1
|
Sun R, Zhao Y, Liu Y, Zhang M, Qiu Z, Ma X, Wei L, Lu W, Liu Z, Jiang J. Extracellular matrix stiffness in endometrial cancer: driving progression and modulating treatment sensitivity via the ROCK1/YAP1 axis. Cell Death Dis 2025; 16:380. [PMID: 40368918 PMCID: PMC12078694 DOI: 10.1038/s41419-025-07697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Endometrial cancer (EC) is among the most prevalent gynecological malignancies, with advanced or recurrent cases posing significant treatment challenges due to limited responses to conventional therapies. Growing evidence highlights the critical role of extracellular matrix (ECM) stiffness in driving tumor progression by shaping the tumor microenvironment. In this study, we demonstrate that ECM stiffness is significantly higher in EC tissues compared to normal endometrium, correlating with elevated expression of ROCK1, a mechanosensitive kinase. Using atomic force microscopy (AFM), we quantified ECM stiffness, while polyacrylamide gels with varying stiffness were employed to mimic ECM conditions in vitro. Bioinformatics analyses, immunofluorescence, Western blotting, and co-immunoprecipitation experiments revealed that ROCK1 modulates the phosphorylation of YAP1, promoting its nuclear localization and transcriptional activity, thereby driving aggressive tumor behaviors, including enhanced proliferation, migration, invasion, and reduced apoptosis. Pharmacological inhibition of ROCK1 with Y-27632 mitigated these effects, suppressing tumor growth, restoring apoptosis, and inducing cell cycle arrest. Treatment with Y-27632 improved sensitivity to chemotherapy and radiotherapy, and significantly enhanced macrophage-mediated phagocytosis, thereby boosting anti-tumor immune responses. In hormone-resistant EC cells, ROCK1 inhibition restored sensitivity to progesterone therapy. Notably, in vivo experiments in a xenograft mouse model confirmed the therapeutic potential of Y-27632, as combination therapy with progesterone showed superior tumor-suppressive effects compared to monotherapy. These findings underscore the dual role of ECM stiffness and ROCK1 in driving tumor progression and influencing treatment outcomes. By elucidating the relationship between ECM stiffness, ROCK1/YAP1 signaling, and treatment sensitivity, this study highlights the potential of targeting the ROCK1/YAP1 axis as a therapeutic strategy. ROCK1 serves as both a biomarker for prognosis and a target for improving personalized treatment approaches, offering new avenues to enhance clinical outcomes for EC patients.
Collapse
Affiliation(s)
- Rui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Mengyao Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lina Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Foda BM, Baker AE, Joachimiak Ł, Mazur M, Neubig RR. Mechanistic insights into Rho/MRTF inhibition-induced apoptotic events and prevention of drug resistance in melanoma: implications for the involvement of pirin. Front Pharmacol 2025; 16:1505000. [PMID: 39917624 PMCID: PMC11799239 DOI: 10.3389/fphar.2025.1505000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
Aim Overcoming therapy resistance is critical for effective melanoma control. Upregulation of Rho/MRTF signaling in human and mouse melanomas causes resistance to targeted therapies. Inhibition of this pathway by MRTFi, CCG-257081 resensitized resistant melanomas to BRAF and MEK inhibitors. It also prevented the development of resistance to vemurafenib (Vem). Here, we investigate the role of apoptosis and the protein pirin in CCG-257081-mediated suppression of drug resistance. Methods Using naïve and resistant mouse YUMMER melanoma cells, we studied the effect of the BRAF inhibitor Vem with or without CCG-257081 on real-time growth and apoptosis (activation of caspase, Propidium iodide (PI) staining, and PARP cleavage). The effects of CCG-257081 on proliferation (Ki67) and caspase-3 activation were assessed in resistant YUMMER_R tumors in vivo. Finally, two CCG-257081 enantiomers were tested for pirin binding, inhibition of the Rho/MRTF-mediated activation of ACTA2 gene expression in fibroblasts, and the prevention of Vem resistance development by YUMMER_P cells. Results Vem reduced growth of parental but not resistant cells, while CCG-257081 inhibited both. The combination was more effective than Vem alone. CCG-257081, but not Vem, induced activation of caspase-3 and -7 in resistant cells and increased PARP cleavage and PI staining. CCG-257081 reduced proliferation and activated caspase-3 in YUMMER_R melanoma tumors. Both CCG-257081 enantiomers robustly suppressed development of Vem-resistant colonies with the S isomer being more potent (1 μM IC50). Conclusion CCG-257081 appears to target pre-resistant cells and Vem-induced resistant cells through enhanced apoptosis. Inhibition of pirin or the Rho/MRTF pathway can be employed to prevent melanoma resistance.
Collapse
Affiliation(s)
- Bardees M. Foda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki, Egypt
| | - Annika E. Baker
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- School of Health, Pre-Medicine, Calvin University, Grand Rapids, MI, United States
- School of Science Technology, Engineering, and Math, Biochemistry, Calvin University, Grand Rapids, MI, United States
| | | | | | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Molecure SA, Warsaw, Poland
- Nicholas V. Perricone M.D. Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Cai R, Lin H, Cheng Q, Mao Q, Zhang C, Tan Y. Construction of a novel lipid drop-mitochondria-associated genetic profile for predicting the survival and prognosis of lung adenocarcinoma. Discov Oncol 2024; 15:668. [PMID: 39551861 PMCID: PMC11570572 DOI: 10.1007/s12672-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant tumors. Although several treatments have been proposed, the long-term prognosis of this cancer is poor. Lipid droplets and mitochondria are important organelles that regulate energy metabolism in cells and are postulated to promote the occurrence and progression of tumors. However, few risk prediction models have been constructed based on lipid drop-mitochondria-related genes (LMRGs). METHODS In this study, we constructed a lipid drop-mitochondrial (LD-M) risk score model based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Biological functions and clinical benefits associated with the various risk scores were analyzed using R software, GraphPad Prism 9, and the online database system. RESULTS An LD-M risk score model comprising ABLIM3, AK4, CAV2, CPS1, CYP24A1, DLGAP5, FGR, and SH3BP5, was developed and its predictive power was validated. The risk score was closely associated with the cell cycle. Immunophenoscore (IPS) and Tumor immune dysfunction and exclusion (TIDE) results demonstrated that the low-risk group was more sensitive to immunotherapy. Drug sensitivity analysis indicated that BMS-754807, ZM447439, SB216763, and other drugs had lower IC50 values in the low-risk group. CONCLUSION Our results suggest that the LD-M risk score is an effective prognostic indicator for individualized treatment of LUAD.
Collapse
Affiliation(s)
- Ruijuan Cai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongsheng Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | | | - Qiyuan Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuchu Zhang
- Institute of Chinese Medicine Information, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Tan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
5
|
Barcelo J, Samain R, Sanz-Moreno V. Preclinical to clinical utility of ROCK inhibitors in cancer. Trends Cancer 2023; 9:250-263. [PMID: 36599733 DOI: 10.1016/j.trecan.2022.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
ROCK belongs to the AGC family of Ser/Thr protein kinases that are involved in many cellular processes. ROCK-driven actomyosin contractility regulates cytoskeletal dynamics underpinning cell migration, proliferation, and survival in many cancer types. ROCK1/2 play key protumorigenic roles in several subtypes and stages of cancer development. Therefore, successfully targeting ROCK and its downstream effectors presents an interesting avenue for cancer treatment. Because local use of ROCK inhibitors will reduce the side effects of systemic administration, we propose different therapeutic strategies and latest-generation ROCK inhibitors for use in the clinic.
Collapse
Affiliation(s)
- Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
6
|
Jiang A, Pang Q, Gan X, Wang A, Wu Z, Liu B, Luo P, Qu L, Wang L. Definition and verification of novel metastasis and recurrence related signatures of ccRCC: A multicohort study. CANCER INNOVATION 2022; 1:146-167. [PMID: 38090653 PMCID: PMC10686128 DOI: 10.1002/cai2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2024]
Abstract
Background Cancer metastasis and recurrence remain major challenges in renal carcinoma patient management. There are limited biomarkers to predict the metastatic probability of renal cancer, especially in the early-stage subgroup. Here, our study applied robust machine-learning algorithms to identify metastatic and recurrence-related signatures across multiple renal cancer cohorts, which reached high accuracy in both training and testing cohorts. Methods Clear cell renal cell carcinoma (ccRCC) patients with primary or metastatic site sequencing information from eight cohorts, including one out-house cohort, were enrolled in this study. Three robust machine-learning algorithms were applied to identify metastatic signatures. Then, two distinct metastatic-related subtypes were identified and verified; matrix remodeling associated 5 (MXRA5), as a promising diagnostic and therapeutic target, was investigated in vivo and in vitro. Results We identified five stable metastasis-related signatures (renin, integrin subunit beta-like 1, MXRA5, mesenchyme homeobox 2, and anoctamin 3) from multicenter cohorts. Additionally, we verified the specificity and sensibility of these signatures in external and out-house cohorts, which displayed a satisfactory consistency. According to these metastatic signatures, patients were grouped into two distinct and heterogeneous ccRCC subtypes named metastatic cancer subtype 1 (MTCS1) and type 2 (MTCS2). MTCS2 exhibited poorer clinical outcomes and metastatic tendencies than MTCS1. In addition, MTCS2 showed higher immune cell infiltration and immune signature expression but a lower response rate to immune blockade therapy than MTCS1. The MTCS2 subgroup was more sensitive to saracatinib, sunitinib, and several molecular targeted drugs. In addition, MTCS2 displayed a higher genome mutation burden and instability. Furthermore, we constructed a prognosis model based on subtype biomarkers, which performed well in training and validation cohorts. Finally, MXRA5, as a promising biomarker, significantly suppressed malignant ability, including the cell migration and proliferation of ccRCC cell lines in vitro and in vivo. Conclusions This study identified five robust metastatic signatures and proposed two metastatic probability clusters with stratified prognoses, multiomics landscapes, and treatment options. The current work not only provided new insight into the heterogeneity of renal cancer but also shed light on optimizing decision-making in immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Qingyang Pang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Xinxin Gan
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Anbang Wang
- Department of Urology, Changzheng HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Zhenjie Wu
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Bing Liu
- Department of Urology, The Third Affiliated HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Le Qu
- Department of Urology, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Linhui Wang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| |
Collapse
|
7
|
Siebenaler RF, Chugh S, Waninger JJ, Dommeti VL, Kenum C, Mody M, Gautam A, Patel N, Chu A, Bawa P, Hon J, Smith RD, Carlson H, Cao X, Tesmer JJG, Shankar S, Chinnaiyan AM. Argonaute 2 modulates EGFR-RAS signaling to promote mutant HRAS and NRAS-driven malignancies. PNAS NEXUS 2022; 1:pgac084. [PMID: 35923912 PMCID: PMC9338400 DOI: 10.1093/pnasnexus/pgac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023]
Abstract
Activating mutations in RAS GTPases drive nearly 30% of all human cancers. Our prior work described an essential role for Argonaute 2 (AGO2), of the RNA-induced silencing complex, in mutant KRAS-driven cancers. Here, we identified a novel endogenous interaction between AGO2 and RAS in both wild-type (WT) and mutant HRAS/NRAS cells. This interaction was regulated through EGFR-mediated phosphorylation of Y393-AGO2, and utilizing molecular dynamic simulation, we identified a conformational change in pY393-AGO2 protein structure leading to disruption of the RAS binding site. Knockdown of AGO2 led to a profound decrease in proliferation of mutant HRAS/NRAS-driven cell lines but not WT RAS cells. These cells demonstrated oncogene-induced senescence (OIS) as evidenced by β-galactosidase staining and induction of multiple downstream senescence effectors. Mechanistically, we discovered that the senescent phenotype was mediated via induction of reactive oxygen species. Intriguingly, we further identified that loss of AGO2 promoted a novel feed forward pathway leading to inhibition of the PTP1B phosphatase and activation of EGFR-MAPK signaling, consequently resulting in OIS. Taken together, our study demonstrates that the EGFR-AGO2-RAS signaling axis is essential for maintaining mutant HRAS and NRAS-driven malignancies.
Collapse
Affiliation(s)
| | | | - Jessica J Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carson Kenum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malay Mody
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anudeeta Gautam
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nidhi Patel
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec Chu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pushpinder Bawa
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Hon
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard D Smith
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heather Carlson
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
8
|
Cai W, Nguyen MQ, Wilski NA, Purwin TJ, Vernon M, Tiago M, Aplin AE. A Genome-Wide Screen Identifies PDPK1 as a Target to Enhance the Efficacy of MEK1/2 Inhibitors in NRAS Mutant Melanoma. Cancer Res 2022; 82:2625-2639. [PMID: 35657206 PMCID: PMC9298960 DOI: 10.1158/0008-5472.can-21-3217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 01/21/2023]
Abstract
Melanomas frequently harbor activating NRAS mutations. However, limited advance has been made in developing targeted therapy options for patients with NRAS mutant melanoma. MEK inhibitors (MEKi) show modest efficacy in the clinic and their actions need to be optimized. In this study, we performed a genome-wide CRISPR-Cas9-based screen and demonstrated that loss of phosphoinositide-dependent kinase-1 (PDPK1) enhances the efficacy of MEKi. The synergistic effects of PDPK1 loss and MEKi was validated in NRAS mutant melanoma cell lines using pharmacologic and molecular approaches. Combined PDPK1 inhibitors (PDPK1i) with MEKi suppressed NRAS mutant xenograft growth and induced gasdermin E-associated pyroptosis. In an immune-competent allograft model, PDPK1i+MEKi increased the ratio of intratumoral CD8+ T cells, delayed tumor growth, and prolonged survival; the combination treatment was less effective against tumors in immune-deficient mice. These data suggest PDPK1i+MEKi as an efficient immunostimulatory strategy against NRAS mutant melanoma. SIGNIFICANCE Targeting PDPK1 stimulates antitumor immunity and sensitizes NRAS mutant melanoma to MEK inhibition, providing rationale for the clinical development of a combinatorial approach for treating patients with melanoma.
Collapse
Affiliation(s)
- Weijia Cai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Mai Q. Nguyen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Nicole A. Wilski
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Timothy J. Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Megane Vernon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Andrew E. Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
9
|
Simbulan-Rosenthal CM, Haribabu Y, Vakili S, Kuo LW, Clark H, Dougherty R, Alobaidi R, Carney B, Sykora P, Rosenthal DS. Employing CRISPR-Cas9 to Generate CD133 Synthetic Lethal Melanoma Stem Cells. Int J Mol Sci 2022; 23:2333. [PMID: 35216449 PMCID: PMC8877091 DOI: 10.3390/ijms23042333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133's anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133. MACS-sorted CD133(+) BAKP cells were conditionally reprogrammed to derive BAKR cells with sustained CD133 expression and MIC features. Compared to BAKP, CD133(+) BAKR exhibit increased cell survival and reduced apoptosis in response to trametinib or the chemotherapeutic dacarbazine (DTIC). CRISPR-Cas9-mediated CD133 knockout in BAKR cells (BAKR-KO) re-sensitized cells to trametinib. CD133 knockout in BAKP and POT cells increased trametinib-induced apoptosis by reducing anti-apoptotic BCL-xL, p-AKT, and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in both trametinib-treated cell lines, coincident with elevated p-AKT, p-BAD, BCL-2, and BCL-xL and decreased activation of BAX and caspases-3 and -9. AKT1/2 siRNA knockdown or inhibition of BCL-2 family members with navitoclax (ABT-263) in BAKP-KO cells further enhanced caspase-mediated apoptotic PARP cleavage. CD133 may therefore activate a survival pathway where (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, (3) decreases BAX activation, and (4) reduces caspases-3 and -9 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. Targeting nodes of the CD133, AKT, or BCL-2 survival pathways with trametinib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.
Collapse
Affiliation(s)
- Cynthia M. Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Yogameenakshi Haribabu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Sahar Vakili
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Li-Wei Kuo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Havens Clark
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Ryan Dougherty
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Ryyan Alobaidi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Bonnie Carney
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
- Firefighters’ Burn and Surgical Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA
| | - Peter Sykora
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
- Amelia Technologies, LLC, 1121 5th St. NW, Washington, DC 20001, USA
| | - Dean S. Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| |
Collapse
|
10
|
Kim S, Kim SA, Han J, Kim IS. Rho-Kinase as a Target for Cancer Therapy and Its Immunotherapeutic Potential. Int J Mol Sci 2021; 22:ijms222312916. [PMID: 34884721 PMCID: PMC8657458 DOI: 10.3390/ijms222312916] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is fast rising as a prominent new pillar of cancer treatment, harnessing the immune system to fight against numerous types of cancer. Rho-kinase (ROCK) pathway is involved in diverse cellular activities, and is therefore the target of interest in various diseases at the cellular level including cancer. Indeed, ROCK is well-known for its involvement in the tumor cell and tumor microenvironment, especially in its ability to enhance tumor cell progression, migration, metastasis, and extracellular matrix remodeling. Importantly, ROCK is also considered to be a novel and effective modulator of immune cells, although further studies are needed. In this review article, we describe the various activities of ROCK and its potential to be utilized in cancer treatment, particularly in cancer immunotherapy, by shining a light on its activities in the immune system.
Collapse
Affiliation(s)
- Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seong A. Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jihoon Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Correspondence:
| |
Collapse
|
11
|
Khaddour K, Maahs L, Avila-Rodriguez AM, Maamar Y, Samaan S, Ansstas G. Melanoma Targeted Therapies beyond BRAF-Mutant Melanoma: Potential Druggable Mutations and Novel Treatment Approaches. Cancers (Basel) 2021; 13:5847. [PMID: 34831002 PMCID: PMC8616477 DOI: 10.3390/cancers13225847] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Melanomas exhibit the highest rate of somatic mutations among all different types of cancers (with the exception of BCC and SCC). The accumulation of a multimode of mutations in the driver oncogenes are responsible for the proliferative, invasive, and aggressive nature of melanomas. High-resolution and high-throughput technology has led to the identification of distinct mutational signatures and their downstream alterations in several key pathways that contribute to melanomagenesis. This has enabled the development of individualized treatments by targeting specific molecular alterations that are vital for cancer cell survival, which has resulted in improved outcomes in several cancers, including melanomas. To date, BRAF and MEK inhibitors remain the only approved targeted therapy with a high level of evidence in BRAFV600E/K mutant melanomas. The lack of approved precision drugs in melanomas, relative to other cancers, despite harboring one of the highest rates of somatic mutations, advocates for further research to unveil effective therapeutics. In this review, we will discuss potential druggable mutations and the ongoing research of novel individualized treatment approaches targeting non-BRAF mutations in melanomas.
Collapse
Affiliation(s)
- Karam Khaddour
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.M.); (A.M.A.-R.)
| | - Lucas Maahs
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.M.); (A.M.A.-R.)
| | - Ana Maria Avila-Rodriguez
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.M.); (A.M.A.-R.)
| | - Yazan Maamar
- Division of Hematology and Oncology, Department of Medicine, University of Tishreen Lattakia, Lattakia 2217, Syria;
| | - Sami Samaan
- Department of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| |
Collapse
|
12
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
13
|
Maiques O, Fanshawe B, Crosas-Molist E, Rodriguez-Hernandez I, Volpe A, Cantelli G, Boehme L, Orgaz JL, Mardakheh FK, Sanz-Moreno V, Fruhwirth GO. A preclinical pipeline to evaluate migrastatics as therapeutic agents in metastatic melanoma. Br J Cancer 2021; 125:699-713. [PMID: 34172930 PMCID: PMC8405734 DOI: 10.1038/s41416-021-01442-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Metastasis is a hallmark of cancer and responsible for most cancer deaths. Migrastatics were defined as drugs interfering with all modes of cancer cell invasion and thus cancers' ability to metastasise. First anti-metastatic treatments have recently been approved. METHODS We used bioinformatic analyses of publicly available melanoma databases. Experimentally, we performed in vitro target validation (including 2.5D cell morphology analysis and mass spectrometric analysis of RhoA binding partners), developed a new traceable spontaneously metastasising murine melanoma model for in vivo validation, and employed histology (haematoxylin/eosin and phospho-myosin II staining) to confirm drug action in harvested tumour tissues. RESULTS Unbiased and targeted bioinformatic analyses identified the Rho kinase (ROCK)-myosin II pathway and its various components as potentially relevant targets in melanoma. In vitro validation demonstrated redundancy of several RhoGEFs upstream of RhoA and confirmed ROCK as a druggable target downstream of RhoA. The anti-metastatic effects of two ROCK inhibitors were demonstrated through in vivo melanoma metastasis tracking and inhibitor effects also confirmed ex vivo by digital pathology. CONCLUSIONS We proposed a migrastatic drug development pipeline. As part of the pipeline, we provide a new traceable spontaneous melanoma metastasis model for in vivo quantification of metastasis and anti-metastatic effects by non-invasive imaging.
Collapse
Affiliation(s)
- Oscar Maiques
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, London, UK
| | - Eva Crosas-Molist
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Irene Rodriguez-Hernandez
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Alessia Volpe
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, London, UK
- Molecular Imaging Group, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaia Cantelli
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Lena Boehme
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Jose L Orgaz
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
- Instituto de Investigaciones Biomedicas 'Alberto Sols', CSIC-UAM, Madrid, Spain
| | - Faraz K Mardakheh
- Centre for Cancer Cell & Molecular Biology at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK.
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, London, UK.
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.
| |
Collapse
|
14
|
Garcia-Alvarez A, Ortiz C, Muñoz-Couselo E. Current Perspectives and Novel Strategies of NRAS-Mutant Melanoma. Onco Targets Ther 2021; 14:3709-3719. [PMID: 34135599 PMCID: PMC8202735 DOI: 10.2147/ott.s278095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the deadliest cutaneous cancer. Activating mutations in NRAS are found in 20% of melanomas. NRAS-mutant melanoma is more aggressive and, therefore, has poorer outcomes, compared to non-NRAS-mutant melanoma. Despite promising preclinical data, to date immune checkpoint inhibitors remain the standard of care for locally advanced unresectable or metastatic NRAS melanoma. Data for efficacy of immunotherapy for NRAS melanoma mainly come from retrospective cohorts with divergent conclusions. MEK inhibitors have been the most developed targeted therapy approach. Although associated with an increase in progression-free survival, MEK inhibitors do not provide any benefit in terms of overall survival. Combination strategies with PI3K-AKT-mTOR pathway and CDK4/6 inhibitors seem to increase MEK inhibitors' benefit. Nevertheless, results from clinical trials are still prelaminar. A greater comprehension of the biology and intracellular interactions of NRAS-mutant melanoma will outline novel impactful strategies which could improve prognosis of these subgroup of patients.
Collapse
Affiliation(s)
- Alejandro Garcia-Alvarez
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Carolina Ortiz
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Eva Muñoz-Couselo
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| |
Collapse
|
15
|
NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev 2021; 99:102238. [PMID: 34098219 DOI: 10.1016/j.ctrv.2021.102238] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.
Collapse
|
16
|
Appleton KM, Palsuledesai CC, Misek SA, Blake M, Zagorski J, Gallo KA, Dexheimer TS, Neubig RR. Inhibition of the Myocardin-Related Transcription Factor Pathway Increases Efficacy of Trametinib in NRAS-Mutant Melanoma Cell Lines. Cancers (Basel) 2021; 13:cancers13092012. [PMID: 33921974 PMCID: PMC8122681 DOI: 10.3390/cancers13092012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Malignant melanoma is the most aggressive skin cancer, and treatment is often ineffective due to the development of resistance to targeted therapeutic agents. The most prevalent form of melanoma with a mutated BRAF gene has an effective treatment, but the second most common mutation in melanoma (NRAS) leads to tumors that lack targeted therapies. In this study, we show that NRAS mutant human melanoma cells that are most resistant to inhibition of the oncogenic pathway have a second activated pathway (Rho). Inhibiting that pathway at one of several points can produce more effective cell killing than inhibition of the NRAS pathway alone. This raises the possibility that such a combination treatment could prove effective in those melanomas that fail to respond to existing targeted therapies such as vemurafenib and trametinib. Abstract The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.
Collapse
Affiliation(s)
- Kathryn M. Appleton
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Charuta C. Palsuledesai
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Sean A. Misek
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (S.A.M.); (K.A.G.)
| | - Maja Blake
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Joseph Zagorski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Kathleen A. Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (S.A.M.); (K.A.G.)
| | - Thomas S. Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
- Department of Medicine, Division of Dermatology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-353-7145
| |
Collapse
|
17
|
Chesnokov MS, Khan I, Park Y, Ezell J, Mehta G, Yousif A, Hong LJ, Buckanovich RJ, Takahashi A, Chefetz I. The MEK1/2 Pathway as a Therapeutic Target in High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021; 13:1369. [PMID: 33803586 PMCID: PMC8003094 DOI: 10.3390/cancers13061369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the deadliest of gynecological cancers due to its high recurrence rate and acquired chemoresistance. RAS/MEK/ERK pathway activation is linked to cell proliferation and therapeutic resistance, but the role of MEK1/2-ERK1/2 pathway in HGSOC is poorly investigated. We evaluated MEK1/2 pathway activity in clinical HGSOC samples and ovarian cancer cell lines using immunohistochemistry, immunoblotting, and RT-qPCR. HGSOC cell lines were used to assess immediate and lasting effects of MEK1/2 inhibition with trametinib in vitro. Trametinib effect on tumor growth in vivo was investigated using mouse xenografts. MEK1/2 pathway is hyperactivated in HGSOC and is further stimulated by cisplatin treatment. Trametinib treatment causes cell cycle arrest in G1/0-phase and reduces tumor growth rate in vivo but does not induce cell death or reduce fraction of CD133+ stem-like cells, while increasing expression of stemness-associated genes instead. Transient trametinib treatment causes long-term increase in a subpopulation of cells with high aldehyde dehydrogenase (ALDH)1 activity that can survive and grow in non-adherent conditions. We conclude that MEK1/2 inhibition may be a promising approach to suppress ovarian cancer growth as a maintenance therapy. Promotion of stem-like properties upon MEK1/2 inhibition suggests a possible mechanism of resistance, so a combination with CSC-targeting drugs should be considered.
Collapse
Affiliation(s)
- Mikhail S. Chesnokov
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Yeonjung Park
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Jessica Ezell
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Abdelrahman Yousif
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Linda J. Hong
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Ronald J. Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
- Division of Hematology Oncology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Akimasa Takahashi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga 5202152, Japan
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Multi-omics characterization and validation of MSI-related molecular features across multiple malignancies. Life Sci 2021; 270:119081. [PMID: 33516699 DOI: 10.1016/j.lfs.2021.119081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 01/17/2023]
Abstract
HEADINGS AIMS To establish a microsatellite instability (MSI) predictive model in pan-cancer and compare the multi-omics characterization of MSI-related molecular features. MATERIALS AND METHODS We established a 15-gene signature for predicting MSI status and performed a systematic assessment of MSI-related molecular features including gene and miRNA expression, DNA methylation, and somatic mutation, in approximately 10,000 patients across 30 cancer types from The Cancer Genome Atlas, Gene Expression Omnibus database, and our institution. Then we identified common MSI-associated dysregulated molecular features across six cancers and explored their mutual interfering relationships and the drug sensitivity. KEY FINDINGS we demonstrated the model's high prediction performance and found the samples with high-MSI were mainly distributed in six cancers: BRCA, COAD, LUAD, LIHC, STAD, and UCEC. We found RPL22L1 was up-regulated in the high-MSI group of 5/6 cancer types. CYP27A1 and RAI2 were down-regulated in 4/6 cancer types. More than 20 miRNAs and 39 DMGs were found up-regulated in MSI-H at least three cancers. We discovered some drugs, including OSI-027 and AZD8055 had a higher sensitivity in the high MSI-score group. Functional enrichment analysis revealed the correlation between MSI score and APM score, HLA score, or glycolysis score. The complicated regulatory mechanism of tumor MSI status in multiple dimensions was explored by an integrated analysis of the correlations among MSI-related genes, miRNAs, methylation, and drug response data. SIGNIFICANCE Our pan-cancer study provides a valuable predictive model and a comprehensive atlas of tumor MSI, which may guide more precise and personalized therapeutic strategies for tumor patients.
Collapse
|
19
|
Brito C, Barral DC, Pojo M. Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Front Cell Dev Biol 2020; 8:575223. [PMID: 33072757 PMCID: PMC7538714 DOI: 10.3389/fcell.2020.575223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The rising incidence and mortality rate associated with the metastatic ability of cutaneous melanoma represent a major public health concern. Cutaneous melanoma is one of the most invasive human cancers, but the molecular mechanisms are poorly understood. Moreover, currently available therapies are not efficient in avoiding melanoma lethality. In this context, new biomarkers of prognosis, metastasis, and response to therapy are necessary to better predict the disease outcome. Additionally, the knowledge about the molecular alterations and dysregulated pathways involved in melanoma metastasis may provide new therapeutic targets. Members of the Ras superfamily of small GTPases regulate various essential cellular activities, from signaling to membrane traffic and cytoskeleton dynamics. Therefore, it is not surprising that they are differentially expressed, and their functions subverted in several types of cancer, including melanoma. Indeed, Ras small GTPases were found to regulate melanoma progression and invasion. Hence, a better understanding of the mechanisms regulated by Ras small GTPases that are involved in melanoma tumorigenesis and progression may provide new therapeutic strategies to block these processes. Here, we review the current knowledge on the role of Ras small GTPases in melanoma aggressiveness and the molecular mechanisms involved. Furthermore, we summarize the known involvement of these proteins in melanoma metastasis and how these players influence the response to therapy.
Collapse
Affiliation(s)
- Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| |
Collapse
|
20
|
Nguyen MQ, Teh JLF, Purwin TJ, Chervoneva I, Davies MA, Nathanson KL, Cheng PF, Levesque MP, Dummer R, Aplin AE. Targeting PHGDH Upregulation Reduces Glutathione Levels and Resensitizes Resistant NRAS-Mutant Melanoma to MAPK Kinase Inhibition. J Invest Dermatol 2020; 140:2242-2252.e7. [PMID: 32389536 DOI: 10.1016/j.jid.2020.02.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
Abstract
Melanomas frequently harbor activating NRAS mutations leading to activation of MAPK kinase (MEK) and extracellular signal-regulated kinase 1/2 signaling; however, the clinical efficacy of inhibitors to this pathway is limited by resistance. Tumors rewire metabolic pathways in response to stress signals such as targeted inhibitors and drug resistance, but most therapy-resistant preclinical models are generated in conditions that lack physiological metabolism. We generated human NRAS-mutant melanoma xenografts that were resistant to the MEK inhibitor (MEKi) PD0325901 in vivo. MEKi-resistant cells showed cross-resistance to the structurally distinct MEKi trametinib and elevated extracellular signal-regulated kinase 1/2 phosphorylation and downstream signaling. Additionally, we observed upregulation of the serine synthesis pathway and PHGDH, a key enzyme in this pathway. Suppressing PHGDH in MEKi-resistant cells together with MEKi treatment decreased oxidative stress tolerance and cell proliferation. Together, our data suggest targeting PHGDH as a potential strategy in overcoming MEKi resistance.
Collapse
Affiliation(s)
- Mai Q Nguyen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jessica L F Teh
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phil F Cheng
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Hsu YH, Huang HP, Chang HR. The uremic toxin p-cresol promotes the invasion and migration on carcinoma cells via Ras and mTOR signaling. Toxicol In Vitro 2019; 58:126-131. [DOI: 10.1016/j.tiv.2019.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
|
22
|
Su Y, Bintz M, Yang Y, Robert L, Ng AHC, Liu V, Ribas A, Heath JR, Wei W. Phenotypic heterogeneity and evolution of melanoma cells associated with targeted therapy resistance. PLoS Comput Biol 2019; 15:e1007034. [PMID: 31166947 PMCID: PMC6576794 DOI: 10.1371/journal.pcbi.1007034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 06/17/2019] [Accepted: 04/15/2019] [Indexed: 01/26/2023] Open
Abstract
Phenotypic plasticity is associated with non-genetic drug tolerance in several cancers. Such plasticity can arise from chromatin remodeling, transcriptomic reprogramming, and/or protein signaling rewiring, and is characterized as a cell state transition in response to molecular or physical perturbations. This, in turn, can confound interpretations of drug responses and resistance development. Using BRAF-mutant melanoma cell lines as the prototype, we report on a joint theoretical and experimental investigation of the cell-state transition dynamics associated with BRAF inhibitor drug tolerance. Thermodynamically motivated surprisal analysis of transcriptome data was used to treat the cell population as an entropy maximizing system under the influence of time-dependent constraints. This permits the extraction of an epigenetic potential landscape for drug-induced phenotypic evolution. Single-cell flow cytometry data of the same system were modeled with a modified Fokker-Planck-type kinetic model. The two approaches yield a consistent picture that accounts for the phenotypic heterogeneity observed over the course of drug tolerance development. The results reveal that, in certain plastic cancers, the population heterogeneity and evolution of cell phenotypes may be understood by accounting for the competing interactions of the epigenetic potential landscape and state-dependent cell proliferation. Accounting for such competition permits accurate, experimentally verifiable predictions that can potentially guide the design of effective treatment strategies. Cancer cells exhibit varied degrees of phenotypic heterogeneity. These phenotypes, each of them with unique molecular and functional profiles, display dynamic interconversion in response to drug perturbations, and can evolve to form new drug-tolerant phenotypes. Such phenotypic plasticity, in turn, renders tumor cells extremely difficult to treat. To get a quantitative biophysical understanding of the origins of the phenotypic equilibrium and evolution associated with drug tolerance development in highly plastic patient-derived melanoma cells, we employed joint experimental and computational approaches, using either bulk or single cell measurements as input, to interrogate the epigenetic landscape of the phenotypic evolution. We found that the observed phenotypic equilibria were established via competition between state-dependent net proliferation rates and landscape potential. The results reveal how the tumor cells maintain a phenotypic heterogeneity that facilitates appropriate responses to external cues. They implicate that, in certain phenotypically plastic tumor cells, drug targeting the driver oncogenes may not have sustained efficacy unless the phenotypic plasticity of the tumor is co-targeted.
Collapse
Affiliation(s)
- Yapeng Su
- Institute for Systems Biology, Seattle, Washington, United State of America
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United State of America
| | - Marcus Bintz
- Department of Molecular and Medical Pharmacology, University of California – Los Angeles, Los Angeles, California, United State of America
| | - Yezi Yang
- Department of Molecular and Medical Pharmacology, University of California – Los Angeles, Los Angeles, California, United State of America
| | - Lidia Robert
- Department of Medicine, University of California – Los Angeles, Los Angeles, California, United State of America
| | - Alphonsus H. C. Ng
- Institute for Systems Biology, Seattle, Washington, United State of America
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United State of America
| | - Victoria Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United State of America
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, University of California – Los Angeles, Los Angeles, California, United State of America
- Department of Medicine, University of California – Los Angeles, Los Angeles, California, United State of America
- Department of Surgery, Division of Surgical-Oncology, University of California – Los Angeles, Los Angeles, California, United State of America
- Jonsson Comprehensive Cancer Center, University of California – Los Angeles, Los Angeles, California, United State of America
| | - James R. Heath
- Institute for Systems Biology, Seattle, Washington, United State of America
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United State of America
- Jonsson Comprehensive Cancer Center, University of California – Los Angeles, Los Angeles, California, United State of America
- * E-mail: (J.R.H.); (W.W.)
| | - Wei Wei
- Institute for Systems Biology, Seattle, Washington, United State of America
- Department of Molecular and Medical Pharmacology, University of California – Los Angeles, Los Angeles, California, United State of America
- Jonsson Comprehensive Cancer Center, University of California – Los Angeles, Los Angeles, California, United State of America
- * E-mail: (J.R.H.); (W.W.)
| |
Collapse
|
23
|
Targeting ROCK/LIMK/cofilin signaling pathway in cancer. Arch Pharm Res 2019; 42:481-491. [DOI: 10.1007/s12272-019-01153-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
|
24
|
Barutello G, Rolih V, Arigoni M, Tarone L, Conti L, Quaglino E, Buracco P, Cavallo F, Riccardo F. Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs' Revolution for Immunotherapy. Int J Mol Sci 2018. [PMID: 29534457 PMCID: PMC5877660 DOI: 10.3390/ijms19030799] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Paolo Buracco
- Department of Veterinary Science, University of Torino, 10095 Grugliasco, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
25
|
Khakshour S, Labrecque MP, Esmaeilsabzali H, Lee FJS, Cox ME, Park EJ, Beischlag TV. Retinoblastoma protein (Rb) links hypoxia to altered mechanical properties in cancer cells as measured by an optical tweezer. Sci Rep 2017; 7:7833. [PMID: 28798482 PMCID: PMC5552853 DOI: 10.1038/s41598-017-07947-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxia modulates actin organization via multiple pathways. Analyzing the effect of hypoxia on the biophysical properties of cancer cells is beneficial for studying modulatory signalling pathways by quantifying cytoskeleton rearrangements. We have characterized the biophysical properties of human LNCaP prostate cancer cells that occur in response to loss of the retinoblastoma protein (Rb) under hypoxic stress using an oscillating optical tweezer. Hypoxia and Rb-loss increased cell stiffness in a fashion that was dependent on activation of the extracellular signal-regulated kinase (ERK) and the protein kinase B (AKT)- mammalian target of rapamycin (MTOR) pathways. Pharmacological inhibition of MEK1/2, AKT or MTOR impeded hypoxia-inducible changes in the actin cytoskeleton and inhibited cell migration in Rb-deficient cells conditioned with hypoxia. These results suggest that loss of Rb in transformed hypoxic cancer cells affects MEK1/2-ERK/AKT-MTOR signalling and promotes motility. Thus, the mechanical characterization of cancer cells using an optical tweezer provides an additional technique for cancer diagnosis/prognosis and evaluating therapeutic performance.
Collapse
Affiliation(s)
- S Khakshour
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada
| | - M P Labrecque
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - H Esmaeilsabzali
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada
| | - F J S Lee
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - M E Cox
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - E J Park
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - T V Beischlag
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
26
|
Muñoz-Couselo E, Adelantado EZ, Ortiz C, García JS, Perez-Garcia J. NRAS-mutant melanoma: current challenges and future prospect. Onco Targets Ther 2017; 10:3941-3947. [PMID: 28860801 PMCID: PMC5558581 DOI: 10.2147/ott.s117121] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melanoma is one of the most common cutaneous cancers worldwide. Activating mutations in RAS oncogenes are found in a third of all human cancers and NRAS mutations are found in 15%–20% of melanomas. The NRAS-mutant subset of melanoma is more aggressive and associated with poorer outcomes, compared to non-NRAS-mutant melanoma. Although immune checkpoint inhibitors and targeted therapies for BRAF-mutant melanoma are transforming the treatment of metastatic melanoma, the ideal treatment for NRAS-mutant melanoma remains unknown. Despite promising preclinical data, current therapies for NRAS-mutant melanoma remain limited, showing a modest increase in progression-free survival but without any benefit in overall survival. Combining MEK inhibitors with agents inhibiting cell cycling and the PI3K–AKT pathway appears to provide additional benefit; in particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future. Patients whose tumors had NRAS mutations had better response to immunotherapy and better outcomes than patients whose tumors had other genetic subtypes, suggesting that immune therapies – especially immune checkpoint inhibitors – may be particularly effective as treatment options for NRAS-mutant melanoma. Improved understanding of NRAS-mutant melanoma will be essential to develop new treatment strategies for this subset of patients with melanoma.
Collapse
Affiliation(s)
- Eva Muñoz-Couselo
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ester Zamora Adelantado
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Carolina Ortiz
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | |
Collapse
|
27
|
Arozarena I, Wellbrock C. Targeting invasive properties of melanoma cells. FEBS J 2017; 284:2148-2162. [PMID: 28196297 DOI: 10.1111/febs.14040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 02/11/2024]
Abstract
Melanoma is a skin cancer notorious for its metastatic potential. As an initial step of the metastatic cascade, melanoma cells part from the primary tumour and invade the surrounding tissue, which is crucial for their dissemination and the formation of distant secondary tumours. Over the last two decades, our understanding of both, general and melanoma specific mechanisms of invasion has significantly improved, but to date no efficient therapeutic strategy tackling the invasive properties of melanoma cells has reached the clinic. In this review, we assess the major contributions towards the understanding of the molecular biology of melanoma cell invasion with a focus on melanoma specific traits. These traits are based on the neural crest origin of melanoma cells and explain their intrinsic invasive nature. A particular emphasis is given not only to lineage specific signalling mediated by TGFβ, and noncanonical and canonical WNT signalling, but also to the role of PDE5A and RHO-GTPases in modulating modes of melanoma cell invasion. We discuss existing caveats in the current understanding of the metastatic properties of melanoma cells, as well as the relevance of the 'phenotype switch' model and 'co-operativity' between different phenotypes in heterogeneous tumours. At the centre of these phenotypes is the lineage commitment factor microphthalmia-associated transcription factor, one of the most crucial regulators of the balance between de-differentiation (neural crest specific gene expression) and differentiation (melanocyte specific gene expression) that defines invasive and noninvasive melanoma cell phenotypes. Finally, we provide insight into the current evidence linking resistance to targeted therapies to invasive properties of melanoma cells.
Collapse
Affiliation(s)
- Imanol Arozarena
- Cancer Signalling Group, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| |
Collapse
|
28
|
Boespflug A, Caramel J, Dalle S, Thomas L. Treatment of NRAS-mutated advanced or metastatic melanoma: rationale, current trials and evidence to date. Ther Adv Med Oncol 2017; 9:481-492. [PMID: 28717400 PMCID: PMC5502949 DOI: 10.1177/1758834017708160] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
The disease course of BRAF (v-raf murine sarcoma viral oncogene homolog B1)-mutant melanoma has been drastically improved by the arrival of targeted therapies. NRAS (neuroblastoma RAS viral oncogene homolog)-mutated melanoma represents 15–25% of all metastatic melanoma patients. It currently does not have an approved targeted therapy. Metastatic patients receive immune-based therapies as first-line treatments, then cytotoxic chemotherapy like carboplatin/paclitaxel (C/P), dacarbazine (DTIC) or temozolomide (TMZ) as a second-line treatment. We will review current preclinical and clinical developments in NRAS-mutated melanoma, and analyze ongoing clinical trials that are evaluating the benefit of different targeted and immune-based therapies, either tested as single agents or in combination, in NRAS-mutant melanoma.
Collapse
Affiliation(s)
| | - Julie Caramel
- Cancer Research Center of Lyon, Claude Bernard Lyon-1 University, INSERM1052, CNRS 5286, Lyon, France
| | | | - Luc Thomas
- Service de Dermatologie, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, Cedex, France
| |
Collapse
|
29
|
Frankel AE, Eskiocak U, Gill JG, Yuan S, Ramesh V, Froehlich TW, Ahn C, Morrison SJ. Digoxin Plus Trametinib Therapy Achieves Disease Control in BRAF Wild-Type Metastatic Melanoma Patients. Neoplasia 2017; 19:255-260. [PMID: 28278423 PMCID: PMC5342980 DOI: 10.1016/j.neo.2017.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
This is the first prospective study of a combination therapy involving a cardenolide and a MEK inhibitor for metastatic melanoma. Whereas BRAF mutant melanomas can exhibit profound responses to treatment with BRAF and MEK inhibitors, there are fewer options for BRAF wild-type melanomas. In preclinical studies, we discovered that cardenolides synergize with MEK inhibitor to promote the regression of patient-derived xenografts irrespective of BRAF mutation status. We therefore conducted a phase 1B study of digoxin 0.25 mg and trametinib 2 mg given orally once daily in 20 patients with advanced, refractory, BRAF wild-type melanomas. The most common adverse events were rash, diarrhea, nausea, and fatigue. The response rate was 4/20 or 20% with response durations of 2, 4, 6, and 8 months. The disease control rate (including partial responses and stable disease) was 13/20 or 65% of patients, including 5/6 or 83% of patients with NRAS mutant melanomas and 8/14 or 57% of NRAS wild-type melanomas. Patients with stable disease had disease control for 2, 2, 2, 4, 5, 6, 7, 10, and 10 months. Xenografts from four patients recapitulated the treatment responses observed in patients. Based on these pilot results, an expansion arm of digoxin plus MEK inhibitor is warranted for NRAS mutant metastatic melanoma patients who are refractory or intolerant of immunotherapy. KEY POINTS Digoxin plus trametinib is well tolerated and achieves a high rate of disease control in BRAF wild-type metastatic melanoma patients.
Collapse
Affiliation(s)
- Arthur E Frankel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
| | - Ugur Eskiocak
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Compass Therapeutics, Cambridge, MA
| | - Jennifer G Gill
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Stacy Yuan
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vijayashree Ramesh
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas W Froehlich
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chul Ahn
- Department of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
30
|
Zandvakili I, Lin Y, Morris JC, Zheng Y. Rho GTPases: Anti- or pro-neoplastic targets? Oncogene 2016; 36:3213-3222. [PMID: 27991930 PMCID: PMC5464989 DOI: 10.1038/onc.2016.473] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Rho GTPases are critical signal transducers of multiple pathways. They have been proposed to be useful anti-neoplastic targets for over two decades, especially in Ras-driven cancers. Until recently, however, few in vivo studies had been carried out to test this premise. Several recent mouse model studies have verified that Rac1, RhoA, and some of their effector proteins such as PAK and ROCK, are likely anti-cancer targets for treating K-Ras-driven tumors. Other seemingly contradictory studies have suggested that at least in certain instances inhibition of individual Rho GTPases may paradoxically result in pro-neoplastic effects. Significantly, both RhoA GTPase gain- and loss-of-function mutations have been discovered in primary leukemia/lymphoma and gastric cancer by human cancer genome sequencing efforts, suggesting both pro- and anti-neoplastic roles. In this review we summarize and integrate these unexpected findings and discuss the mechanistic implications in the design and application of Rho GTPase targeting strategies in future cancer therapies.
Collapse
Affiliation(s)
- I Zandvakili
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Y Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - J C Morris
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Y Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Iskit S, Lieftink C, Halonen P, Shahrabi A, Possik PA, Beijersbergen RL, Peeper DS. Integrated in vivo genetic and pharmacologic screening identifies co-inhibition of EGRF and ROCK as a potential treatment regimen for triple-negative breast cancer. Oncotarget 2016; 7:42859-42872. [PMID: 27374095 PMCID: PMC5189992 DOI: 10.18632/oncotarget.10230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the second most common cause of cancer-related deaths worldwide among women. Despite several therapeutic options, 15% of breast cancer patients succumb to the disease owing to tumor relapse and acquired therapy resistance. Particularly in triple-negative breast cancer (TNBC), developing effective treatments remains challenging owing to the lack of a common vulnerability that can be exploited by targeted approaches. We have previously shown that tumor cells have different requirements for growth in vivo than in vitro. Therefore, to discover novel drug targets for TNBC, we performed parallel in vivo and in vitro genetic shRNA dropout screens. We identified several potential drug targets that were required for tumor growth in vivo to a greater extent than in vitro. By combining pharmacologic inhibitors acting on a subset of these candidates, we identified a synergistic interaction between EGFR and ROCK inhibitors. This combination effectively reduced TNBC cell growth by inducing cell cycle arrest. These results illustrate the power of in vivo genetic screens and warrant further validation of EGFR and ROCK as combined pharmacologic targets for breast cancer.
Collapse
Affiliation(s)
- Sedef Iskit
- Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Cor Lieftink
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Pasi Halonen
- Drug Discovery Research and Screening Services, BioFocus, Darwinweg, Leiden
| | - Aida Shahrabi
- Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | | | - Roderick L. Beijersbergen
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Daniel S. Peeper
- Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Posch C, Vujic I, Monshi B, Sanlorenzo M, Weihsengruber F, Rappersberger K, Ortiz-Urda S. Searching for the Chokehold of NRAS Mutant Melanoma. J Invest Dermatol 2016; 136:1330-1336. [PMID: 27160069 DOI: 10.1016/j.jid.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/19/2022]
Abstract
Up to 18% of melanomas harbor mutations in the neuroblastoma rat-sarcoma homolog (NRAS). Yet, decades of research aimed to interfere with oncogenic RAS signaling have been largely disappointing and have not resulted in meaningful clinical outputs. Recent advances in disease modeling, structural biology, and an improved understanding of RAS cycling as well as RAS signaling networks have renewed hope for developing strategies to selectively block hyperactive RAS function. This review discusses direct and indirect blocking of activated RAS with a focus on current and potential future therapeutic approaches for NRAS mutant melanoma.
Collapse
Affiliation(s)
- Christian Posch
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria.
| | - Igor Vujic
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Babak Monshi
- Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Martina Sanlorenzo
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Felix Weihsengruber
- Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Klemens Rappersberger
- Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Susana Ortiz-Urda
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
33
|
Vu HL, Aplin AE. Targeting mutant NRAS signaling pathways in melanoma. Pharmacol Res 2016; 107:111-116. [PMID: 26987942 DOI: 10.1016/j.phrs.2016.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
Abstract
Cutaneous melanoma is a devastating form of skin cancer and its incidence is increasing faster than any other preventable cancer in the United States. The mutant NRAS subset of melanoma is more aggressive and associated with poorer outcomes compared to non-NRAS mutant melanoma. The aggressive nature and complex molecular signaling conferred by this transformation has evaded clinically effective treatment options. This review examines the major downstream effectors of NRAS relevant in melanoma and the associated advances made in targeted therapies that focus on these effector pathways. We outline the history of MEK inhibition in mutant NRAS melanoma and recent advances with newer MEK inhibitors. Since MEK inhibitors will likely be optimized when combined with other targeted therapies, we focus on recently identified targets that can be used in combination with MEK inhibitors.
Collapse
Affiliation(s)
- Ha Linh Vu
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
34
|
Jenkins RW, Sullivan RJ. NRAS mutant melanoma: an overview for the clinician for melanoma management. Melanoma Manag 2016; 3:47-59. [PMID: 30190872 PMCID: PMC6097550 DOI: 10.2217/mmt.15.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and the incidence continues to rise in the United States and worldwide. Activating mutations in RAS oncogenes are found in roughly a third of all human cancers. Mutations in NRAS occur in approximately a fifth of cutaneous melanomas and are associated with aggressive clinical behavior. Cells harboring oncogenic NRAS mutations exhibit activation of multiple signaling cascades, including PI3K/Akt, MEK-ERK and RAL, which collectively stimulate cancer growth. While strategies to target N-Ras itself have proven ineffective, targeting one or more N-Ras effector pathways has shown promise in preclinical models. Despite promising preclinical data, current therapies for NRAS mutant melanoma remain limited. Immune checkpoint inhibitors and targeted therapies for BRAF mutant melanoma are transforming the treatment of metastatic melanoma, but the ideal treatment for NRAS mutant melanoma remains unknown. Improved understanding of NRAS mutant melanoma and relevant N-Ras effector signaling modules will be essential to develop new treatment strategies.
Collapse
Affiliation(s)
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
35
|
MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation. Biochem Biophys Res Commun 2016; 471:361-7. [PMID: 26872428 DOI: 10.1016/j.bbrc.2016.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 02/06/2023]
Abstract
Alterations in microRNA-26b (miR-26b) expression have been shown to participate in various malignant tumor developments. However, the possible function of miR-26b in human melanoma cells remains unclarified. In this study, quantitative polymerase chain reaction was used to explore the expression profiles of miR-26b in melanoma cells. The effect of miR-26b on cell viability was determined by using MTT assays and colony formation assay. The apoptosis levels were evaluated by using Annexin V/fluorescein isothiocyanate (FITC) apoptosis detection kit and the apoptosis cells were confirmed by Transmission Electron Microscopy (TEM). Luciferase reporter plasmids were constructed to confirm direct targeting. Our study found that the expression of miR-26b was downregulated in human melanoma specimens. Overexpression of miR-26b significantly increased the anti-proliferative effects and apoptosis in A375 and B16F10 melanoma cells. In addition, luciferase gene reporter assays confirmed that TRAF5 was a direct target gene of miR-26b and the anti-tumor effect of miR-26b in melanoma cells was significantly counteracted by treatment with TRAF5 overexpression. Furthermore, the molecular mechanisms underlying the tumor suppressor of miR-26b in malignant melanomas may be due to the dephosphorylation of MAPK pathway caused by the decrease in TRAF5 expression when miR-26b is up-regulated in melanoma cells. These findings indicate that miR-26b might influence TRAF5-MAPK signaling pathways to facilitate the malignant progression of melanoma cells.
Collapse
|
36
|
Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, Aziz M, Kassner M, Bryant KL, Pierobon M, Marayati R, Kher S, George SD, Xu M, Wang-Gillam A, Samatar AA, Maitra A, Wennerberg K, Petricoin EF, Yin HH, Nelkin B, Cox AD, Yeh JJ, Der CJ. Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell 2016; 29:75-89. [PMID: 26725216 PMCID: PMC4816652 DOI: 10.1016/j.ccell.2015.11.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/06/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022]
Abstract
Induction of compensatory mechanisms and ERK reactivation has limited the effectiveness of Raf and MEK inhibitors in RAS-mutant cancers. We determined that direct pharmacologic inhibition of ERK suppressed the growth of a subset of KRAS-mutant pancreatic cancer cell lines and that concurrent phosphatidylinositol 3-kinase (PI3K) inhibition caused synergistic cell death. Additional combinations that enhanced ERK inhibitor action were also identified. Unexpectedly, long-term treatment of sensitive cell lines caused senescence, mediated in part by MYC degradation and p16 reactivation. Enhanced basal PI3K-AKT-mTOR signaling was associated with de novo resistance to ERK inhibitor, as were other protein kinases identified by kinome-wide siRNA screening and a genetic gain-of-function screen. Our findings reveal distinct consequences of inhibiting this kinase cascade at the level of ERK.
Collapse
Affiliation(s)
- Tikvah K Hayes
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole F Neel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chaoxin Hu
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Prson Gautam
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | | | - Brian Long
- Merck Research Laboratories, Boston, MA 02115, USA
| | - Meraj Aziz
- Departments of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Michelle Kassner
- Departments of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Raoud Marayati
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Swapnil Kher
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel D George
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mai Xu
- Divisions of Oncology, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA; Division of Medical Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Andrea Wang-Gillam
- Divisions of Oncology, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA; Division of Medical Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Hongwei H Yin
- Departments of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Barry Nelkin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adrienne D Cox
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jen Jen Yeh
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
38
|
Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P, Pajic M. Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 2015; 17:e17. [PMID: 26507949 PMCID: PMC4836205 DOI: 10.1017/erm.2015.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical management of cancer.
Collapse
Affiliation(s)
- Venessa T. Chin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Adnan M. Nagrial
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- The Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Anatomical Pathology, Sydpath, St Vincent's Hospital, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, UK
| | - Anthony J. Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
- University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| |
Collapse
|