1
|
Jo CS, Zhao H, Hwang JS. Acetylation-enhanced Sp1 transcriptional activity suppresses Mlph expression. Sci Rep 2025; 15:2338. [PMID: 39824975 PMCID: PMC11748735 DOI: 10.1038/s41598-025-86282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va. There are some studies about the regulation of Mlph transcriptional expression. However, its regulation by post-translational modifications remains unclear. In this study, inhibition of HDACs by SAHA and TSA disrupted melanosome transport, causing melanosome aggregation. Specifically, we identified a novel mechanism in which HDAC5 regulates Mlph expression via Sp1. Knockdown of HDAC5 increased the acetylation of Sp1 and the binding to the Mlph promoter, thereby modulating its expression. This study highlights the crucial role of HDAC5 in melanosome transport through its interaction with Sp1. These findings suggest that HDAC5-mediated deacetylation is pivotal in the post-translational modification of melanosome transport, providing insights into the molecular mechanisms underlying this process.
Collapse
Affiliation(s)
- Chan Song Jo
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Hairu Zhao
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Jae Sung Hwang
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.
| |
Collapse
|
2
|
Guo MS, Wu Q, Xia Y, Wu J, Wang X, Yuen GKW, Dong TT, Gao J, Tsim KWK. Cholinergic Signaling Mediated by Muscarinic Receptors Triggers the Ultraviolet-Induced Release of Melanosome in Cultured Melanoma Cells. Pigment Cell Melanoma Res 2025; 38:e13201. [PMID: 39344704 DOI: 10.1111/pcmr.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
In skin, melanin is synthesized and stored in melanosomes. In epidermal melanocytes, melanosomes are transported to and internalized by the neighboring keratinocytes, subsequently leading to skin pigmentation. Ultraviolet (UV) radiation induces the release of acetylcholine (ACh) from keratinocytes, which in turn activates ACh receptors (AChRs) on nearby melanocytes, forming a proposed "skin synapse". Here, we illustrated that the UV-induced melanosome release from cultured B16F10 melanoma cells could be mediated by co-actions of ACh. In the cell cultures, UV exposure robustly elicited melanosome release. Applied bethanechol (BeCh), an agonist of muscarinic AChR (mAChR), could significantly enhance the release. In parallel, the intracellular Ca2+ mobilization was regulated. The applied antagonists of M1 and/or M3 mAChRs could block the UV-induced melanosome release and the mobilization of intracellular Ca2+. The phosphorylation of PKC, triggered by UV and BeCh treatments, could be suppressed by the applied mAChR antagonists. The expressions of tethering complex for exocytosis, for example, Sec8, Exo70, and Rab11b, as well as synaptotagmin, were increased under UV exposure together with mAChR agonist: The inductions were fully abolished by M1 or M3 antagonist. Here, we hypothesize that the cholinergic signaling is playing roles in UV-induced exocytosis of melanosomes.
Collapse
Affiliation(s)
- Maggie Suisui Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiyun Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yingjie Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jiahui Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoyang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gary Ka Wing Yuen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| | - Jin Gao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Neurobiology and Cellular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Karl Wah Keung Tsim
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| |
Collapse
|
3
|
Alanazi MM, Alsanea S, Kumar A, Alehaideb Z, Matou-Nasri S, AlGhamdi KM. Modulatory effects of oxytocin on normal human cultured melanocyte proliferation, migration, and melanogenesis. Tissue Cell 2024; 91:102579. [PMID: 39388927 DOI: 10.1016/j.tice.2024.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Melanocytes are specialized melanin-producing neural crest-derived cells. Melanocyte proliferation and melanin production (i.e., melanogenesis) are crucial for determining skin color. Disruption of these processes can cause pigmentary skin disorders, including hypo-pigmentary disorders such as vitiligo and hyper-pigmentary disorders such as melasma. Understanding these processes is important for discovering new targets to tackle these skin disorders. Therefore, this study aimed to investigate the effects of oxytocin (OXT) on melanocyte functions. Normal Human Cultured Melanocytes (NHCM) were treated with different OXT doses to investigate OXT effects and mechanisms on NHCM proliferation, migration, and on melanogenesis. OXT significantly increased NHCM proliferation and migration in a dose-dependent manner after 72 h of treatment. In addition, OXT dose-dependently upregulated melanogenesis-related microphtalmia-associated transcription factor, tyrosinase, tyrosinase-related protein (TYRP)-1, and TYRP-2 expression accompanied by an increased trend in melanosome number and maturation stage. Furthermore, OXT at concentrations (62.5-125 nM) increased melanin production. These findings suggest the involvement of OXT receptor (OXTR). In addition, this study demonstrates that OXT stimulates melanocyte proliferation, migration, with a tendency toward melanosome maturation, while it modulates melanin production in a dose-dependent manner. Thus, OXT system including its receptor OXTR may be a potential therapeutic target for skin pigmentary disorders.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia.
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Ashok Kumar
- Vitiligo Research Chair, Department of Dermatology (DOD), College of Medicine (COM), KSU, Riyadh, Saudi Arabia
| | - Zeyad Alehaideb
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
| | - Khalid M AlGhamdi
- Vitiligo Research Chair, Department of Dermatology (DOD), College of Medicine (COM), KSU, Riyadh, Saudi Arabia; Department of Dermatology (DOD), College of Medicine (COM), King Saud University (KSU), Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Marcoli R, Jones DB, Massault C, Harrison PJ, Cate HS, Jerry DR. Barramundi (Lates calcarifer) rare coloration patterns: a multiomics approach to understand the "panda" phenotype. JOURNAL OF FISH BIOLOGY 2024; 105:1268-1279. [PMID: 39090072 DOI: 10.1111/jfb.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
The barramundi (Lates calcarifer), a significant aquaculture species, typically displays silver to bronze coloration. However, attention is now drawn to rare variants like the "panda" phenotype, characterized by blotch-like patterns of black (PB) and golden (PG) patches. This phenotype presents an opportunity to explore the molecular mechanisms underlying color variations in teleosts. Unlike stable color patterns in many fish, the "panda" variant demonstrates phenotypic plasticity, responding dynamically to unknown cues. We propose a complex interplay of genetic factors and epigenetic modifications, focusing on DNA methylation. Through a multiomics approach, we analyze transcriptomic and methylation patterns between PB and PG patches. Our study reveals differential gene expression related to melanosome trafficking and chromatophore differentiation. Although the specific gene responsible for the PB-PG difference remains elusive, candidate genes like asip1, asip2, mlph, and mreg have been identified. Methylation emerges as a potential contributor to the "panda" phenotype, with changes in gene promoters like hand2 and dynamin possibly influencing coloration. This research lays the groundwork for further exploration into rare barramundi color patterns, enhancing our understanding of color diversity in teleosts. Additionally, it underscores the "panda" phenotype's potential as a model for studying adult skin coloration.
Collapse
Affiliation(s)
- Roberta Marcoli
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
| | - David B Jones
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
| | - Cecile Massault
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
| | - Paul J Harrison
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
- Mainstream Aquaculture Group Pty Ltd, Werribee, Victoria, Australia
| | - Holly S Cate
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
- Mainstream Aquaculture Group Pty Ltd, Werribee, Victoria, Australia
| | - Dean R Jerry
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| |
Collapse
|
5
|
Serejnikova NB, Trofimova NN, Yakovleva MA, Dontsov AE, Zak PP, Ostrovsky MA. Blue Light-Induced Accelerated Formation of Melanolipofuscin-Like Organelles in Japanese Quail RPE Cells: An Electron Microscopic Study. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 39297806 PMCID: PMC11421679 DOI: 10.1167/iovs.65.11.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose The retinal pigment epithelium (RPE) is a monolayer of epithelial cells essential for photoreceptor function and viability. Quail Coturnix japonica is a convenient experimental animal model for the study of age and pathological retina processes to an accelerated time regime. The three main types of pigment granules present in the RPE are melanin-containing melanosomes, lipofuscin-containing lipofuscin granules, and mixed melanolipofuscin granules containing both melanin and lipofuscin. The purpose of this work was to study the process of melanolipofuscinogenesis during aging and under light exposure. Methods We examined melanolipofuscin granules in "macular" areas, the area of the retina containing oxycarotenoids, as a function of the macula in humans, of the quail retina by transmission electron microscopy in young, middle-aged, and old birds, and in middle-aged birds irradiated with blue LED light (450 nm, 4 J/cm2). Results It has been shown that during photo-oxidative stress caused by the action of blue light on the quail eye, active fusion of melanosomes and lipofuscin granules occurs with formation of various types, including giant, mixed melanolipofuscin-like granules. Increased accumulation of melanolipofuscin-like granules was also observed in non-irradiated old birds. Conclusions It is assumed that the decrease in the number of melanosomes in the RPE during aging and photo-oxidative stress is associated with their fusion with lipofuscin granules and subsequent degradation of melanin by reactive oxygen species formed in melanolipofuscin-like granules. The disappearance of melanin deprives the RPE cells of light-filtering and antioxidant protection, and significantly increases the risk of their oxidative stress.
Collapse
Affiliation(s)
| | - Natalia N. Trofimova
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Marina A. Yakovleva
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexander E. Dontsov
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Pavel P. Zak
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A. Ostrovsky
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Pan J, Zhou R, Yao LL, Zhang J, Zhang N, Cao QJ, Sun S, Li XD. Identification of a third myosin-5a-melanophilin interaction that mediates the association of myosin-5a with melanosomes. eLife 2024; 13:RP93662. [PMID: 38900147 PMCID: PMC11189624 DOI: 10.7554/elife.93662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.
Collapse
Affiliation(s)
- Jiabin Pan
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Zhou
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin-Lin Yao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jie Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ning Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qing-Juan Cao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Shaopeng Sun
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiang-dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Cho J, Bejaoui M, Tominaga K, Isoda H. Comparative Analysis of Olive-Derived Phenolic Compounds' Pro-Melanogenesis Effects on B16F10 Cells and Epidermal Human Melanocytes. Int J Mol Sci 2024; 25:4479. [PMID: 38674064 PMCID: PMC11050296 DOI: 10.3390/ijms25084479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.
Collapse
Affiliation(s)
- Juhee Cho
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Kenichi Tominaga
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
8
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
9
|
Kistenmacher S, Schwämmle M, Martin G, Ulrich E, Tholen S, Schilling O, Gießl A, Schlötzer-Schrehardt U, Bucher F, Schlunck G, Nazarenko I, Reinhard T, Polisetti N. Enrichment, Characterization, and Proteomic Profiling of Small Extracellular Vesicles Derived from Human Limbal Mesenchymal Stromal Cells and Melanocytes. Cells 2024; 13:623. [PMID: 38607062 PMCID: PMC11011788 DOI: 10.3390/cells13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche.
Collapse
Affiliation(s)
- Sebastian Kistenmacher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D–79104 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Eva Ulrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Faculty of Medicine, Freiburg, Medical Center, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Freiburg, Medical Center, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlan-gen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlan-gen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Naresh Polisetti
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
10
|
Lee JM, Lee JO, Kim Y, Jang YN, Yeon Park A, Kim SY, Han HS, Kim BJ, Yoo KH. Anti-melanogenic effect of exosomes derived from human dermal fibroblasts (BJ-5ta-Ex) in C57BL/6 mice and B16F10 melanoma cells. Pigment Cell Melanoma Res 2024; 37:232-246. [PMID: 37758515 DOI: 10.1111/pcmr.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Exosomes are involved in intercellular communication by transferring cargo between cells and altering the specific functions of the target cells. Recent studies have demonstrated the therapeutic effects of exosomes in several skin diseases. However, understanding of the effects of exosomes on anti-pigmentation is limited. Therefore, we investigated whether BJ-5ta exosomes (BJ-5ta-Ex) derived from human foreskin fibroblasts regulate melanogenesis and delineated the underlying mechanism. Interestingly, treatment with BJ-5ta-Ex induced decreased melanin content, tyrosinase (TYR) activity, and expression of melanogenesis-related genes, including microphthalmia-related transcription factor (MITF), TYR, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, BJ-5ta-Ex downregulated the cAMP/PKA and GSK-3β/β-catenin signaling pathways and upregulated the MAPK/ERK signaling pathway. Notably, treatment with BJ-5ta-Ex inhibited α-melanocyte-stimulating hormone-induced melanosome transport and decreased the expression of key proteins involved in melanosome transport, namely, rab27a and melanophilin (MLPH). To further confirm the depigmenting effects of BJ-5ta-Ex, we conducted experiments using a three-dimensional reconstituted human full skin model and ultraviolet B (UVB)-irradiated mouse model. Treatment with BJ-5ta-Ex improved tissue brightness and reduced the distribution of melanosomes. In UVB-irradiated mouse ears, BJ-5ta-Ex reduced the number of active melanocytes and melanin granules. These results demonstrate that BJ-5ta-Ex can be useful for the clinical treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Yujin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - You Na Jang
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - A Yeon Park
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - Hye Sung Han
- Department of Dermatology, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| |
Collapse
|
11
|
Sarkar H, Tracey-White D, Hagag AM, Burgoyne T, Nair N, Jensen LD, Edwards MM, Moosajee M. Loss of REP1 impacts choroidal melanogenesis and vasculogenesis in choroideremia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166963. [PMID: 37989423 PMCID: PMC11157692 DOI: 10.1016/j.bbadis.2023.166963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, however, the involvement of the choroid in disease progression is not fully understood. CHM is caused by mutations in the CHM gene, encoding the ubiquitously expressed Rab escort protein 1 (REP1). REP1 plays an important role in intracellular trafficking of vesicles, including melanosomes. In this study, we examined the ultrastructure of the choroid in chmru848 fish and Chmnull/WT mouse models using transmission electron and confocal microscopy. Significant pigmentary disruptions were observed, with lack of melanosomes in the choroid of chmru848 fish from 4 days post fertilisation (4dpf), and a reduction in choroidal blood vessel diameter and interstitial pillars suggesting a defect in vasculogenesis. Total melanin and expression of melanogenesis genes tyr, tryp1a, mitf, dct and pmel were also reduced from 4dpf. In Chmnull/WT mice, choroidal melanosomes were significantly smaller at 1 month, with reduced eumelanin at 1 year. The choroid in CHM patients were also examined using spectral domain optical coherence tomography (SD-OCT) and OCT-angiography (OCT-A) and the area of preserved choriocapillaris (CC) was found to be smaller than that of overlying photoreceptors, suggesting that the choroid is degenerating at a faster rate. Histopathology of an enucleated eye from a 74-year-old CHM male patient revealed isolated areas of RPE but no associated underlying CC. Pigmentary disruptions in CHM animal models reveal an important role for REP1 in melanogenesis, and drugs that improve melanin production represent a potential novel therapeutic avenue.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Dhani Tracey-White
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Ahmed M Hagag
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK; Boehringer Ingelheim Limited, Bracknell, UK
| | - Thomas Burgoyne
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Neelima Nair
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Lasse D Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Malia M Edwards
- The Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Nakamura H, Fukuda M. Establishment of a synchronized tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis by promoting tyrosinase targeting to melanosomes. Sci Rep 2024; 14:2529. [PMID: 38291221 PMCID: PMC10827793 DOI: 10.1038/s41598-024-53072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Tyrosinase (Tyr) is a key enzyme in the process of melanin synthesis that occurs exclusively within specialized organelles called melanosomes in melanocytes. Tyr is synthesized and post-translationally modified independently of the formation of melanosome precursors and then transported to immature melanosomes by a series of membrane trafficking events that includes endoplasmic reticulum (ER)-to-Golgi transport, post-Golgi trafficking, and endosomal transport. Although several important regulators of Tyr transport have been identified, their precise role in each Tyr transport event is not fully understood, because Tyr is present in several melanocyte organelles under steady-state conditions, thereby precluding the possibility of determining where Tyr is being transported at any given moment. In this study, we established a novel synchronized Tyr transport system in Tyr-knockout B16-F1 cells by using Tyr tagged with an artificial oligomerization domain FM4 (named Tyr-EGFP-FM4). Tyr-EGFP-FM4 was initially trapped at the ER under oligomerized conditions, but at 30 min after chemical dissociation into monomers, it was transported to the Golgi and at 9 h reached immature melanosomes. Melanin was then detected at 12 h after the ER exit of Tyr-EGFP-FM4. By using this synchronized Tyr transport system, we were able to demonstrate that Tyr-related protein 1 (Tyrp1), another melanogenic enzyme, is a positive regulator of efficient Tyr targeting to immature melanosomes. Thus, the synchronized Tyr transport system should serve as a useful tool for analyzing the molecular mechanism of each Tyr transport event in melanocytes as well as in the search for new drugs or cosmetics that artificially regulate Tyr transport.
Collapse
Affiliation(s)
- Hikari Nakamura
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-Ku, Sendai, Miyagi, 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-Ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
13
|
Menaceur C, Dusailly O, Gosselet F, Fenart L, Saint-Pol J. Vesicular Trafficking, a Mechanism Controlled by Cascade Activation of Rab Proteins: Focus on Rab27. BIOLOGY 2023; 12:1530. [PMID: 38132356 PMCID: PMC10740503 DOI: 10.3390/biology12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Vesicular trafficking is essential for the cell to internalize useful proteins and soluble substances, for cell signaling or for the degradation of pathogenic elements such as bacteria or viruses. This vesicular trafficking also enables the cell to engage in secretory processes for the elimination of waste products or for the emission of intercellular communication vectors such as cytokines, chemokines and extracellular vesicles. Ras-related proteins (Rab) and their effector(s) are of crucial importance in all of these processes, and mutations/alterations to them have serious pathophysiological consequences. This review presents a non-exhaustive overview of the role of the major Rab involved in vesicular trafficking, with particular emphasis on their involvement in the biogenesis and secretion of extracellular vesicles, and on the role of Rab27 in various pathophysiological processes. Therefore, Rab and their effector(s) are central therapeutic targets, given their involvement in vesicular trafficking and their importance for cell physiology.
Collapse
Affiliation(s)
| | | | | | | | - Julien Saint-Pol
- Univ. Artois, UR 2465, Blood-Brain Barrier Laboratory (LBHE), F-62300 Lens, France; (C.M.); (O.D.); (F.G.); (L.F.)
| |
Collapse
|
14
|
Kumar S, Hausen J, Sivalingam S, Humbatova A, Buness A, Frank J, Ralser DJ, Betz RC. Altered Notch signalling in Dowling-Degos disease: a transcriptomic insight into disease pathogenesis. Br J Dermatol 2023; 189:772-774. [PMID: 37625796 DOI: 10.1093/bjd/ljad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Dowling-Degos disease (DDD) is a rare autosomal-dominant hyperpigmentation disorder caused by mutations in KRT5, POFUT1, POGLUT1 and PSENEN. Our results suggest that dysfunctional Notch signalling in melanocytes plays a key role in DDD pathogenesis, and that altered biogenesis and intracellular trafficking of melanosomes, receptor tyrosine kinase signalling and oestrogen signalling receptor-mediated signalling may represent downstream molecular mechanisms through which decreased Notch signalling leads to hyperpigmentation in DDD. Furthermore, a common downstream pathomechanism for both POGLUT1 and PSENEN mutation carriers can be assumed.
Collapse
Affiliation(s)
- Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Jonas Hausen
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Aytaj Humbatova
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Andreas Buness
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn Germany
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Damian J Ralser
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Komori T, Kuwahara T. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Biomolecules 2023; 13:1645. [PMID: 38002327 PMCID: PMC10669493 DOI: 10.3390/biom13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Lederer I, Shahid B, Dao U, Brogdon A, Byrtus H, Delva M, Deva O, Hatfield P, Hertz M, Justice J, Mavor S, Pilbeam E, Rice Z, Simpson A, Temar H, Wynn R, Xhangolli J, Graves C, Seidel H. A frameshift variant in the melanophilin gene is associated with loss of pigment from shed skin in ball pythons ( Python regius ). MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000896. [PMID: 37637270 PMCID: PMC10448248 DOI: 10.17912/micropub.biology.000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
Melanophilin is a myosin adaptor required for transporting the pigment melanin within cells. Loss of melanophilin in fish, birds, and mammals causes pigmentation defects, but little is known about the role of melanophilin in non-avian reptiles. Here we show that a frameshift in the melanophilin gene in ball python ( P. regius ) is associated with loss of pigment from shed skin. This variant is predicted to remove the myosin-binding domain of melanophilin and thereby impair transport of melanin-containing organelles. Our study represents the first description of a melanophilin variant in a non-avian reptile and confirms the role of melanophilin across vertebrates.
Collapse
|
17
|
Oh MC, Fernando PDSM, Piao MJ, Kang KA, Herath HMUL, Hyun JW. Baicalein Inhibits α-Melanocyte-stimulating Hormone-stimulated Melanogenesis via p38 Mitogen-activated Protein Kinase Pathway in B16F10 Mouse Melanoma Cells. J Cancer Prev 2023; 28:40-46. [PMID: 37434796 PMCID: PMC10331030 DOI: 10.15430/jcp.2023.28.2.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Excessive UVB exposure causes development of both malignant and non-malignant melanoma via the secretion of α-melanocyte-stimulating hormone (α-MSH). We investigated whether baicalein (5,6,7-trihydroxyflavone) could inhibit α-MSH-stimulated melanogenesis. Baicalein prevented UVB- and α-MSH-induced melanin production and attenuated α-MSH-stimulated tyrosinase (monophenol monooxygenase) activity, and expression of tyrosinase and tyrosine-related protein-2. In addition, baicalein prevented melanogenesis and pigmentation via the p38 mitogen-activated protein kinases signaling pathway. These findings suggest that baicalein represents a natural compound for attenuating melanogenesis.
Collapse
Affiliation(s)
- Min Chang Oh
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, Korea
| | | | - Mei Jing Piao
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Korea
| | | | - Jin Won Hyun
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Korea
| |
Collapse
|
18
|
Kawaguchi K, Watanabe M, Furukawa S, Koga K, Kanamori H, Ikemoto MJ, Takashima S, Maeda M, Oh-Hashi K, Hirata Y, Furuta K, Takemori H. Intermittent inhibition of FYVE finger-containing phosphoinositide kinase induces melanosome degradation in B16F10 melanoma cells. Mol Biol Rep 2023:10.1007/s11033-023-08536-9. [PMID: 37248430 DOI: 10.1007/s11033-023-08536-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Melanosomes are lysosome-related organelles that contain melanogenic factors and synthesize melanin as they mature. FYVE finger-containing phosphoinositide kinase (PIKfyve) regulates late endosome and lysosome morphology, vesicle trafficking, and autophagy. In melanocytes, PIKfyve inhibition has been reported to induce hypopigmentation due to impairments in the metabolism of early-stage melanosomes. METHODS AND RESULTS Here, we report a new type of melanosome metabolism: post-PIKfyve inhibition, which was found during the characterization of the endosome/lysosome fluoroprobe GIF-2250. In B16F10 mouse melanoma cells, GIF-2250 highlighted vesicles positive for lysosomal-associated membrane protein 1 (lysosome marker) and other endosome/lysosome markers (CD63 and Rab7/9). When cells were continuously treated with PIKfyve inhibitors, intracellular vacuoles formed, while GIF-2250 fluorescence signals diminished and were diffusely distributed in the vacuoles. After removal of the PIKfyve inhibitors, the GIF-2250 signal intensity was restored, and some GIF-2250-positive vesicles wrapped the melanosomes, which spun at high speed. In addition, intermittent PIKfyve inhibition caused melanin diffusion in the vacuoles and possible leakage into the cytoplasmic compartments, and melanosome degradation was detected by a transmission electron microscope. Melanosome degradation was accompanied by decreased levels of melanin synthesis enzymes and increased levels of the autophagosome maker LC3BII, which is also associated with early melanosomes. However, the protein levels of p62, which is degraded during autophagy, were increased, suggesting an impairment in autophagy flux during intermittent PIKfyve inhibition. Moreover, the autophagy inhibitor 3-methyladenine does not affect these protein levels, suggesting that the melanosome degradation by the intermittent inhibition of PIKfyve is not mediated by canonical autophagy. CONCLUSIONS In conclusion, disturbance of PIKfyve activity induces melanosome degradation in a canonical autophagy-independent manner.
Collapse
Affiliation(s)
- Kyoka Kawaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Miyu Watanabe
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Saho Furukawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kenichi Koga
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mitsushi J Ikemoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, 305-8566, Ibaraki, Japan
- Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Chiba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, 305-8574, Japan
| | - Shigeo Takashima
- Institute for Glycocore Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Miwa Maeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
19
|
Cardinali G, Kovacs D, Mosca S, Bellei B, Flori E, Morrone A, Mileo AM, Maresca V. The αMSH-Dependent PI3K Pathway Supports Energy Metabolism, via Glucose Uptake, in Melanoma Cells. Cells 2023; 12:cells12071099. [PMID: 37048170 PMCID: PMC10093374 DOI: 10.3390/cells12071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Stimulation of melanocytes and murine melanoma cells with αMSH plus the PI3K inhibitor LY294002 resulted in ROS increase, oxidative DNA damage, and pigment retention. We performed cellular and molecular biology assays (Western blot, FACS, immunofluorescence analysis, scratch assay) on murine and human melanoma cells. Treatment with αMSH plus LY294002 altered cortical actin architecture. Given that cytoskeleton integrity requires energy, we next evaluated ATP levels and we observed a drop in ATP after exposure to αMSH plus LY294002. To evaluate if the αMSH-activated PI3K pathway could modulate energy metabolism, we focused on glucose uptake by analyzing the expression of the Glut-1 glucose translocator. Compared with cells treated with αMSH alone, those exposed to combined treatment showed a reduction of Glut-1 on the plasma membrane. This metabolic alteration was associated with changes in mitochondrial mass. A significant decrease of the cell migratory potential was also observed. We demonstrated that the αMSH-dependent PI3K pathway acts as a regulator of energy metabolism via glucose uptake, influencing the actin cytoskeleton, which is involved in melanosome release and cell motility. Hence, these results could constitute the basis for innovative therapeutical strategies.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Aldo Morrone
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, Department of Research Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy
| | - Vittoria Maresca
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
20
|
Tang H, Zhang Y, Yang L, Hong C, Chen K, Li Y, Wu H. Serotonin/5-HT7 receptor provides an adaptive signal to enhance pigmentation response to environmental stressors through cAMP-PKA-MAPK, Rab27a/RhoA, and PI3K/AKT signaling pathways. FASEB J 2023; 37:e22893. [PMID: 36961387 PMCID: PMC11977531 DOI: 10.1096/fj.202201352rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Serotonin (5-HT), a neurotransmitter, is essential for normal and pathological pigmentation processing, and its receptors may be therapeutical targets. The effect and behavior of the 5-HT7 receptor (5-HT7R) in melanogenesis in high vertebrates remain unknown. Herein, we examine the role and molecular mechanism of 5-HT7R in the pigmentation of human skin cells, human tissue, mice, and zebrafish models. Firstly, 5-HT7R protein expression decreased significantly in stress-induced depigmentation skin and vitiligo epidermis. Stressed mice received transdermal serotonin 5-HT7R selective agonists (LP-12, 0.01%) for 12 or 60 days. Mice might recover from persistent stress-induced depigmentation. The downregulation of tyrosinase (Tyr), microphthalmia-associated transcription factor (Mitf) expression, and 5-HT7R was consistently restored in stressed skin. High-throughput RNA sequencing showed that structural organization (dendrite growth and migration) and associated pathways were activated in the dorsal skin of LP-12-treated animals. 5-HT7R selective agonist, LP-12, had been demonstrated to enhance melanin production, dendrite growth, and chemotactic motility in B16F10 cells, normal human melanocytes (NHMCs), and zebrafish. Mechanistically, the melanogenic, dendritic, and migratory functions of 5-HT7R were dependent on the downstream signaling of cAMP-PKA-ERK1/2, JNK MAPK, RhoA/Rab27a, and PI3K/AKT pathway activation. Importantly, pharmacological inhibition and genetic siRNA of 5-HT7R by antagonist SB269970 partially/completely abolished these functional properties and the related activated pathways in both NHMCs and B16F10 cells. Consistently, htr7a/7b genetic knockdown in zebrafish could blockade melanogenic effects and abrogate 5-HT-induced melanin accumulation. Collectively, we have first identified that 5-HT7R regulates melanogenesis, which may be a targeted therapy for pigmentation disorders, especially those worsened by stress.
Collapse
Affiliation(s)
- Hui‐hao Tang
- Department of TCM Chemistry, School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐fan Zhang
- Department of TCM Chemistry, School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li‐li Yang
- Department of DermatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chen Hong
- Department of TCM Chemistry, School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Kai‐xian Chen
- Department of TCM Chemistry, School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐ming Li
- Department of TCM Chemistry, School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hua‐li Wu
- Department of TCM Chemistry, School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
21
|
Hu Y, Chen Y, Zhao Y, Geng Q, Guan C, Xu J, Xie B, Song X. Tranexamic acid may promote melanocores clustering in keratinocytes through upregulation of Rab5b. Exp Dermatol 2023. [PMID: 36779692 DOI: 10.1111/exd.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
Tranexamic acid (TXA) is a promising therapeutic agent in melasma that can act on multiple pathophysiologic mechanisms of melasma. However, it is unclear whether TXA affects melanin in keratinocytes. To explore the effect of TXA on melanocores in keratinocytes. The melanocore-incorporated keratinocytes were constructed by co-incubating normal human epidermal keratinocytes (NHEK) with melanocores. After being treated with TXA, autophagy- and melanin-related protein expressions were detected. Then, transcriptome sequencing was used to compare the genetic changes in melanocore-incorporated keratinocytes before and after TXA treatment and further verified the differentially expressed genes. At the same time, the distribution of melanocores in human keratinocytes was observed by transmission electron microscopy. We found that TXA does not promote melanin degradation in primary keratinocytes by inducing autophagy. Protein transport and intracellular protein transport-related genes were enriched after TXA treatment, and Rab5b was significantly upregulated. Transmission electron microscopy showed that the percentage of melanocores distributed in clusters increased after treatment with TXA, which was reduced after Rab5b silencing. In addition, results suggested that melanocores could colocalize with Rab5b and lysosome-associated membrane protein1 (LAMP1). Our study found that Rab5b may be involved in the melanocore distribution in keratinocytes. TXA may promote the clustering distribution of endocytic melanocores through upregulation of Rab5b, representing a potential mechanism of TXA treatment against melasma.
Collapse
Affiliation(s)
- Yebei Hu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Chen
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Zhao
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingwei Geng
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuiping Guan
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhui Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
23
|
Gao R, Zhang X, Zou K, Meng D, Lv J. Cryptochrome 1 activation inhibits melanogenesis and melanosome transport through negative regulation of cAMP/PKA/CREB signaling pathway. Front Pharmacol 2023; 14:1081030. [PMID: 36814484 PMCID: PMC9939694 DOI: 10.3389/fphar.2023.1081030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Cutaneous pigmentation was recently shown to be an event regulated by clock proteins. Cryptochrome (CRY) is a key protein composing the feedback loop of circadian clock, however, the function of CRY in melanocytes remains unclear. Here, we found that KL001, a synthetic small molecule modulator of CRY1, inhibited melanin synthesis, as well as reduced melanocyte dendrite elongation and melanosome transport. In addition, the dominant role of CRY1 in KL001-induced anti-melanogenesis was revealed by small interfering RNA transfection. Cellular tyrosinase activity and expression level of melanogenic proteins, including tyrosinase, TRP-1, TRP-2, and transport proteins like Rab27a, Cdc42 and Myosin Va induced by α-MSH were remarkably reversed after KL001 treatment. Mechanistically, CRY1 activation inhibited melanogenesis through CREB-dependent downregulation of MITF and CREB phosphorylation was mediated by classical cAMP/PKA pathway. In addition, the other CRY1 activator, KL044 also suppressed cAMP/PKA/CREB pathway and inhibited melanogenesis. Finally, anti-melanogenic efficacy of KL001 was confirmed by determination of melanin contents in UVB-tanning model of brown guinea pigs, which indicated that targeting CRY1 activity, via topical application of small molecule activator, can be utilized therapeutically to manage human pigmentary disorders.
Collapse
Affiliation(s)
- Rongyin Gao
- Department of Pharmacy, Department of Dermatology, The first people’s Hospital of Changzhou, The third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ximei Zhang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Kun Zou
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Duo Meng
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jinpeng Lv
- Department of Pharmacy, Department of Dermatology, The first people’s Hospital of Changzhou, The third Affiliated Hospital of Soochow University, Changzhou, China,School of Pharmacy, Changzhou University, Changzhou, China,*Correspondence: Jinpeng Lv,
| |
Collapse
|
24
|
Niki Y, Adachi N, Fukata M, Fukata Y, Oku S, Makino-Okamura C, Takeuchi S, Wakamatsu K, Ito S, Declercq L, Yarosh DB, Mammone T, Nishigori C, Saito N, Ueyama T. S-Palmitoylation of Tyrosinase at Cysteine 500 Regulates Melanogenesis. J Invest Dermatol 2023; 143:317-327.e6. [PMID: 36063887 DOI: 10.1016/j.jid.2022.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Palmitoylation is a lipid modification involving the attachment of palmitic acid to a cysteine residue, thereby affecting protein function. We investigated the effect of palmitoylation of tyrosinase, the rate-limiting enzyme in melanin synthesis, using a human three-dimensional skin model system and melanocyte culture. The palmitoylation inhibitor, 2-bromopalmitate, increased melanin content and tyrosinase protein levels in melanogenic cells by suppressing tyrosinase degradation. The palmitoylation site was Cysteine500 in the C-terminal cytoplasmic tail of tyrosinase. The nonpalmitoylatable mutant, tyrosinase (C500A), was slowly degraded and less ubiquitinated than wild-type tyrosinase. Screening for the Asp-His-His-Cys (DHHC) family of proteins for tyrosinase palmitoylation suggested that DHHC2, 3, 7, and 15 are involved in tyrosinase palmitoylation. Knockdown of DHHC2, 3, or 15 increased tyrosinase protein levels and melanin content. Determination of their subcellular localization in primary melanocytes revealed that DHHC2, 3, and 15 were localized in the endoplasmic reticulum, Golgi apparatus, and/or melanosomes, whereas only DHHC2 was localized in the melanosomes. Immunoprecipitation showed that DHHC2 and DHHC3 predominantly bind to mature and immature tyrosinase, respectively. Taken together, tyrosinase palmitoylation at Cysteine500 by DHHC2, 3, and/or 15, especially DHHC2 in trans-Golgi apparatus and melanosomes and DHHC3 in the endoplasmic reticulum and cis-Golgi apparatus, regulate melanogenesis by modulating tyrosinase protein levels.
Collapse
Affiliation(s)
- Yoko Niki
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Shinichiro Oku
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Chieko Makino-Okamura
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan
| | - Lieve Declercq
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Daniel B Yarosh
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Tomas Mammone
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Naoaki Saito
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
25
|
A Network of MicroRNAs and mRNAs Involved in Melanosome Maturation and Trafficking Defines the Lower Response of Pigmentable Melanoma Cells to Targeted Therapy. Cancers (Basel) 2023; 15:cancers15030894. [PMID: 36765859 PMCID: PMC9913661 DOI: 10.3390/cancers15030894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The ability to increase their degree of pigmentation is an adaptive response that confers pigmentable melanoma cells higher resistance to BRAF inhibitors (BRAFi) compared to non-pigmentable melanoma cells. METHODS Here, we compared the miRNome and the transcriptome profile of pigmentable 501Mel and SK-Mel-5 melanoma cells vs. non-pigmentable A375 melanoma cells, following treatment with the BRAFi vemurafenib (vem). In depth bioinformatic analyses (clusterProfiler, WGCNA and SWIMmeR) allowed us to identify the miRNAs, mRNAs and biological processes (BPs) that specifically characterize the response of pigmentable melanoma cells to the drug. Such BPs were studied using appropriate assays in vitro and in vivo (xenograft in zebrafish embryos). RESULTS Upon vem treatment, miR-192-5p, miR-211-5p, miR-374a-5p, miR-486-5p, miR-582-5p, miR-1260a and miR-7977, as well as GPR143, OCA2, RAB27A, RAB32 and TYRP1 mRNAs, are differentially expressed only in pigmentable cells. These miRNAs and mRNAs belong to BPs related to pigmentation, specifically melanosome maturation and trafficking. In fact, an increase in the number of intracellular melanosomes-due to increased maturation and/or trafficking-confers resistance to vem. CONCLUSION We demonstrated that the ability of pigmentable cells to increase the number of intracellular melanosomes fully accounts for their higher resistance to vem compared to non-pigmentable cells. In addition, we identified a network of miRNAs and mRNAs that are involved in melanosome maturation and/or trafficking. Finally, we provide the rationale for testing BRAFi in combination with inhibitors of these biological processes, so that pigmentable melanoma cells can be turned into more sensitive non-pigmentable cells.
Collapse
|
26
|
Benito-Martín A, Jasiulionis MG, García-Silva S. Extracellular vesicles and melanoma: New perspectives on tumor microenvironment and metastasis. Front Cell Dev Biol 2023; 10:1061982. [PMID: 36704194 PMCID: PMC9871288 DOI: 10.3389/fcell.2022.1061982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Secreted extracellular vesicles (EVs) are lipid bilayer particles without functional nucleus naturally released from cells which constitute an intercellular communication system. There is a broad spectrum of vesicles shed by cells based on their physical properties such as size (small EVs and large EVs), biogenesis, cargo and functions, which provide an increasingly heterogenous landscape. In addition, they are involved in multiple physiological and pathological processes. In cancer, EV release is opted by tumor cells as a beneficial process for tumor progression. Cutaneous melanoma is a cancer that originates from the melanocyte lineage and shows a favorable prognosis at early stages. However, when melanoma cells acquire invasive capacity, it constitutes the most aggressive and deadly skin cancer. In this context, extracellular vesicles have been shown their relevance in facilitating melanoma progression through the modulation of the microenvironment and metastatic spreading. In agreement with the melanosome secretory capacity of melanocytes, melanoma cells display an enhanced EV shedding activity that has contributed to the utility of melanoma models for unravelling EV cargo and functions within a cancer scenario. In this review, we provide an in-depth overview of the characteristics of melanoma-derived EVs and their role in melanoma progression highlighting key advances and remaining open questions in the field.
Collapse
Affiliation(s)
- Alberto Benito-Martín
- Facultad de Medicina, Unidad de Investigación Biomédica, Universidad Alfonso X El Sabio (UAX), Villanueva de la Cañada, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Miriam Galvonas Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| |
Collapse
|
27
|
Rab44 Deficiency Induces Impaired Immune Responses to Nickel Allergy. Int J Mol Sci 2023; 24:ijms24020994. [PMID: 36674510 PMCID: PMC9866195 DOI: 10.3390/ijms24020994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Rab44 was recently identified as an atypical Rab GTPase that possesses EF-hand and coiled-coil domains at the N-terminus, and a Rab-GTPase domain at the C-terminus. Rab44 is highly expressed in immune-related cells such as mast cells, macrophages, osteoclasts, and granulocyte-lineage cells in the bone marrow. Therefore, it is speculated that Rab44 is involved in the inflammation and differentiation of immune cells. However, little is known about the role of Rab44 in inflammation. In this study, we showed that Rab44 was upregulated during the early phase of differentiation of M1- and M2-type macrophages. Rab44-deficient mice exhibited impaired tumor necrosis factor alpha and interleukin-10 production after lipopolysaccharide (LPS) stimulation. The number of granulocytes in Rab44-deficient mice was lower, but the lymphocyte count in Rab44-deficient mice was significantly higher than that in wild-type mice after LPS stimulation. Moreover, Rab44-deficient macrophages showed impaired nickel-induced toxicity, and Rab44-deficient mice showed impaired nickel-induced hypersensitivity. Upon nickel hypersensitivity induction, Rab44-deficient mice showed different frequencies of immune cells in the blood and ears. Thus, it is likely that Rab44 is implicated in immune cell differentiation and inflammation, and Rab44 deficiency induces impaired immune responses to nickel allergies.
Collapse
|
28
|
Kluszczynska K, Czyz M. Extracellular Vesicles-Based Cell-Cell Communication in Melanoma: New Perspectives in Diagnostics and Therapy. Int J Mol Sci 2023; 24:ijms24020965. [PMID: 36674479 PMCID: PMC9865538 DOI: 10.3390/ijms24020965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-secreted particles that carry cargo of functional biomolecules crucial for cell-to-cell communication with both physiological and pathophysiological consequences. In this review, we focus on evidence demonstrating that the EV-mediated crosstalk between melanoma cells within tumor, between melanoma cells and immune and stromal cells, promotes immune evasion and influences all steps of melanoma development from local progression, pre-metastatic niche formation, to metastatic colonization of distant organs. We also discuss the role of EVs in the development of resistance to immunotherapy and therapy with BRAFV600/MEK inhibitors, and shortly summarize the recent advances on the potential applications of EVs in melanoma diagnostics and therapy.
Collapse
|
29
|
Zhong C, Liang G, Li P, Shi K, Li F, Zhou J, Xu D. Inflammatory response: The target for treating hyperpigmentation during the repair of a burn wound. Front Immunol 2023; 14:1009137. [PMID: 36817442 PMCID: PMC9929571 DOI: 10.3389/fimmu.2023.1009137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Hyperpigmentation is a common complication in patients with burn injuries during wound healing; however, the mechanisms underlying its occurrence and development remain unclear. Recently, postinflammatory hyperpigmentation (PIH) was found to result from overproduction of melanin. Local or systemic inflammatory responses are often observed in patients who develop hyperpigmentation. However, we lack studies on the relationship between PIH and burn injury. Therefore, we comprehensively reviewed the existing literature on the melanogenesis of the skin, inflammatory mechanisms in pigmentation, and local or systemic alteration in inflammatory cytokines in patients suffering from burn trauma to elucidate the relationship between PIH and burn injury. We believe that this review will guide further research on regulating melanin production in the burn management process.
Collapse
Affiliation(s)
- Chi Zhong
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Geao Liang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peiting Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Shi
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fuyin Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Xu
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Current Understanding of the Role of Senescent Melanocytes in Skin Ageing. Biomedicines 2022; 10:biomedicines10123111. [PMID: 36551868 PMCID: PMC9775966 DOI: 10.3390/biomedicines10123111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Melanocytes reside within the basal epidermis of human skin, and function to protect the skin from ultraviolet light through the production of melanin. Prolonged exposure of the skin to UV light can induce irreparable DNA damage and drive cells into senescence, a sustained cell cycle arrest that prevents the propagation of this damage. Senescent cells can also be detrimental and contribute to skin ageing phenotypes through their senescence-associated secretory phenotype. Senescent cells can act in both an autocrine and paracrine manner to produce widespread tissue inflammation and skin ageing. Recently, melanocytes have been identified as the main senescent cell population within the epidermis and have been linked to a variety of skin ageing phenotypes, such as epidermal thinning and the presence of wrinkles. However, the literature surrounding melanocyte senescence is limited and tends to focus on the role of senescence in the prevention of melanoma. Therefore, this review aims to explore the current understanding of the contribution of senescent melanocytes to human skin ageing.
Collapse
|
31
|
Integrative QTL mapping and selection signatures in Groningen White Headed cattle inferred from whole-genome sequences. PLoS One 2022; 17:e0276309. [PMID: 36288367 PMCID: PMC9605288 DOI: 10.1371/journal.pone.0276309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/04/2022] [Indexed: 11/04/2022] Open
Abstract
Here, we aimed to identify and characterize genomic regions that differ between Groningen White Headed (GWH) breed and other cattle, and in particular to identify candidate genes associated with coat color and/or eye-protective phenotypes. Firstly, whole genome sequences of 170 animals from eight breeds were used to evaluate the genetic structure of the GWH in relation to other cattle breeds by carrying out principal components and model-based clustering analyses. Secondly, the candidate genomic regions were identified by integrating the findings from: a) a genome-wide association study using GWH, other white headed breeds (Hereford and Simmental), and breeds with a non-white headed phenotype (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel, Dutch Belted, and Holstein Friesian); b) scans for specific signatures of selection in GWH cattle by comparison with four other Dutch traditional breeds (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel and Dutch Belted) and the commercial Holstein Friesian; and c) detection of candidate genes identified via these approaches. The alignment of the filtered reads to the reference genome (ARS-UCD1.2) resulted in a mean depth of coverage of 8.7X. After variant calling, the lowest number of breed-specific variants was detected in Holstein Friesian (148,213), and the largest in Deep Red (558,909). By integrating the results, we identified five genomic regions under selection on BTA4 (70.2-71.3 Mb), BTA5 (10.0-19.7 Mb), BTA20 (10.0-19.9 and 20.0-22.7 Mb), and BTA25 (0.5-9.2 Mb). These regions contain positional and functional candidate genes associated with retinal degeneration (e.g., CWC27 and CLUAP1), ultraviolet protection (e.g., ERCC8), and pigmentation (e.g. PDE4D) which are probably associated with the GWH specific pigmentation and/or eye-protective phenotypes, e.g. Ambilateral Circumocular Pigmentation (ACOP). Our results will assist in characterizing the molecular basis of GWH phenotypes and the biological implications of its adaptation.
Collapse
|
32
|
Lee KW, Kim M, Lee SH, Kim KD. The Function of Autophagy as a Regulator of Melanin Homeostasis. Cells 2022; 11:cells11132085. [PMID: 35805169 PMCID: PMC9265842 DOI: 10.3390/cells11132085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Melanosomes are melanocyte-specific organelles that protect cells from ultraviolet (UV)-induced deoxyribonucleic acid damage through the production and accumulation of melanin and are transferred from melanocytes to keratinocytes. The relatively well-known process by which melanin is synthesized from melanocytes is known as melanogenesis. The relationship between melanogenesis and autophagy is attracting the attention of researchers because proteins associated with autophagy, such as WD repeat domain phosphoinositide-interacting protein 1, microtubule-associated protein 1 light chain 3, autophagy-related (ATG)7, ATG4, beclin-1, and UV-radiation resistance-associated gene, contribute to the melanogenesis signaling pathway. Additionally, there are reports that some compounds used as whitening cosmetics materials induce skin depigmentation through autophagy. Thus, the possibility that autophagy is involved in the removal of melanin has been suggested. To date, however, there is a lack of data on melanosome autophagy and its underlying mechanism. This review highlights the importance of autophagy in melanin homeostasis by providing an overview of melanogenesis, autophagy, the autophagy machinery involved in melanogenesis, and natural compounds that induce autophagy-mediated depigmentation.
Collapse
Affiliation(s)
- Ki Won Lee
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
| | - Minju Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
| | - Si Hyeon Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
| | - Kwang Dong Kim
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
- Correspondence: ; Tel.: +82-55-772-1365; Fax: +82-55-772-1359
| |
Collapse
|
33
|
Rachinger N, Mittag N, Böhme-Schäfer I, Xiang W, Kuphal S, Bosserhoff AK. Alpha-Synuclein and Its Role in Melanocytes. Cells 2022; 11:cells11132087. [PMID: 35805172 PMCID: PMC9265281 DOI: 10.3390/cells11132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Pigmentation is an important process in skin physiology and skin diseases and presumably also plays a role in Parkinson’s disease (PD). In PD, alpha-Synuclein (aSyn) has been shown to be involved in the pigmentation of neurons. The presynaptic protein is intensively investigated for its pathological role in PD, but its physiological function remains unknown. We hypothesized that aSyn is both involved in melanocytic differentiation and melanosome trafficking processes. We detected a strong expression of aSyn in human epidermal melanocytes (NHEMs) and observed its regulation in melanocytic differentiation via the microphthalmia-associated transcription factor (MITF), a central regulator of differentiation. Moreover, we investigated its role in pigmentation by performing siRNA experiments but found no effect on the total melanin content. We discovered a localization of aSyn to melanosomes, and further analysis of aSyn knockdown revealed an important role in melanocytic morphology and a reduction in melanosome release. Additionally, we found a reduction of transferred melanosomes in co-culture experiments of melanocytes and keratinocytes but no complete inhibition of melanosome transmission. In summary, this study highlights a novel physiological role of aSyn in melanocytic morphology and its so far unknown function in the pigment secretion in melanocytes.
Collapse
Affiliation(s)
- Nicole Rachinger
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Nora Mittag
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany;
| | - Ines Böhme-Schäfer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
- Correspondence:
| |
Collapse
|
34
|
The Role of Extracellular Vesicles in Melanoma Progression. Cancers (Basel) 2022; 14:cancers14133086. [PMID: 35804857 PMCID: PMC9264817 DOI: 10.3390/cancers14133086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma arises from a malignant transformation of the melanocytes in the skin. It is the deadliest form of skin cancer owing to its potential to metastasize. While recent advances in immuno-oncology have been successful in melanoma treatment, not all the patients respond to the treatment equally, thus individual pre-screening and personalized combination therapies are essential to stratify and monitor patients. Extracellular vesicles (EVs) have emerged as promising biomarker candidates to tackle these challenges. EVs are ~50-1000-nm-sized, lipid bilayer-enclosed spheres, which are secreted by almost all cell types, including cancer cells. Their cargo, such as nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred to target cells. Thanks to these properties, EVs can both provide a multiplexed molecular fingerprint of the cell of origin and thus serve as potential biomarkers, or reveal pathways important for cancer progression that can be targeted pharmaceutically. In this review we give a general overview of EVs and focus on their impact on melanoma progression. In particular, we shed light on the role of EVs in shaping the tumor-stroma interactions that facilitate metastasis and summarize the latest findings on molecular profiling of EV-derived miRNAs and proteins that can serve as potential biomarkers for melanoma progression.
Collapse
|
35
|
Serotonin (5-HT) 2A Receptor Involvement in Melanin Synthesis and Transfer via Activating the PKA/CREB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23116111. [PMID: 35682806 PMCID: PMC9245606 DOI: 10.3390/ijms23116111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The 5-HT2A serotonin receptor (HTR2A) has been reported to be involved in the serotonin- or serotonin receptor 2A agonist-induced melanogenesis in human melanoma cells. However, the molecular mechanisms underlying HTR2A in regulating melanogenesis remain poorly understood. In this research, cultured mouse melanoma cell line B16F10, human skin, and zebrafish embryos were used to elucidate the downstream signaling of HTR2A in regulating melanogenesis and to verify the potential application of HTR2A in the treatment of pigment-associated cutaneous diseases. We demonstrated that HTR2A antagonists (AT1015 and ketanserin) attenuated the melanogenesis induction of serotonin in both mouse melanoma cells and zebrafish embryos. The agonists of HTR2A (DOI and TCB-2) increased melanin synthesis and transfer in B16F10 cells, human skin tissue, and zebrafish embryos. Furthermore, the HTR2A agonists increased the expression of proteins related to melanosome organization and melanocyte dendrites to facilitate the melanocyte migration and melanosome transport. HTR2A antagonists and genetic knockout of zebrafish htr2aa (the homologue of mammalian HTR2A gene) were also used to clarify that HTR2A mediates serotonin and DOI in regulating melanogenesis. Finally, through small scale screening of the candidate downstream pathway, we demonstrated that HTR2A mediates the melanogenesis induction of its ligands by activating the PKA/CREB signaling pathway. In this research, we further confirmed that HTR2A is a crucial protein to mediate melanocyte function. Meanwhile, this research supports that HTR2A could be designed as a drug target for the development of chemicals to treat cutaneous diseases with melanocytes or melanogenesis abnormality.
Collapse
|
36
|
Huang Q, Yuan Y, Gong J, Zhang T, Qi Z, Yang X, Li W, Wei A. Identification of a Novel MLPH Missense Mutation in a Chinese Griscelli Syndrome 3 Patient. Front Med (Lausanne) 2022; 9:896943. [PMID: 35602484 PMCID: PMC9120966 DOI: 10.3389/fmed.2022.896943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Melanophilin (MLPH) functions as a linker between RAB27A and myosin Va (MYO5A) in regulating skin pigmentation during the melanosome transport process. The MYO5A-MLPH-RAB27A ternary protein complex is required for anchoring mature melanosomes in the peripheral actin filaments of melanocytes for subsequent transfer to adjacent keratinocytes. Griscelli syndrome type 3 (GS3) is caused by mutations in the MLPH gene. So far, only five variants of MLPH associated with GS3 have been reported. Here, we reported the first patient with GS3 in a Chinese population. The proband carried a novel homozygous missense mutation (c.73G>C; p.D25H), residing in the conserved Slp homology domain of MLPH, and presented with hypopigmentation of the hair, eyebrows, and eyelashes. Light microscopy revealed the presence of abnormal pigment clumping in his hair shaft. In silico tools predicted this MLPH variant to be likely pathogenic. Using immunoblotting and immunofluorescence analysis, we demonstrated that the MLPH (D25H) variant had an inhibitory effect on melanosome transport by exhibiting perinuclear melanosome aggregation in melanocytes, and greatly reduced its binding to RAB27A, although the protein level of MLPH in the patient was not changed. Our findings suggest that MLPH (D25H) is a pathogenic variant that expands the genetic spectrum of the MLPH gene.
Collapse
Affiliation(s)
- Qiaorong Huang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
| | - Juanjuan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianjiao Zhang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiumin Yang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Wei Li
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Aihua Wei
| |
Collapse
|
37
|
Wei X, Huang M, Yang Y, Liu Y, Chi S, Li C. Silencing of Rab23 by siRNA inhibits ultraviolet B-induced melanogenesis via downregulation of PKA/CREB/MITF. Exp Dermatol 2022; 31:1253-1263. [PMID: 35514241 DOI: 10.1111/exd.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Recent investigations have shown that the Rab family of GTPases is associated with all aspects of melanogenesis. However, the effect of Rab23, which localizes to the plasma membrane and regulates the endocytic pathway within eukaryotic cells, in melanogenesis has not been reported. To understand the role of Rab23 in UVB-induced melanogenesis, we evaluated changes in the level of melanin, activity of tyrosinase, and levels of melanogenesis-related proteins such as microphthalmia transcription factor and tyrosinase-related protein-1 (TRP-1) and the melanosome transport-related protein complex Rab27a-melanophilin-myosin Va after the downregulation of Rab23 in B16F10 and SK-MEL-2 cells with or without UVB irradiation. Our results showed that downregulating Rab23 reduced the melanin level and tyrosinase activity and inhibited the expression of proteins involved in UVB-induced melanogenesis. Rab23 colocalized with mature melanosomes marked with TRP-1. Furthermore, downregulating Rab23 induced the abnormal accumulation of melanosomes around the nucleus. We demonstrated that the downregulation of Rab23 inhibited melanin synthesis and melanosome transport by decreasing the PKA/CREB/MITF pathway, which is the key regulator of UVB-induced melanogenesis.
Collapse
Affiliation(s)
- Xuanjin Wei
- Department of Dermatology, First Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| | - Min Huang
- Department of Dermatology, Chuiyangliu Hospital, Beijing, China
| | - Yi Yang
- Department of Dermatology, First Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, Xi'an, Shanxi Province, China
| | - Sumin Chi
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, Xi'an, Shanxi Province, China
| | - Chengxin Li
- Department of Dermatology, First Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| |
Collapse
|
38
|
Du Z, D’Alessandro E, Zheng Y, Wang M, Chen C, Wang X, Song C. Retrotransposon Insertion Polymorphisms (RIPs) in Pig Coat Color Candidate Genes. Animals (Basel) 2022; 12:ani12080969. [PMID: 35454216 PMCID: PMC9031378 DOI: 10.3390/ani12080969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
The diversity of livestock coat color results from human positive selection and represents an indispensable part of breed identity. As an important biodiversity resource, pigs have many special characteristics, including the most visualized feature, coat color, and excellent adaptation, and the coat color represents an important phenotypic characteristic of the pig breed. Exploring the genetic mechanisms of phenotypic characteristics and the melanocortin system is of considerable interest in domestic animals because their energy metabolism and pigmentation have been under strong selection. In this study, 20 genes related to coat color in mammals were selected, and the structural variations (SVs) in these genic regions were identified by sequence alignment across 17 assembled pig genomes, from representing different types of pigs (miniature, lean, and fat type). A total of 167 large structural variations (>50 bp) of coat-color genes, which overlap with retrotransposon insertions (>50 bp), were obtained and designated as putative RIPs. Finally, 42 RIPs were confirmed by PCR detection. Additionally, eleven RIP sites were further evaluated for their genotypic distributions by PCR in more individuals of eleven domesticated breeds representing different coat color groups. Differential distributions of these RIPs were observed across populations, and some RIPs may be associated with breed differences.
Collapse
Affiliation(s)
- Zhanyu Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Via Palatucci, 98168 Messina, Italy;
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
- Correspondence:
| |
Collapse
|
39
|
Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity (Edinb) 2022; 128:271-278. [PMID: 35277668 PMCID: PMC8987050 DOI: 10.1038/s41437-022-00518-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Species distributed across climatic gradients will typically experience spatial variation in selection, but gene flow can prevent such selection from causing population genetic differentiation and local adaptation. Here, we studied genomic variation of 415 individuals across 34 populations of the common wall lizard (Podarcis muralis) in central Italy. This species is highly abundant throughout this region and populations belong to a single genetic lineage, yet there is extensive phenotypic variation across climatic regimes. We used redundancy analysis to, first, quantify the effect of climate and geography on population genomic variation in this region and, second, to test if climate consistently sorts specific alleles across the landscape. Climate explained 5% of the population genomic variation across the landscape, about half of which was collinear with geography. Linear models and redundancy analyses identified loci that were significantly differentiated across climatic regimes. These loci were distributed across the genome and physically associated with genes putatively involved in thermal tolerance, regulation of temperature-dependent metabolism and reproductive activity, and body colouration. Together, these findings suggest that climate can exercise sufficient selection in lizards to promote genetic differentiation across the landscape in spite of high gene flow.
Collapse
|
40
|
WANG B, AN X, QU L, WANG F. Review on oral plant extracts in Skin Whitening. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.83922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bo WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Xiaohong AN
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Liping QU
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| | - Feifei WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| |
Collapse
|
41
|
Liu J, Jiang R, Zhou J, Xu X, Sun Z, Li J, Chen X, Li Z, Yan X, Zhao D, Zheng Z, Sun L. Salicylic acid in ginseng root alleviates skin hyperpigmentation disorders by inhibiting melanogenesis and melanosome transport. Eur J Pharmacol 2021; 910:174458. [PMID: 34480884 DOI: 10.1016/j.ejphar.2021.174458] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Abnormal melanogenesis and melanosome transport can cause skin pigmentation disorders that are often treated using ginseng-based formulation. We previously found that phenolic acid compounds in ginseng root could inhibit melanin production and as a skin-whitening agents. However, mechanisms of action underlying effects of ginseng phenolic acid monomers on melanogenesis remain unclear. This study was conducted to investigate effects of salicylic acid, a main ginseng root phenolic acid component, on melanogenesis and melanosome functions in melanocytes of zebrafish and other species. Salicylic acid exhibited no cytotoxicity and reduced melanin levels and tyrosinase activity in B16F10 murine melanoma cells and normal human epidermal melanocytes regardless of prior cell stimulation with α-melanocyte stimulating hormone. Additionally, salicylic acid treatment reduced expression of melanogenic enzymes tyrosinase, tyrosinase-related protein 1 and tyrosinase-related protein 2, while reducing expression of their master transcriptional regulator, microphthalmia-associated transcription factor. Moreover, reduced phosphorylation of cAMP response-element binding protein was observed due to reduced cAMP levels resulting from salicylic acid inhibition of upstream signal regulators (adenylyl cyclase and protein kinase A). Furthermore, salicylic acid treatment suppressed expression of transport complex-associated proteins melanophilin and myosin Va in two UVB-treated melanocytic cell lines, suppressed phagocytosis of fluorescent microspheres by UVB-stimulated human keratinocytes (HaCaT), inhibited protease-activated receptor 2 activation by reducing both Ca2+ release and activation of phosphoinositide 3 kinase/AKT and mitogen-activated protein kinases and induced anti-melanogenic effects in zebrafish. Collectively, these results indicate that salicylic acid within ginseng root can inhibit melanocyte melanogenesis and melanin transport, while also suppressing keratinocyte phagocytic function.
Collapse
Affiliation(s)
- Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Science, Beihua University, Jilin, 132013, China.
| | - Jingyuan Zhou
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Science, Beihua University, Jilin, 132013, China
| | - Xiaohao Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhuo Sun
- College of Science, Beihua University, Jilin, 132013, China
| | - Jing Li
- College of Science, Beihua University, Jilin, 132013, China
| | - Xuenan Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhenzhuo Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiuci Yan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zemiao Zheng
- Guangdong Modern Hanfang Technology Co., Ltd., Guangzhou, 510550, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|