1
|
Mohammadi F, Nejatollahi M, Sheikhnia F, Ebrahimi Y, Mohammadi M, Rashidi V, Alizadeh-Fanalou S, Azizzadeh B, Majidinia M. MiRNAs: main players of cancer drug resistance target ABC transporters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6239-6291. [PMID: 39808313 DOI: 10.1007/s00210-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters. Furthermore, additional mechanisms, such as the malfunctioning of apoptosis, alterations in DNA repair systems, and resistance mechanisms inherent to cancer stem cells, exacerbate the issue. Intriguingly, microRNAs (miRNAs) have demonstrated potential in modulating chemoresistance by specifically targeting ABC transporters, thereby offering promising new avenues for overcoming drug resistance. This narrative review aims to elucidate the molecular underpinnings of drug resistance, with a particular focus on the roles of ABC transporters and the regulatory influence of miRNAs on these transporters.
Collapse
Affiliation(s)
- Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Masoumeh Nejatollahi
- Research Center for High School Students, Education System Zanjan Province, Zanjan, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
3
|
Afroze N, Sundaram MK, Haque S, Hussain A. Long non-coding RNA involved in the carcinogenesis of human female cancer - a comprehensive review. Discov Oncol 2025; 16:122. [PMID: 39912983 PMCID: PMC11803034 DOI: 10.1007/s12672-025-01848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Recent years have seen an increase in our understanding of lncRNA and their role in various disease states. lncRNA molecules have been shown to contribute to carcinogenesis and influence the various cancer hallmarks and signalling pathways. It is pertinent to understand the specific contributions and mechanisms of action of these molecules in various cancers. This review provides an overview of the various lncRNA entities that influence and regulate the gynaecological cancers, namely, cervical, breast, ovarian and uterine cancers. The review curates a list of the key players and their effect on cellular processes. lncRNA molecules show immense potential to be used as diagnostic and prognostic indicators and in therapeutic strategies. Several phytochemicals, small molecules, RNA-based regulators, oligos and gene editing tools show promise as a therapeutic strategy. While this review highlights the promising developments in this field, it also underscores the necessity for further research to delineate the complex role of lncRNAs in cancer.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Madhumitha K Sundaram
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates.
| |
Collapse
|
4
|
Sarkar S, Ghosh SS. Synergistic Effect of Salinomycin With Budesonide on TNBC Regression via EMT Reversal and Autophagy Induction. J Biochem Mol Toxicol 2024; 38:e70045. [PMID: 39526549 DOI: 10.1002/jbt.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature, lack of specific therapeutic targets, and drug resistance. Chemotherapy resistance in TNBC is largely driven by the abnormal activation of epithelial-to-mesenchymal transition (EMT) and the associated cancer stem cell-like characteristics. The combination of multiple chemotherapeutic drugs has shown promise as a treatment approach for TNBC. This study evaluates the efficacy of a novel combination therapy involving the anti-inflammatory drug Budesonide and Salinomycin, which targets cancer stem cells. Co-administration of Budesonide and Salinomycin demonstrated a synergistic effect in inhibiting TNBC cell growth by activating the intrinsic apoptosis pathway. It induced a 2- to 3-fold increase in intracellular reactive oxygen species (ROS) generation and a 25%-30% rise in mitochondrial membrane depolarization. Additionally, extensive signaling studies revealed that the co-treatment specifically targeted multiple signaling nodes, limiting downstream crosstalk. The combination also enhanced autophagic activity by inhibiting the AKT/mTOR pathway and reduced cell migration and stemness by suppressing the EMT process. Therefore, the combination of Budesonide and Salinomycin offers a novel therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Shilpi Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
5
|
Reina C, Šabanović B, Lazzari C, Gregorc V, Heeschen C. Unlocking the future of cancer diagnosis - promises and challenges of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl Res 2024; 272:41-53. [PMID: 38838851 DOI: 10.1016/j.trsl.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The advent of liquid biopsies has brought significant changes to the diagnosis and monitoring of non-small cell lung cancer (NSCLC), presenting both promise and challenges. Molecularly targeted drugs, capable of enhancing survival rates, are now available to around a quarter of NSCLC patients. However, to ensure their effectiveness, precision diagnosis is essential. Circulating tumor DNA (ctDNA) analysis as the most advanced liquid biopsy modality to date offers a non-invasive method for tracking genomic changes in NSCLC. The potential of ctDNA is particularly rooted in its ability to furnish comprehensive (epi-)genetic insights into the tumor, thereby aiding personalized treatment strategies. One of the key advantages of ctDNA-based liquid biopsies in NSCLC is their ability to capture tumor heterogeneity. This capability ensures a more precise depiction of the tumor's (epi-)genomic landscape compared to conventional tissue biopsies. Consequently, it facilitates the identification of (epi-)genetic alterations, enabling informed treatment decisions, disease progression monitoring, and early detection of resistance-causing mutations for timely therapeutic interventions. Here we review the current state-of-the-art in ctDNA-based liquid biopsy technologies for NSCLC, exploring their potential to revolutionize clinical practice. Key advancements in ctDNA detection methods, including PCR-based assays, next-generation sequencing (NGS), and digital PCR (dPCR), are discussed, along with their respective strengths and limitations. Additionally, the clinical utility of ctDNA analysis in guiding treatment decisions, monitoring treatment response, detecting minimal residual disease, and identifying emerging resistance mechanisms is examined. Liquid biopsy analysis bears the potential of transforming NSCLC management by enabling non-invasive monitoring of Minimal Residual Disease and providing early indicators for response to targeted treatments including immunotherapy. Furthermore, considerations regarding sample collection, processing, and data interpretation are highlighted as crucial factors influencing the reliability and reproducibility of ctDNA-based assays. Addressing these challenges will be essential for the widespread adoption of ctDNA-based liquid biopsies in routine clinical practice, ultimately paving the way toward personalized medicine and improved outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy;.
| |
Collapse
|
6
|
Philipp LM, Yesilyurt UU, Surrow A, Künstner A, Mehdorn AS, Hauser C, Gundlach JP, Will O, Hoffmann P, Stahmer L, Franzenburg S, Knaack H, Schumacher U, Busch H, Sebens S. Epithelial and Mesenchymal-like Pancreatic Cancer Cells Exhibit Different Stem Cell Phenotypes Associated with Different Metastatic Propensities. Cancers (Basel) 2024; 16:686. [PMID: 38398077 PMCID: PMC10886860 DOI: 10.3390/cancers16040686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is mostly diagnosed at advanced or even metastasized stages, limiting the prognoses of patients. Metastasis requires high tumor cell plasticity, implying phenotypic switching in response to changing environments. Here, epithelial-mesenchymal transition (EMT), being associated with an increase in cancer stem cell (CSC) properties, and its reversion are important. Since it is poorly understood whether different CSC phenotypes exist along the EMT axis and how these impact malignancy-associated properties, we aimed to characterize CSC populations of epithelial and mesenchymal-like PDAC cells. Single-cell cloning revealed CSC (Holoclone) and non-CSC (Paraclone) clones from the PDAC cell lines Panc1 and Panc89. The Panc1 Holoclone cells showed a mesenchymal-like phenotype, dominated by a high expression of the stemness marker Nestin, while the Panc89 Holoclone cells exhibited a SOX2-dominated epithelial phenotype. The Panc89 Holoclone cells showed enhanced cell growth and a self-renewal capacity but slow cluster-like invasion. Contrarily, the Panc1 Holoclone cells showed slower cell growth and self-renewal ability but were highly invasive. Moreover, cell variants differentially responded to chemotherapy. In vivo, the Panc1 and Panc89 cell variants significantly differed regarding the number and size of metastases, as well as organ manifestation, leading to different survival outcomes. Overall, these data support the existence of different CSC phenotypes along the EMT axis in PDAC, manifesting different metastatic propensities.
Collapse
Affiliation(s)
- Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Umut-Ulas Yesilyurt
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Arne Surrow
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Anne-Sophie Mehdorn
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Charlotte Hauser
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Jan-Paul Gundlach
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Clinic of Radiology and Neuroradiology, Kiel University, UKSH, Campus Kiel, 24118 Kiel, Germany
| | - Patrick Hoffmann
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Lea Stahmer
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University, 24118 Kiel, Germany
| | - Hendrike Knaack
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
- Academic Affairs Office, Hannover Medical School, 30625 Hannover, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| |
Collapse
|
7
|
Uehara M, Domoto T, Takenaka S, Takeuchi O, Shimasaki T, Miyashita T, Minamoto T. Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:4. [PMID: 38318525 PMCID: PMC10838383 DOI: 10.20517/cdr.2023.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Satoshi Takenaka
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Takeo Shimasaki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Tomoharu Miyashita
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| |
Collapse
|
8
|
Nojszewska N, Idilli O, Sarkar D, Ahouiyek Z, Arroyo-Berdugo Y, Sandoval C, Amin-Anjum MS, Bowers S, Greaves D, Saeed L, Khan M, Salti S, Al-Shami S, Topoglu H, Punzalan JK, Farias JG, Calle Y. Bone marrow mesenchymal/fibroblastic stromal cells induce a distinctive EMT-like phenotype in AML cells. Eur J Cell Biol 2023; 102:151334. [PMID: 37354622 DOI: 10.1016/j.ejcb.2023.151334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
The development of epithelial-to-mesenchymal transition (EMT) like features is emerging as a critical factor involved in the pathogenesis of acute myeloid leukaemia (AML). However, the extracellular signals and the signalling pathways in AML that may regulate EMT remain largely unstudied. We found that the bone marrow (BM) mesenchymal/fibroblastic cell line HS5 induces an EMT-like migratory phenotype in AML cells. AML cells underwent a strong increase of vimentin (VIM) levels that was not mirrored to the same extent by changes of expression of the other EMT core proteins SNAI1 and SNAI2. We validated these particular pattern of co-expression of core-EMT markers in AML cells by performing an in silico analysis using datasets of human tumours. Our data showed that in AML the expression levels of VIM does not completely correlate with the co-expression of core EMT markers observed in epithelial tumours. We also found that vs epithelial tumours, AML cells display a distinct patterns of co-expression of VIM and the actin binding and adhesion regulatory proteins that regulate F-actin dynamics and integrin-mediated adhesions involved in the invasive migration in cells undergoing EMT. We conclude that the BM stroma induces an EMT related pattern of migration in AML cells in a process involving a distinctive regulation of EMT markers and of regulators of cell adhesion and actin dynamics that should be further investigated. Understanding the tumour specific signalling pathways associated with the EMT process may contribute to the development of new tailored therapies for AML as well as in different types of cancers.
Collapse
Affiliation(s)
- N Nojszewska
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - O Idilli
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - D Sarkar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Z Ahouiyek
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Y Arroyo-Berdugo
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - C Sandoval
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - M S Amin-Anjum
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Bowers
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - D Greaves
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - L Saeed
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - M Khan
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Salti
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Al-Shami
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - H Topoglu
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - J K Punzalan
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - J G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Y Calle
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
9
|
Swain AK, Pandey P, Sera R, Yadav P. Single-cell transcriptome analysis identifies novel biomarkers involved in major liver cancer subtypes. Funct Integr Genomics 2023; 23:235. [PMID: 37438675 DOI: 10.1007/s10142-023-01156-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two aggressive subtypes of liver cancer (LC). Immense cellular heterogeneity and cross-talk between cancer and healthy cells make it challenging to treat these cancer subtypes. To address these challenges, the study aims to systematically characterize the tumor heterogeneity of LC subtypes using single-cell RNA sequencing (scRNA-seq) datasets. The study combined 51,927 single cells from HCC, ICC, and healthy scRNA-seq datasets. After integrating the datasets, cell groups with similar gene expression patterns are clustered and cluster annotation has been performed based on gene markers. Cell-cell communication analysis (CCA) was implemented to understand the cross-talk between various cell types. Further, differential gene expression analysis and enrichment analysis were carried out to identify unique molecular drivers associated with HCC and ICC. Our analysis identified T cells, hepatocytes, epithelial cells, and monocyte as the major cell types present in the tumor microenvironment. Among them, abundance of natural killer (NK) cells in HCC, epithelial cells, and hepatocytes in ICC was detected. CCA revealed key interaction between T cells to NK cells in HCC and smooth muscle cells to epithelial cells in the ICC. Additionally, SOX4 and DTHD1 are the top differentially expressed genes (DEGs) in HCC, while keratin and CCL4 are in ICC. Enrichment analysis of DEGs reveals major upregulated genes in HCC affect protein folding mechanism and in ICC alter pathways involved in cell adhesion. The findings suggest potential targets for the development of novel therapeutic strategies for the treatment of these two aggressive subtypes of LC.
Collapse
Affiliation(s)
- Asish Kumar Swain
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Prashant Pandey
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Riddhi Sera
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Pankaj Yadav
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
- School of Artificial Intelligence and Data Science, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
| |
Collapse
|
10
|
Naeem P, Baumgartner A, Ghaderi N, Sefat F, Alhawamdeh M, Heidari S, Shahzad F, Swaminathan K, Akhbari P, Isreb M, Anderson D, Wright A, Najafzadeh M. Anticarcinogenic impact of extracellular vesicles (exosomes) from cord blood stem cells in malignant melanoma: A potential biological treatment. J Cell Mol Med 2022; 27:222-231. [PMID: 36545841 PMCID: PMC9843520 DOI: 10.1111/jcmm.17639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Incidence of Malignant Melanoma has become the 5th in the UK. To date, the major anticancer therapeutics include cell therapy, immunotherapy, gene therapy and nanotechnology-based strategies. Recently, extracellular vesicles, especially exosomes, have been highlighted for their therapeutic benefits in numerous chronic diseases. Exosomes display multifunctional properties, including inhibition of cancer cell proliferation and initiation of apoptosis. In the present in vitro study, the antitumour effect of cord blood stem cell (CBSC)-derived exosomes was confirmed by the CCK-8 assay (p < 0.05) on CHL-1 melanoma cells and improve the repair mechanism on lymphocytes from melanoma patients. Importantly, no significant effect was observed in healthy lymphocytes when treated with the exosome concentrations at 24, 48 and 72 h. Comet assay results (OTM and %Tail DNA) demonstrated that the optimal exosome concentration showed a significant impact (p < 0.05) in lymphocytes from melanoma patients whilst causing no significant DNA damage in lymphocytes of healthy volunteers was 300 μg/ml. Similarly, the Comet assay results depicted significant DNA damage in a melanoma cell line (CHL-1 cells) treated with CBSC-derived exosomes, both the cytotoxicity of CHL-1 cells treated with CBSC-derived exosomes exhibited a significant time-dependent decrease in cell survival. Sequencing analysis of CBSC exosomes showed the presence of the let-7 family of miRNAs, including let-7a-5p, let-7b-5p, let-7c-5p, let-7d-3p, let-7d-5p and two novel miRNAs. The potency of CBSC exosomes in inhibiting cancer progression in lymphocytes from melanoma patients and CHL-1 cells whilst causing no harm to the healthy lymphocytes makes it a potential candidate as an anticancer therapy.
Collapse
Affiliation(s)
- Parisa Naeem
- School of Life SciencesUniversity of BradfordBradfordUK
| | - Adi Baumgartner
- School of Science, Technology and Health, BiosciencesYork St John UniversityYorkUK
| | - Nader Ghaderi
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, Faculty of Engineering and InformaticsUniversity of BradfordBradfordUK
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesMutah UniversityAlkarakJordan
| | - Saeed Heidari
- Cell Therapy and Tissue engineering Department, Faculty of Medical SciencesShahid Beheshti UniversityTehranIran
| | | | | | - Pouria Akhbari
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Mohammad Isreb
- School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | | | - Andrew Wright
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | | |
Collapse
|
11
|
Wen X, Wu Y, Lou Y, Xia Y, Yu X. The roles of Linc-ROR in the regulation of cancer stem cells. Transl Oncol 2022; 28:101602. [PMID: 36535192 PMCID: PMC9791587 DOI: 10.1016/j.tranon.2022.101602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/06/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are considered to be a kind of tumor cell population characterized by self-renewal, easy to metastasize and drug resistance, which play an indispensable role in the occurrence, development, metastasis and drug resistance of tumors, and their existence is an important reason for high metastasis and recurrence of tumors. Long non-coding RNAs (LncRNAs), which are more than 200 nucleotides in length, have a close relationship with the malignant progression of cancer.In recent years, abundant studies have reavling that LncRNAs are beneficial to the regulation of various cancer stem cells. Linc-ROR, as a newly discovered intergenic non-protein-coding RNA in recent years, is considered to be a key regulator affecting the development of human tumors. Dysregulation of Linc-ROR is related to stemness phenotype and functional regulation of cancer stem cells. For that, Linc-ROR has the potential to be used as a diagnostic biomarker for cancer patients and can serve as a clinically meaningful potential therapeutic target. In this review, we generalize the existing research results on the important role of Linc-ROR in regulation of CSCs.
Collapse
Affiliation(s)
- Xiaoling Wen
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China
| | - Yingying Wu
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China
| | - Yanhui Lou
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China..
| | - Yufang Xia
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China
| | - Xiao Yu
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China
| |
Collapse
|
12
|
Ma XY, Hill BD, Hoang T, Wen F. Virus-inspired strategies for cancer therapy. Semin Cancer Biol 2022; 86:1143-1157. [PMID: 34182141 PMCID: PMC8710185 DOI: 10.1016/j.semcancer.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023]
Abstract
The intentional use of viruses for cancer therapy dates back over a century. As viruses are inherently immunogenic and naturally optimized delivery vehicles, repurposing viruses for drug delivery, tumor antigen presentation, or selective replication in cancer cells represents a simple and elegant approach to cancer treatment. While early virotherapy was fraught with harsh side effects and low response rates, virus-based therapies have recently seen a resurgence due to newfound abilities to engineer and tune oncolytic viruses, virus-like particles, and virus-mimicking nanoparticles for improved safety and efficacy. However, despite their great potential, very few virus-based therapies have made it through clinical trials. In this review, we present an overview of virus-inspired approaches for cancer therapy, discuss engineering strategies to enhance their mechanisms of action, and highlight their application for overcoming the challenges of traditional cancer therapies.
Collapse
Affiliation(s)
- Xiao Yin Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brett D Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trang Hoang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
13
|
Ünlü B, Kocatürk B, Rondon AMR, Lewis CS, Swier N, van den Akker RFP, Krijgsman D, Noordhoek I, Blok EJ, Bogdanov VY, Ruf W, Kuppen PJK, Versteeg HH. Integrin regulation by tissue factor promotes cancer stemness and metastatic dissemination in breast cancer. Oncogene 2022; 41:5176-5185. [PMID: 36271029 DOI: 10.1038/s41388-022-02511-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Tissue Factor (TF) is the initiator of blood coagulation but also functions as a signal transduction receptor. TF expression in breast cancer is associated with higher tumor grade, metastasis and poor survival. The role of TF signaling on the early phases of metastasis has never been addressed. Here, we show an association between TF expression and metastasis as well as cancer stemness in 574 breast cancer patients. In preclinical models, blockade of TF signaling inhibited metastasis tenfold independent of primary tumor growth. TF blockade caused a reduction in epithelial-to-mesenchymal-transition, cancer stemness and expression of the pro-metastatic markers Slug and SOX9 in several breast cancer cell lines and in ex vivo cultured tumor cells. Mechanistically, TF forms a complex with β1-integrin leading to inactivation of β1-integrin. Inhibition of TF signaling induces a shift in TF-binding from α3β1-integrin to α6β4 and dictates FAK recruitment, leading to reduced epithelial-to-mesenchymal-transition and tumor cell differentiation. In conclusion, TF signaling inhibition leads to reduced pro-metastatic transcriptional programs, and a subsequent integrin β1 and β4-dependent reduction in metastasic dissemination.
Collapse
Affiliation(s)
- Betül Ünlü
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Begüm Kocatürk
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Araci M R Rondon
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Clayton S Lewis
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine University of Cincinnati, Cincinnati, OH, USA
| | - Nathalie Swier
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F P van den Akker
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Danielle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris Noordhoek
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik J Blok
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine University of Cincinnati, Cincinnati, OH, USA
| | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Gp130-Mediated STAT3 Activation Contributes to the Aggressiveness of Pancreatic Cancer through H19 Long Non-Coding RNA Expression. Cancers (Basel) 2022; 14:cancers14092055. [PMID: 35565185 PMCID: PMC9100112 DOI: 10.3390/cancers14092055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The signal transducer and activator of transcription 3 (STAT3) activation correlate with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor (TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC, and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination of PDAC (146/150). Abstract Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 pathway activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal transition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore, chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy. We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting CSCs for the treatment of PDAC.
Collapse
|
15
|
Hassan S, Blick T, Wood J, Thompson EW, Williams ED. Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Front Cell Dev Biol 2022; 10:858013. [PMID: 35493092 PMCID: PMC9043137 DOI: 10.3389/fcell.2022.858013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the lethal form of prostate cancer. Epithelial mesenchymal plasticity (EMP) has been associated with disease progression to CRPC, and prostate cancer therapies targeting the androgen signalling axis, including androgen deprivation therapy (ADT), promote EMP. We explored effects of castration on EMP in the tumours and circulating tumour cells (CTCs) of patient-derived xenograft (PDX)-bearing castrated mice using human-specific RT-qPCR assays and immunocytochemistry. Expression of prostate epithelial cell marker KLK3 was below detection in most tumours from castrated mice (62%, 23/37 mice), consistent with its known up-regulation by androgens. Endpoint tumour size after castration varied significantly in a PDX model-specific pattern; while most tumours were castration-sensitive (BM18, LuCaP70), the majority of LuCaP105 tumours continued to grow following castration. By contrast, LuCaP96 PDX showed a mixed response to castration. CTCs were detected in 33% of LuCaP105, 43% of BM18, 47% of LuCaP70, and 54% of LuCaP96 castrated mice using RPL32 mRNA measurement in plasma. When present, CTC numbers estimated using human RPL32 expression ranged from 1 to 458 CTCs per ml blood, similar to our previous observations in non-castrated mice. In contrast to their non-castrated counterparts, there was no relationship between tumour size and CTC burden in castrated mice. Unsupervised hierarchical clustering of the gene expression profiles of CTCs collected from castrated and non-castrated mice revealed distinct CTC sub-groups within the pooled population that were classified as having mesenchymal, epithelial, or EMP hybrid gene expression profiles. The epithelial signature was only found in CTCs from non-castrated mice. Hybrid and mesenchymal signatures were detected in CTCs from both castrated and non-castrated mice, with an emphasis towards mesenchymal phenotypes in castrated mice. Post-castration serum PSA levels were either below detection or very low for all the CTC positive samples highlighting the potential usefulness of CTCs for disease monitoring after androgen ablation therapy. In summary, our study of castration effects on prostate cancer PDX CTCs showed that CTCs were often detected in the castrate setting, even in mice with no palpable tumours, and demonstrated the superior ability of CTCs to reveal residual disease over the conventional clinical biomarker serum PSA.
Collapse
Affiliation(s)
- Sara Hassan
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Tony Blick
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Jack Wood
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Erik W. Thompson
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- *Correspondence: Elizabeth D. Williams,
| |
Collapse
|
16
|
Singh P, Sahoo SK. Piperlongumine loaded PLGA nanoparticles inhibit cancer stem-like cells through modulation of STAT3 in mammosphere model of triple negative breast cancer. Int J Pharm 2022; 616:121526. [PMID: 35104598 DOI: 10.1016/j.ijpharm.2022.121526] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/16/2023]
Abstract
TNBC exhibits higher rate of chemoresistance, metastasis, and relapse among all subtypes of breast cancer. This malignant statein TNBC is due to self-renewing sub-population of cells called cancer stem cells (CSCs). They are major caveats in TNBC treatment and need to be obliterated. In this regard, we explored piperlongumine (PL) that has remarkable anti-cancerous property but poor pharmacokinetics limits its application. So, to enhance its biological activity we developed PLGA based nanoformulation for PL (PL-NPs) and examined anti-CSCs effects of PL and PL-NPs in mammospheres. Results indicated that PL-NPs have higher cellular uptake than PL in mammospheres. Further, we demonstrated that PL-NPs remarkably inhibit various characteristics of CSCs like expression of ALDH, self-renewability, chemoresistance, and EMT in mammopsheres. We next investigated the possible mechanism underlying these multi-modal effects, and found that inhibition of STAT3 might be the driving force. In order to confirm this, we used colivelin a potent synthetic peptide activator of STAT3 in combination with treatments and found that anti-CSCs effects of PL and PL-NPs were reversed. Taken together, our data indicates that PL-NPs show enhanced inhibition of CSCs through downregulation of STAT3 and provides insight into development of PL based nanomedicine for targeting CSCs in TNBC.
Collapse
Affiliation(s)
- Priya Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751 023, Odisha, India.
| |
Collapse
|
17
|
Qiao L, Chen Y, Liang N, Xie J, Deng G, Chen F, Wang X, Liu F, Li Y, Zhang J. Targeting Epithelial-to-Mesenchymal Transition in Radioresistance: Crosslinked Mechanisms and Strategies. Front Oncol 2022; 12:775238. [PMID: 35251963 PMCID: PMC8888452 DOI: 10.3389/fonc.2022.775238] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy exerts a crucial role in curing cancer, however, its treatment efficiency is mostly limited due to the presence of radioresistance. Epithelial-to-mesenchymal transition (EMT) is a biological process that endows the cancer cells with invasive and metastatic properties, as well as radioresistance. Many potential mechanisms of EMT-related radioresistance being reported have broaden our cognition, and hint us the importance of an overall understanding of the relationship between EMT and radioresistance. This review focuses on the recent progresses involved in EMT-related mechanisms in regulating radioresistance, irradiation-mediated EMT program, and the intervention strategies to increase tumor radiosensitivity, in order to improve radiotherapy efficiency and clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yanfei Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fangjie Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Xiaojuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fengjun Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yupeng Li
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
19
|
Extracellular ATP and Macropinocytosis: Their Interactive and Mutually Supportive Roles in Cell Growth, Drug Resistance, and EMT in Cancer. Subcell Biochem 2022; 98:61-83. [PMID: 35378703 PMCID: PMC9825817 DOI: 10.1007/978-3-030-94004-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macropinocytosis is one of the major mechanisms by which cancer cells uptake extracellular nutrients from tumor microenvironment (TME) and plays very important roles in various steps of tumorigenesis. We previously reported the unexpected finding that intratumoral and extracellular ATP (eATP), as one of the major drastically upregulated extracellular nutrients and messengers in tumors, is taken up by cancer cells through macropinocytosis in large quantities and significantly contributing to cancer cell growth, survival, and increased resistance to chemo and target drugs. Inhibition of macropinocytosis substantially reduced eATP uptake by cancer cells and slowed down tumor growth in vivo. More recently, we have found the eATP also plays a very important role in inducing epithelial-to-mesenchymal transition (EMT), and that macropinocytosis is an essential facilitator in the induction. Thus, macropinocytosis and eATP, working in coordination, appear to play some previously unrecognized but very important roles in EMT and metastasis. As a result, they are likely to be interactive and communicative with each other, regulating each other's activity for various needs of host tumor cells. They are also likely to be an integral part of the future new anticancer therapeutic strategies. Moreover, it is undoubted that we have not identified all the important activities coordinated by ATP and macropinocytosis. This review describes our findings in how eATP and macropinocytosis work together to promote cancer cell growth, resistance, and EMT. We also list scientific challenges facing eATP research and propose to target macropinocytosis and eATP to reduce drug resistance and slow down metastasis.
Collapse
|
20
|
Chen S, Fang Y, Sun L, He R, He B, Zhang S. Long Non-Coding RNA: A Potential Strategy for the Diagnosis and Treatment of Colorectal Cancer. Front Oncol 2021; 11:762752. [PMID: 34778084 PMCID: PMC8578871 DOI: 10.3389/fonc.2021.762752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), being one of the most commonly diagnosed cancers worldwide, endangers human health. Because the pathological mechanism of CRC is not fully understood, there are many challenges in the prevention, diagnosis, and treatment of this disease. Long non-coding RNAs (lncRNAs) have recently drawn great attention for their potential roles in the different stages of CRC formation, invasion, and progression, including regulation of molecular signaling pathways, apoptosis, autophagy, angiogenesis, tumor metabolism, immunological responses, cell cycle, and epithelial-mesenchymal transition (EMT). This review aims to discuss the potential mechanisms of several oncogenic lncRNAs, as well as several suppressor lncRNAs, in CRC occurrence and development to aid in the discovery of new methods for CRC diagnosis, treatment, and prognosis assessment.
Collapse
Affiliation(s)
- Shanshan Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyu Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruonan He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
22
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ''tumor debulking'' rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting 'natural agents' that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
23
|
Zheng C, Yan S, Lu L, Yao H, He G, Chen S, Li Y, Peng X, Cheng Z, Wu M, Zhang Q, Li G, Fu S, Deng X. Lovastatin Inhibits EMT and Metastasis of Triple-Negative Breast Cancer Stem Cells Through Dysregulation of Cytoskeleton-Associated Proteins. Front Oncol 2021; 11:656687. [PMID: 34150623 PMCID: PMC8212055 DOI: 10.3389/fonc.2021.656687] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and has poorer prognosis compared to other subtypes of breast cancer. Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal-like cells capable of migration, invasion, and metastasis. Recently, we have demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor and a lipid-lowering drug, could inhibit stemness properties of cancer stem cells (CSCs) derived from TNBC cell in vitro and in vivo. This study is aimed at investigating whether lovastatin inhibits TNBC CSCs by inhibiting EMT and suppressing metastasis and the mechanism involved. In the present study, we found that lovastatin dysregulated lysine succinylation of cytoskeleton-associated proteins in CSCs derived from TNBC MDA-MB-231 cell. Lovastatin inhibited EMT as demonstrated by down-regulation of the protein levels of Vimentin and Twist in MDA-MB-231 CSCs in vitro and vivo and by reversal of TGF-β1-induced morphological change in MCF10A cells. Lovastatin also inhibited the migration of MDA-MB-231 CSCs. The disruption of cytoskeleton in TNBC CSCs by lovastatin was demonstrated by the reduction of the number of pseudopodia and the relocation of F-actin cytoskeleton. Combination of lovastatin with doxorubicin synergistically inhibited liver metastasis of MDA-MB-231 CSCs. Bioinformatics analysis revealed that higher expression levels of cytoskeleton-associated genes were characteristic of TNBC and predicted survival outcomes in breast cancer patients. These data suggested that lovastatin could inhibit the EMT and metastasis of TNBC CSCs in vitro and in vivo through dysregulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China.,Department of Preventive Medicine, Hunan Normal University School of Medicine, Changsha, China
| | - Shichao Yan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Ying Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | | | | | - Mi Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Qiuting Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guifei Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| |
Collapse
|
24
|
Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy. Cancers (Basel) 2021; 13:cancers13102491. [PMID: 34065315 PMCID: PMC8160785 DOI: 10.3390/cancers13102491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Abstract The immune system has been found to be suppressed in cancer patients. Cancer cells are extremely resistant to chemotherapeutic drugs, conventional immunotherapy, or cancer antigen vaccine therapy. Cancer immunotherapy, which is mainly based on immune checkpoint inhibitors, such as those for PD-1, PD-L1, and CTLA4, is an effective treatment method. However, no immunotherapeutic target has been found that retains validity in the face of tumor diversity. The transforming growth factor (TGF)-β cytokine family possesses broad biological activity and is involved in the induction and/or transdifferentiation of helper T cells, which are important in immunotherapy. Nodal is a member of the TGF-β family playing important roles in tissue stem cells and cancer stem cells (CSCs), interacting with the co-receptor Cripto-1, as well as with Activin type IB (Alk4) and Activin typeIIreceptors, and maintaining stemness and Notch and Wnt/β-catenin signaling in CSCs. In recent years, it has been reported that Cripto-1 could be a potential therapeutic target in CSCs. Here, we review the accumulated literature on the molecular mechanisms by which Cripto-1 functions in CSCs and discuss the potential of Cripto-1 as an immunotherapeutic target in CSCs.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan;
| | - Said M. Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
25
|
Standardization of esophageal adenocarcinoma in vitro model and its applicability for model drug testing. Sci Rep 2021; 11:6664. [PMID: 33758229 PMCID: PMC7988140 DOI: 10.1038/s41598-021-85530-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/11/2023] Open
Abstract
FLO-1 cell line represents an important tool in esophageal adenocarcinoma (EAC) research as a verified and authentic cell line to study the disease pathophysiology and antitumor drug screenings. Since in vitro characteristics of cells depend on the microenvironment and culturing conditions, we performed a thorough characterization of the FLO-1 cell line under different culturing conditions with the aim of (1) examining the effect of serum-free growth medium and air–liquid interface (A–L) culturing, which better reflect physiological conditions in vivo and (2) investigating the differentiation potential of FLO-1 cells to mimic the properties of the in vivo esophageal epithelium. Our study shows that the composition of the media influenced the morphological, ultrastructural and molecular characteristics of FLO-1 cells, such as the expression of junctional proteins. Importantly, FLO-1 cells formed spheres at the A–L interface, recapitulating key elements of tumors in the esophageal tube, i.e., direct contact with the gas phase and three-dimensional architecture. On the other hand, FLO-1 models exhibited high permeability to model drugs and zero permeability markers, and low transepithelial resistance, and therefore poorly mimicked normal esophageal epithelium. In conclusion, the identified effect of culture conditions on the characteristics of FLO-1 cells should be considered for standardization, data reproducibility and validity of the in vitro EAC model. Moreover, the sphere-forming ability of FLO-1 cells at the A–L interface should be considered in EAC tumor biology and anticancer drug studies as a reliable and straightforward model with the potential to increase the predictive efficiency of the current in vitro approaches.
Collapse
|
26
|
Wu X, Nelson M, Basu M, Srinivasan P, Lazarski C, Zhang P, Zheng P, Sandler AD. MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination. J Immunother Cancer 2021; 9:jitc-2020-001388. [PMID: 33757986 PMCID: PMC7993333 DOI: 10.1136/jitc-2020-001388] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Background MYC oncogene is deregulated in 70% of all human cancers and is associated with multiple oncogenic functions including immunosuppression in the tumor microenvironment. The role of MYC in the immune microenvironment of neuroblastoma and melanoma is investigated and the effect of targeting Myc on immunogenicity of cancer cells is evaluated. Methods Immune cell infiltrates and immunogenic pathway signatures in the context of MYCN amplification were analyzed in human neuroblastoma tumors and in metastatic melanoma. Dose response and cell susceptibility to MYC inhibitors (I-BET726 and JQ1) were determined in mouse cell lines. The influence of downregulating Myc in tumor cells was characterized by immunogenic pathway signatures and functional assays. Myc-suppressed tumor cells were used as whole cell vaccines in preclinical neuroblastoma and melanoma models. Results Analysis of immune phenotype in human neuroblastoma and melanoma tumors revealed that MYCN or c-MYC amplified tumors respectively are associated with suppressed immune cell infiltrates and functional pathways. Targeting Myc in cancer cells with I-BET726 and JQ1 results in cell cycle arrest and induces cell immunogenicity. Combining vaccination of Myc-inhibited tumor cells with checkpoint inhibition induced robust antitumor immunity and resulted in therapeutic cancer vaccine therapy in mouse neuroblastoma tumors. Despite vigorous antitumor immunity in the mouse melanoma model, upregulation of immunosuppressive pathways enabled tumor escape. Conclusions This study demonstrates that the Myc oncogene is an appropriate target for inducing tumor cell immunogenicity and suggests that Myc-suppressed whole tumor cells combined with checkpoint therapy could be used for formulating a personalized therapeutic tumor vaccine.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Marie Nelson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Mousumi Basu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Priya Srinivasan
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony David Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA .,Joseph E. Robert Jr. Center for Surgical Care, Childrens National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
27
|
Gomi F, Sasaki N, Shichi Y, Minami F, Shinji S, Toyoda M, Ishiwata T. Polyvinyl alcohol increased growth, migration, invasion, and sphere size in the PK-8 pancreatic ductal adenocarcinoma cell line. Heliyon 2021; 7:e06182. [PMID: 33598581 PMCID: PMC7868635 DOI: 10.1016/j.heliyon.2021.e06182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Polyvinyl alcohol (PVA) is a water-soluble synthetic polymer used in eye drops, embolization particles, and artificial cartilage. It has also been shown to cause expansion of functional multipotent self-renewing hematopoietic stem cells under serum-free conditions. In this study, we examined the effects of PVA on human pancreatic ductal adenocarcinoma (PDAC) cell lines using 2-dimensional (2D) and 3D-cultures with serum-free medium. In the 2D-culture, PVA-treatment induced an aggregated colony-like appearance in PDAC cells. It increased the growth of PK-8 cells in a dose-dependent manner as well as significantly increasing migration and invasion abilities. qRT-PCR showed an increase in α2 integrin and a decrease in matrix metalloprotease levels in PVA-treated PK-8 cells. Through qRT-PCR analysis, β1 integrin expression at the mRNA level was found to be decreased; however, it was unaltered at the protein level when assessed using FACS analysis. PVA further induced mesenchymal to epithelial transition-like alterations, including increased E-cadherin and decreased Vimentin and N-cadherin expression. Four cancer stem cell (CSC) markers were higher in PVA-treated PK-8 cells compared to controls. In 3D-culture, PVA-treated PK-8 cells showed a rod-like appearance with larger sphere size and higher growth ability. qRT-PCR showed that CSC markers did not increase and 2 of 4 drug transporters had decreased in PVA-treated PK-8 cells. These findings suggest that PVA increases the growth, migration, invasion, and sphere size of PK-8 cells, but does not increase the proportion of pancreatic CSCs under 3D-culture conditions with serum-free medium.
Collapse
Affiliation(s)
- Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yuuki Shichi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Fuuka Minami
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Seiichi Shinji
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
- Departments of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| |
Collapse
|
28
|
Wu J, Sun L, Liu T, Dong G. Ultrasound-Targeted Microbubble Destruction-Mediated Downregulation of EZH2 Inhibits Stemness and Epithelial-Mesenchymal Transition of Liver Cancer Stem Cells. Onco Targets Ther 2021; 14:221-237. [PMID: 33469303 PMCID: PMC7810681 DOI: 10.2147/ott.s269589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cancer cells could show the characteristics of cancer stem cells (CSCs) through epithelial-mesenchymal transition (EMT). EZH2 was associated with EMT. Ultrasound-targeted microbubble destruction (UTMD) could enhance gene transfection efficiency. Here, we explored the effect of UTMD-mediated shEZH2 on liver CSCs. Methods EZH2 expression in liver cancer and the overall survival of liver cancer patients were analyzed by bioinformatics. Liver CSCs (CD133+HuH7) were sorted by flow cytometry. After transfection of shEZH2 through UTMD (UTMD-shEZH2) or liposome (LIP-shEZH2), the viability, proliferation, sphere formation, migration, and invasion of CD133+HuH7 cells were detected by MTT, colony formation, tumor-sphere formation, wound healing, and transwell assays, respectively. A mice subcutaneous-xenotransplant tumor model was established by injecting CD133+HuH7 or CD133−HuH7 cells into the limbs of mice. Tumor weight and volume were documented. The expressions of EZH2, EMT-related factors, and STAT3/PI3K/AKT pathway-related factors in CD133+HuH7 cells or tumor tissues were detected by RT-qPCR, Western blot, or immunohistochemical. Results EZH2 was high-expressed in liver cancer, and the patients with high expression of EZH2 had a poor survival. CD133+ HuH7 cells had higher EZH2 expression, higher viability, and stronger sphere-forming and tumor-forming abilities than CD133− HuH7 cells. ShEZH2 inhibited the viability, proliferation, sphere formation, migration, and invasion of CD133+ HuH7 cells, decreased the weight and volume of the xenotransplant tumor, inhibited the expressions of EZH2, Vimentin, N-Cadherin, Twist-1, p-STAT3, p-PI3K, and p-AKT, and increased E-Cadherin expression. UTMD-shEZH2 caused a stronger effect on CD133+ HuH7 cells than LIP-shEZH2. Conclusion UTMD-mediated shEZH2 inhibited the stemness and EMT of liver CSCs in vitro and in vivo through regulating the STAT3/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jie Wu
- Department of Ultrasound Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Lulu Sun
- Department of Ultrasound Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Tingting Liu
- Department of Ultrasound Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Gang Dong
- Department of Ultrasound Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
29
|
De A, Beligala DH, Sharma VP, Burgos CA, Lee AM, Geusz ME. Cancer stem cell generation during epithelial-mesenchymal transition is temporally gated by intrinsic circadian clocks. Clin Exp Metastasis 2020; 37:617-635. [PMID: 32816185 DOI: 10.1007/s10585-020-10051-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key event preceding tumor cell metastasis that increases cell invasiveness and cancer stem cell (CSC) populations. Studies suggest that genes used in generating circadian rhythms also serve in regulating EMT. To test the role of circadian clocks in cellular EMT events two cancer cell lines were compared, one that has a well-established circadian clock, C6 from rat glioma, and one that does not, MCF-7 from human breast tumor. MCF-7 tumorsphere cultures were tested for evidence of circadian rhythms because of previously reported circadian rhythm enhancement in C6 tumorspheres shown by elevated rhythm amplitude and increased expression of circadian clock gene Per2. Bioluminescence imaging of Per2 gene expression in MCF-7 tumorspheres revealed a previously unconfirmed circadian clock in this important cancer research model. Inducing CSC generation through EMT in C6 and MCF-7 monolayer cultures revealed circadian oscillations in the size of the post-EMT CSC population, confirming that circadian rhythms are additional processes controlling this stage of cancer progression. EMT was verified by distinct cellular morphological changes and expression of stem cell proteins OCT4, nestin, MSI1, and CD133 along with EMT-related proteins ZEB1, vimentin, and TWIST. Quantifying single-cell events and behaviors through time-lapse imaging indicated the post-EMT population size was determined largely by circadian rhythms in epithelial-like cancer cells undergoing EMT. We then identified a specific phase of the circadian rhythm in Per2 gene activation as a potential target for therapeutic treatments that may suppress EMT, minimize CSCs, and limit metastasis.
Collapse
Affiliation(s)
- Arpan De
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dilshan H Beligala
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Vishal P Sharma
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
- Celsee, Inc., Ann Arbor, MI, 48108, USA
| | - Christian A Burgos
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
| | - Angelia M Lee
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA.
| |
Collapse
|
30
|
Carotenuto P, Hedayat S, Fassan M, Cardinale V, Lampis A, Guzzardo V, Vicentini C, Scarpa A, Cascione L, Costantini D, Carpino G, Alvaro D, Ghidini M, Trevisani F, Te Poele R, Salati M, Ventura S, Vlachogiannis G, Hahne JC, Boulter L, Forbes SJ, Guest RV, Cillo U, Said‐Huntingford I, Begum R, Smyth E, Michalarea V, Cunningham D, Rimassa L, Santoro A, Roncalli M, Kirkin V, Clarke P, Workman P, Valeri N, Braconi C. Modulation of Biliary Cancer Chemo-Resistance Through MicroRNA-Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology 2020; 72:982-996. [PMID: 31879968 PMCID: PMC7590111 DOI: 10.1002/hep.31094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Changes in single microRNA (miRNA) expression have been associated with chemo-resistance in biliary tract cancers (BTCs). However, a global assessment of the dynamic role of the microRNome has never been performed to identify potential therapeutic targets that are functionally relevant in the BTC cell response to chemotherapy. APPROACH AND RESULTS High-throughput screening (HTS) of 997 locked nucleic acid miRNA inhibitors was performed in six cholangiocarcinoma cell lines treated with cisplatin and gemcitabine (CG) seeking changes in cell viability. Validation experiments were performed with mirVana probes. MicroRNA and gene expression was assessed by TaqMan assay, RNA-sequencing, and in situ hybridization in four independent cohorts of human BTCs. Knockout of microRNA was achieved by CRISPR-CAS9 in CCLP cells (MIR1249KO) and tested for effects on chemotherapy sensitivity in vitro and in vivo. HTS revealed that MIR1249 inhibition enhanced chemotherapy sensitivity across all cell lines. MIR1249 expression was increased in 41% of cases in human BTCs. In validation experiments, MIR1249 inhibition did not alter cell viability in untreated or dimethyl sulfoxide-treated cells; however, it did increase the CG effect. MIR1249 expression was increased in CD133+ biliary cancer cells freshly isolated from the stem cell niche of human BTCs as well as in CD133+ chemo-resistant CCLP cells. MIR1249 modulated the chemotherapy-induced enrichment of CD133+ cells by controlling their clonal expansion through the Wnt-regulator FZD8. MIR1249KO cells had impaired expansion of the CD133+ subclone and its enrichment after chemotherapy, reduced expression of cancer stem cell markers, and increased chemosensitivity. MIR1249KO xenograft BTC models showed tumor shrinkage after exposure to weekly CG, whereas wild-type models showed only stable disease over treatment. CONCLUSIONS MIR1249 mediates resistance to CG in BTCs and may be tested as a target for therapeutics.
Collapse
|
31
|
Ma K, Zhang C, Li W. TGF-β is associated with poor prognosis and promotes osteosarcoma progression via PI3K/Akt pathway activation. Cell Cycle 2020; 19:2327-2339. [PMID: 32804027 PMCID: PMC7513842 DOI: 10.1080/15384101.2020.1805552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multifunctional cytokine with important functions in cell proliferation and differentiation. TGF-β is highly expressed in several types of cancers and promotes tumor invasion and metastasis. However, the role of TGF-β in osteosarcoma progression is poorly understood. In the present study, we found that TGF-β is highly expressed in osteosarcoma cells and tissues, and is associated with high Ennecking stage (P = 0.033), metastasis, and recurrence. TGF-β-knockdown osteosarcoma cell lines were established using siRNA (si-TGF-β). Cells transfected with si-TGF-β exhibited significantly reduced proliferation, migration/invasion, and colony formation abilities, and increased levels of cell apoptosis. In addition, si-TGF-β treatment reduced spheroid size, the ratio of CD133-positive cells, and expression of SOX-2, Nanog, and Oct-3/4 in osteosarcoma cells. Mechanistically, PI3K/mTOR phosphorylation is inhibited by TGF-β knockdown. Pretreatment with 25 µM LY294002, a PI3K-specific inhibitor, further enhanced the si-TGF-β-induced suppression of osteosarcoma progression. Taken together, these results reveal a novel role for TGF-β in osteosarcoma progression and modulation of stemness-related traits and indicate that TGF-β may be of value as a therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Kun Ma
- Luoyang Orthopaedic Hospital of Henan Province and Orthopaedic Hospital of Henan Province , Luoyang, Henan, P. R. China
| | - Chuan Zhang
- Luoyang Orthopaedic Hospital of Henan Province and Orthopaedic Hospital of Henan Province , Luoyang, Henan, P. R. China
| | - Wuyin Li
- Luoyang Orthopaedic Hospital of Henan Province and Orthopaedic Hospital of Henan Province , Luoyang, Henan, P. R. China
| |
Collapse
|
32
|
Mikami S, Mizuno R, Kosaka T, Tanaka N, Kuroda N, Nagashima Y, Okada Y, Oya M. Significance of tumor microenvironment in acquiring resistance to vascular endothelial growth factor-tyrosine kinase inhibitor and recent advance of systemic treatment of clear cell renal cell carcinoma. Pathol Int 2020; 70:712-723. [PMID: 32652869 DOI: 10.1111/pin.12984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
The development of systemic therapies, including vascular endothelial growth factor-tyrosine kinase inhibitors (VEGF-TKI) and mammalian target of rapamycin (mTOR) inhibitors, represents a major breakthrough in the treatment of patients with renal cell carcinoma (RCC). However, inherent resistance is observed in some patients and acquired resistance commonly develops in many patients within several months of the initiation of systemic therapies. Since these treatments rarely cure patients, their aim is to suppress tumor progression and prolong survival. Therefore, the establishment of dependable criteria that predict responses and resistance to systemic therapies is clinically important, and the underlying molecular mechanisms also need to be elucidated for the future development of more effective therapies. We herein review recent advances in research on the molecular mechanisms underlying resistance, with a focus on morphological characteristics, tumor angiogenesis, and the tumor immune microenvironment in RCC and their relationships with VEGF-TKI treatments. Recent therapies using immune checkpoint inhibitors (ICI) and newly developed VEGF-TKI also appear to be effective for advanced RCC, with stable and durable responses to ICI being observed in some RCC patients. These new drugs and their outcomes have been briefly described.
Collapse
Affiliation(s)
- Shuji Mikami
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Kuroda
- Department of Diagnostic Pathology, Konan Medical Center, Hyogo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Lee HM, Seo SR, Kim J, Kim MK, Seo H, Kim KS, Jang YJ, Ryu CJ. Expression dynamics of integrin α2, α3, and αV upon osteogenic differentiation of human mesenchymal stem cells. Stem Cell Res Ther 2020; 11:210. [PMID: 32493499 PMCID: PMC7268774 DOI: 10.1186/s13287-020-01714-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background The differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts (OBs) is a prerequisite for bone formation. However, little is known about the definitive surface markers for OBs during osteogenesis. Methods To study the surface markers on OBs, we generated and used monoclonal antibodies (MAbs) against surface molecules on transforming growth factor-β1 (TGF-β1)-treated cancer cells. The generated MAbs were further selected toward expression changes on hMSCs cultured with TGF-β1/bone morphogenetic protein-2 (BMP-2) or osteogenic differentiation medium (ODM) by flow cytometry. Immunoprecipitation and mass spectrometry were performed to identify target antigens of selected MAbs. Expression changes of the target antigens were evaluated in hMSCs, human periodontal ligament cells (hPDLCs), and human dental pulp cells (hDPCs) during osteogenic and adipogenic differentiation by quantitative polymerase chain reaction (qPCR) and flow cytometry. hMSCs were also sorted by the MAbs using magnetic-activated cell sorting system, and osteogenic potential of sorted cells was evaluated via Alizarin Red S (ARS) staining and qPCR. Results The binding reactivity of MR14-E5, one of the MAbs, was downregulated in hMSCs with ODM while the binding reactivity of ER7-A7, ER7-A8, and MR1-B1 MAbs was upregulated. Mass spectrometry and overexpression identified that MR14-E5, ER7-A7/ER7-A8, and MR1-B1 recognized integrin α2, α3, and αV, respectively. Upon osteogenic differentiation of hMSCs, the expression of integrin α2 was drastically downregulated, but the expression of integrin α3 and αV was upregulated in accordance with upregulation of osteogenic markers. Expression of integrin α3 and αV was also upregulated in hPDLCs and hDPCs during osteogenic differentiation. Cell sorting showed that integrin αV-high hMSCs have a greater osteogenic potential than integrin αV-low hMSCs upon the osteogenic differentiation of hMSCs. Cell sorting further revealed that the surface expression of integrin αV is more dramatically induced even in integrin αV-low hMSCs. Conclusion These findings suggest that integrin α3 and αV induction is a good indicator of OB differentiation. These findings also shed insight into the expression dynamics of integrins upon osteogenic differentiation of hMSCs and provide the reason why different integrin ligands are required for OB differentiation of hMSCs.
Collapse
Affiliation(s)
- Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Se-Ri Seo
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Jeeseung Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Hyosun Seo
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, College of Dentistry, Dankook University, Cheonan, 330-714, Korea.
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea.
| |
Collapse
|
34
|
Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA, Aliev G, Bishayee A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 2020; 207:107464. [PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory gastrointestinal (GI) diseases and malignancies are associated with growing morbidity and cancer-related mortality worldwide. GI tumor and inflammatory cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinase 1 (SphK1) and SphK2, that generate sphingosine-1-phosphate (S1P), a highly bioactive compound. Many inflammatory responses, including lymphocyte trafficking, are directed by circulatory S1P, present in high concentrations in both the plasma and the lymph of cancer patients. High fat and sugar diet, disbalanced intestinal flora, and obesity have recently been linked to activation of inflammation and SphK/S1P/S1P receptor (S1PR) signaling in various GI pathologies, including cancer. SphK1 overexpression and activation facilitate and enhance the development and progression of esophageal, gastric, and colon cancers. SphK/S1P axis, a mediator of inflammation in the tumor microenvironment, has recently been defined as a target for the treatment of GI disease states, including inflammatory bowel disease and colitis. Several SphK1 inhibitors and S1PR antagonists have been developed as novel anti-inflammatory and anticancer agents. In this review, we analyze the mechanisms of SphK/S1P signaling in GI tissues and critically appraise recent studies on the role of SphK/S1P/S1PR in inflammatory GI disorders and cancers. The potential role of SphK/S1PR inhibitors in the prevention and treatment of inflammation-mediated GI diseases, including GI cancer, is also evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Hideki Furuya
- Department of Surgery, Samuel Oschin Cancer Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mei Li Ng
- Advanced Medical and Dental Institute, University Sains 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia; GALLY International Research Institute, San Antonio, TX 78229, USA; Research Institute of Human Morphology, Moscow 117418, Russia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
35
|
Gholami MD, Falak R, Heidari S, Khoshmirsafa M, Kazemi MH, Zarnani AH, Safari E, Tajik N, Kardar GA. A Truncated Snail1 Transcription Factor Alters the Expression of Essential EMT Markers and Suppresses Tumor Cell Migration in a Human Lung Cancer Cell Line. Recent Pat Anticancer Drug Discov 2020; 14:158-169. [PMID: 31131753 DOI: 10.2174/1574892814666190527111429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/08/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Epithelial-to-Mesenchymal Transition (EMT) is necessary for metastasis. Zinc- finger domain-containing transcription factors, especially Snail1, bind to E-box motifs and play a crucial role in the induction and regulation of EMT. OBJECTIVE We hypothesized if C-terminal region of Snail1 (CSnail1) may competitively bind to E-box and block cancer metastasis. METHODS The CSnail1 gene coding sequence was inserted into the pIRES2-EGFP vector. Following transfection of A549 cells with the designed construct, EMT was induced with TGF-β1 and the expression of essential EMT markers was evaluated by real-time PCR and immunoblotting. We also monitored cell migration. RESULTS CSnail1 inhibited TGF-β1-induced N-cadherin and vimentin mRNA expression and increased β-catenin expression in transfected TGF-β1-treated A549 cells. A similar finding was obtained in western blotting. CSnail1 also blocked the migration of transfected cells in the scratch test. CONCLUSION Transfection of A549 cells with CSnail1 alters the expression of essential EMT markers and consequently suppresses tumor cell migration. These findings confirm the capability of CSnail1 in EMT blocking and in parallel to current patents could be applied as a novel strategy in the prevention of metastasis.
Collapse
Affiliation(s)
- Mohammad Davoodzadeh Gholami
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahel Heidari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Elaheh Safari
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam A Kardar
- Immunology Asthma & Allergy Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Sasaki N, Hirabayashi K, Michishita M, Takahashi K, Hasegawa F, Gomi F, Itakura Y, Nakamura N, Toyoda M, Ishiwata T. Ganglioside GM2, highly expressed in the MIA PaCa-2 pancreatic ductal adenocarcinoma cell line, is correlated with growth, invasion, and advanced stage. Sci Rep 2019; 9:19369. [PMID: 31852956 PMCID: PMC6920443 DOI: 10.1038/s41598-019-55867-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/03/2019] [Indexed: 12/28/2022] Open
Abstract
Gangliosides, a group of glycosphingolipids, are known to be cell surface markers and functional factors in several cancers. However, the association between gangliosides and pancreatic ductal adenocarcinoma (PDAC) has not been well elucidated. In this study, we examined the expression and roles of ganglioside GM2 in PDAC. GM2+ cells showed a higher growth rate than GM2− cells in the adherent condition. When GM2– and GM2+ cells were cultured three-dimensionally, almost all cells in the spheres expressed GM2, including cancer stem cell (CSC)-like cells. A glycolipid synthesis inhibitor reduced GM2 expression and TGF-β1 signaling in these CSC-like cells, presumably by inhibiting the interaction between GM2 and TGFβ RII and suppressing invasion. Furthermore, suppression of GM2 expression by MAPK inhibition also reduced TGF-β1 signaling and suppressed invasion. GM2+ cells formed larger subcutaneous tumors at a high incidence in nude mice than did GM2– cells. In PDAC cases, GM2 expression was significantly associated with younger age, larger tumor size, advanced stage and higher histological grade. These findings suggest that GM2 could be used as a novel diagnostic and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, Kanagawa, 259-1193, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Kimimasa Takahashi
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Fumio Hasegawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Kanagawa, 259-1193, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
37
|
Zhang C, Ma K, Li WY. Cinobufagin Suppresses The Characteristics Of Osteosarcoma Cancer Cells By Inhibiting The IL-6-OPN-STAT3 Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4075-4090. [PMID: 31824138 PMCID: PMC6900468 DOI: 10.2147/dddt.s224312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Background Current clinical treatments for osteosarcoma are limited by disease recurrence and primary or secondary chemoresistance. Cancer stem-like cells have been proposed to facilitate the initiation, progression, recurrence and chemoresistance of osteosarcoma. Furthermore, previous studies have reported that IL-6-STAT3 pathway is overexpressed in various types of cancer and contributes to cell proliferation, apoptosis, invasion/migration, chemoresistance and modulation of stemness features. Aim To examined the effect of cinobufagin on cancer progression and modulation of stemness features in osteosarcoma, and investigated the molecular mechanisms underlying such effects. Methods Human osteosarcoma cell lines U2OS/MG-63 were recruited in this study. Cell proliferation, migration, and invasion were determined by MTT assay, colony formation assay,wound healing assay, and cell invasion assay respectively. Its effect on stemness was assessed by flow cytometry and mammosphere formation. The protein expression levels of related proteins were detected by Western blot. The xenograft model, immunofluorescence staining and immunohistochemistry were used to determine the effect of cinobufagin on tumorigenicity in vivo experiment. Results We found that cinobufagin suppressed the viability of U2OS/MG-63 spheroids/parent cells in a time-and dose-dependent manner. Notably, cinobufagin had no effect on the viability of hFOB 1.19 cells. Moreover, cinobufagin induced apoptosis, increased the width of wounds, reduced invasive osteosarcoma spheroids/parent cell numbers and reduced EMT phenotype and OPN levels in U2OS/MG-63 spheroids as well as U2OS/MG-63 parent cells lines. Noticeablely, we found that OPN levels were higher in spheroids group than that in parent cells. In addition, cinobufagin ameliorated the proportion of CD133-positive cells, the size of spheroids and Nanog, Sox-2 and Oct3/4 protein levels. Our in vivo experiments showed that cinobufagin consistently reduced tumor volume,the expressions of OPN, Sox-2, Oct3/4, Nanog and p-STAT3 by the immuno histochemistry staining as well as CD133 expression in tumor tissues by immunofluorescence analysis. From a mechanistic point of view, cinobufagin was shown to inhibit IL-6-OPN-STAT3 signaling pathway. Exogenous IL-6/OE-OPN/overexpression STAT3 attenuated the induction of cinobufagin-mediated apoptosis and the suppression of stemness properties respectively. Conclusion Collectively, our data demonstrated that cinobufagin inhibited the viability and tumorigenesis capability of osteosarcoma cells by blocking IL-6- OPN-STAT3 signaling pathway. Cinobufagin may therefore represent a promising therapeutic agent for osteosarcoma management. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/a2KF0PMRBDo
Collapse
Affiliation(s)
- Chuan Zhang
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| | - Kun Ma
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| | - Wu-Yin Li
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| |
Collapse
|
38
|
Characterization of the metastatic potential of the floating cell component of MIA PaCa-2, a human pancreatic cancer cell line. Biochem Biophys Res Commun 2019; 522:881-888. [PMID: 31806369 DOI: 10.1016/j.bbrc.2019.11.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
In pancreatic cancer, morphologically and functionally heterogeneous cancer cells reside within the same patient. The heterogeneity is believed to promote metastasis and resistance to chemoradiotherapy. MIA PaCa-2, an established human pancreatic ductal adenocarcinoma (PDAC) cell line, contains round and spindle-shaped adherent cells, as well as, round floating cells. In this study, we aimed to assess if the floating cells might have greater metastatic potential and/or be more resistant to drug-induced apoptosis compared to adherent cells. Time-lapse analysis revealed that the two types of adherent cells transformed bilaterally, and some of the adherent, round cells converted to floating cells. Flow cytometry and electron microscopy showed that approximately 90% of the floating cells were viable. qRT-PCR analysis revealed that floating cells expressed lower levels of integrins and ATP-binding cassette (ABC) transporters than adherent cells. In contrast, except for vimentin, floating cells expressed more epithelial to mesenchymal transition markers than adherent cells. Floating cells included a larger population of G2/M-phase cells, and migration assays revealed a decreased migration ability by floating cells relative to adherent cells. A cell aggregation assay showed that the aggregative properties of the floating cells were lower than those of the adherent cells. In 3D culture, spheres derived from floating cells were more sensitive to anti-cancer drugs, including gemcitabine, 5-FU, and abraxane, than those derived from adherent cells. Expression levels of stemness markers in the spheres derived from floating cells were lower than those derived from adherent cells. Morphological characterization of human PDAC cell lines may help to clarify the series of alterations cancer cells undergo during the metastatic process and may contribute to the development of new PDAC diagnostics and more patient-specific treatments for those with PDAC.
Collapse
|
39
|
Shinji S, Sasaki N, Yamada T, Koizumi M, Ohta R, Matsuda A, Yokoyama Y, Takahashi G, Hotta M, Hara K, Takeda K, Ueda K, Kuriyama S, Ishiwata T, Ueda Y, Murakami T, Kanazawa Y, Yoshida H. Establishment and characterization of a novel neuroendocrine carcinoma cell line derived from a human ascending colon tumor. Cancer Sci 2019; 110:3708-3717. [PMID: 31648389 PMCID: PMC6890439 DOI: 10.1111/cas.14221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 01/15/2023] Open
Abstract
The incidence of rare neuroendocrine tumors (NET) is rapidly increasing. Neuroendocrine carcinoma (NEC) is a NET with poorly differentiated histological features, high proliferative properties and associated poor prognoses. As these carcinomas are so rare and, thus, affect only a small number of patients allowing for few cell lines to be derived from patient biopsies, the histological, immunohistochemical, and clinical characteristics associated with colorectal NEC and NEC in other organs have yet to be clearly defined. Herein, we describe the establishment of a novel NEC cell line (SS‐2) derived from a tumor resection of the ascending colon from a 59‐year‐old Japanese woman. The histological, electron microscopic and immunohistochemical features of chromogranin A (CgA) as well as confirmation of synaptophysin positivity in this tumor were typical of those commonly observed in surgically resected colorectal NEC. Further, the Ki‐67 labeling index of the resected tumor was >20% and, thus, the tumor was diagnosed as an NEC of the ascending colon. The SS‐2 cell line maintained characteristic features to those of the resected tumor, which were further retained following implantation into subcutaneous tissues of nude mice. Additionally, when SS‐2 cells were seeded into ultra‐low attachment plates, they formed spheres that expressed higher levels of the cancer stem cell (CSC) marker CD133 compared to SS‐2 cells cultured under adherent conditions. SS‐2 cells may, therefore, contribute to the current knowledge on midgut NEC biological function while providing a novel platform for examining the effects of colorectal NEC drugs, including CSC.
Collapse
Affiliation(s)
- Seiichi Shinji
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Michihiro Koizumi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Ryo Ohta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Akihisa Matsuda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yasuyuki Yokoyama
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Goro Takahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Masahiro Hotta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Keisuke Hara
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Kohki Takeda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Koji Ueda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Sho Kuriyama
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoshibumi Ueda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Yoshikazu Kanazawa
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
40
|
Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int J Mol Sci 2019; 20:E5758. [PMID: 31744051 PMCID: PMC6888455 DOI: 10.3390/ijms20225758] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has a high metastasis and reoccurrence rate. Long noncoding RNAs (lncRNAs) play an important role in CRC growth and metastasis. Recent studies revealed that lncRNAs participate in CRC progression by coordinating with microRNAs (miRNAs) and protein-coding mRNAs. LncRNAs function as competitive endogenous RNAs (ceRNAs) by competitively occupying the shared binding sequences of miRNAs, thus sequestering the miRNAs and changing the expression of their downstream target genes. Such ceRNA networks formed by lncRNA/miRNA/mRNA interactions have been found in a broad spectrum of biological processes in CRC, including liver metastasis, epithelial to mesenchymal transition (EMT), inflammation formation, and chemo-/radioresistance. In this review, we summarize typical paradigms of lncRNA-associated ceRNA networks, which are involved in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the competitive crosstalk among RNA transcripts and the novel targets for CRC prognosis and therapy.
Collapse
Affiliation(s)
- Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| | | | | | | | | | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| |
Collapse
|
41
|
De Vitis C, Corleone G, Salvati V, Ascenzi F, Pallocca M, De Nicola F, Fanciulli M, di Martino S, Bruschini S, Napoli C, Ricci A, Bassi M, Venuta F, Rendina EA, Ciliberto G, Mancini R. B4GALT1 Is a New Candidate to Maintain the Stemness of Lung Cancer Stem Cells. J Clin Med 2019; 8:E1928. [PMID: 31717588 PMCID: PMC6912435 DOI: 10.3390/jcm8111928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND According to the cancer stem cells (CSCs) hypothesis, a population of cancer cells with stem cell properties is responsible for tumor propagation, drug resistance, and disease recurrence. Study of the mechanisms responsible for lung CSCs propagation is expected to provide better understanding of cancer biology and new opportunities for therapy. METHODS The Lung Adenocarcinoma (LUAD) NCI-H460 cell line was grown either as 2D or as 3D cultures. Transcriptomic and genome-wide chromatin accessibility studies of 2D vs. 3D cultures were carried out using RNA-sequencing and Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), respectively. Reverse transcription polymerase chain reaction (RT-PCR) was also carried out on RNA extracted from primary cultures derived from malignant pleural effusions to validate RNA-seq results. RESULTS RNA-seq and ATAC-seq data disentangled transcriptional and genome accessibility variability of 3D vs. 2D cultures in NCI-H460 cells. The examination of genomic landscape of genes upregulated in 3D vs. 2D cultures led to the identification of 2D cultures led to the identification of Beta-1,4-galactosyltranferase 1 (B4GALT1) as the top candidate. B4GALT1 as the top candidate. B4GALT1 was validated as a stemness factor, since its silencing caused strong inhibition of 3D spheroid formation. CONCLUSION Combined transcriptomic and chromatin accessibility study of 3D vs. 2D LUAD cultures led to the identification of B4GALT1 as a new factor involved in the propagation and maintenance of LUAD CSCs.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (C.D.V.); (R.M.)
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesca Ascenzi
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Matteo Pallocca
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Simona di Martino
- Pathology Unit, IRCSS “Regina Elena” National Cancer Institute, 00144 Rome, Italy;
| | - Sara Bruschini
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00189 Rome, Italy;
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Division of Pneumology, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy;
| | - Massimiliano Bassi
- Department of Thoracic Surgery, University of Rome Sapienza, 00161 Rome, Italy; (M.B.); (F.V.)
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome Sapienza, 00161 Rome, Italy; (M.B.); (F.V.)
| | - Erino Angelo Rendina
- Department of Thoracic Surgery, Sant’Andrea Hospital, “Sapienza” University of Rome, 00189 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (C.D.V.); (R.M.)
| |
Collapse
|
42
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
43
|
Zhang C, Ma K, Li WY. IL-6 Promotes Cancer Stemness and Oncogenicity in U2OS and MG-63 Osteosarcoma Cells by Upregulating the OPN-STAT3 Pathway. J Cancer 2019; 10:6511-6525. [PMID: 31777581 PMCID: PMC6856881 DOI: 10.7150/jca.29931] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cancer stem cells (CSCs) are associated with tumor development, chemoresistance, recurrence, metastasis, and even prognosis. Interleukin (IL)-6 overexpression has been implicated in the development of various cancers, including osteosarcoma. This study aimed to investigate the role of IL-6 in modulating clinicopathological features, malignant traits, and stemness in osteosarcoma, and to determine the mechanisms underlying IL-6-mediated osteosarcoma progression. Methods: Patients with osteosarcoma (n = 54) and healthy controls (n = 50) were selected. No patients received any pre-operative cancer treatment. Serum levels of IL-6 were determined in patients with osteosarcoma by ELISA and their relationship with pathological features and prognosis analyzed. The 3-(4,5-dimethyl -2-thiazolyl)- 2,5-diphenyl-2H-tetrazolium bromide (MTT) and colony formation assays were used to evaluate cell proliferation, transwell assays were used to assess the invasive potential of cells, and cell migration rates were analyzed using a wound healing assay. Tumor self-renewal was detected using a spheroid formation assay and CD133 and CD44 expression assessed by flow cytometry. Protein levels of NANOG, SOX2, OCT3/4, OPN, and epithelial-to-mesenchymal transition (EMT)-related markers, and the phosphorylation status of STAT3, were determined by western blotting. Finally, cell viability was determined with or without cisplatin (cis-dichlorodiammineplatinum [DDP])/adriamycin (ADR) treatment. Xenograft tumor models were established by subcutaneous injection of osteosarcoma spheroids, with or without IL-6. Results: Serum IL-6 levels were higher in osteosarcoma patients than controls. There was no significant association of serum IL-6 level with age, sex and tumor size; however, it was associated with TNM stage, and lung metastasis (P < 0. 05). IL-6 significantly increased proliferation and colony formation of osteosarcoma cells, and enhanced their invasion and migratory potential, thus promoting an EMT-like phenotype and elevated chemoresistance of to DDP/ADR. Spheroid size/proportion of CD133+CD44+ cells and SOX2, OCT3/4, and NANOG protein levels were elevated by IL-6 treatment in a time-dependent manner; however, IL-6 did not substantially influence any of these features in hFOB 1.19 and T98G cells. Knockdown of IL-6 reduced cell viability, colony formation, and invasion/migration ability, and reversed EMT, whereas it increased chemosensitivity to DDP/ADR. Blocking IL-6 expression with siRNA also caused loss of stemness, including reducing self-renewal ability, and reduced the proportion of CD133/CD44-positive cells, and expression of stemness-related genes. Pretreatment with the STAT3 inhibitor, S3I-201, decreased sphere size, and downregulated NANOG, SOX2, and OCT3/4 protein levels, compared with IL-6 treatment alone. Furthermore, OPN levels were elevated in response to IL-6 and an anti-OPN antibody effectively blocked IL-6-induced spheroid formation and STAT3 phosphorylation. In vivo, tumor size and weight were higher in IL-6 treated mice than controls. Conclusions: IL-6 mediates promotion of osteosarcoma spheroid stemness by activating OPN/STAT3 signaling.
Collapse
Affiliation(s)
- Chuan Zhang
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, China
| | - Kun Ma
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, China
| | - Wu-Yin Li
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, China
| |
Collapse
|
44
|
Irani S. Emerging insights into the biology of metastasis: A review article. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:833-847. [PMID: 31579438 PMCID: PMC6760483 DOI: 10.22038/ijbms.2019.32786.7839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Metastasis means the dissemination of the cancer cells from one organ to another which is not directly connected to the primary site. Metastasis has a crucial role in the prognosis of cancer patients. A few theories, different types of cell and several molecular pathways have been proposed to explain the mechanism of metastasis. In this work, the related articles in the limited period of time, 2000-mid -2018 were reviewed, through search in PubMed, Google Scholar and Scopus database. The articles published in the last two decades related to the biology of cancer metastasis were selected and the most important factors were discussed. Metastasis is critical factor to predict survival in patients with advanced cancer and prognosis determines the treatment plan. Many different cell types and various signaling pathways control the metastatic process. Metastasis is a multistep process. Many signaling pathways and molecules are involved in metastasis. Increasing knowledge about the mechanism of metastasis can help in finding the promising targets of cancer therapy.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan,Iran, Lecturer at Griffith University, Gold Coast, Australia
| |
Collapse
|
45
|
Enhanced morphological and functional differences of pancreatic cancer with epithelial or mesenchymal characteristics in 3D culture. Sci Rep 2019; 9:10871. [PMID: 31350453 PMCID: PMC6659675 DOI: 10.1038/s41598-019-47416-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer, composed of heterogeneous cancer cells, alters epithelial to mesenchymal features during growth and metastasis. In this study, we aimed to characterize pancreatic ductal adenocarcinoma (PDAC) cells showing epithelial or mesenchymal features in 3D culture. In 3D culture, PK-1 cells had high E-cadherin and low vimentin expression and exhibited a round-like appearance encircled by flat cells. PANC-1 cells had high vimentin and low E-cadherin expression and formed grape-like spheres. PK-1 cells had secretary granules and many microvilli, desmosomes, and adherens junctions, while PANC-1 cells had few microvilli, adherens junction, and no desmosomes. Cytokeratin 7, trypsin, CA19-9, and E-cadherin were highly expressed in PK-1 cells but not in PANC-1 cells. Ki-67 was diffusely expressed in PANC-1 spheres but was restricted to the peripheral flat cells of PK-1 spheres. PANC-1 and PK-1 cells were positive for transforming growth factor (TGF) β receptor II and phosphorylated smad2/3, but PK-1 cells were smad4 negative. Taken together, 3D culture enhanced morphofunctional differences of PDAC cells showing epithelial or mesenchymal characteristics, and epithelial phenotype maintenance may be due to the ineffectiveness of the TGF- β pathway. Clarification of heterogeneity using 3D culture may be useful for development of individualized diagnostic and therapeutic methods in patients with PDAC.
Collapse
|
46
|
Distinct biological characterization of the CD44 and CD90 phenotypes of cancer stem cells in gastric cancer cell lines. Mol Cell Biochem 2019; 459:35-47. [PMID: 31073886 DOI: 10.1007/s11010-019-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Recent study implicates that gastric cancer stem cells (CSCs) are capable of generating multiple types of cells to promote tumor growth and heterogeneity important for the development of gastric cancer. However, knowledge is limited regarding the expression and characteristics of marker-positive gastric CSCs. Therefore, gastric CSCs from a series of human gastric cancer cell lines (SNU-5, SNU-16, BGC-823, PAMC-82, MKN-45, and NCI-N87) using four putative CSC surface markers (CD44, CD90, CD133, and epithelial-cell adhesion molecule) were investigated the underlying mechanisms regulating such subpopulations. Only SNU-5 and SNU-16 exhibited independent co-expression of CD44+ and CD90+, which exhibited spheroid-colony formation in vitro and tumor formation in immunodeficient mice. Functional studies revealed that CD44+ cells were more invasive compared with CD90+ cells, whereas CD90+ cells exhibited higher levels of proliferation than CD44+ cells. Furthermore, serial xenotransplantation in mice of CD44+/CD90+ cells derived from SNU-5 and SNU-16 revealed rapid growth of CD90+ cells in subcutaneous lesions and a high metastatic capacity of CD44+ cells in the lung. Mechanistic analyses revealed that CD44+ cells underwent epithelial-to-mesenchymal transition (EMT) following acquisition of mesenchymal features, whereas CD90+ cells enhanced the activation of retinoblastoma phosphorylation at Ser780 and oncogenic cell cycle regulators. The expression of CD44 and CD90 in gastric cancer tissues was associated with distant metastasis and the differentiation state of tumors. These results demonstrated that CD44 and CD90 are specific biomarkers capable of identifying and isolating metastatic and tumorigenic CSCs through their ability to regulate EMT and the cell cycle in gastric cancer cell lines.
Collapse
|
47
|
Sasaki N, Toyoda M, Hasegawa F, Fujiwara M, Gomi F, Ishiwata T. Fetal bovine serum enlarges the size of human pancreatic cancer spheres accompanied by an increase in the expression of cancer stem cell markers. Biochem Biophys Res Commun 2019; 514:112-117. [PMID: 31027735 DOI: 10.1016/j.bbrc.2019.04.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major histological type of pancreatic cancer and remains one of the most lethal cancers with a high mortality rate owing to its aggressive growth, high metastatic rate, and recurrence. Recent studies on cancer stem cells (CSCs) have suggested that the aggressive growth, high metastatic rate, and recurrence might be caused by the ability of CSCs to self-renew, differentiate, and drive tumorigenesis. Thus, CSCs are expected to be a therapeutic target for PDAC. Sphere forming assay of cancer cells, including PDAC cells, is commonly performed using epidermal growth factor and fibroblast growth factor-2 containing serum-free medium to identify and isolate the enriched CSCs. Recently, we observed that PDAC spheres cultured in fetal bovine serum containing medium are morphologically similar to spheres cultured in the growth factor containing medium. In this study, we cultured two PDAC cell lines, PANC-1 and PK-1, in growth factor containing serum-free medium or serum containing medium, and compared the morphology of the spheres formed in detail by electron microscopy and examined the expression of major CSC marker genes. Both the PDAC cells formed larger spheres in the serum containing medium than in the growth factor containing medium. PK-1 cells formed more morphologically differentiated spheres, with peripheral flat lining cells, in the serum containing medium. Expression levels of most of the CSC markers were higher in the spheres of the two PDAC cells in both the culture mediums than in the cells cultured under adherent conditions. The expression levels of CSC markers in PDAC spheres cultured in the growth factor containing medium were not necessarily higher than that in the spheres cultured in the serum containing medium. These findings suggest that sphere forming assay using serum containing medium, by which large PDAC spheres with enriched CSCs are formed, may be useful for deciphering the characteristics of CSCs and for developing anti-CSC therapies for PDAC.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fumio Hasegawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masakazu Fujiwara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Science, Nippon Medical School, Kanagawa, 211-8533, Japan
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
48
|
Okui N, Kamata Y, Sagawa Y, Kuhara A, Hayashi K, Uwagawa T, Homma S, Yanaga K. Claudin 7 as a possible novel molecular target for the treatment of pancreatic cancer. Pancreatology 2019; 19:88-96. [PMID: 30416041 DOI: 10.1016/j.pan.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/22/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreatic cancer consists of various subpopulations of cells, some of which have aggressive proliferative properties. The molecules responsible for the aggressive proliferation of pancreatic cancer may become molecular targets for the therapies against pancreatic cancer. METHODS From a human pancreatic cancer cell line, MIA PaCa-2, MIA PaCa-2-A cells with an epithelial morphology and MIA PaCa-2-R cells with a non-epithelial morphology were clonogenically isolated by the limiting dilution method. Gene expression of these subpopulations was analyzed by DNA microarray. Gene knockdown was performed using siRNA. RESULTS Although the MIA PaCa-2-A and MIA PaCa-2-R cells displayed the same DNA short tandem repeat (STR) pattern identical to that of the parental MIA PaCa-2 cells, the MIA PaCa-2-A cells were more proliferative than the MIA PaCa-2-R cells both in culture and in tumor xenografts generated in immunodeficient mice. Furthermore, the MIA PaCa-2-A cells were more resistant to gemcitabine than the MIA PaCa-2-R cells. DNA microarray analysis revealed a high expression of claudin (CLDN) 7 in the MIA PaCa-2-A cells, as opposed to a low expression in the MIA PaCa-2-R cells. The knockdown of CLDN7 in the MIA PaCa-2-A cells induced a marked inhibition of proliferation. The MIA PaCa-2-A cells in which CLDN7 was knocked down exhibited a decreased expression of phosphorylated extracellular signal-regulated kinase (p-Erk)1/2 and G1 cell cycle arrest. CONCLUSIONS CLDN7 may be expressed in the rapidly proliferating and dominant cell population in human pancreatic cancer tissues and may be a novel molecular target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Norimitsu Okui
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yukiko Sagawa
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Akiko Kuhara
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazumi Hayashi
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Sadamu Homma
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Exosomes Regulate the Transformation of Cancer Cells in Cancer Stem Cell Homeostasis. Stem Cells Int 2018; 2018:4837370. [PMID: 30344611 PMCID: PMC6174755 DOI: 10.1155/2018/4837370] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
In different biological model systems, exosomes are considered mediators of cell-cell communication between different cell populations. Exosomes, as extracellular vesicles, participate in physiological and pathological processes by transmitting signaling molecules such as proteins, nucleic acids, and lipids. The tumor's microenvironment consists of many types of cells, including cancer stem cells and mesenchymal cells. It is well known that these cells communicate with each other and thereby regulate the progression of the tumor. Recent studies have provided evidence that exosomes mediate the interactions between different types of cells in the tumor microenvironment, providing further insight into how these cells interact through exosome signaling. Cancer stem cells are a small kind of heterogeneous cells that existed in tumor tissues or cancer cell lines. These cells possess a stemness phenotype with a self-renewal ability and multipotential differentiation which was considered the reason for the failure of conventional cancer therapies and tumor recurrence. However, a highly dynamic equilibrium was found between cancer stem cells and cancer cells, and this indicates that cancer stem cells are no more special target and blocking the transformation of cancer stem cells and cancer cells seem to be a more significant therapy strategy. Whether exosomes, as an information transforming carrier between cells, regulated cancer cell transformation in cancer stem cell dynamic equilibrium and targeting exosome signaling attenuated the formation of cancer stem cells and finally cure cancers is worthy of further study.
Collapse
|
50
|
Li L, Qi L, Qu T, Liu C, Cao L, Huang Q, Song W, Yang L, Qi H, Wang Y, Gao B, Guo Y, Sun B, Meng B, Zhang B, Cao W. Epithelial Splicing Regulatory Protein 1 Inhibits the Invasion and Metastasis of Lung Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1882-1894. [DOI: 10.1016/j.ajpath.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
|