2 under Cd stress. Gene cloning revealed a mutation in the C2H2 transcription factor ZAT17 as the basis for the sup8 phenotype. Genetic and biochemical studies indicated that ZAT17 acts as a negative regulator of Cd tolerance. Transcriptome analysis revealed that ZAT17 influences the alternative splicing (AS) process of multiple Cd-responsive genes by interacting with members of the MAC splicing complex, including PRL1 and CDC5. In conclusion, the identification of the novel gene ZAT17 enriches the understanding of the Cd stress response pathway and provides a valuable candidate locus for breeding Cd-resistant plant varieties.
Collapse
Affiliation(s)
- Qiuling Feng
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Luming Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shaolong Jiang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanxin Qiu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shaowei Yu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
30
|
Gaddam SR, Sharma A, Trivedi PK. miR397b-LAC2 module regulates cadmium stress response by coordinating root lignification and copper homeostasis in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133100. [PMID: 38042003 DOI: 10.1016/j.jhazmat.2023.133100] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Non-essential heavy metal cadmium (Cd) is toxic to plants and animals. Cadmium affects plant photosynthesis, respiration, and causes water imbalance and may lead to plant death. Cadmium induces toxicity by interfering with the essential metal copper (Cu) homeostasis, which affects plant nutrition. Though root lignin biosynthesis is positively regulated by Cd stress, the underlying mechanisms promoting lignin accumulation and controlling Cd-induced Cu limitation responses are unclear. Here, we elucidated the role of Cu-responsive microRNA (miR397b) in Arabidopsis thaliana plants for Cd stress by targeting the LACCASE2 (LAC2) gene. This study demonstrated the fundamental mechanism of miR397b-mediated Cd stress response by enhancing the lignin content in root tissues. We developed miR397b over-expressing plants, which showed considerable Cd stress tolerance. Plants with knockdown function of LAC2 also showed significant tolerance to Cd stress. miR397b overexpressing and lac2 mutant plants showed root reduction, higher biomass and chlorophyll content, and significantly lower Reactive Oxygen Species (ROS). This study demonstrated the miR397b-mediated Cd stress response in Arabidopsis by enhancing the lignin content in root tissues. We conclude that modulation in miR397b can be potentially used for improving plants for Cd tolerance and Cu homeostasis.
Collapse
Affiliation(s)
- Subhash Reddy Gaddam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Ashish Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India.
| |
Collapse
|
31
|
Wu M, Musazade E, Yang X, Yin L, Zhao Z, Zhang Y, Lu J, Guo L. ATL Protein Family: Novel Regulators in Plant Response to Environmental Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20419-20440. [PMID: 38100516 DOI: 10.1021/acs.jafc.3c05603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plants actively develop intricate regulatory mechanisms to counteract the harmful effects of environmental stresses. The ubiquitin-proteasome pathway, a crucial mechanism, employs E3 ligases (E3s) to facilitate the conjugation of ubiquitin to specific target substrates, effectively marking them for proteolytic degradation. E3s play critical roles in many biological processes, including phytohormonal signaling and adaptation to environmental stresses. Arabidopsis Toxicosa en Levadura (ATL) proteins, belonging to a subfamily of RING-H2 E3s, actively modulate diverse physiological processes and plant responses to environmental stresses. Despite studies on the functions of certain ATL family members in rice and Arabidopsis, most ATLs still need more comprehensive study. This review presents an overview of the ubiquitin-proteasome system (UPS), specifically focusing on the pivotal role of E3s and associated enzymes in plant development and environmental adaptation. Our study seeks to unveil the active modulation of plant responses to environmental stresses by E3s and ATLs, emphasizing the significance of ATLs within this intricate process. By emphasizing the importance of studying the roles of E3s and ATLs, our review contributes to developing more resilient plant varieties and promoting sustainable agricultural practices while establishing a research roadmap for the future.
Collapse
Affiliation(s)
- Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Xiao Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Le Yin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Zizhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Yu Zhang
- Land Requisition Affairs Center of Jilin Province, Changchun 130062, P.R. China
| | - Jingmei Lu
- School of Life Sciences, Northeast Normal University, Changchun 130024, P.R. China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| |
Collapse
|
32
|
Li F, Deng Y, Liu Y, Mai C, Xu Y, Wu J, Zheng X, Liang C, Wang J. Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132496. [PMID: 37703737 DOI: 10.1016/j.jhazmat.2023.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Cadmium (Cd) has long been recognized as toxic pollutant to crops worldwide. The biosynthesis of glutathione-dependent phytochelatin (PC) plays crucial roles in the detoxification of Cd in plants. However, its regulatory mechanism remains elusive. Here, we revealed that Arabidopsis transcription factor WRKY45 confers Cd tolerance via promoting the expression of PC synthesis-related genes PCS1 and PCS2, respectively. Firstly, we found that Cd stress induces the transcript levels of WRKY45 and its protein abundance. Accordingly, in contrast to wild type Col-0, the increased sensitivity to Cd is observed in wrky45 mutant, while overexpressing WRKY45 plants are more tolerant to Cd. Secondly, quantitative real-time PCR revealed that the expression of AtPCS1 and AtPCS2 is stimulated in overexpressing WRKY45 plants, but decreased in wrky45 mutant. Thirdly, WRKY45 promotes the expression of PCS1 and PCS2, electrophoresis mobility shift assay analysis uncovered that WRKY45 directly binds to the W-box cis-element of PCS2 promoter. Lastly, the overexpression of WRKY45 in Col-0 leads to more accumulation of PCs in Arabidopsis, and the overexpression of PCS1 or PCS2 in wrky45 mutant plants rescues the phenotypes induced by Cd stress. In conclusion, our results show that AtWRKY45 positively regulates Cd tolerance in Arabidopsis via activating PCS1 and PCS2 expression.
Collapse
Affiliation(s)
- Fangjian Li
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaru Deng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuishan Mai
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yun Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiarui Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinni Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuiyue Liang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural and Rural pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
33
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
34
|
Spielmann J, Fanara S, Cotelle V, Vert G. Multilayered regulation of iron homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1250588. [PMID: 37841618 PMCID: PMC10570522 DOI: 10.3389/fpls.2023.1250588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development due to its role in crucial processes such as photosynthesis and modulation of the redox state as an electron donor. While Fe is one of the five most abundant metals in the Earth's crust, it is poorly accessible to plants in alkaline soils due to the formation of insoluble complexes. To limit Fe deficiency symptoms, plant have developed a highly sophisticated regulation network including Fe sensing, transcriptional regulation of Fe-deficiency responsive genes, and post-translational modifications of Fe transporters. In this mini-review, we detail how plants perceive intracellular Fe status and how they regulate transporters involved in Fe uptake through a complex cascade of transcription factors. We also describe the current knowledge about intracellular trafficking, including secretion to the plasma membrane, endocytosis, recycling, and degradation of the two main Fe transporters, IRON-REGULATED TRANSPORTER 1 (IRT1) and NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1). Regulation of these transporters by their non-Fe substrates is discussed in relation to their functional role to avoid accumulation of these toxic metals during Fe limitation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Valérie Cotelle
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
35
|
Wang B, Wang Y, Yuan X, Jiang Y, Zhu Y, Kang X, He J, Xiao Y. Comparative transcriptomic analysis provides key genetic resources in clove basil ( Ocimum gratissimum) under cadmium stress. Front Genet 2023; 14:1224140. [PMID: 37576563 PMCID: PMC10412823 DOI: 10.3389/fgene.2023.1224140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Planting aromatic plant might be a promising strategy for safely utilizing heavy metal (HM)-contaminated soils, as HMs in essential oil could be completely excluded using some special technologies with ease. Clove basil (Ocimum gratissimum L.) is an important aromatic plant used in essential oil production. Improving cadmium (Cd) tolerance in clove basil can increase its production and improve the utilization efficiency of Cd-contaminated soils. However, the lack of genomic information on clove basil greatly restricts molecular studies and applications in phytoremediation. In this study, we demonstrated that high levels of Cd treatments (0.8, 1.6 and 6.5 mg/L) significantly impacted the growth and physiological attributes of clove basil. Cd contents in clove basil tissues increased with treatment concentrations. To identify Cd stress-responsive genes, we conducted a comparative transcriptomic analysis using seedlings cultured in the Hoagland's solution without Cd ion (control) or containing 1.6 mg/L CdCl2 (a moderate concentration of Cd stress for clove basil seedlings). A total of 104.38 Gb clean data with high-quality were generated in clove basil under Cd stress through Illumina sequencing. More than 1,800 differential expressed genes (DEGs) were identified after Cd treatment. The reliability and reproducibility of the transcriptomic data were validated through qRT-PCR analysis and Sanger sequencing. KEGG classification analysis identified the "MAPK signaling pathway," "plant hormone signal transduction" and "plant-pathogen interaction" as the top three pathways. DEGs were divided into five clusters based on their expression patterns during Cd stress. The functional annotation of DEGs indicated that downregulated DEGs were mainly involved in the "photosynthesis system," whereas upregulated DEGs were significantly assigned to the "MAPK signaling pathway" and "plant-pathogen interaction pathway." Furthermore, we identified a total of 78 transcription factors (TFs), including members of bHLH, WRKY, AP2/ERF, and MYB family. The expression of six bHLH genes, one WRKY and one ERF genes were significantly induced by Cd stress, suggesting that these TFs might play essential roles in regulating Cd stress responses. Overall, our study provides key genetic resources and new insights into Cd adaption mechanisms in clove basil.
Collapse
Affiliation(s)
- Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiao Yuan
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yuanyuan Jiang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yunna Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xinmiao Kang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
36
|
Ji Z, Wang M, Zhang S, Du Y, Cong J, Yan H, Guo H, Xu B, Zhou Z. GDSL Esterase/Lipase GELP1 Involved in the Defense of Apple Leaves against Colletotrichum gloeosporioides Infection. Int J Mol Sci 2023; 24:10343. [PMID: 37373491 DOI: 10.3390/ijms241210343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
GDSL esterases/lipases are a subclass of lipolytic enzymes that play critical roles in plant growth and development, stress response, and pathogen defense. However, the GDSL esterase/lipase genes involved in the pathogen response of apple remain to be identified and characterized. Thus, in this study, we aimed to analyze the phenotypic difference between the resistant variety, Fuji, and susceptible variety, Gala, during infection with C. gloeosporioides, screen for anti-disease-associated proteins in Fuji leaves, and elucidate the underlying mechanisms. The results showed that GDSL esterase/lipase protein GELP1 contributed to C. gloeosporioides infection defense in apple. During C. gloeosporioides infection, GELP1 expression was significantly upregulated in Fuji. Fuji leaves exhibited a highly resistant phenotype compared with Gala leaves. The formation of infection hyphae of C. gloeosporioides was inhibited in Fuji. Moreover, recombinant His:GELP1 protein suppressed hyphal formation during infection in vitro. Transient expression in Nicotiana benthamiana showed that GELP1-eGFP localized to the endoplasmic reticulum and chloroplasts. GELP1 overexpression in GL-3 plants increased resistance to C. gloeosporioides. MdWRKY15 expression was upregulated in the transgenic lines. Notably, GELP1 transcript levels were elevated in GL-3 after salicylic acid treatment. These results suggest that GELP1 increases apple resistance to C. gloeosporioides by indirectly regulating salicylic acid biosynthesis.
Collapse
Affiliation(s)
- Zhirui Ji
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Meiyu Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Shuwu Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yinan Du
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Jialin Cong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Haifeng Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Haimeng Guo
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Zongshan Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| |
Collapse
|
37
|
Moravčíková D, Žiarovská J. The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091848. [PMID: 37176906 PMCID: PMC10181241 DOI: 10.3390/plants12091848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is a heavy metal that can cause damage to living organisms at different levels. Even at low concentrations, Cd can be toxic to plants, causing harm at multiple levels. As they are unable to move away from areas contaminated by Cd, plants have developed various defence mechanisms to protect themselves. Hyperaccumulators, which can accumulate and detoxify heavy metals more efficiently, are highly valued by scientists studying plant accumulation and detoxification mechanisms, as they provide a promising source of genes for developing plants suitable for phytoremediation techniques. So far, several genes have been identified as being upregulated when plants are exposed to Cd. These genes include genes encoding transcription factors such as iron-regulated transporter-like protein (ZIP), natural resistance associated macrophage protein (NRAMP) gene family, genes encoding phytochelatin synthases (PCs), superoxide dismutase (SOD) genes, heavy metal ATPase (HMA), cation diffusion facilitator gene family (CDF), Cd resistance gene family (PCR), ATP-binding cassette transporter gene family (ABC), the precursor 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and precursor 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) multigene family are also influenced. Thanks to advances in omics sciences and transcriptome analysis, we are gaining more insights into the genes involved in Cd stress response. Recent studies have also shown that Cd can affect the expression of genes related to antioxidant enzymes, hormonal pathways, and energy metabolism.
Collapse
Affiliation(s)
- Dagmar Moravčíková
- Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|