1
|
Kaye AD, Shah SS, Johnson CD, De Witt AS, Thomassen AS, Daniel CP, Ahmadzadeh S, Tirumala S, Bembenick KN, Kaye AM, Shekoohi S. Tacrolimus- and Mycophenolate-Mediated Toxicity: Clinical Considerations and Options in Management of Post-Transplant Patients. Curr Issues Mol Biol 2024; 47:2. [PMID: 39852117 PMCID: PMC11763814 DOI: 10.3390/cimb47010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
Tacrolimus and mycophenolate are important immunosuppressive agents used to prevent organ rejection in post-transplant patients. While highly effective, their use is associated with significant toxicity, requiring careful management. Tacrolimus, a calcineurin inhibitor, is linked to nephrotoxicity, neurotoxicity, metabolic disturbances such as diabetes mellitus and dyslipidemia, and cardiovascular complications such as hypertension and arrhythmias. Mycophenolate, a reversible inhibitor of inosine monophosphate dehydrogenase, frequently causes gastrointestinal disturbances, including diarrhea and colitis, as well as hematologic side effects like anemia and leukopenia, which increase infection risk. Therapeutic drug monitoring (TDM) and pharmacogenomics have emerged as essential strategies for mitigating these toxicities. TDM ensures tacrolimus trough levels are maintained within a therapeutic range, minimizing the risks of nephrotoxicity and rejection. Pharmacogenomic insights, such as CYP3A5 polymorphisms, allow for personalized tacrolimus dosing based on individual metabolic profiles. For mycophenolate, monitoring inosine monophosphate dehydrogenase activity provides a pharmacodynamic approach to dose optimization, reducing gastrointestinal and hematologic toxicities. Emerging tools, including dried blood spot sampling and pharmacokinetic modeling, offer innovative methods to simplify monitoring and enhance precision in outpatient settings. Despite their utility, the toxicity profiles of these drugs, including those of early immunosuppressants such as cyclosporine and azathioprine, necessitate further consideration of alternative immunosuppressants like sirolimus, everolimus, and belatacept. Although promising, these newer agents require careful patient selection and further research. Future directions in immunosuppressive therapy include integrating individual pharmacogenetic data to refine dosing, minimize side effects, and improve long-term graft outcomes. This narrative review underscores the importance of personalized medicine and advanced monitoring in optimizing post-transplant care.
Collapse
Affiliation(s)
- Alan D. Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| | - Shivam S. Shah
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (S.S.S.); (C.D.J.); (C.P.D.)
| | - Coplen D. Johnson
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (S.S.S.); (C.D.J.); (C.P.D.)
| | - Adalyn S. De Witt
- School of Medicine, Indiana University, 340 W 10th St., Indianapolis, IN 46202, USA
| | - Austin S. Thomassen
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (S.S.S.); (C.D.J.); (C.P.D.)
| | - Charles P. Daniel
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (S.S.S.); (C.D.J.); (C.P.D.)
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| | - Sridhar Tirumala
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| | - Kristin Nicole Bembenick
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| | - Adam M. Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, 751 Brookside Road, Stockton, CA 95207, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
2
|
Nađ Škegro S, Penezić L, Šimičević L, Hudolin T, Kaštelan Ž, Božina N, Trkulja V. The reduced function allele SLCO1B1 c.521T>C is of no practical relevance for the renal graft function over the first post-transplant year in patients treated with mycophenolic acid. Pharmacogenet Genomics 2024; 34:226-235. [PMID: 39101384 DOI: 10.1097/fpc.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVE It is unclear whether renal transplant recipients treated with mycophenolic acid (MPA) who carry the reduced-function allele at polymorphism SLCO1B1 c.521T>C differ from their wild-type peers regarding renal outcomes and tolerability. We aimed to estimate the effect of this polymorphism on the graft function (estimated glomerular filtration rate, eGFR) over the first 12 post-transplant months in patients on MPA-based maintenance immunosuppression. METHODS In a 12-month observational cohort study, consecutive adult patients were repeatedly assessed for eGFR. The SLCO1B1 c.521C>T variant allele carriers (exposed) and wild-type subjects (controls) were balanced on a range of demographic, medical, and genetic variables at baseline, and eGFR trajectory was estimated with further adjustment for time-varying covariates. A subset of patients were assessed for exposure to MPA 5-7 days after the transplantation. RESULTS The adjusted eGFR slopes from day 1 to day 28 (daily), and from day 28 to day 365 (monthly) were practically identical in exposed (n = 86) and control (n = 168) patients [geometric means ratios (GMR) = 0.99, 95% confidence interval (CI) = 0.92-1.06 and GMR = 0.98, 0.94-1.01, respectively]. The rates of adverse renal outcomes and possible MPA-related adverse effects were low, and similar in exposed and controls [rate ratios (RR) = 0.94, 0.49-1.84 and RR = 1.08, 0.74-1.58, respectively]. The pharmacokinetic analysis did not signal meaningful differences regarding exposure to MPA, overall (exposed n = 23, control n = 45), if cotreated with cyclosporine (n = 17 vs. n = 26) or with tacrolimus (n = 8 vs. n = 17). CONCLUSIONS In patients treated with MPA, variant allele SLCO1B1 c.521T>C appears of no practical relevance regarding the 12-month renal graft function, MPA safety and exposure to MPA at early steady-state.
Collapse
Affiliation(s)
| | - Luka Penezić
- Department of Urology, University Hospital Center Zagreb
| | - Livija Šimičević
- Divison of Pharmacogenomics and Therapy Individualization University Hospital Center Zagreb and Department of Biochemistry and Clinical Chemistry, Zagreb University School of Medicine
| | - Tvrtko Hudolin
- Department of Urology, University Hospital Center Zagreb
- Department of Urology, Zagreb University School of Medicine
| | - Željko Kaštelan
- Department of Urology, University Hospital Center Zagreb
- Department of Urology, Zagreb University School of Medicine
| | - Nada Božina
- Department of Pharmacology, Zagreb University School of Medicine, Zagreb Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, Zagreb University School of Medicine, Zagreb Croatia
| |
Collapse
|
3
|
Xu C, Jiang Z, Qian M, Zuo L, Xue H, Hu N. Influence of UDP-Glucuronosyltransferase Polymorphisms on Mycophenolic Acid Metabolism in Renal Transplant Patients. Transplant Proc 2024; 56:1280-1289. [PMID: 39054222 DOI: 10.1016/j.transproceed.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to evaluate the effects of UDP-glucuronosyltransferase (UGT) polymorphisms on mycophenolic acid (MPA) metabolism in renal transplant patients. A total of 11 single nucleotide polymorphisms (SNPs) of UGT1A1, UGT1A7, UGT1A8, UGT1A9, UGT1A10, and UGT2B7 were genotyped in 79 renal transplant patients. The associations of SNPs and clinical factors with dose-adjusted MPA area under the plasma concentration-time curve (AUC/D), the dose-adjusted plasma concentration (C0/D) of 7-O-MPA-glucuronide (MPAG), and the dose-adjusted plasma concentration (C0/D) of acyl MPAG (AcMPAG) were analyzed. In the univariate analysis, UGT1A1 rs4148323, age, and anion gap were associated with MPA AUC/D. MPA AUC/D was higher in patients with the GA genotype of UGT1A1 rs4148323 compared to patients with the GG genotype. UGT1A1 rs4148323, UGT1A9 rs2741049 and clinical factors, including age, serum total bilirubin, adenosine deaminase, anion gap, urea, and creatinine, were associated with MPAG C0/D. UGT2B7 rs7438135, UGT2B7 rs7439366, and UGT2B7 rs7662029 also were associated with AcMPAG C0/D. Multiple linear regression analysis showed that UGT1A9 rs2741049 and indirect bilirubin were negatively correlated with MPAG C0/D (P = .001; P = .039), and UGT2B7 rs7662029 was positively correlated with AcMPAG C0/D (P = .008). This study demonstrates a significant influence of UGT1A9 rs2741049 and UGT2B7 rs7662029 polymorphisms on the metabolism of MPA in vivo.
Collapse
Affiliation(s)
- Caomei Xu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Minyan Qian
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Li'an Zuo
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Hui Xue
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
4
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
5
|
Sagcal-Gironella ACP, Merritt A, Mizuno T, Dharnidharka VR, McDonald J, DeGuzman M, Wahezi D, Goilav B, Onel K, Kim S, Cody E, Wu EY, Cannon L, Hayward K, Okamura DM, Patel PN, Greenbaum LA, Rouster-Stevens KA, Cooper JC, Ruth NM, Ardoin S, Cook K, Borgia RE, Hersh A, Huang B, Devarajan P, Brunner H. Efficacy and Safety of Pharmacokinetically-Driven Dosing of Mycophenolate Mofetil for the Treatment of Pediatric Proliferative Lupus Nephritis-A Double-Blind Placebo Controlled Clinical Trial (The Pediatric Lupus Nephritis Mycophenolate Mofetil Study). JOURNAL OF CLINICAL TRIALS 2024; 14:563. [PMID: 39035447 PMCID: PMC11258879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Background The safety and efficacy of mycophenolate mofetil (MMF) for lupus nephritis (LN) treatment is established in adults and in some children. MMF is rapidly converted to the biologically active metabolite mycophenolic acid (MPA) whose pharmacokinetics (PK) is characterized by large inter- and intra-individual variability. Methods/Design This randomized, double-blind, active comparator, controlled clinical trial of pediatric subjects with proliferative LN compares pharmacokinetically-guided precision-dosing of MMF (MMFPK, i.e. the dose is adjusted to the target area under the concentration-time curve (AUC0-12h) of MPA ≥ 60-70 mg*h/L) and MMF dosed per body surface area (MMFBSA, i.e. MMF dosed 600 mg/m2 body surface area), with MMF dosage taken about 12 hours apart. At baseline, subjects are randomized 1:1 to receive blinded treatment with MMFPK or MMFBSA for up to 53 weeks. The primary outcome is partial clinical remission of LN (partial renal response, PRR) at week 26, and the major secondary outcome is complete renal response (CRR) at week 26. Subjects in the MMFBSA arm with PRR at week 26 will receive MMFPK from week 26 onwards, while subjects with CRR will continue MMFBSA or MMFPK treatment until week 53. Subjects who achieve PRR at week 26 are discontinued from study intervention. Discussion The Pediatric Lupus Nephritis Mycophenolate Mofetil (PLUMM) study will provide a thorough evaluation of the PK of MMF in pediatric LN patients, yielding a head-to-head comparison of MMFBSA and MMFPK for both safety and efficacy. This study has the potential to change current treatment recommendations for pediatric LN, thereby significantly impacting childhood-onset SLE (cSLE) disease prognosis and current clinical practice.
Collapse
Affiliation(s)
- Anna Carmela P Sagcal-Gironella
- Division of Pediatric Rheumatology, Hackensack University Medical Center, Hackensack, New Jersey, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Angela Merritt
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tomoyuki Mizuno
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vikas R Dharnidharka
- Department of Pediatric Nephrology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph McDonald
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Marietta DeGuzman
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Dawn Wahezi
- Department of Pediatric Rheumatology, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Beatrice Goilav
- Pediatric Nephrology, The Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Karen Onel
- Department of Pediatric Rheumatology, Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Susan Kim
- Department of Rheumatology, University of California, San Francisco, California, USA
| | - Ellen Cody
- Department of Pediatric Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Eveline Y Wu
- Department of Pediatric Rheumatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura Cannon
- Department of Pediatric Rheumatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kristen Hayward
- Department of Pediatric Rheumatology, University of Washington, Seattle, Washington, USA
| | - Daryl M Okamura
- Department of Pediatric Nephrology, University of Washington, Seattle, Washington, USA
| | - Pooja N Patel
- Depatrment of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, USA
| | - Larry A Greenbaum
- Department of Pediatric Nephrology, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelly A Rouster-Stevens
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jennifer C Cooper
- Department of Pediatric Rheumatology, University of Colorado, Denver, Colorado, USA
| | - Natasha M Ruth
- Department of Pediatric Rheumatology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Stacy Ardoin
- Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kathryn Cook
- Division of Rheumatology, Akron Children’s, Akron, Ohio, USA
| | - R Ezequiel Borgia
- Department of Pediatric Allergy, Immunology and Rheumatology, UH Rainbow Babies & Children’s Hospital, Cleveland, Ohio, USA
| | - Aimee Hersh
- Department of Pediatrics, Immunology and Rheumatology, University of Utah, Salt Lake City, Utah, USA
| | - Bin Huang
- Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Prasad Devarajan
- Department of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hermine Brunner
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Zhao T, Zhao Y, Chen H, Sun W, Guan Y. A GC-MS-based untargeted metabolomics approach for comprehensive metabolic profiling of mycophenolate mofetil-induced toxicity in mice. Front Mol Biosci 2024; 11:1332090. [PMID: 38516185 PMCID: PMC10955473 DOI: 10.3389/fmolb.2024.1332090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Background: Mycophenolate mofetil (MMF), the morpholinoethyl ester of mycophenolic acid, is widely used for maintenance immunosuppression in transplantation. The gastrointestinal toxicity of MMF has been widely uncovered. However, the comprehensive metabolic analysis of MMF-induced toxicity is lacking. This study is aimed to ascertain the metabolic changes after MMF administration in mice. Methods: A total of 700 mg MMF was dissolved in 7 mL dimethyl sulfoxide (DMSO), and then 0.5 mL of mixture was diluted with 4.5 mL of saline (100 mg/kg). Mice in the treatment group (n = 9) were given MMF (0.1 mL/10 g) each day via intraperitoneal injection lasting for 2 weeks, while those in the control group (n = 9) received the same amount of blank solvent (DMSO: saline = 1:9). Gas chromatography-mass spectrometry was utilized to identify the metabolic profiling in serum samples and multiple organ tissues of mice. The potential metabolites were identified using orthogonal partial least squares discrimination analysis. Meanwhile, we used the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (http://www.kegg.jp) to depict the metabolic pathways. The percentages of lymphocytes in spleens were assessed by multiparameter flow cytometry analysis. Results: Compared to the control group, we observed that MMF treatment induced differential expression of metabolites in the intestine, hippocampus, lung, liver, kidney, heart, serum, and cortex tissues. Subsequently, we demonstrated that multiple amino acids metabolism and fatty acids biosynthesis were disrupted following MMF treatment. Additionally, MMF challenge dramatically increased CD4+ T cell percentages but had no significant influences on other types of lymphocytes. Conclusion: MMF can affect the metabolism in various organs and serum in mice. These data may provide preliminary judgement for MMF-induced toxicity and understand the metabolic mechanism of MMF more comprehensively.
Collapse
Affiliation(s)
- Tongfeng Zhao
- Department of Hematology, Jining No.1 People’s Hospital, Jining, China
| | - Yaxin Zhao
- Department of Pharmacy, Jining No.1 People’s Hospital, Jining, China
| | - Haotian Chen
- Department of Hematology, Jining No.1 People’s Hospital, Jining, China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, China
- Postdoctoral of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Guan
- Department of Hematology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
7
|
Andrade-Sierra J, Hernández-Reyes H, Rojas-Campos E, Cardona-Muñoz EG, Cerrillos-Gutiérrez JI, González-Espinoza E, Evangelista-Carrillo LA, Medina-Pérez M, Jalomo-Martínez B, Miranda-Díaz AG, Martínez-Mejía VM, Gómez-Navarro B, Andrade-Ortega ADJ, Nieves-Hernández JJ, Mendoza-Cerpa CA. Clinical impact using low-dose mycophenolate mofetil with tacrolimus on infectious, noninfectious complications and acute rejection, in renal transplant: A single hospital experience in Mexico. Medicine (Baltimore) 2023; 102:e35841. [PMID: 37986377 PMCID: PMC10659689 DOI: 10.1097/md.0000000000035841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023] Open
Abstract
Evidence supporting a starting dose of 2 g/day of mycophenolate mofetil (MMF) in combination with tacrolimus (TAC) for renal transplantation (RT) is still limited, but maintaining a dose of <2 g could result in worse clinical outcomes in terms of acute rejection (AR). This study aimed to determine the association between AR and infectious and noninfectious complications after RT with a dose of 1.5 g vs 2 g of MMF. A prospective cohort study was performed with a 12-month follow-up of recipients of RT from living donors with low (1.5 g/day) or standard (2 g/day) doses of MMF. The association between adverse effects and complications and doses of MMF was examined using Cox proportional hazard models, and survival free of AR, infectious diseases, and noninfectious complications was evaluated using the Kaplan-Meier test. At the end of the follow-up, the incidence of infectious diseases was 52% versus 50% (P = .71) and AR was 5% versus 5% (P = .86), respectively. The survival rate free of gastrointestinal (GI) complications requiring medical attention was higher in the low-dose group than in the standard-dose dose (88% vs 45%, respectively; P < .001). The use of 1.5 g/day of MMF confers a reduction in GI complications without an increase in infectious diseases or the risk of AR.
Collapse
Affiliation(s)
- Jorge Andrade-Sierra
- Department of Physiology, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Hernesto Hernández-Reyes
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Enrique Rojas-Campos
- Medical Research Unit in Renal Diseases, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Ignacio Cerrillos-Gutiérrez
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Eduardo González-Espinoza
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Luis Alberto Evangelista-Carrillo
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Miguel Medina-Pérez
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Basilio Jalomo-Martínez
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | | | - Víctor Manuel Martínez-Mejía
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Benjamin Gómez-Navarro
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | | | - Juan José Nieves-Hernández
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Claudia Alejandra Mendoza-Cerpa
- Department of Nephrology and Organ Transplant Unit, Specialties Hospital, National Western Medical Centre, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| |
Collapse
|
8
|
Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr Drugs 2023; 25:301-319. [PMID: 36707496 DOI: 10.1007/s40272-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.
Collapse
|
9
|
Haflidadottir S, Østensen AB, Matthews IL, Line PD, Almaas R. Mycophenolate mofetil use is associated with reduced incidence of food allergy in liver transplanted children. J Pediatr Gastroenterol Nutr 2022; 75:138-144. [PMID: 35666879 DOI: 10.1097/mpg.0000000000003509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The incidence of food allergy in children following liver transplantation is high and the pathogenesis is still not known. We aimed to identify risk factors for development of food allergies in liver transplant children. METHODS 107 children and adolescents who underwent liver transplantation from 1999 to 2019 were included. Data were retrospectively collected from medical records included total and specific IgE, eosinophil cationic protein and eosinophil count 12 months after transplantation and at yearly follow up (median follow-up). RESULTS 24/107 (22%) patients reported clinical food reactions. Median time from transplantation to debut of food allergy was 1.6 (IQR 0.6-3.3) years. Mycophenolate mofetil (MMF) was discontinued in 24/78 patients (31%) due to side effects. Children treated with MMF in addition to tacrolimus one year after transplantation reported less food allergy (12.5% vs. 37.8%, p=0.003) and sensitization to food allergens one year after transplantation (8.9% vs. 17.8%, p=0.02) than those not receiving MMF. Tacrolimus trough levels did not differ between the patients treated with MMF and those who were not. Treatment with MMF two years after transplantation was associated with less food allergy (p=0.001) and food sensitization (p=0.002), also when adjusted for age at transplantation (p=0.006 and p=0.03, respectively) or for use of basilixmab (p=0.015 and p=0.018, respectively). Basiliximab was also associated with less food allergy. CONCLUSIONS Use of MMF one and two years after transplantation was associated with less food allergy and sensitization against food allergens. The effect of MMF was not due to reduced trough levels of of tacrolimus. An infographic is available for this article at: https://links.lww.com/MPG/C821.
Collapse
Affiliation(s)
- Svanhildur Haflidadottir
- From the Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- the RARE-LIVER European Reference Network, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
- the RARE-LIVER European Reference Network, Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
| | - Anniken Bjørnstad Østensen
- From the Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- the RARE-LIVER European Reference Network, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
| | - Iren Lindbak Matthews
- the Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
| | - Pål-Dag Line
- From the Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- the RARE-LIVER European Reference Network, Section for Transplantation Surgery, Department of Transplantation Medicine, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
| | - Runar Almaas
- From the Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- the RARE-LIVER European Reference Network, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
- the RARE-LIVER European Reference Network, Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Pb 4950, Nydalen, Oslo, Norway
| |
Collapse
|
10
|
Johnson AC, Karadkhele G, Magua W, Vasanth P, Larsen CP. Longitudinal Evaluation of Cytopenias in the Renal Transplant Population. Transplant Direct 2022; 8:e1339. [PMID: 35651583 PMCID: PMC9148693 DOI: 10.1097/txd.0000000000001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
Cytopenias, a common complication for immunosuppressed patients, are known to be associated with adverse transplant outcomes. However, there is little information on cytopenias in recipients treated with the costimulation blockade agent, belatacept. Methods We compared cytopenia incidence and manifestations in patients undergoing kidney transplant at Emory University Hospital on tacrolimus and belatacept. To reduce selection bias, the tacrolimus group was narrowed to include only patients eligible for belatacept. Results Of 1651 patients transplanted between 2009 and 2019, 187 (11%) experienced severe anemia, 309 (19%) experienced leukopenia, and 62 (4%) thrombocytopenia. On multivariable regressions, deceased-donor transplant, cytomegalovirus viremia, and thymoglobulin treatment were associated with risk of developing leukopenia, anemia, and thrombocytopenia. High-risk cytomegalovirus status was also associated with development of leukopenia and anemia. Additionally, azathioprine was associated with development of anemia, and both tacrolimus therapy and Caucasian race were associated with thrombocytopenia. Longitudinal quantifications of hematologic cell lines over the first-year posttransplant were extracted from generalized linear models fit using splines. Only hemoglobin range was significantly different between groups (greater in belatacept patients). Plots of mean cell count for each group suggest an earlier recovery from posttransplant anemia in belatacept patients. Conclusions Belatacept patients are not at increased risk of cytopenia but may have improved recovery from posttransplant anemia.
Collapse
Affiliation(s)
| | | | - Wairimu Magua
- Department of Surgery, Emory University, Atlanta, GA
| | - Payas Vasanth
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA
| | | |
Collapse
|
11
|
Jiang Z, Hu N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics 2021; 22:1019-1040. [PMID: 34581204 DOI: 10.2217/pgs-2021-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is a common immunosuppressive drug for kidney transplantation patients, and is characterized by a narrow therapeutic index and significant individual variability. UGTs are the main enzymes responsible for the metabolism of MPA. Although, many studies have focused on the relationship between UGT polymorphisms and pharmacokinetics and adverse reactions of MPA, the conclusion are controversial. We reviewed the relevant literature and summarized the significant influences of UGT polymorphisms, such as UGT1A8 (rs1042597, rs17863762), UGT1A9 (rs72551330, rs6714486, rs17868320, rs2741045, rs2741045) and UGT2B7 (rs7438135, rs7439366, rs7662029), on the pharmacokinetics of MPA and its metabolites and adverse reactions. The review provides a reference for guiding the individualized administration of MPA and reducing adverse reactions to MPA.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| |
Collapse
|
12
|
Shu Q, Fan Q, Hua B, Liu H, Wang S, Liu Y, Yao Y, Xie H, Ge W. Influence of SLCO1B1 521T>C, UGT2B7 802C>T and IMPDH1 -106G>A Genetic Polymorphisms on Mycophenolic Acid Levels and Adverse Reactions in Chinese Autoimmune Disease Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:713-722. [PMID: 34188518 PMCID: PMC8233479 DOI: 10.2147/pgpm.s295964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
Introduction Mycophenolate mofetil (MMF), a new type of immunosuppressant, has emerged as a frontline agent for treating autoimmune diseases. Mycophenolic acid (MPA) is an active metabolite of MMF. MPA exposure varies greatly among individuals, which may lead to adverse drug reactions such as gastrointestinal side effects, infection, and leukopenia. Genetic factors play an important role in the variation of MPA levels and its side effects. Although many published studies have focused on MMF use in patients after organ transplant, studies that examine the use of MMF in patients with autoimmune diseases are still lacking. Methods This study will not only explore the genetic factors affecting MPA levels and adverse reactions but also investigate the relationships between UGT1A9 −118(dT)9/10, UGT1A9 - 1818T>C, UGT2B7 802C>T, SLCO1B1 521T>C, SLCO1B3 334T>G, IMPDH1 −106G>A and MPA trough concentration (MPA C0), along with adverse reactions among Chinese patients with autoimmune diseases. A total of 120 patients with autoimmune diseases were recruited. The MPA trough concentration was detected using the enzyme multiplied immunoassay technique (EMIT). Genotyping was performed using a real-time polymerase chain reaction (PCR) system and validated allelic discrimination assays. Clinical data were collected for the determination of side effects. Results SLCO1B1 521T>C demonstrated a significant association with MPA C0/d (p=0.003), in which patients with the CC type showed a higher MPA C0/d than patients with the TT type (p=0.001) or the CT type (p=0.000). No significant differences were found in MPA C0/d among the other SNPs. IMPDH1 −106G>A was found to be significantly related to infections (p=0.006). Subgroup analysis revealed that UGT2B7 802C>T was significantly related to Pneumocystis carinii pneumonia infection (p=0.036), while SLCO1B1 521T>C was associated with anemia (p=0.029). Conclusion For Chinese autoimmune disease patients, SLCO1B1 521T>C was correlated with MPA C0/d and anemia. IMPDH1 −106G>A was significantly related to infections. UGT2B7 802C>T was significantly related to Pneumocystis carinii pneumonia infection.
Collapse
Affiliation(s)
- Qing Shu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Qingqing Fan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Bingzhu Hua
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Hang Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Shiying Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Yao Yao
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Han Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| |
Collapse
|
13
|
Oreschak K, Saba LM, Rafaels N, Ambardekar AV, Deininger KM, PageII R, Lindenfeld J, Aquilante CL. Variants in mycophenolate and CMV antiviral drug pharmacokinetic and pharmacodynamic genes and leukopenia in heart transplant recipients. J Heart Lung Transplant 2021; 40:917-925. [PMID: 34253456 DOI: 10.1016/j.healun.2021.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The objective was to assess the relationship between single nucleotide polymorphisms in mycophenolate and cytomegalovirus antiviral drug pharmacokinetic and pharmacodynamic genes and drug-induced leukopenia in adult heart transplant recipients. METHODS This retrospective analysis included n = 148 patients receiving mycophenolate and a cytomegalovirus antiviral drug. In total, 81 single nucleotide polymorphisms in 21 pharmacokinetic and 23 pharmacodynamic genes were selected for investigation. The primary and secondary outcomes were mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia, defined as a white blood cell count <3.0 × 109/L, in the first six and 12 months post-heart transplant, respectively. RESULTS Mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia occurred in 20.3% of patients. HNF1A rs1169288 A>C (p.I27L) was associated with drug-induced leukopenia (unadjusted p = 0.002; false discovery rate <20%) in the first six months post-transplant. After adjusting for covariates, HNF1A rs1169288 variant C allele carriers had significantly higher odds of leukopenia compared to A/A homozygotes (odds ratio 6.19; 95% CI 1.97-19.43; p = 0.002). Single nucleotide polymorphisms in HNF1A, SLC13A1, and MBOAT1 were suggestively associated (p < 0.05) with the secondary outcome but were not significant after adjusting for multiple comparisons. CONCLUSION Our data suggest genetic variation may play a role in the development of leukopenia in patients receiving mycophenolate and cytomegalovirus antiviral drugs after heart transplantation. Following replication, pharmacogenetic markers, such as HNF1A rs1169288, could help identify patients at higher risk of drug-induced leukopenia, allowing for more personalized immunosuppressant therapy and cytomegalovirus prophylaxis following heart transplantation.
Collapse
Affiliation(s)
- Kris Oreschak
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Nicholas Rafaels
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amrut V Ambardekar
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - RobertL PageII
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - JoAnn Lindenfeld
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.
| |
Collapse
|
14
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
El Seedy GM, El-Shafey ES, Elsherbiny ES. Fortification of biscuit with sidr leaf and flaxseed mitigates immunosuppression and nephrotoxicity induced by cyclosporine A. J Food Biochem 2021; 45:e13655. [PMID: 33616983 DOI: 10.1111/jfbc.13655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
Abstract
The focus of consumers in healthy food turned to the possible health benefits of particular foods and food ingredients. This study aimed to evaluate the newly fortified biscuits supplemented with sidr leaves and flaxseed and to highlight their nutritional quality and health benefits against cyclosporine A-induced dexterous effects. Sidr leaves (SL), and flaxseed (FS) were used in the preparation of fortified biscuits. Proximate analysis and sensory evaluation were carried out on the biscuits. In in vivo study, 15 male albino mice were used for each group. Groups were divided into control, CsA, SL, FS, and SL+FS-treated groups. Hematological analysis, kidney function tests, oxidative stress, and anti-oxidant status were estimated. Flow cytometry was utilized to detect apoptosis and autophagy levels. The enzyme-linked immunosorbent assay (ELISA) was used for detection of interleukin-2 (IL-2), interferon-γ (IFN-γ), and transforming growth factor β1 (TGF-β1) levels. The composition of biscuits complemented by SL and FS demonstrated significant improvement in the nutritional value represented by the increase in overall protein, crude fat, crude fiber, ash, and carbohydrate contents. Treatment with SL and FS restored the disturbance in hematological, kidney function, oxidative, and antioxidant biomarkers. CsA-induced apoptotic and autophagic renal cell death was suppressed. Cytokines and pro-inflammatory markers were ameliorated. The use of SL and FS in dietary products can be recommended as a functional food. Moreover, they showed renal-protective, antioxidant, anti-inflammatory, and immune-enhancing activities. PRACTICAL APPLICATIONS: Sidr leaves (SL) and flaxseed (FS) were used in the preparation of fortified biscuits. The composition of biscuits complemented by SL and FS demonstrated a significant improvement in the nutritional values represented by the increase in overall protein, crude fat, crude fiber, ash, and carbohydrate contents. SL and FS showed a potential therapeutic activity in reversing CsA-induced dexterous side effects by acting as an antioxidant, antiapoptotic, antiautophagic, anti-inflammatory, renal-protective, and immune-enhancing agents. The use of sidr leaves and flaxseed in dietary products can be recommended as a functional food. Supplementation of SL and/or FS to the diet is recommended to ensure a good health. Moreover, introducing awareness for the patients utilizing CsA to use SL and FS in their diets.
Collapse
Affiliation(s)
- Ghada Mosad El Seedy
- Home Economics Department, Faculty of Specific Education, Damietta University, Damietta, Egypt
| | - Eman Salah El-Shafey
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | | |
Collapse
|
16
|
Ehren R, Schijvens AM, Hackl A, Schreuder MF, Weber LT. Therapeutic drug monitoring of mycophenolate mofetil in pediatric patients: novel techniques and current opinion. Expert Opin Drug Metab Toxicol 2020; 17:201-213. [PMID: 33107768 DOI: 10.1080/17425255.2021.1843633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Mycophenolate mofetil (MMF) is an ester prodrug of the immunosuppressant mycophenolic acid (MPA) and is recommended and widely used for maintenance immunosuppressive therapy in solid organ and stem-cell transplantation as well as in immunological kidney diseases. MPA is a potent, reversible, noncompetitive inhibitor of the inosine monophosphate dehydrogenase (IMPDH), a crucial enzyme in the de novo purine synthesis in T- and B-lymphocytes, thereby inhibiting cell-mediated immunity and antibody formation. The use of therapeutic drug monitoring (TDM) of MMF is still controversial as outcome data of clinical trials are equivocal. Areas covered: This review covers in great depth the existing literature on TDM of MMF in the field of pediatric (kidney) transplantation. In addition, the relevance of TDM in immunological kidney diseases, in particular childhood nephrotic syndrome is highlighted. Expert opinion: TDM of MMF has the potential to optimize therapy in pediatric transplantation as well as in nephrotic syndrome. Limited sampling strategies to estimate MPA exposure increase its feasibility. Future perspectives rather encompass approaches reflecting total immunosuppressive load than single drug TDM.
Collapse
Affiliation(s)
- Rasmus Ehren
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| | - Anne M Schijvens
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Agnes Hackl
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Lutz T Weber
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| |
Collapse
|
17
|
Anandi P, Dickson AL, Feng Q, Wei WQ, Dupont WD, Plummer D, Liu G, Octaria R, Barker KA, Kawai VK, Birdwell K, Cox NJ, Hung A, Stein CM, Chung CP. Combining clinical and candidate gene data into a risk score for azathioprine-associated leukopenia in routine clinical practice. THE PHARMACOGENOMICS JOURNAL 2020; 20:736-745. [PMID: 32054992 PMCID: PMC7426242 DOI: 10.1038/s41397-020-0163-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Leukopenia is a serious, frequent side effect associated with azathioprine use. Currently, we use thiopurine methyltransferase (TPMT) testing to predict leukopenia in patients taking azathioprine. We hypothesized that a risk score incorporating additional clinical and genetic variables would improve the prediction of azathioprine-associated leukopenia. In the discovery phase, we developed four risk score models: (1) age, sex, and TPMT metabolizer status; (2) model 1 plus additional clinical variables; (3) sixty candidate single nucleotide polymorphisms; and (4) model 2 plus model 3. The area under the receiver-operating-characteristic curve (AUC) of the risk scores was 0.59 (95% CI: 0.54-0.64), 0.75 (0.71-0.80), 0.66 (0.61-0.71), and 0.78 (0.74-0.82) for models 1, 2, 3, and 4, respectively. During the replication phase, models 2 and 4 (AUC = 0.64, 95% CI: 0.59-0.70 and AUC = 0.63, 95% CI: 0.58-0.69, respectively) were significant in an independent group. Compared with TPMT testing alone, additional genetic and clinical variables improve the prediction of azathioprine-associated leukopenia.
Collapse
Affiliation(s)
- Prathima Anandi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyson L Dickson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - QiPing Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dale Plummer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ge Liu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rany Octaria
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Barker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian K Kawai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Birdwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adriana Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia P Chung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
18
|
Daniel LL, Dickson AL, Chung CP. Precision medicine for rheumatologists: lessons from the pharmacogenomics of azathioprine. Clin Rheumatol 2020; 40:65-73. [PMID: 32617765 DOI: 10.1007/s10067-020-05258-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to personalize treatment for both effectiveness and safety. As a critical component of this emerging initiative, pharmacogenomics seeks to guide drug treatment based on genetics. In this review article, we give an overview of pharmacogenomics in the setting of an immunosuppressant frequently prescribed by rheumatologists, azathioprine. Azathioprine has a narrow therapeutic index and a high risk of adverse events. By applying candidate gene analysis and unbiased approaches, researchers have identified multiple variants associated with an increased risk for adverse events associated with azathioprine, particularly bone marrow suppression. Variants in two genes, TPMT and NUDT15, are widely recognized, leading drug regulatory agencies and professional organizations to adopt recommendations for testing before initiation of azathioprine therapy. As more gene-drug interactions are discovered, our field will continue to face the challenge of balancing benefits and costs associated with genetic testing. However, novel approaches in genomics and the integration of clinical and genetic factors into risk scores offer unprecedented opportunities for the application of pharmacogenomics in routine practice. Key Points • Pharmacogenomics can help us understand how individuals' genetics may impact their response to medications. • Azathioprine is a success story for the clinical implementation of pharmacogenomics, particularly the effects of TPMT and NUDT15 variants on myelosuppression. • As our knowledge advances, testing and dosing recommendations will continue to evolve, with our field striving to balance costs and benefits to patients. • As we aim toward the goals of precision medicine, future research may integrate increasingly individualized traits-including clinical and genetic characteristics-to predict the safety and efficacy of particular medications for individual patients.
Collapse
Affiliation(s)
- Laura L Daniel
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA
| | - Alyson L Dickson
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA
| | - Cecilia P Chung
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA. .,Tennessee Valley Healthcare System-Nashville Campus (CPC), Nashville, TN, USA. .,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine (CPC), Nashville, TN, USA.
| |
Collapse
|
19
|
Genetic Variants Associated With Immunosuppressant Pharmacokinetics and Adverse Effects in the DeKAF Genomics Genome-wide Association Studies. Transplantation 2020; 103:1131-1139. [PMID: 30801552 PMCID: PMC6597284 DOI: 10.1097/tp.0000000000002625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The immunosuppressants tacrolimus and mycophenolate are important components to the success of organ transplantation, but are also associated with adverse effects, such as nephrotoxicity, anemia, leukopenia, and new-onset diabetes after transplantation. In this report, we attempted to identify genetic variants which are associated with these adverse outcomes. METHODS We performed a genome-wide association study, using a genotyping array tailored specifically for transplantation outcomes containing 722 147 single nucleotide polymorphisms, and 2 cohorts of kidney allograft recipients-a discovery cohort and a confirmation cohort-to identify and then confirm genetic variants associated with immunosuppressant pharmacokinetics and adverse outcomes. RESULTS Several genetic variants were found to be associated with tacrolimus trough concentrations. We did not confirm variants associated with the other phenotypes tested although several suggestive variants were identified. CONCLUSIONS These results show that adverse effects associated with tacrolimus and mycophenolate are complex, and recipient risk is not determined by a few genetic variants with large effects with but most likely are due to many variants, each with small effect sizes, and clinical factors.
Collapse
|
20
|
Ponticelli C, Glassock RJ. Prevention of complications from use of conventional immunosuppressants: a critical review. J Nephrol 2019; 32:851-870. [PMID: 30927190 DOI: 10.1007/s40620-019-00602-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 01/08/2023]
Abstract
Synthetic immunosuppressive drugs are largely used in immune-related renal diseases and in kidney transplantation. Most of these drugs have a low therapeutic index (the ratio that compares the blood concentration at which a drug becomes toxic and the concentration at which the drug is effective), which means that the drug should be dosed carefully and the patient monitored frequently. In this review, we consider the categories of synthetic immunosuppressive agents more frequently and conventionally used in clinical nephrology: glucocorticoids, Aalkylating agents (cyclophosphamide, chlorambucil), purine synthesis inhibitors (azathioprine, mycophenolate salts) and calcineurin inhibitors (cyclosporine, tacrolimus). For each category the possible side effects will be reviewed, the general and specific measures to prevent or treat the adverse events will be suggested, and the more common mistakes that may increase the risk of toxicity will be described. However, the efficacy and safety of immunosuppressive agents depend not only on the pharmacologic characteristics of single drugs but can be influenced also by the clinical condition and genetic characteristics of the patient, by the typology and severity of the underlying disease and by the interaction with other concomitantly used drugs.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Istituto Scientifico Ospedale Maggiore, Milan, Italy.
- , Via Ampere 126, 20131, Milan, Italy.
| | - Richard J Glassock
- The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|