1
|
Pinheiro AAS, Torrecilhas AC, Souza BSDF, Cruz FF, Guedes HLDM, Ramos TD, Lopes‐Pacheco M, Caruso‐Neves C, Rocco PRM. Potential of extracellular vesicles in the pathogenesis, diagnosis and therapy for parasitic diseases. J Extracell Vesicles 2024; 13:e12496. [PMID: 39113589 PMCID: PMC11306921 DOI: 10.1002/jev2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Parasitic diseases have a significant impact on human and animal health, representing a major hazard to the public and causing economic and health damage worldwide. Extracellular vesicles (EVs) have long been recognized as diagnostic and therapeutic tools but are now also known to be implicated in the natural history of parasitic diseases and host immune response modulation. Studies have shown that EVs play a role in parasitic disease development by interacting with parasites and communicating with other types of cells. This review highlights the most recent research on EVs and their role in several aspects of parasite-host interactions in five key parasitic diseases: Chagas disease, malaria, toxoplasmosis, leishmaniasis and helminthiases. We also discuss the potential use of EVs as diagnostic tools or treatment options for these infectious diseases.
Collapse
Affiliation(s)
- Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasDiadema Campus, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)DiademaSão PauloBrazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell TherapySão Rafael HospitalSalvadorBrazil
- D'Or Institute for Research and Education (IDOR)SalvadorBrazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Tadeu Diniz Ramos
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Miqueias Lopes‐Pacheco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Deparment of PediatricsCenter for Cystic Fibrosis and Airway Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| | - Celso Caruso‐Neves
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| | - Patricia R. M. Rocco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| |
Collapse
|
2
|
Mady RF, El-Temsahy MM, Issa YA, Zaghloul AS, Khedr SI. MicroRNA mmu-miR-511-5p: A promising Diagnostic Biomarker in Experimental Toxoplasmosis Using Different Strains and Infective Doses in Mice with Different Immune States Before and After Treatment. Acta Parasitol 2024; 69:1253-1266. [PMID: 38743178 PMCID: PMC11182863 DOI: 10.1007/s11686-024-00851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Searching for a novel early diagnostic biomarker for toxoplasmosis, real-time-PCR was currently used to measure the serum mmu-miR-511-5p level in male Swiss-albino mice infected with either; ME49 or RH Toxoplasma gondii (T. gondii) strains. METHODS Three mice groups were used; (GI) constituted the non-infected control group, while (GII) and (GIII) were experimentally infected with ME49 or RH strains, respectively. GII mice were orally infected using 10 or 20 ME49 cysts (ME-10 and ME-20), both were subdivided into; non-treated (ME-10-NT and ME-20-NT) and were further subdivided into; immunocompetent (ME-10-IC and ME-20-IC) [euthanized 3-days, 1, 2, 6 or 8-weeks post-infection (PI)], and immunosuppressed using two Endoxan® injections (ME-10-IS and ME-20-IS) [euthanized 6- or 8-weeks PI], and spiramycin-treated (ME-10-SP and ME-20-SP) that received daily spiramycin, for one-week before euthanasia. GIII mice individually received 2500 intraperitoneal RH strain tachyzoites, then, were subdivided into; non-treated (RH-NT) [euthanized 3 or 5-days PI], and spiramycin-treated (RH-SP) that were euthanized 5 or 10-days PI (refer to the graphical abstract). RESULTS Revealed significant upregulation of mmu-miR-511-5p in GII, one-week PI, with gradually increased expression, reaching its maximum 8-weeks PI, especially in ME-20-NT group that received the higher infective dose. Immunosuppression increased the upregulation. Contrarily, treatment caused significant downregulation. GIII recorded significant upregulation 3-days PI, yet, treatment significantly decreased this expression. CONCLUSION Serum mmu-miR-511-5p is a sensitive biomarker for early diagnosis of ME49 and RH infection (as early as one-week and 3-days, respectively), and its expression varies according to T. gondii infective dose, duration of infection, spiramycin-treatment and host immune status.
Collapse
Affiliation(s)
- Rasha Fadly Mady
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Mona Mohamed El-Temsahy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Medical Biochemistry, College of Medicine, Arab Academy of Science, Technology and Maritime transport, New Alamein campus, Egypt
| | - Aya Saied Zaghloul
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Safaa Ibrahim Khedr
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt.
| |
Collapse
|
3
|
Doghish AS, Ali MA, Elrebehy MA, Mohamed HH, Mansour R, Ghanem A, Hassan A, Elballal MS, Elazazy O, Elesawy AE, Abdel Mageed SS, Nassar YA, Mohammed OA, Abulsoud AI. The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences. Pathol Res Pract 2023; 250:154790. [PMID: 37683390 DOI: 10.1016/j.prp.2023.154790] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Toxoplasmosis is one of the highly prevalent zoonotic diseases worldwide caused by the parasite Toxoplasma gondii (T. gondii). The infection with T. gondii could pass unidentified in immunocompetent individuals; however, latent cysts remain dormant in their digestive tract, but they could be shed and excreted with feces infesting the environment. However, active toxoplasmosis can create serious consequences, particularly in newborns and infected persons with compromised immunity. These complications include ocular toxoplasmosis, in which most cases cannot be treated. Additionally, it caused many stillbirths and miscarriages. Circulating miRNAs are important regulatory molecules ensuring that the normal physiological role of various organs is harmonious. Upon infection with T. gondii, the tightly regulated miRNA profile is disrupted to favor the parasite's survival and further participate in the disease pathogenesis. Interestingly, this dysregulated profile could be useful in acute and chronic disease discrimination and in providing insights into the pathomechanisms of the disease. Thus, this review sheds light on the various roles of miRNAs in signaling pathways regulation involved in the pathogenesis of T. gondii and provides insights into the application of miRNAs clinically for its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Hassan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
4
|
Naranjo-Galvis CA, Cardona-Londoño KY, Orrego-Cardozo M, Elcoroaristizabal-Martín X. Toxoplasma gondii infection and peripheral-blood gene expression profiling of older people reveals dysregulation of cytokines and identifies hub genes as potential therapeutic targets. Heliyon 2022; 8:e10576. [PMID: 36119857 PMCID: PMC9478394 DOI: 10.1016/j.heliyon.2022.e10576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Infections of humans with the protozoan parasite Toxoplasma gondii (T. gondii) can lead to the disease's development, even in an asymptomatic status. However, the mechanisms that result in these clinical outcomes after infection are poorly understood. This study aimed to explore the molecular pathogenesis of toxoplasmosis-related inflammation through next-generation sequencing, to assess RNA expression profiles in peripheral blood from 5 female patients with chronic toxoplasmosis and 5 healthy female controls. All plasma samples were analyzed for anti-Toxoplasma IgG and IgM antibody titers by using electrochemiluminescence. Detection of acute and chronic toxoplasmosis was carried out using the ELISA IgG avidity. We evaluated the levels of INF-γ, IL-2, IL-12, TNF-α, IL-10, and IL-1β in culture supernatants of Peripheral Blood Mononuclear Cells infected with Toxoplasma lysate antigen (TLA) prepared with tachyzoites of strain T. gondii RH. Differential expression analysis was performed using DESeq2, pathway and enrichment analysis of DEGs was done on WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) and Protein-protein interaction was carried out using NetworkAnalyst with STRING. In older people with chronic asymptomatic infection, a significant difference in the levels of inflammatory cytokines INF-γ and IL-2 was observed compared to seronegative individuals. Our results revealed differences in the regulation of critical biological processes involved in host responses to chronic T. gondii infection. Gene ontology analysis revealed several biologically relevant inflammatory and immune-related pathways.
Collapse
Affiliation(s)
- Carlos A Naranjo-Galvis
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | - Kelly Y Cardona-Londoño
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | - Mary Orrego-Cardozo
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | | |
Collapse
|
5
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
6
|
Hou Z, Zhang H, Xu K, Zhu S, Wang L, Su D, Liu J, Su S, Liu D, Huang S, Xu J, Pan Z, Tao J. Cluster analysis of splenocyte microRNAs in the pig reveals key signal regulators of immunomodulation in the host during acute and chronic Toxoplasma gondii infection. Parasit Vectors 2022; 15:58. [PMID: 35177094 PMCID: PMC8851844 DOI: 10.1186/s13071-022-05164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that can cause a geographically widespread zoonosis. Our previous splenocyte microRNA profile analyses of pig infected with T. gondii revealed that the coordination of a large number of miRNAs regulates the host immune response during infection. However, the functions of other miRNAs involved in the immune regulation during T. gondii infection are not yet known. METHODS Clustering analysis was performed by K-means, self-organizing map (SOM), and hierarchical clustering to obtain miRNA groups with the similar expression patterns. Then, the target genes of the miRNA group in each subcluster were further analyzed for functional enrichment by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway to recognize the key signaling molecules and the regulatory signatures of the innate and adaptive immune responses of the host during T. gondii infection. RESULTS A total of 252 miRNAs were successfully divided into 22 subclusters by K-means clustering (designated as K1-K22), 29 subclusters by SOM clustering (designated as SOM1-SOM29), and six subclusters by hierarchical clustering (designated as H1-H6) based on their dynamic expression levels in the different infection stages. A total of 634, 660, and 477 GO terms, 15, 26, and 14 KEGG pathways, and 16, 15, and 7 Reactome pathways were significantly enriched by K-means, SOM, and hierarchical clustering, respectively. Of note, up to 22 miRNAs mainly showing downregulated expression at 50 days post-infection (dpi) were grouped into one subcluster (namely subcluster H3-K17-SOM1) through the three algorithms. Functional analysis revealed that a large group of immunomodulatory signaling molecules were controlled by the different miRNA groups to regulate multiple immune processes, for instance, IL-1-mediated cellular response and Th1/Th2 cell differentiation partly depending on Notch signaling transduction for subclusters K1 and K2, innate immune response involved in neutrophil degranulation and TLR4 cascade signaling for subcluster K15, B cell activation for subclusters SOM17, SOM1, and SOM25, leukocyte migration, and chemokine activity for subcluster SOM9, cytokine-cytokine receptor interaction for subcluster H2, and interleukin production, chemotaxis of immune cells, chemokine signaling pathway, and C-type lectin receptor signaling pathway for subcluster H3-K17-SOM1. CONCLUSIONS Cluster analysis of splenocyte microRNAs in the pig revealed key regulatory properties of subcluster miRNA molecules and important features in the immune regulation induced by acute and chronic T. gondii infection. These results contribute new insight into the identification of physiological immune responses and maintenance of tolerance in pig spleen tissues during T. gondii infection.
Collapse
Affiliation(s)
- Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Kangzhi Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Shifan Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jiantao Liu
- YEBIO Bioengineering Co., Ltd. of QINGDAO, Qingdao, 266109, People's Republic of China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Siyang Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Zhiming Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
7
|
de Faria Junior GM, Murata FHA, Lorenzi HA, Castro BBP, Assoni LCP, Ayo CM, Brandão CC, de Mattos LC. The Role of microRNAs in the Infection by T. gondii in Humans. Front Cell Infect Microbiol 2021; 11:670548. [PMID: 34055667 PMCID: PMC8160463 DOI: 10.3389/fcimb.2021.670548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are molecules belonging to an evolutionarily conserved family of small non-coding RNAs, which act on post-transcriptional gene regulation, causing messenger RNA (mRNA) degradation or inhibiting mRNA translation into proteins. These molecules represent potential biomarkers for diagnosis, non-invasive prognosis, and monitoring the development of the disease. Moreover, they may provide additional information on the pathophysiology of parasitic infections and guide strategies for treatment. The Apicomplexan parasite Toxoplasma gondii modifies the levels of microRNAs and mRNAs in infected host cells by modulating the innate and adaptive immune responses, facilitating its survival within the host. Some studies have shown that microRNAs are promising molecular markers for developing diagnostic tools for human toxoplasmosis. MicroRNAs can be detected in human specimens collected using non-invasive procedures. changes in the circulating host microRNAs have been associated with T. gondii infection in mice and ocular toxoplasmosis in humans. Besides, microRNAs can be amplified from samples using sensitive and molecular-specific approaches such as real-time PCR. This review presents recent findings of the role that microRNAs play during T. gondii infection and discuss their potential use of these small nuclei acid molecules to different approaches such as laboratory diagnosis, modulation of cell and tissue infected as other potential applications in human toxoplasmosis.
Collapse
Affiliation(s)
- Geraldo Magela de Faria Junior
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Fernando Henrique Antunes Murata
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | | | - Bruno Bello Pede Castro
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Letícia Carolina Paraboli Assoni
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Christiane Maria Ayo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| |
Collapse
|
8
|
Shi W, He JJ, Mei XF, Lu KJ, Zeng ZX, Zhang YY, Sheng ZA, Elsheikha HM, Huang WY, Zhu XQ. Dysregulation of hepatic microRNA expression in C57BL/6 mice affected by excretory-secretory products of Fasciola gigantica. PLoS Negl Trop Dis 2020; 14:e0008951. [PMID: 33332355 PMCID: PMC7775122 DOI: 10.1371/journal.pntd.0008951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The excretory-secretory products released by the liver fluke Fasciola gigantica (FgESPs) play important roles in regulating the host immune response during the infection. Identification of hepatic miRNAs altered by FgESPs may improve our understanding of the pathogenesis of F. gigantica infection. In this study, we investigated the alterations in the hepatic microRNAs (miRNAs) in mice treated with FgESPs using high-throughput small RNA (sRNA) sequencing and bioinformatics analysis. The expression of seven miRNAs was confirmed by quantitative stem-loop reverse transcription quantitative PCR (qRT-PCR). A total of 1,313 miRNAs were identified in the liver of mice, and the differentially expressed (DE) miRNAs varied across the time lapsed post exposure to FgESPs. We identified 67, 154 and 53 dysregulated miRNAs at 1, 4 and 12 weeks post-exposure, respectively. 5 miRNAs (miR-126a-3p, miR-150-5p, miR-155-5p, miR-181a-5p and miR-362-3p) were commonly dysregulated at the three time points. We also found that most of the DE miRNAs were induced by FgESPs in the mouse liver after 4 weeks of exposure. These were subjected to Gene Ontology (GO) enrichment analysis, which showed that the predicted targets of the hepatic DE miRNAs of mice 4 weeks of FgESPs injection were enriched in GO terms, including cell membrane, ion binding, cellular communication, organelle and DNA damage. KEGG analysis indicated that the predicted targets of the most downregulated miRNAs were involved in 15 neural activity-related pathways, 6 digestion-related pathways, 20 immune response-related pathways and 17 cancer-related pathways. These data provide new insights into how FgESPs can dysregulate hepatic miRNAs, which play important roles in modulating several aspects of F. gigantica pathogenesis.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- * E-mail:
| | - Xue-Fang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ke-Jing Lu
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zi-Xuan Zeng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yao-Yao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhao-An Sheng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Wei-Yi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People’s Republic of China
| |
Collapse
|
9
|
Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Rojas-Pirela M, Maya JD, Prieto H, Kemmerling U. Trypanosoma cruzi and Toxoplasma gondii Induce a Differential MicroRNA Profile in Human Placental Explants. Front Immunol 2020; 11:595250. [PMID: 33240284 PMCID: PMC7677230 DOI: 10.3389/fimmu.2020.595250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi and Toxoplasma gondii are two parasites than can be transmitted from mother to child through the placenta. However, congenital transmission rates are low for T. cruzi and high for T. gondii. Infection success or failure depends on complex parasite-host interactions in which parasites can alter host gene expression by modulating non-coding RNAs such as miRNAs. As of yet, there are no reports on altered miRNA expression in placental tissue in response to either parasite. Therefore, we infected human placental explants ex vivo by cultivation with either T. cruzi or T. gondii for 2 h. We then analyzed the miRNA expression profiles of both types of infected tissue by miRNA sequencing and quantitative PCR, sequence-based miRNA target prediction, pathway functional enrichment, and upstream regulator analysis of differentially expressed genes targeted by differentially expressed miRNAs. Both parasites induced specific miRNA profiles. GO analysis revealed that the in silico predicted targets of the differentially expressed miRNAs regulated different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the differentially expressed miRNAs identified here modulated crucial host cellular targets that participate in determining the success of infection, these miRNAs might explain the differing congenital transmission rates between the two parasites. Molecules of the different pathways that are regulated by miRNAs and modulated during infection, as well as the miRNAs themselves, may be potential targets for the therapeutic control of either congenital Chagas disease or toxoplasmosis.
Collapse
Affiliation(s)
- Lisvaneth Medina
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Jesús Guerrero-Muñoz
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Maura Rojas-Pirela
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Humberto Prieto
- Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Rudzinski M, Pardini L, Bernstein M, Moré G, Khoury M, Duarte SC, Argüelles C, Reina S, Oubiña JR. Interferon-γ and IL-10 Release Assay for Patients with Ocular Toxoplasmosis. Am J Trop Med Hyg 2020; 103:2239-2243. [PMID: 32901605 DOI: 10.4269/ajtmh.20-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) from patients with ocular toxoplasmosis were challenged with total antigens from Toxoplasma gondii lysate (TATL) in a cytokine release assay (CRA), run during the inactive period of the disease. Increased interferon gamma (IFN-γ) levels were detected after PBMC stimulation with either ME49 reference strain (P = 0.0015) or local TgCkAr-11-9 isolate (P = 0.0012), as compared with those recorded under basal conditions. TATL from TgCkAr11-9 isolate induced a higher release of IFN-γ than ME49 strain in CRA from all tested patients (P = 0.02). The median value of IFN-γ release on TgCkAr-11-9 stimulation (26.03 pg/mL) allowed the classification of patients into high- or low-/non-IFN-γ releasers. Clinical correlations were established with both groups. The results obtained in this study suggest the need to include local strains when performing CRA with TATL.
Collapse
Affiliation(s)
- Marcelo Rudzinski
- Facultad de Ciencias de la Salud, Centro de Investigación, Universidad Católica de las Misiones (UCAMI), Posadas, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Cátedra de Oftalmología, Universidad Católica de las Misiones (UCAMI), Posadas, Argentina
| | - Lais Pardini
- Facultad de Ciencias Veterinarias, Laboratorio de Inmunoparasitología, Universidad Nacional de La Plata (UNLP), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mariana Bernstein
- Facultad de Ciencias Veterinarias, Laboratorio de Inmunoparasitología, Universidad Nacional de La Plata (UNLP), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gastón Moré
- Facultad de Ciencias Veterinarias, Laboratorio de Inmunoparasitología, Universidad Nacional de La Plata (UNLP), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marina Khoury
- Dirección de Docencia e Investigación, Instituto de Investigaciones Médicas "Alfredo Lanari", Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Carolina Duarte
- Facultad de Ciencias de la Salud, Centro de Investigación, Universidad Católica de las Misiones (UCAMI), Posadas, Argentina
| | - Carina Argüelles
- Cátedra de Biología Molecular, Universidad Católica de las Misiones (UCAMI), Posadas, Argentina
| | - Silvia Reina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Facultad de Ciencias de la Salud, Centro de Investigación, Universidad Católica de las Misiones (UCAMI), Posadas, Argentina
| | - José Raúl Oubiña
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Abo-Al-Ela HG. Toxoplasmosis and Psychiatric and Neurological Disorders: A Step toward Understanding Parasite Pathogenesis. ACS Chem Neurosci 2020; 11:2393-2406. [PMID: 31268676 DOI: 10.1021/acschemneuro.9b00245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toxoplasmosis, a disease that disrupts fetal brain development and severely affects the host's brain, has been linked to many behavioral and neurological disorders. There is growing interest in how a single-celled neurotropic parasite, Toxoplasma gondii, can control or change the behavior of the host as well as how it dominates the host's neurons. Secrets beyond these could be answered by decoding the Toxoplasma gondii genome, unravelling the function of genomic sequences, and exploring epigenetics and mRNAs alterations, as well as the postulated mechanisms contributing to various neurological and psychiatric symptoms caused by this parasite. Substantial efforts have been made to elucidate the action of T. gondii on host immunity and the biology of its infection. However, the available studies on the molecular aspects of toxoplasmosis that affect central nervous system (CNS) circuits remain limited, and much research is still needed on this interesting topic. In my opinion, this parasite is a gift for studying the biology of the nervous system and related diseases. We should utilize the unique features of Toxoplasma, such as its abilities to modulate brain physiology, for neurological studies or as a possible tool or approach to cure neurological disease.
Collapse
Affiliation(s)
- Haitham G. Abo-Al-Ela
- Animal Health Research Institute, Agriculture Research Center, Shibin Al-Kom, El-Minufiya 7001, Egypt
| |
Collapse
|
12
|
Pereira IDS, Maia MM, da Cruz AB, Telles JPM, Vidal JE, Gava R, Meira-Strejevitch CS, Pereira-Chioccola VL. Plasma extracellular microRNAs are related to AIDS/cerebral toxoplasmosis co-infection. Parasite Immunol 2020; 42:e12696. [PMID: 31945196 DOI: 10.1111/pim.12696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
This study investigated the potential of five miRNA candidates for cerebral toxoplasmosis/HIV co-infection (CT/HIV) biomarkers. miR-155-5p, miR-146a-5p, miR-21-5p, miR-125b-5p and miR-29c-3p were tested in 79 plasma divided into groups: 32 CT/HIV patients; 27 individuals with asymptomatic toxoplasmosis (AT); and 20 individuals seronegative for toxoplasmosis (NC). From each was collected peripheral blood/EDTA for laboratory diagnosis. Blood cells for DNA extractions (molecular diagnosis), plasma for RNA extractions (gene expression) and ELISA (serological diagnosis). miRNA expression was performed by qPCR, and values were expressed in Relative Quantification (RQ). Among the five miRNAs, miR-21-5p and miR-146a-5p were up-expressed in CT/HIV group when compared with AT and NC groups. RQ means for miR-21-5p and miR-146a-5p in CT/HIV group were 3.829 and 2.500, while in AT group, were 1.815 and 1.661, respectively. Differences between 3 groups were statistically significant (Kruskal-Wallis ANOVA test), as well as CT/HIV and AT groups (Mann-Whitney test). Plasma of CT/HIV and AT groups expressed similar levels of miR-29c-3p, miR-155-5p and miR-125b-5p. As NC group was different of CT/HIV and AT groups, differences between three groups were statistically significant (Kruskal-Wallis ANOVA test). No difference was shown between CT/HIV and AT groups (Mann-Whitney test). These results suggest the host miRNAs modulation by Toxoplasma gondii.
Collapse
Affiliation(s)
| | - Marta Marques Maia
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - Allecineia Bispo da Cruz
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | - Jose Ernesto Vidal
- Instituto de Infectologia Emilio Ribas, São Paulo, Brazil.,Faculdade de Medicina, Hospital das Clínicas, da Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Investigação Médica (LIM) 49, Instituto de Medicina Tropical da Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Gava
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | |
Collapse
|
13
|
Meira-Strejevitch CS, Pereira IDS, Hippólito DDC, Maia MM, Cruz AB, Gava R, Brandão de Mattos CC, Frederico FB, Siqueira RC, Mattos LC, Pereira-Chioccola VL. Ocular toxoplasmosis associated with up-regulation of miR-155-5p/miR-29c-3p and down-regulation of miR-21-5p/miR-125b-5p. Cytokine 2020; 127:154990. [PMID: 31945658 DOI: 10.1016/j.cyto.2020.154990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Ocular toxoplasmosis (OT) is one of the most common manifestations of Toxoplasma gondii infection and can be related with congenital or acquired infections. OT cause posterior uveitis that cause serious sequelae as complete loss of vision. microRNAs (miRNAs) are small non-coding RNAs, which have regulatory roles in cells by silencing messenger RNA. This study evaluated gene expression of miR-155-5p, miR-146a-5p, miR-21-5p, miR-29c-3p and miR-125b-5p in plasma of 51 patients with ocular toxoplasmosis (OT Group), 26 individuals with asymptomatic toxoplasmosis (AT Group), and 25 healthy individuals seronegative for toxoplasmosis (NC Group). Peripherical blood samples were collected in tube with EDTA for plasma isolation, laboratorial diagnosis for toxoplasmosis and RNA extraction. miRNA expression of each sample was performed by qPCR and values were expressed in Relative Quantification (RQ). Results showed that miR-155-5p and miR-29c-3p were up-expressed in OT patients than AT individuals. On the other hand, miR-21-5p and miR-125b-5p were down-expressed in OT patients. Differences were statistically significant. miR-146a-5p expression was similar in OT patients and AT individuals, without significant difference. In addition, comparative analysis for miRNA levels between AT and OT groups confirms these results. So far, this is the first study to evaluate circulating miRNA levels in ocular toxoplasmosis. These findings may contribute to further studies evaluating the exact role of these miRNAs in the course of infection, which may help in understanding the complex parasite-host interaction and future use in diagnosis, prognosis and therapeutic control in ocular toxoplasmosis.
Collapse
Affiliation(s)
| | | | | | - Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | | | - Ricardo Gava
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | | | - Fábio Batista Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil.
| | - Rubens Camargo Siqueira
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil.
| | - Luiz Carlos Mattos
- Laboratório de Imunogenética, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil.
| | | |
Collapse
|
14
|
Sobati H, Dalimi A, Kazemi B, Ghaffarifar F. Evaluation of Anti-Toxoplasma gondii Immune Responses in BALB/c Mice Induced by DNA Vaccines Encoding Surface Antigen 1 (SAG1) and 3 (SAG3). MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2019. [DOI: 10.3103/s0891416819010099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Khan IA, Hwang S, Moretto M. Toxoplasma gondii: CD8 T Cells Cry for CD4 Help. Front Cell Infect Microbiol 2019; 9:136. [PMID: 31119107 PMCID: PMC6504686 DOI: 10.3389/fcimb.2019.00136] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii, an apicomplexan parasite, is a pathogenic protozoan that can infect the central nervous system. In pregnant women, infection can result in congenital problems of the fetus, while in immunocompromised individual it can lead to severe neurological consequences. Although CD8 T cells play an important effector role in controlling the chronic infection, their maintenance is dependent on the critical help provided by CD4 T cells. In a recent study, we demonstrated that reactivation of the infection in chronically infected host is a consequence of CD8 T dysfunction caused by CD4 T cell exhaustion. Furthermore, treatment of chronically infected host with antigen-specific non-exhausted CD4 T cells can restore CD8 T cell functionality and prevent reactivation of the latent infection. The exhaustion status of CD4 T cells is mediated by the increased expression of the transcription factor BLIMP-1, and deletion of this molecule led to the restoration of CD4 T cell function, reversal of CD8 exhaustion and prevention of reactivation of the latent infection. In a recent study from our laboratory, we also observed an increased expression of miR146a levels by CD4 T cells from the chronically infected animals. Recent reports have demonstrated that microRNAs (especially miR146a) has a strong impact on the immune system of T. gondii infected host. Whether these molecules have any role in the BLIMP-1 up-regulation and dysfunctionality of these cells needs to be investigated.
Collapse
Affiliation(s)
- Imtiaz A. Khan
- Department Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | | | | |
Collapse
|
16
|
Koh CS, Sarin LP. Transfer RNA modification and infection – Implications for pathogenicity and host responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:419-432. [DOI: 10.1016/j.bbagrm.2018.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
|
17
|
Liu W, Huang L, Wei Q, Zhang Y, Zhang S, Zhang W, Cai L, Liang S. Microarray analysis of long non-coding RNA expression profiles uncovers a Toxoplasma-induced negative regulation of host immune signaling. Parasit Vectors 2018. [PMID: 29530077 PMCID: PMC5848448 DOI: 10.1186/s13071-018-2697-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect mammalian cells and thereby regulate host gene expression. The long non-coding RNAs (lncRNAs) have been demonstrated to be an important class of RNA molecules that regulate many biological processes, including host-pathogen interactions. However, the role of host lncRNAs in the response to T. gondii infection remains largely unknown. METHODS We applied a microarray approach to determine the differential expression profiles of both lncRNAs and mRNAs in the human foreskin fibroblast (HFF) cells after T. gondii infection. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the potential functions of T. gondii-induced genes. Based on the co-expression networks of lncRNAs and immune-related genes, the role of NONSHAT022487 on the regulation of UNC93B1 related immune signaling was investigated by the knockdown and over-expression of lncRNA in human macrophage derived from the PMA-induced promonocytic cell line THP-1. RESULTS Our data showed that 996 lncRNAs and 109 mRNAs in HFF cells were significantly and differentially expressed following T. gondii infection (fold change ≥ 5, P < 0.05). The results from the GO and KEGG pathway analyses indicated that the mRNAs with differential expression were mainly involved in the host immune response. Remarkably, we identified a novel lncRNA, NONSHAT022487, which suppresses the expression of the immune-related molecule UNC93B1. After T. gondii infection, NONSHAT022487 impaired the secretion of the cytokines IL-12, TNF-α, IL-1β and IFN-γ by downregulating UNC93B1 expression in human macrophage cells. CONCLUSIONS Our study identified infection-induced lncRNA expression as a novel mechanism by which the Toxoplasma parasite regulates host immune signaling, which advances our understanding of the interaction of T. gondii parasites and host cells.
Collapse
Affiliation(s)
- Wenquan Liu
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liyang Huang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qimei Wei
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shengnan Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenting Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liya Cai
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shaohui Liang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
18
|
Insights into the molecular basis of host behaviour manipulation by Toxoplasma gondii infection. Emerg Top Life Sci 2017; 1:563-572. [PMID: 33525856 DOI: 10.1042/etls20170108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Typically illustrating the 'manipulation hypothesis', Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T. gondii infection and changes in brain homeostasis. Moreover, it is barely known which among the brain regions governing fear and stress responses are preferentially affected during T. gondii infection. Studies aiming at an in-depth dissection of underlying molecular mechanisms occurring at the host and parasite levels will be discussed in this review. Addressing this reminiscent topic in the light of recent technical progress and new discoveries regarding fear response, olfaction and neuromodulator mechanisms could contribute to a better understanding of this complex host-parasite interaction.
Collapse
|
19
|
Britton C. microRNAs-key players in host-parasite interactions. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Affiliation(s)
- C. Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|