1
|
Danila AM, Savuca A, Ciobica AS, Gurzu IL, Nicoara MN, Gurzu B. The Impact of Oxytocin on Stimulus Discrimination of Zebrafish Albino and Non-Albino Models. Int J Mol Sci 2025; 26:2070. [PMID: 40076695 PMCID: PMC11899837 DOI: 10.3390/ijms26052070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Zebrafish have the ability, to a certain extent, to distinguish between different types of stimuli, including distinguishing between videos of conspecifics and non-conspecifics, a skill known as stimulus discrimination. In this study, we investigated the effects of oxytocin on this ability in albino and non-albino zebrafish models, focusing on the correlations between albinism, sensory deficiencies, and socio-emotional behaviors. Our hypothesis is based on the premise that oxytocin influences socio-emotional behaviors in zebrafish, with varying effects depending on phenotype (albino vs. non-albino), social context, and treatment duration. Studies have shown that albino zebrafish have more pronounced sensory deficiencies, meaning they may benefit more from oxytocin in terms of increased social comfort and interactions with conspecifics, while non-albino zebrafish would experience a reduction in defensive behaviors and anxiety. To test this, two experiments were conducted: one assessing the responses to video predator stimuli and the other comparing social interactions with real and video conspecifics. The results showed significant differences between the two groups: non-albino zebrafish exhibited stronger long-term reductions in anxiety-related behaviors, such as reaction speed and freezing, suggesting that oxytocin regulates defensive responses and aggression. Meanwhile, albino zebrafish showed greater improvements in social interactions, reflecting the nuanced, phenotype-dependent effects of oxytocin. These results not only confirm existing research but also highlight the therapeutic potential of oxytocin in treating socio-emotional deficiencies.
Collapse
Affiliation(s)
- Ana-Maria Danila
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I No. 20A, 700505 Iasi, Romania; (A.-M.D.); (A.S.C.); (M.N.N.)
| | - Alexandra Savuca
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I No. 20A, 700505 Iasi, Romania; (A.-M.D.); (A.S.C.); (M.N.N.)
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I No. 20A, 700505 Iasi, Romania; (A.-M.D.); (A.S.C.); (M.N.N.)
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, No. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei No. 54, Sector 5, 050094 Bucharest, Romania
- “Ion Haulica” Institute, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Irina Luciana Gurzu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mircea Nicusor Nicoara
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I No. 20A, 700505 Iasi, Romania; (A.-M.D.); (A.S.C.); (M.N.N.)
| | - Bogdan Gurzu
- Department of Morfofunctional Sciences, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16th Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
2
|
Xing Y, Boswell W, Parker J, Du K, Schartl M, Lu Y. A Recessive oca2 Mutation Underlies Albinism in Xiphophorus fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633999. [PMID: 39896652 PMCID: PMC11785110 DOI: 10.1101/2025.01.20.633999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Oculocutaneous albinism (OCA) is a group of genetic disorders characterized by impaired melanin production, leading to reduced pigmentation in the skin, hair, and eyes. Xiphophorus , a genus of small freshwater fish, has been a pivotal model organism in pigmentation disorder research, providing key findings in the genetic pathways governing physiological and pathological pigment cell biology. Leveraging the well-established research framework provided by Xiphophorus , we have identified a spontaneously occurring albinism phenotype in swordtail fish Xiphophorus hellerii . Genetic mapping of albino fish showed that albinism is associated with a recessive mutation in the oca2 gene. This discovery provides a novel opportunity to explore functions of oca2 gene in pigment cell differentiation, pigment synthesis, melanosome assembly and transportation function and amelanotic melanoma development.
Collapse
|
3
|
Wang X, Pedersen CET, Athanasiadis G, Garcia-Erill G, Hanghøj K, Bertola LD, Rasmussen MS, Schubert M, Liu X, Li Z, Lin L, Balboa RF, Jørsboe E, Nursyifa C, Liu S, Muwanika V, Masembe C, Chen L, Wang W, Moltke I, Siegismund HR, Albrechtsen A, Heller R. Persistent Gene Flow Suggests an Absence of Reproductive Isolation in an African Antelope Speciation Model. Syst Biol 2024; 73:979-994. [PMID: 39140829 PMCID: PMC11637686 DOI: 10.1093/sysbio/syae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
African antelope diversity is a globally unique vestige of a much richer world-wide Pleistocene megafauna. Despite this, the evolutionary processes leading to the prolific radiation of African antelopes are not well understood. Here, we sequenced 145 whole genomes from both subspecies of the waterbuck (Kobus ellipsiprymnus), an African antelope believed to be in the process of speciation. We investigated genetic structure and population divergence and found evidence of a mid-Pleistocene separation on either side of the eastern Great Rift Valley, consistent with vicariance caused by a rain shadow along the so-called "Kingdon's Line." However, we also found pervasive evidence of both recent and widespread historical gene flow across the Rift Valley barrier. By inferring the genome-wide landscape of variation among subspecies, we found 14 genomic regions of elevated differentiation, including a locus that may be related to each subspecies' distinctive coat pigmentation pattern. We investigated these regions as candidate speciation islands. However, we observed no significant reduction in gene flow in these regions, nor any indications of selection against hybrids. Altogether, these results suggest a pattern whereby climatically driven vicariance is the most important process driving the African antelope radiation and suggest that reproductive isolation may not set in until very late in the divergence process. This has a significant impact on taxonomic inference, as many taxa will be in a gray area of ambiguous systematic status, possibly explaining why it has been hard to achieve consensus regarding the species status of many African antelopes. Our analyses demonstrate how population genetics based on low-depth whole genome sequencing can provide new insights that can help resolve how far lineages have gone along the path to speciation.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820, Gentofte, Denmark
| | - Georgios Athanasiadis
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal, 643, Les Corts, 08028, Barcelona,Spain
| | - Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Malthe Sebro Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Emil Jørsboe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, OX3 7LF, Regne Unit, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, OX3 7LF, Regne Unit, Oxford, UK
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, 2934+RXP, Haidian District, 100193, Beijing, China
| | - Vincent Muwanika
- Department of Environmental Management, Makerere University, Wandegeya, Makerere, PO Box 7062, Kampala, Uganda
| | - Charles Masembe
- Department of Biology, Makerere University, Wandegeya, Makerere, PO Box 7062, Kampala, Uganda
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| |
Collapse
|
4
|
Liu J, Bitsue HK, Yang Z. Skin colour: A window into human phenotypic evolution and environmental adaptation. Mol Ecol 2024; 33:e17369. [PMID: 38713101 DOI: 10.1111/mec.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa. In this review, we summarize our current understanding of 26 skin colour-related pigmentation genes and 48 SNPs that influence skin colour. Important pigmentation genes across three major populations are described in detail: MFSD12, SLC24A5, PDPK1 and DDB1/CYB561A3/TMEM138 influence skin colour in African populations; OCA2, KITLG, SLC24A2, GNPAT and PAH are key to the evolution of skin pigmentation in East Asian populations; and SLC24A5, SLC45A2, TYR, TYRP1, ASIP, MC1R and IRF4 significantly contribute to the lightening of skin colour in European populations. We summarized recent findings in genomic studies of skin colour in populations that implicate diverse geographic environments, local adaptation among populations, gene flow and multi-gene interactions as factors influencing skin colour diversity.
Collapse
Affiliation(s)
- Jiuming Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Habtom K Bitsue
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaohui Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhou Z, Sun Y, Yang J, Abliz Z. Mapping the Metabolic Characteristics and Perturbation of Adult Casper Zebrafish by Ambient Mass Spectrometry Imaging. Metabolites 2024; 14:204. [PMID: 38668332 PMCID: PMC11051737 DOI: 10.3390/metabo14040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Casper, a type of transparent mutant-line zebrafish, was generated to overcome the opaque trunk of an adult zebrafish for tumor modeling to realize real-time visualization of transplanted cells in vivo. However, the molecular information at the metabolic level has not received much attention. Herein, a spatially resolved metabolomics method based on an airflow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) system for whole-body zebrafish was used to investigate small molecules and the distribution of adult casper (Mitfaw2/w2, roya9/a9) and the differences from wild-type zebrafish. Finally, the spatial distribution information of more than 1500 endogenous ions was obtained in positive and negative detection modes, and 186 metabolites belonging to a variety of structural categories were identified or annotated. Compared with wild-type samples, 85 variables, including 37 known metabolites, were screened out. In addition, the disordered metabolic pathways caused by the genetic mutation were excavated, involving downregulation of purine metabolism and arachidonic acid metabolism, upregulation of glycerophospholipid metabolism, and biosynthesis of unsaturated fatty acids. All these results were observed in the most intuitive way through MSI. This study revealed important metabolic characteristics of and perturbation in adult casper zebrafish, and provides indispensable fundamental knowledge for tumor research based on it.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China;
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Yue Sun
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Ji Yang
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China;
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Chang Y, Wu S, Li J, Bao H, Wu C. Identification of Candidate Genes for Red-Eyed (Albinism) Domestic Guppies Using Genomic and Transcriptomic Analyses. Int J Mol Sci 2024; 25:2175. [PMID: 38396851 PMCID: PMC10888696 DOI: 10.3390/ijms25042175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The main object of this study was to identify candidate genes for the red-eyed phenotype in domestic guppies. We hope to provide molecular genetic information for the development of new domestic guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified. Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes. Through GO and KEGG enrichment, we identified some important terms or pathways mainly related to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.
Collapse
Affiliation(s)
| | | | | | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.W.); (J.L.); (C.W.)
| | | |
Collapse
|
7
|
Omori Y, Burgess SM. The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. Methods Mol Biol 2024; 2707:335-355. [PMID: 37668923 DOI: 10.1007/978-1-0716-3401-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
8
|
Hou Y, Cai XW, Liang ZF, Duan DD, Diao XP, Zhang JL. An integrative investigation of developmental toxicities induced by triphenyltin in a larval coral reef fish, Amphiprion ocellaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161487. [PMID: 36638977 DOI: 10.1016/j.scitotenv.2023.161487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triphenyltin (TPT) is widely distributed on coastlines, which makes coral reef fish a potential target of TPT pollution. However, the negative effects of TPT on coral reef fish remain poorly understood. Therefore, in the present study, the larval coral reef fish Amphiprion ocellaris was used to investigate the developmental toxicities of TPT at environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 14 d, the cumulative mortality increased, and growth was suppressed. In addition, TPT exposure inhibited the development of melanophores and xanthophores and delayed white strip formation, which might be responsible for the disruption of the genes (erbb3b, mitfa, kit, xdh, tyr, oca2, itk and trim33) related to pigmentation. TPT exposure also attenuated ossification of head skeletal elements and the vertebral column and inhibited the expression of genes (bmp2, bmp4 and sp7) related to skeletal development. The observed developmental toxicities on growth, pigmentation and skeleton development might be associated with the disruption of thyroid hormones and the genes related to thyroid hormone regulation (tshβ, thrα, thrβ, tg, tpo, dio2, and ttr). In addition, TPT exposure interfered with locomotor and shoaling behavior, and the related genes dbh, avp and avpr1aa. Taken together, our results suggest that TPT pollution might threaten the development of one of the most iconic coral reef fish, which might produce disastrous consequences on the health of coral reef ecosystems.
Collapse
Affiliation(s)
- Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xing-Wei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
| | - Zhi-Fang Liang
- Lingshui Wildlife Conservation Association, Lingshui, Hainan, China
| | - Dan-Dan Duan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; Lingshui Wildlife Conservation Association, Lingshui, Hainan, China.
| |
Collapse
|
9
|
Yu P, Wang Y, Li Z, Jin H, Li LL, Han X, Wang ZW, Yang XL, Li XY, Zhang XJ, Zhou L, Gui JF. Causal gene identification and desirable trait recreation in goldfish. SCIENCE CHINA LIFE SCIENCES 2022; 65:2341-2353. [DOI: 10.1007/s11427-022-2194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
|
10
|
Identification, characterization and differential expression analysis of a pteridine synthesis related gene, Ccptps, in koi carp (Cyprinus carpio L.). Comp Biochem Physiol B Biochem Mol Biol 2022; 264:110814. [DOI: 10.1016/j.cbpb.2022.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
11
|
Neuffer SJ, Beltran-Cardona D, Jimenez-Perez K, Clancey LF, Brown A, New L, Cooper CD. AP-3 complex delta subunit gene, ap3d1, regulates melanogenesis and melanophore survival via autophagy in zebrafish (Danio rerio). Pigment Cell Melanoma Res 2022; 35:495-505. [PMID: 35816398 PMCID: PMC9450952 DOI: 10.1111/pcmr.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Zebrafish are an emerging model organism to study the syndromic albinism disorder, Hermansky–Pudlak syndrome (HPS), due to visible pigment development at 24 hours postfertilization, and conserved melanogenesis mechanisms. We describe crasher, a novel HPS type 10 (HPS10) zebrafish model, with a mutation in AP‐3 complex subunit delta gene, ap3d1. Exon 14 of ap3d1 is overexpressed in crasher mutants, while the expression of ap3d1 as a whole is reduced. ap3d1 knockout in *AB zebrafish recapitulates the mutant crasher phenotype. We show ap3d1 loss‐of‐function mutations cause significant expression changes in the melanogenesis genes, dopachrome tautomerase (dct) and tyrosinase‐related protein 1b (tyrp1b), but not tyrosinase (tyr). Last, Generally Applicable Gene‐set Enrichment (GAGE) analysis suggests autophagy pathway genes are upregulated together in crasher. Treatment with autophagy‐inhibitor, bafilomycin A1, significantly decreases melanophore number in crasher, suggesting ap3d1 promotes melanophore survival by limiting excessive autophagy. crasher is a valuable model to explore the regulation of melanogenesis gene expression and pigmentation disease.
Collapse
Affiliation(s)
- Sam J Neuffer
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA, USA
| | - David Beltran-Cardona
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, USA
| | - Kevin Jimenez-Perez
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, USA
| | - Lauren F Clancey
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, USA
| | - Alexander Brown
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, USA
| | - Leslie New
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, USA.,Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA, USA
| | - Cynthia D Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA, USA.,College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, USA
| |
Collapse
|
12
|
Clark B, Elkin J, Marconi A, Turner GF, Smith AM, Joyce D, Miska EA, Juntti SA, Santos ME. Oca2 targeting using CRISPR/Cas9 in the Malawi cichlid Astatotilapia calliptera. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220077. [PMID: 35601449 PMCID: PMC9019512 DOI: 10.1098/rsos.220077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
Identifying genetic loci underlying trait variation provides insights into the mechanisms of diversification, but demonstrating causality and characterizing the role of genetic loci requires testing candidate gene function, often in non-model species. Here we establish CRISPR/Cas9 editing in Astatotilapia calliptera, a generalist cichlid of the remarkably diverse Lake Malawi radiation. By targeting the gene oca2 required for melanin synthesis in other vertebrate species, we show efficient editing and germline transmission. Gene edits include indels in the coding region, probably a result of non-homologous end joining, and a large deletion in the 3' untranslated region due to homology-directed repair. We find that oca2 knock-out A. calliptera lack melanin, which may be useful for developmental imaging in embryos and studying colour pattern formation in adults. As A. calliptera resembles the presumed generalist ancestor of the Lake Malawi cichlids radiation, establishing genome editing in this species will facilitate investigating speciation, adaptation and trait diversification in this textbook radiation.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, UK
| | - Joel Elkin
- Department of Zoology, University of Cambridge, UK
| | | | - George F. Turner
- School of Natural Sciences, Bangor University, Gwynedd LL57 2TH, UK
| | - Alan M. Smith
- Department of Biological and Marine Sciences, University of Hull, UK
| | - Domino Joyce
- Department of Biological and Marine Sciences, University of Hull, UK
| | - Eric A. Miska
- Department of Genetics, University of Cambridge, UK
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | | |
Collapse
|
13
|
Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers (Basel) 2022; 14:cancers14071752. [PMID: 35406524 PMCID: PMC8997128 DOI: 10.3390/cancers14071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Zebrafish (Danio rerio) is an emerging model for studying many diseases, including disorders originating in black pigment cells, melanocytes. In this review of the melanocyte literature, we discuss the current knowledge of melanocyte biology relevant to understanding different forms of albinism and the potential of the zebrafish model system for finding novel mechanisms and treatments. Abstract Melanin is the pigment that protects DNA from ultraviolet (UV) damage by absorbing excess energy. Melanin is produced in a process called melanogenesis. When melanogenesis is altered, diseases such as albinism result. Albinism can result in an increased skin cancer risk. Conversely, black pigment cell (melanocyte) development pathways can be misregulated, causing excessive melanocyte growth that leads to melanoma (cancer of melanocytes). Zebrafish is an emerging model organism used to study pigment disorders due to their high fecundity, visible melanin development in melanophores (melanocytes in mammals) from 24 h post-fertilization, and conserved melanogenesis pathways. Here, we reviewed the conserved developmental pathways in zebrafish melanophores and mammalian melanocytes. Additionally, we summarized the progress made in understanding pigment cell disease and evidence supporting the strong potential for using zebrafish to find novel treatment options for albinism.
Collapse
|
14
|
Li Y, Hu Y, Cheng P, Chen S. Identification of Potential Blind-Side Hypermelanosis-Related lncRNA–miRNA–mRNA Regulatory Network in a Flatfish Species, Chinese Tongue Sole (Cynoglossus semilaevis). Front Genet 2022; 12:817117. [PMID: 35186018 PMCID: PMC8850641 DOI: 10.3389/fgene.2021.817117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Blind-side hypermelanosis has emerged as a major concern in commercial rearing environments of the flatfish aquaculture industry. To date, the underlying molecular mechanisms are not well understood. To fill this gap, in this study, whole transcriptomic sequencing and analyses were performed using normal skins and hypermelanic skins of the blind side of Chinese tongue sole (Cynoglossus semilaevis). Differentially expressed long non-coding RNAs (DElncRNAs), miRNAs (DEmiRNAs), and differentially expressed genes as well as their competing endogenous RNA (ceRNA) networks were identified. A total of 34 DElncRNAs, 226 DEmiRNAs, and 610 DEGs were identified. Finally, lncRNA–miRNA–mRNA regulatory networks (involving 29 DElncRNAs, 106 DEmiRNAs, and 162 DEGs) associated with blind-side hypermelanosis were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of 162 DEGs in ceRNA networks identified DEGs (e.g., oca2, mc1r, and ihhb) in pigmentation-related biological processes and DEGs (e.g., ca4, glul, and fut9) in nitrogen metabolism, glycosphingolipid biosynthesis, and folate biosynthesis pathways, as well as their corresponding DElncRNAs and DEmiRNAs to potentially play key regulatory roles in blind-side hypermelanosis. In conclusion, this is the first study on the ceRNA regulatory network associated with blind-side hypermelanosis in flatfish. These new findings expand the spectrum of non-coding regulatory mechanisms underpinning blind-side hypermelanosis, which facilitates the further exploration of molecular regulatory mechanisms of malpigmentation in flatfish.
Collapse
Affiliation(s)
- Yangzhen Li
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yangzhen Li,
| | - Yuanri Hu
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Cheng
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Songlin Chen
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
15
|
Integrative mRNA-miRNA interaction analysis reveals the molecular mechanism of skin color variation between wild-type and yellow mutant rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100914. [PMID: 34653947 DOI: 10.1016/j.cbd.2021.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important economic fish in China. Skin color affects the economic value of trout. However, the molecular mechanism of the skin color variation between wild-type (WR) and yellow mutant rainbow trout (YR) is unclear. We sequenced mRNAs and miRNAs of dorsal skin to identify key color variation-associated mRNAs and miRNAs between WR and YR. Overall, 2060 out of 3625 differentially expressed genes were upregulated in YR, and 196 out of 275 differentially expressed miRNAs were downregulated in WR. We identified three key YR-upregulated genes related to the formation of xanthophores (GCH1, SLC2A11, and SOX10). Interestingly, several genes related to melanogenesis (TYR, TYRP1, TYRP2, MC1R, MITF, PMEL, SLC45A2, and OCA2) were downregulated in WR. Integrated analysis identified five miRNAs that target at least two skin color-related genes (miR-495-y, miR-543-y, miR-665-z, miR-433-y, and miR-382-x). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of target genes identified noncoding RNA metabolic process as the most significantly enriched GO term, and several metabolic pathways associated with skin color were enriched significantly, such as tyrosine metabolism, histidine metabolism, and vitamin B6 metabolism. Quantitative real-time PCR of selected mRNAs and miRNAs validated the reliability of the integrated analysis. This study provides in-depth insights into the molecular mechanism of skin color variation between WR and YR, which will accelerate the genetic selection and breeding of rainbow trout with consumer-favored traits.
Collapse
|
16
|
Transcriptome analysis and candidate gene identification reveals insights into the molecular mechanisms of hypermelanosis in Chinese tongue sole (Cynoglossus semilaevis). AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
5-Hydroxytryptamine (5-HT) Positively Regulates Pigmentation via Inducing Melanoblast Specification and Melanin Synthesis in Zebrafish Embryos. Biomolecules 2020; 10:biom10091344. [PMID: 32961761 PMCID: PMC7563192 DOI: 10.3390/biom10091344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
It has been reported that 5-hydroxytryptamine (5-HT) is related to melanogenesis in mice and melanoma cells. However, the underlying mechanisms of 5-HT in regulating pigmentation remains unknown. In this study, we aim to clarify the regulatory mechanism of 5-HT in the pigmentation of zebrafish embryos and B16F10 cells. Our results show that 5-HT induces the pigmentation of zebrafish embryos in a dosage-dependent manner at concentrations of 0.01-1 mM. Whole mount in situ hybridizations and qRT-PCR in zebrafish embryos indicate that the expression of neural crest cells marker gene sox10 is not changed in embryos treated with 5-HT compared to control group. The expression of mitfa, the marker gene of melanoblasts, is increased in the presence of 5-HT. Furthermore, 5-HT increased the expression of regeneration associated genes, namely kita, mitfa, and dct, after ablation of the melanogenic cells in zebrafish embryos. The experiments in B16F10 cells show that 5-HT promotes melanin synthesis by up-regulating the expression of key proteins MITF, TYR, TRP-1, and TRP-2. Especially, the small molecule inhibitor of PKA signaling, but not AKT and MAPK signaling, attenuates the up-regulation of MITF and TYR resulted from 5-HT induction in B16F10 cells. These results will help us to further understand the regulatory network of vertebrate pigmentation.
Collapse
|
18
|
Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SIS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020; 30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Daiki Yoshihara
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Arakawa
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Burgon JD, Vieites DR, Jacobs A, Weidt SK, Gunter HM, Steinfartz S, Burgess K, Mable BK, Elmer KR. Functional colour genes and signals of selection in colour-polymorphic salamanders. Mol Ecol 2020; 29:1284-1299. [PMID: 32159878 DOI: 10.1111/mec.15411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Coloration has been associated with multiple biologically relevant traits that drive adaptation and diversification in many taxa. However, despite the great diversity of colour patterns present in amphibians the underlying molecular basis is largely unknown. Here, we use insight from a highly colour-variable lineage of the European fire salamander (Salamandra salamandra bernardezi) to identify functional associations with striking variation in colour morph and pattern. The three focal colour morphs-ancestral black-yellow striped, fully yellow and fully brown-differed in pattern, visible coloration and cellular composition. From population genomic analyses of up to 4,702 loci, we found no correlations of neutral population genetic structure with colour morph. However, we identified 21 loci with genotype-phenotype associations, several of which relate to known colour genes. Furthermore, we inferred response to selection at up to 142 loci between the colour morphs, again including several that relate to coloration genes. By transcriptomic analysis across all different combinations, we found 196 differentially expressed genes between yellow, brown and black skin, 63 of which are candidate genes involved in animal coloration. The concordance across different statistical approaches and 'omic data sets provide several lines of evidence for loci linked to functional differences between colour morphs, including TYR, CAMK1 and PMEL. We found little association between colour morph and the metabolomic profile of its toxic compounds from the skin secretions. Our research suggests that current ecological and evolutionary hypotheses for the origins and maintenance of these striking colour morphs may need to be revisited.
Collapse
Affiliation(s)
- James D Burgon
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David R Vieites
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stefan K Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen M Gunter
- Edinburgh Genomics, King's Buildings, University of Edinburgh, Edinburgh, UK
| | - Sebastian Steinfartz
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karl Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Kowalko J. Utilizing the blind cavefish Astyanax mexicanus to understand the genetic basis of behavioral evolution. J Exp Biol 2020; 223:223/Suppl_1/jeb208835. [DOI: 10.1242/jeb.208835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
Colonization of novel habitats often results in the evolution of diverse behaviors. Comparisons between individuals from closely related populations that have evolved divergent behaviors in different environments can be used to investigate behavioral evolution. However, until recently, functionally connecting genotypes to behavioral phenotypes in these evolutionarily relevant organisms has been difficult. The development of gene editing tools will facilitate functional genetic analysis of genotype–phenotype connections in virtually any organism, and has the potential to significantly transform the field of behavioral genetics when applied to ecologically and evolutionarily relevant organisms. The blind cavefish Astyanax mexicanus provides a remarkable example of evolution associated with colonization of a novel habitat. These fish consist of a single species that includes sighted surface fish that inhabit the rivers of Mexico and southern Texas and at least 29 populations of blind cavefish from the Sierra Del Abra and Sierra de Guatemala regions of Northeast Mexico. Although eye loss and albinism have been studied extensively in A. mexicanus, derived behavioral traits including sleep loss, alterations in foraging and reduction in social behaviors are now also being investigated in this species to understand the genetic and neural basis of behavioral evolution. Astyanax mexicanus has emerged as a powerful model system for genotype–phenotype mapping because surface and cavefish are interfertile. Further, the molecular basis of repeated trait evolution can be examined in this species, as multiple cave populations have independently evolved the same traits. A sequenced genome and the implementation of gene editing in A. mexicanus provides a platform for gene discovery and identification of the contributions of naturally occurring variation to behaviors. This review describes the current knowledge of behavioral evolution in A. mexicanus with an emphasis on the molecular and genetic underpinnings of evolved behaviors. Multiple avenues of new research that can be pursued using gene editing tools are identified, and how these will enhance our understanding of behavioral evolution is discussed.
Collapse
Affiliation(s)
- Johanna Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Program of Neurogenetics, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
21
|
Hsu CH, Liou GG, Jiang YJ. Nicastrin Deficiency Induces Tyrosinase-Dependent Depigmentation and Skin Inflammation. J Invest Dermatol 2019; 140:404-414.e13. [PMID: 31437444 DOI: 10.1016/j.jid.2019.07.702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Skin depigmentation diseases, such as vitiligo, are pigmentation disorders that often destroy melanocytes. However, their pathological mechanisms remain unclear, and therefore, promising treatments or prevention has been lacking. Here, we demonstrate that a zebrafish insertional mutant showing a significant reduction of nicastrin transcript possesses melanosome maturation defect, Tyrosinase-dependent mitochondrial swelling, and melanophore cell death. The depigmentation phenotypes are proven to be a result of γ-secretase inactivation. Furthermore, live imaging demonstrates that macrophages are recruited to and can phagocytose melanophore debris. Thus, we characterize a potential zebrafish depigmentation disease model, a nicastrinhi1384 mutant, which can be used for further treatment or drug development of diseases related to skin depigmentation and/or inflammation.
Collapse
Affiliation(s)
- Chia-Hao Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
22
|
Saunders LM, Mishra AK, Aman AJ, Lewis VM, Toomey MB, Packer JS, Qiu X, McFaline-Figueroa JL, Corbo JC, Trapnell C, Parichy DM. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 2019; 8:e45181. [PMID: 31140974 PMCID: PMC6588384 DOI: 10.7554/elife.45181] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.
Collapse
Affiliation(s)
- Lauren M Saunders
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Abhishek K Mishra
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Andrew J Aman
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Victor M Lewis
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Matthew B Toomey
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Jonathan S Packer
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Xiaojie Qiu
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | | | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - David M Parichy
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| |
Collapse
|
23
|
Peterson KA, Neuffer S, Bean ME, New L, Coffin AB, Cooper CD. Melanosome maturation proteins Oca2, Mitfa and Vps11 are differentially required for cisplatin resistance in zebrafish melanocytes. Exp Dermatol 2019; 28:795-800. [DOI: 10.1111/exd.13937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Kersten A. Peterson
- School of Biological Sciences Washington State University Vancouver Vancouver Washington
| | - Samantha Neuffer
- School of Molecular Biosciences Washington State University Vancouver Vancouver Washington
| | - Miranda E. Bean
- College of Arts and Sciences Washington State University Vancouver Vancouver Washington
| | - Leslie New
- Mathematics Washington State University Vancouver Vancouver Washington
| | - Allison B. Coffin
- Integrative Physiology and Neuroscience Washington State University Vancouver Vancouver Washington
| | - Cynthia D. Cooper
- School of Molecular Biosciences Washington State University Vancouver Vancouver Washington
| |
Collapse
|
24
|
Cooper CD, Erickson SD, Yin S, Moravec T, Peh B, Curran K. Protein Kinase A Signaling Inhibits Iridophore Differentiation in Zebrafish. J Dev Biol 2018; 6:jdb6040023. [PMID: 30261583 PMCID: PMC6315511 DOI: 10.3390/jdb6040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/08/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
In zebrafish (Danio rerio), iridophores are specified from neural crest cells and represent a tractable system for examining mechanisms of cell fate and differentiation. Using this system, we have investigated the role of cAMP protein kinase A (PKA) signaling in pigment cell differentiation. Activation of PKA with the adenylyl cyclase activator forskolin reduces the number of differentiated iridophores in wildtype larvae, with insignificant changes to melanophore number. Inhibition of PKA with H89 significantly increases iridophore number, supporting a specific role for PKA during iridophore development. To determine the effects of altering PKA activity on iridophore and melanophore gene expression, we examined expression of iridophore marker pnp4a, melanophore marker mitfa, and the mitfa repressor foxd3. Consistent with our cell counts, forskolin significantly decreased pnp4a expression as detected by in situ hybridization and quantification of pnp4a+ cells. Forskolin had the opposite effect on mitfa and foxd3 gene activity, increasing the area of expression. As mitfa/nacre mutants have extra iridophores as compared to wildtype larvae, we examined the function of mitfa during PKA-sensitive iridophore development. Forskolin treatment of mitfa/nacre mutants did significantly reduce the number of iridophores but to a lesser extent than that observed in treated wildtype larvae. Taken together, our data suggests that PKA inhibits iridophore development in a subset of iridophore precursors, potentially via a foxd3-independent pathway.
Collapse
Affiliation(s)
- Cynthia D Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Steve D Erickson
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Scott Yin
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Trevor Moravec
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Brian Peh
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Kevin Curran
- Department of Biology, University of San Diego, San Diego, CA 92110, USA.
| |
Collapse
|
25
|
Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol 2018; 441:313-318. [DOI: 10.1016/j.ydbio.2018.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 01/02/2023]
|
26
|
Tian X, Pang X, Wang L, Li M, Dong C, Ma X, Wang L, Song D, Feng J, Xu P, Li X. Dynamic regulation of mRNA and miRNA associated with the developmental stages of skin pigmentation in Japanese ornamental carp. Gene 2018; 666:32-43. [PMID: 29684491 DOI: 10.1016/j.gene.2018.04.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/24/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
The Japanese ornamental carp (Cyprinus carpio var. Koi) is famous for multifarious colors and patterns, making it commonly culture and trade across the world. Although functional genes and inheritance of color traits have been commonly studied, seldom attentions were focused on the genetic regulation during the developmental process of pigmentation. To better understand the mechanism of skin color development, we observed the morphogenesis of pigment cells during the post-embryonic stages and analysed the temporal expression pattern of mRNAs/miRNAs profiles in four distinct developmental stages. 59 and 103 differentially expressed genes/miRNAs (DEGs/DEMs) associated with pigmentation and skin were identified, including pax7, mitf, tyr, tyrp1, etc., and the highest DEGs were detected at 11 days post hatching (dph). In addition, the functional characteristics of mRNAs/miRNAs associated with pteridine and carotenoid pathway were also examined. Furthermore, 65 miRNA-mRNA interaction pairs related to pigmentation, pteridines and carotenoids metabolism were detected between different stages. Interestingly, the largest pairs appeared in the transition from 11 dph to 48 dph, which had the similar trend with DEGs further manifesting the importance of 11 dph. This study produced a comprehensive programme of DEGs/DEMs during color development, which will provide resources to understand the regulation mechanism in color formation. The understanding of genetic basis in color formation might promote the production and breeding of the Koi carp.
Collapse
Affiliation(s)
- Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xiaolei Pang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Liangyan Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengrong Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Chuanju Dong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Dongying Song
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou, 410100, PR China
| | - Peng Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
27
|
Cooper CD. Insights from zebrafish on human pigment cell disease and treatment. Dev Dyn 2017; 246:889-896. [DOI: 10.1002/dvdy.24550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/22/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Cynthia D. Cooper
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver Washington
| |
Collapse
|
28
|
Li Y, Geng X, Bao L, Elaswad A, Huggins KW, Dunham R, Liu Z. A deletion in the Hermansky–Pudlak syndrome 4 (Hps4) gene appears to be responsible for albinism in channel catfish. Mol Genet Genomics 2017; 292:663-670. [DOI: 10.1007/s00438-017-1302-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
|
29
|
Xu L, Xu QH, Zhou XY, Yin LY, Guan PP, Zhang T, Liu JX. Mechanisms of silver_nanoparticles induced hypopigmentation in embryonic zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:49-60. [PMID: 28104549 DOI: 10.1016/j.aquatox.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Silver_nanoparticles (AgNPs) have been reported to inhibit specification of erythroid cells and to induce spinal cord deformities and cardiac arrhythmia in vertebrates, but have not been implicated in development of neural crest (NC) and pigment cells in an in vivo model yet. In current study, down-regulated expressions of NC genes pax7 and foxd3, melanophore genes mitfa and dct, and xanthophore gene gch2 in AgNPs-exposed embryos were revealed by microarray, qRT-PCR and whole-mount in situ hybridization (WISH). Then, the down-regulated expressions of melanophore genes mitfa and dct but not xanthophore gene gch2 in AgNPs-exposed embryos were found to be recovered by melanogenesis agonists palmitic acid and dibutyryl cyclic AMP (dbcAMP). Finally, Ag+ chelating and AgNPs coating compound l-cysteine was found to neutralize AgNPs-induced hypopigmentation in AgNPs-exposed embryos, and to recover the down-regulated expressions of both dct and gch2 to nearly normal level in embryos, suggesting that AgNPs-releasing Ag+ might mediate their biological effects on zebrafish pigmentation mostly. This study was firstly to unveil that AgNPs might specifically act up-stream of mitfa and pax7 genes to suppress specification and differentiation of melanophore and xanthophore lineages respectively by their releasing Ag+ during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Lian Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qin-Han Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xin-Ying Zhou
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li-Yan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, HaiKou, 570228, China.
| | - Peng-Peng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
30
|
Seberg HE, Van Otterloo E, Loftus SK, Liu H, Bonde G, Sompallae R, Gildea DE, Santana JF, Manak JR, Pavan WJ, Williams T, Cornell RA. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet 2017; 13:e1006636. [PMID: 28249010 PMCID: PMC5352137 DOI: 10.1371/journal.pgen.1006636] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/15/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding transcription factor TFAP2A result in pigmentation anomalies in model organisms and premature hair graying in humans. However, the pleiotropic functions of TFAP2A and its redundantly-acting paralogs have made the precise contribution of TFAP2-type activity to melanocyte differentiation unclear. Defining this contribution may help to explain why TFAP2A expression is reduced in advanced-stage melanoma compared to benign nevi. To identify genes with TFAP2A-dependent expression in melanocytes, we profile zebrafish tissue and mouse melanocytes deficient in Tfap2a, and find that expression of a small subset of genes underlying pigmentation phenotypes is TFAP2A-dependent, including Dct, Mc1r, Mlph, and Pmel. We then conduct TFAP2A ChIP-seq in mouse and human melanocytes and find that a much larger subset of pigmentation genes is associated with active regulatory elements bound by TFAP2A. These elements are also frequently bound by MITF, which is considered the "master regulator" of melanocyte development. For example, the promoter of TRPM1 is bound by both TFAP2A and MITF, and we show that the activity of a minimal TRPM1 promoter is lost upon deletion of the TFAP2A binding sites. However, the expression of Trpm1 is not TFAP2A-dependent, implying that additional TFAP2 paralogs function redundantly to drive melanocyte differentiation, which is consistent with previous results from zebrafish. Paralogs Tfap2a and Tfap2b are both expressed in mouse melanocytes, and we show that mouse embryos with Wnt1-Cre-mediated deletion of Tfap2a and Tfap2b in the neural crest almost completely lack melanocytes but retain neural crest-derived sensory ganglia. These results suggest that TFAP2 paralogs, like MITF, are also necessary for induction of the melanocyte lineage. Finally, we observe a genetic interaction between tfap2a and mitfa in zebrafish, but find that artificially elevating expression of tfap2a does not increase levels of melanin in mitfa hypomorphic or loss-of-function mutants. Collectively, these results show that TFAP2 paralogs, operating alongside lineage-specific transcription factors such as MITF, directly regulate effectors of terminal differentiation in melanocytes. In addition, they suggest that TFAP2A activity, like MITF activity, has the potential to modulate the phenotype of melanoma cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Cell Differentiation/genetics
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Humans
- Melanocytes/metabolism
- Mice, Knockout
- Microphthalmia-Associated Transcription Factor/genetics
- Microphthalmia-Associated Transcription Factor/metabolism
- Microscopy, Confocal
- Mutation
- Pigmentation/genetics
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Transcription Factor AP-2/genetics
- Transcription Factor AP-2/metabolism
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Hannah E. Seberg
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric Van Otterloo
- SDM-Craniofacial Biology, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stacie K. Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Huan Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Greg Bonde
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramakrishna Sompallae
- Bioinformatics Division, Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Derek E. Gildea
- Bioinformatics and Scientific Programming Core, Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Juan F. Santana
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - J. Robert Manak
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Trevor Williams
- SDM-Craniofacial Biology, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Robert A. Cornell
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
31
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
Yang Z, Zhong H, Chen J, Zhang X, Zhang H, Luo X, Xu S, Chen H, Lu D, Han Y, Li J, Fu L, Qi X, Peng Y, Xiang K, Lin Q, Guo Y, Li M, Cao X, Zhang Y, Liao S, Peng Y, Zhang L, Guo X, Dong S, Liang F, Wang J, Willden A, Seang Aun H, Serey B, Sovannary T, Bunnath L, Samnom H, Mardon G, Li Q, Meng A, Shi H, Su B. A Genetic Mechanism for Convergent Skin Lightening during Recent Human Evolution. Mol Biol Evol 2016; 33:1177-87. [PMID: 26744415 PMCID: PMC4839214 DOI: 10.1093/molbev/msw003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skin lightening among Eurasians is thought to have been a convergence occurring independently in Europe and East Asia as an adaptation to high latitude environments. Among Europeans, several genes responsible for such lightening have been found, but the information available for East Asians is much more limited. Here, a genome-wide comparison between dark-skinned Africans and Austro-Asiatic speaking aborigines and light-skinned northern Han Chinese identified the pigmentation gene OCA2, showing unusually deep allelic divergence between these groups. An amino acid substitution (His615Arg) of OCA2 prevalent in most East Asian populations—but absent in Africans and Europeans—was significantly associated with skin lightening among northern Han Chinese. Further transgenic and targeted gene modification analyses of zebrafish and mouse both exhibited the phenotypic effect of the OCA2 variant manifesting decreased melanin production. These results indicate that OCA2 plays an important role in the convergent skin lightening of East Asians during recent human evolution.
Collapse
Affiliation(s)
- Zhaohui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hua Zhong
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Jing Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Chen
- Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Lu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Jinkun Li
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijie Fu
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yi Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Kun Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qiang Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ming Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiangyu Cao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yanfeng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Shiyu Liao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingmei Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lin Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaosen Guo
- BGI-Shenzhen, Shenzhen, China Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jun Wang
- BGI-Shenzhen, Shenzhen, China Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Willden
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong Seang Aun
- Geography and Land Management, Royal University of Phnom Penh, Phnom Penh, Kingdom of Cambodia
| | - Bun Serey
- Geography and Land Management, Royal University of Phnom Penh, Phnom Penh, Kingdom of Cambodia
| | - Tuot Sovannary
- Geography and Land Management, Royal University of Phnom Penh, Phnom Penh, Kingdom of Cambodia
| | - Long Bunnath
- Geography and Land Management, Royal University of Phnom Penh, Phnom Penh, Kingdom of Cambodia
| | - Ham Samnom
- Capacity Development Facilitator for Handicap International Federation and Freelance Researcher, Battambang, Kingdom of Cambodia
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Hong Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
33
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
34
|
Is pigment patterning in fish skin determined by the Turing mechanism? Trends Genet 2015; 31:88-96. [DOI: 10.1016/j.tig.2014.11.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022]
|
35
|
Bellono NW, Oancea EV. Ion transport in pigmentation. Arch Biochem Biophys 2014; 563:35-41. [PMID: 25034214 DOI: 10.1016/j.abb.2014.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 12/01/2022]
Abstract
Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Molecular Physiology, Pharmacology and Biotechnology, Brown University, Providence, RI 02912, United States
| | - Elena V Oancea
- Department of Molecular Physiology, Pharmacology and Biotechnology, Brown University, Providence, RI 02912, United States.
| |
Collapse
|