1
|
Colangelo M, Gazol A, Camarero JJ, Borghetti M, Sánchez-Salguero R, Matias L, Castellaneta M, Nola P, Ripullone F. Earlywood vessel characteristics are early indicators of drought-induced decline in ring-porous oak species within the Mediterranean Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179565. [PMID: 40319804 DOI: 10.1016/j.scitotenv.2025.179565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Heat and drought stress have triggered forest dieback episodes worldwide, affecting oak forests, particularly in hotspots of climate change such as the Mediterranean Basin. However, forecasting dieback is not straightforward. In this study, we used the earlywood anatomy to improve dieback forecasts in five oak species characterized by different drought sensitivity (i.e. from high to low Quercus robur, Q. cerris, Q. frainetto and Q. canariensis, Q. humilis, Q. pubescens) across Italy and Spain. We measured radial growth, expressed as basal area increment (BAI), earlywood hydraulic diameter (Dh) and vessel area of coexisting non-declining (ND) and declining (D) trees in each stand. Then, we calculated the product between the coefficient of variation (CV) of vessel area and a spatial aggregation index (AI). High CV × AI values indicate regularly spaced vessels with variable area of vessels, while low values correspond to clustered vessels with similar area. ND trees showed higher BAI values than D trees from 10 to 40 years before the dieback onset, when ND trees grew 20-50 % more than the D trees. We observed a decline in the vessel area CV several decades prior to dieback in D trees, with the exception of Q. cerris. The AI showed higher values in ND than in D trees. Consequently, the CV × AI product was consistently higher in ND than in D trees. The CV × AI divergence between ND and D trees was pronounced in the wettest sites, specifically for Q. robur and Q. humilis. Time series of CV × AI effectively differentiated trees based on their vigor. Wood anatomy variables could be used to enhance predictions of vulnerability to drought-induced dieback. This study can help identify vulnerable trees before the onset of dieback symptoms, serving as a tool to support the management of forests prone to drought.
Collapse
Affiliation(s)
- Michele Colangelo
- Dipartimento di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy.
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain.
| | - Marco Borghetti
- Dipartimento di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy.
| | - Raúl Sánchez-Salguero
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - Luis Matias
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Maria Castellaneta
- Dipartimento di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy.
| | - Paola Nola
- Dipartimento Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, 27100 Pavia, Italy.
| | - Francesco Ripullone
- Dipartimento di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy.
| |
Collapse
|
2
|
Wang S, Hoch G, Hopf S, Kahmen A. Genetic Variation and Phenotypic Plasticity of Leaf Minimum Water Conductance in Temperate Tree Species. PLANT, CELL & ENVIRONMENT 2025; 48:4312-4326. [PMID: 39948756 DOI: 10.1111/pce.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 05/06/2025]
Abstract
The survival time of trees under drought is intimately linked to leaf minimum water conductance on the leaf surface (gmin), which determines the residual water loss of trees after maximum stomatal closure. Considerable interspecies variation of gmin in trees has been documented, but intraspecific variation resulting from genetic variation (G) and phenotypic plasticity (E) remains unclear. We measured the temperature response (T) of gmin in different provenances of four temperate tree species growing in three common gardens differing in water availability and assessed G, E and G × E of gmin and T. Additionally, we explored how leaf cuticular and stomatal traits are related to the intraspecific variation of gmin. For all species, our results showed strong T, low G and high E for gmin. Interestingly, E was more pronounced in deciduous angiosperm trees than in evergreen conifers. Surprisingly, there was significant E × T in some species. Contrary to our expectation, we found no significant effect of leaf stomatal and cuticular traits on gmin. Our study suggests that E is the most potent driver of intraspecies variation of gmin, possibly contributing to the acclimation of deciduous trees to a future hotter and dryer climate.
Collapse
Affiliation(s)
- Songwei Wang
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Günter Hoch
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Sven Hopf
- The Institute for Applied Plant Biology, Solothurn, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Sobota M, Li K, Knighton J. Red maple tree root water uptake depths are influenced by neighboring tree species composition. TREE PHYSIOLOGY 2025; 45:tpaf049. [PMID: 40266250 PMCID: PMC12100743 DOI: 10.1093/treephys/tpaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/27/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Understanding how mixed-species forests uptake subsurface water sources is critical to projecting future forest water use and stress. Variation in root water uptake (RWU) depths and volumes is common among trees but it is unclear how it is affected by species identity, local water availability or neighboring tree species compositions. We evaluated the hypothesis that RWU depths and the age of water (i.e., time since water entered soils as precipitation) taken up by red maples (Acer rubrum) varied significantly between two forested plots, both containing red maples, similar soils, topography and hydrologic conditions, but having different neighboring tree species. We measured soil moisture contents as well as stable isotopes (δ2H, δ18O) in plant xylem water and soil moisture across two years. These data were used to calibrate process-based stand-level ecohydrological models for each plot to estimate species-level RWU depths. Model calibration suggested significant differences in red maple tree RWU depths, transpiration rates and the ages of water taken up by maples across the two stands. Maple trees growing with ash and white spruce relied on significantly deeper and older water from the soil profile than maple trees growing with birch and oak. The drought risk profile experienced by maple trees differed between the plots as demonstrated by strong correlations between precipitation and model simulated transpiration on a weekly time scale for maples taking up shallow soil moisture and a monthly time scale for maples reliant on deeper soil moisture. These findings carry significant implications for our understanding of water competition in mixed-species forests and for the representation of forest rooting strategies in hydrologic and earth systems models.
Collapse
Affiliation(s)
- Matthew Sobota
- Department of Natural Resources and the Environment, University of Connecticut, 1376 Storrs Rd. Storrs, CT 06268, USA
| | - Kevin Li
- Department of Natural Resources and the Environment, University of Connecticut, 1376 Storrs Rd. Storrs, CT 06268, USA
| | - James Knighton
- Department of Natural Resources and the Environment, University of Connecticut, 1376 Storrs Rd. Storrs, CT 06268, USA
| |
Collapse
|
4
|
Martinetti S, Molnar P, Carminati A, Floriancic MG. Contrasting the soil-plant hydraulics of beech and spruce by linking root water uptake to transpiration dynamics. TREE PHYSIOLOGY 2025; 45:tpae158. [PMID: 39658309 PMCID: PMC11761973 DOI: 10.1093/treephys/tpae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Tree water status is mainly determined by the amount of water taken up from roots and lost through leaves by transpiration. Variations in transpiration and stomatal conductance are often related to atmospheric conditions and leaf water potential. Yet, few experimental datasets exist that enable to relate leaf water potential, transpiration dynamics and temporal variation of root water uptake from different depths during soil drying. Here we explored the soil-plant hydraulic system using field measurements of water potentials and fluxes in soils, roots, stems and leaves of beech (Fagus sylvatica) and spruce (Picea abies) trees. Spruce maintained less negative water potentials than beech during soil drying, reflecting a more stringent stomatal control. While root water uptake depths were similar between species, water potentials in plant tissues of spruce were rather constant and less correlated across roots and the stem, possibly because of large water storage and hydraulic capacitance in these tissues. Root water uptake from deep soil layers increased during dry periods, particularly for beech. Our data suggest that species-specific root hydraulic conductance, capacitance and water uptake strategy are linked and affect transpiration dynamics. Thus, it is important to include such species-specific hydraulics when predicting transpiration rates based on plant water status.
Collapse
Affiliation(s)
- Stefano Martinetti
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, HIF D 11, Laura-Hezner-Weg 7, 8093 Zürich, Switzerland
| | - Peter Molnar
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, HIF D 11, Laura-Hezner-Weg 7, 8093 Zürich, Switzerland
| | - Andrea Carminati
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Marius G Floriancic
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, HIF D 11, Laura-Hezner-Weg 7, 8093 Zürich, Switzerland
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Hafner BD, Hesse BD, Grams TEE. Redistribution of soil water by mature trees towards dry surface soils and uptake by seedlings in a temperate forest. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39822033 DOI: 10.1111/plb.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) 2H labeling and (2) 18O natural abundance. In a throughfall exclusion experiment, 2H water was applied to 30-50 cm soil depth around mature beech trees and traced in soils, in coarse and fine roots, and in the rhizosphere. On five additional natural plots, the 18O signal was measured in seedlings of European beech, Douglas fir, silver fir, sycamore maple, and Norway spruce at dawn and noon after a rain-free period. We found a significant enrichment in 2H in surface soil fine roots of mature beech, and an indication for transfer of this water into their rhizosphere, suggesting hydraulic redistribution from deeper, moist to drier surface soils. On four of the five additional plots, δ18O of seedlings' root water was lower at dawn than at noon. This indicated that dawn root water originated from soil layers deeper than the seedlings' rooting depth, suggesting hydraulic redistribution by neighbouring mature trees. Hydraulic redistribution equated to about 10% of daily transpiration in mature beech trees, and contributed to root water in understory seedlings, emphasizing hydraulic redistribution as a notable mechanism in temperate forests. Transport mechanisms and potential of different tree species to redistribute water should be further addressed.
Collapse
Affiliation(s)
- B D Hafner
- School of Life Sciences, Soil Biophysics and Environmental Systems, Technical University of Munich, Freising, Germany
| | - B D Hesse
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
- School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany
| | - T E E Grams
- School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Zahnd C, Zehnder M, Arend M, Kahmen A, Hoch G. Uniform carbon reserve dynamics along the vertical light gradient in mature tree crowns. TREE PHYSIOLOGY 2024; 44:232-245. [PMID: 38198739 PMCID: PMC11898625 DOI: 10.1093/treephys/tpae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2024]
Abstract
Understanding the within-tree variability of non-structural carbohydrates (NSC) is crucial for interpreting point measurements and calculating whole-tree carbon balances. Yet, little is known about how the vertical light gradient within tree crowns influences branch NSC concentrations and dynamics. We measured NSC concentrations, irradiance and key leaf traits in uppermost, sun-exposed and lowest, shaded branches in the crowns of mature, temperate trees from nine species with high temporal resolution throughout one growing season. Measurements from two additional years allowed us to test the generality of our findings amongst climatically contrasting years. Despite the vertical light gradient, we found very similar seasonal NSC dynamics and concentrations between sun and shade branches in most species. This can at least partially be explained by acclimations in specific leaf area and photosynthetic leaf traits compensating the different light availability between the top and bottom canopy. Only in the ring-porous species Quercus petraea x robur and Fraxinus excelsior was starch refilling after budbreak slower in lower branches. End-of-season NSC concentrations were similar between canopy positions and amongst observation years. Only Fagus sylvatica had 40 and 29% lower starch concentrations by the end of the extremely dry year 2020, relative to the other 2 years. We show that NSC measured anywhere in a tree crown is often representative of the whole crown. Overall, our results suggest that carbon reserve dynamics in trees are largely insensitive to both microclimatic gradients and inter-annual climatic variation, and only deviate under severe carbon deficits, as was presumably the case with Fagus in our study.
Collapse
Affiliation(s)
- Cedric Zahnd
- Department of Environmental Sciences—Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Miro Zehnder
- Department of Environmental Sciences—Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Matthias Arend
- Department of Environmental Sciences—Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
- Department of Geobotany, University of Trier, Universitätsring 15, 54296 Trier, Germany
| | - Ansgar Kahmen
- Department of Environmental Sciences—Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Günter Hoch
- Department of Environmental Sciences—Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Spangenberg G, Zimmermann R, Küppers M, Hein S. High-resolution dendrometer measurements reveal different responses of Douglas-fir to extreme drought in 2018 depending on soil and rooting characteristics. FRONTIERS IN PLANT SCIENCE 2024; 15:1485440. [PMID: 39659421 PMCID: PMC11628273 DOI: 10.3389/fpls.2024.1485440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Introduction Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is considered an important non-native substitute tree species in Europe, especially for Norway spruce (Picea abies (L.) Karst.), mainly due to its higher drought tolerance. However, Douglas-fir has also shown increasing mortality in certain regions of the world. One of the main reasons is the increase in drought and heat periods due to climate change. There is still a need for research on the influence of important soil properties and rooting characteristics on the drought tolerance of Douglas-fir. Therefore, we analyzed the influence of soil texture, plant-available water capacity (PAWC), fine root density, and effective rooting depth on water status and thus drought stress in Douglas-fir during the extreme drought of 2018. Methods We selected seven closely spaced sites along a soil texture gradient from sand to clay at an elevation of ca. 500 m a.s.l. in southern Germany and determined soil physical and rooting characteristics. Water status parameters and growth duration were derived from dendrometer data at five Douglas-firs per site. The influence of soil and rooting characteristics on these drought stress-related parameters was analyzed using mixed-effects models. The focus was on two summer drought periods in 2018. Results and discussion In the initial stage of the extreme summer drought of 2018 (in June), a higher PAWC and a higher fine root density reduced drought stress. However, these influences were no longer noticeable in the later stage of drought (in August), probably due to deeper soil desiccation. In August, a higher effective rooting depth reduced drought stress. Soil texture had a significant influence, particularly on growth duration. This study provides information on site selection for Douglas-fir cultivation under the predicted increase in severe drought, showing the importance of deep and intensive rooting, and points to the need for combined above- and belowground investigations for a better understanding of the drought response patterns of tree species.
Collapse
Affiliation(s)
- Göran Spangenberg
- Department of Silviculture, University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Germany
| | - Reiner Zimmermann
- Forest Ecology and Remote Sensing Group, Department 190a, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Manfred Küppers
- Department 190a, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sebastian Hein
- Department of Silviculture, University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Germany
| |
Collapse
|
8
|
Gauthey A, Kahmen A, Limousin JM, Vilagrosa A, Didion-Gency M, Mas E, Milano A, Tunas A, Grossiord C. High heat tolerance, evaporative cooling, and stomatal decoupling regulate canopy temperature and their safety margins in three European oak species. GLOBAL CHANGE BIOLOGY 2024; 30:e17439. [PMID: 39092538 DOI: 10.1111/gcb.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Heatwaves and soil droughts are increasing in frequency and intensity, leading many tree species to exceed their thermal thresholds, and driving wide-scale forest mortality. Therefore, investigating heat tolerance and canopy temperature regulation mechanisms is essential to understanding and predicting tree vulnerability to hot droughts. We measured the diurnal and seasonal variation in leaf water potential (Ψ), gas exchange (photosynthesis Anet and stomatal conductance gs), canopy temperature (Tcan), and heat tolerance (leaf critical temperature Tcrit and thermal safety margins TSM, i.e., the difference between maximum Tcan and Tcrit) in three oak species in forests along a latitudinal gradient (Quercus petraea in Switzerland, Quercus ilex in France, and Quercus coccifera in Spain) throughout the growing season. Gas exchange and Ψ of all species were strongly reduced by increased air temperature (Tair) and soil drying, resulting in stomatal closure and inhibition of photosynthesis in Q. ilex and Q. coccifera when Tair surpassed 30°C and soil moisture dropped below 14%. Across all seasons, Tcan was mainly above Tair but increased strongly (up to 10°C > Tair) when Anet was null or negative. Although trees endured extreme Tair (up to 42°C), positive TSM were maintained during the growing season due to high Tcrit in all species (average Tcrit of 54.7°C) and possibly stomatal decoupling (i.e., Anet ≤0 while gs >0). Indeed, Q. ilex and Q. coccifera trees maintained low but positive gs (despite null Anet), decreasing Ψ passed embolism thresholds. This may have prevented Tcan from rising above Tcrit during extreme heat. Overall, our work highlighted that the mechanisms behind heat tolerance and leaf temperature regulation in oak trees include a combination of high evaporative cooling, large heat tolerance limits, and stomatal decoupling. These processes must be considered to accurately predict plant damages, survival, and mortality during extreme heatwaves.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Ansgar Kahmen
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Jean-Marc Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department Ecology, University of Alicante, Alicante, Spain
| | - Margaux Didion-Gency
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, District of Columbia, USA
| | - Arianna Milano
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
9
|
Gauthey A, Bachofen C, Chin A, Cochard H, Gisler J, Mas E, Meusburger K, Peters RL, Schaub M, Tunas A, Zweifel R, Grossiord C. Twenty years of irrigation acclimation is driven by denser canopies and not by plasticity in twig- and needle-level hydraulics in a Pinus sylvestris forest. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3141-3152. [PMID: 38375924 PMCID: PMC11103111 DOI: 10.1093/jxb/erae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased tree water deficit during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and hence the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in its hydraulic system. While sparser canopies reduce water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Alana Chin
- Plant Ecology Group, Institute for Integrative Biology, ETH-Zürich, Zürich, Switzerland
| | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Forest Soils and Biochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Richard L Peters
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, A-6020, Innsbruck, Austria
| | - Roman Zweifel
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
10
|
Wang S, Hoch G, Grun G, Kahmen A. Water loss after stomatal closure: quantifying leaf minimum conductance and minimal water use in nine temperate European tree species during a severe drought. TREE PHYSIOLOGY 2024; 44:tpae027. [PMID: 38412116 PMCID: PMC10993720 DOI: 10.1093/treephys/tpae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Residual canopy transpiration (Emin_canop) is a key physiological trait that determines trees' survival time under drought after stomatal closure and after trees have limited access to soil water. Emin_canop mainly depends on leaf minimum conductance (gmin) and vapor pressure deficit. Here we determined the seasonal variation of gmin and how gmin is related to interspecies variation in leaf cuticular and stomatal traits for nine European tree species in a mature forest. In addition, we determined the species-specific temperature responses of gmin. With this newly obtained insight, we calculated Emin_canop for the nine species for one day at our research site during the 2022 central European hot drought. Our results show that at ambient temperatures gmin ranged from 0.8 to 4.8 mmol m-2 s-1 across the nine species and was stable in most species throughout the growing season. The interspecies variation of gmin was associated with leaf cuticular and stomatal traits. Additionally, gmin exhibited strong temperature responses and increased, depending on species, by a factor of two to four in the range of 25-50 °C. For the studied species at the site, during a single hot drought day, Emin_canop standardized by tree size (stem basal area) ranged from 2.0 to 36.7 L m-2, and non-standardized Emin_canop for adult trees ranged from 0.3 to 5.3 L. Emin_canop also exhibited species-specific rapid increases under hotter temperatures. Our results suggest that trees, depending on species, need reasonable amounts of water during a drought, even when stomates are fully closed. Species differences in gmin and ultimately Emin_canop can, together with other traits, affect the ability of a tree to keep its tissue hydrated during a drought and is likely to contribute to species-specific differences in drought vulnerability.
Collapse
Affiliation(s)
- Songwei Wang
- Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Günter Hoch
- Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Georges Grun
- Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Kinzinger L, Mach J, Haberstroh S, Schindler Z, Frey J, Dubbert M, Seeger S, Seifert T, Weiler M, Orlowski N, Werner C. Interaction between beech and spruce trees in temperate forests affects water use, root water uptake pattern and canopy structure. TREE PHYSIOLOGY 2024; 44:tpad144. [PMID: 38070177 DOI: 10.1093/treephys/tpad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Beneficial and negative effects of species interactions can strongly influence water fluxes in forest ecosystems. However, little is known about how trees dynamically adjust their water use when growing with interspecific neighbours. Therefore, we investigated the interaction effects between Fagus sylvatica (European beech) and Picea abies (Norway spruce) on water-use strategies and aboveground structural characteristics. We used continuous in situ isotope spectroscopy of xylem and soil water to investigate source water dynamics and root water uptake depths. Picea abies exhibited a reduced sun-exposed crown area in equally mixed compared with spruce-dominated sites, which was further correlated to a reduction in sap flow of -14.5 ± 8.2%. Contrarily, F. sylvatica trees showed +13.3 ± 33.3% higher water fluxes in equally mixed compared with beech-dominated forest sites. Although a significantly higher crown interference by neighbouring trees was observed, no correlation of water fluxes and crown structure was found. High time-resolved xylem δ2H values showed a large plasticity of tree water use (-74.1 to -28.5‰), reflecting the δ2H dynamics of soil and especially precipitation water sources. Fagus sylvatica in equally mixed sites shifted water uptake to deeper soil layers, while uptake of fresh precipitation was faster in beech-dominated sites. Our continuous in situ water stable isotope measurements traced root water uptake dynamics at unprecedented temporal resolution, indicating highly dynamic use of water sources in response to precipitation and to neighbouring species competition. Understanding this plasticity may be highly relevant in the context of increasing water scarcity and precipitation variability under climate change.
Collapse
Affiliation(s)
- Laura Kinzinger
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| | - Judith Mach
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
| | - Simon Haberstroh
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| | - Zoe Schindler
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Julian Frey
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Maren Dubbert
- IBG, PB 1 'Landschaftsprozesse', Leibniz Zentrum für Agrarlandschaftsforschung (ZALF) e. V, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Stefan Seeger
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
- Soil Physics, Department of Crop Sciences, University of Göttingen, Grisebachstraße 6, 37077 Gottingen, Germany
| | - Thomas Seifert
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Bosman Street, 7599 Stellenbosch, South Africa
| | - Markus Weiler
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
| | - Natalie Orlowski
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
- Chair of Site Ecology and Plant Nutrition, Institute of Soil Science and Site Ecology, TU Dresden, Pienner Strasse 19, Tharandt 01737, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| |
Collapse
|
12
|
Peters RL, Steppe K, Pappas C, Zweifel R, Babst F, Dietrich L, von Arx G, Poyatos R, Fonti M, Fonti P, Grossiord C, Gharun M, Buchmann N, Steger DN, Kahmen A. Daytime stomatal regulation in mature temperate trees prioritizes stem rehydration at night. THE NEW PHYTOLOGIST 2023. [PMID: 37235688 DOI: 10.1111/nph.18964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/16/2023] [Indexed: 05/28/2023]
Abstract
Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.
Collapse
Affiliation(s)
- Richard L Peters
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Christoforos Pappas
- Department of Civil Engineering, University of Patras, Rio, Patras, 26504, Greece
| | - Roman Zweifel
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, East Lowell Street 1064, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, East Lowell Street 1215, Tucson, AZ, 857121, USA
| | - Lars Dietrich
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Georg von Arx
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3012, Bern, Switzerland
| | - Rafael Poyatos
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Marina Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School for Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanna, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Mana Gharun
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 2, CH-8092, Zurich, Switzerland
- Department of Geosciences, University of Münster, Heisenbergstrasse 2, 48149, Münster, Germany
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 2, CH-8092, Zurich, Switzerland
| | - David N Steger
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| |
Collapse
|
13
|
Dubbert M, Couvreur V, Kübert A, Werner C. Plant water uptake modelling: added value of cross-disciplinary approaches. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:32-42. [PMID: 36245305 DOI: 10.1111/plb.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, research interest in plant water uptake strategies has rapidly increased in many disciplines, such as hydrology, plant ecology and ecophysiology. Quantitative modelling approaches to estimate plant water uptake and spatiotemporal dynamics have significantly advanced through different disciplines across scales. Despite this progress, major limitations, for example, predicting plant water uptake under drought or drought impact at large scales, remain. These are less attributed to limitations in process understanding, but rather to a lack of implementation of cross-disciplinary insights into plant water uptake model structure. The main goal of this review is to highlight how the four dominant model approaches, that is, Feddes approach, hydrodynamic approach, optimality and statistical approaches, can be and have been used to create interdisciplinary hybrid models enabling a holistic system understanding that, among other things, embeds plant water uptake plasticity into a broader conceptual view of soil-plant feedbacks of water, nutrient and carbon cycling, or reflects observed drought responses of plant-soil feedbacks and their dynamics under, that is, drought. Specifically, we provide examples of how integration of Bayesian and hydrodynamic approaches might overcome challenges in interpreting plant water uptake related to different travel and residence times of different plant water sources or trade-offs between root system optimization to forage for water and nutrients during different seasons and phenological stages.
Collapse
Affiliation(s)
- M Dubbert
- Isotope Biogeochemistry and Gasfluxes, Leibniz Institute of Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - V Couvreur
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - A Kübert
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - C Werner
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Schuldt B, Ruehr NK. Responses of European forests to global change-type droughts. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1093-1097. [PMID: 36445187 DOI: 10.1111/plb.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Affiliation(s)
- B Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Dresden, Germany
| | - N K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| |
Collapse
|
15
|
Werner C. Extreme droughts and heatwaves endanger temperate forests. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1091-1092. [PMID: 36445188 DOI: 10.1111/plb.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|