1
|
Silva HG, Sobral R, Alhinho AT, Afonso HR, Ribeiro T, Silva PMA, Bousbaa H, Morais-Cecílio L, Costa MMR. Genetic and epigenetic control of dormancy transitions throughout the year in the monoecious cork oak. PHYSIOLOGIA PLANTARUM 2024; 176:e14620. [PMID: 39528435 DOI: 10.1111/ppl.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Bud dormancy plays a vital role in flowering regulation and fruit production, being highly regulated by endogenous and environmental cues. Deployment of epigenetic modifications and differential gene expression control bud dormancy/break cycles. Information on how these genetic and epigenetic mechanisms are regulated throughout the year is still scarce for temperate trees such as Quercus suber. Here, the expression levels of CENTRORADIALIS-LIKE (CENL) and DORMANCY-ASSOCIATED PROTEIN 1 (QsDYL1) during seasonal cycles of bud development, suggesting that QsCENL may be implicated in growth cessation in Q. suber and that QsDYL1 is a good dormancy marker. As gene expression can be regulated by the activity of chromatin modifiers, we have analysed the expression of these genes and the deposition of epigenetic marks in dormant versus non-dormant bud meristems. The DNA methyl transferases CHROMOMEHTYLASE 3 (QsCMT3) and METHYLTRANSFERASE 1 (QsMET1) were more expressed in the transition between dormancy to bud swelling. QsCMT3 was also highly expressed during the late stages of active bud formation. Conversely, the HISTONE ACETYLTRANSFERASE 1 (QsHAC1) was up-regulated during growth cessation and dormancy when compared to bud swelling. These results indicate that epigenetic regulation is implicated in how bud development progresses in Q. suber, which can be observed in the different profile deposition of the repressive and active marks, 5mC and H3K18Ac/H3K4me, respectively. The identification of bud-specific genetic and epigenetic profiling opens new possibilities to predict the relative rate of dormancy/growth of the bud stages, providing tools to understand how trees respond to the current challenges posed by climate change.
Collapse
Affiliation(s)
- Helena Gomes Silva
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Rómulo Sobral
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
- new address: Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ana Teresa Alhinho
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Hugo Ricardo Afonso
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Teresa Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | - Patrícia M A Silva
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - Leonor Morais-Cecílio
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | | |
Collapse
|
2
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Silva AC, Ruiz‐Ferrer V, Müller SY, Pellegrin C, Abril‐Urías P, Martínez‐Gómez Á, Gómez‐Rojas A, Berenguer E, Testillano PS, Andrés MF, Fenoll C, Eves‐van den Akker S, Escobar C. The DNA methylation landscape of the root-knot nematode-induced pseudo-organ, the gall, in Arabidopsis, is dynamic, contrasting over time, and critically important for successful parasitism. THE NEW PHYTOLOGIST 2022; 236:1888-1907. [PMID: 35872574 PMCID: PMC9825882 DOI: 10.1111/nph.18395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.
Collapse
Affiliation(s)
- Ana Cláudia Silva
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Virginia Ruiz‐Ferrer
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | | | - Clement Pellegrin
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Patricia Abril‐Urías
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Ángela Martínez‐Gómez
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Almudena Gómez‐Rojas
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Eduardo Berenguer
- Centro de Investigaciones Biológicas Margarita SalasCIB‐CSIC, Pollen Biotechnology of Crop PlantsRamiro de Maeztu 928040MadridSpain
| | - Pilar S. Testillano
- Centro de Investigaciones Biológicas Margarita SalasCIB‐CSIC, Pollen Biotechnology of Crop PlantsRamiro de Maeztu 928040MadridSpain
| | - Maria Fe Andrés
- Instituto de Ciencias Agrarias (ICA, CSIC)Protección Vegetal, Calle de Serrano 11528006MadridSpain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | | | - Carolina Escobar
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
- International Research Organization for Advanced Science and Technology (IROAST)Kumamoto UniversityKumamoto860‐8555Japan
| |
Collapse
|
4
|
de Araújo Silva-Cardoso IM, Gomes ACMM, Scherwinski-Pereira JE. Cellular responses of oil palm genotypes during somatic embryogenesis involve participation of procambial cells, DNA demethylation, and auxin accumulation. PLANT CELL REPORTS 2022; 41:1875-1893. [PMID: 35776139 DOI: 10.1007/s00299-022-02898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Cell markers of somatic embryogenesis initiation from leaf tissues in oil palm involve the participation of procambial cells, DNA demethylation, and auxin accumulation. Low callogenesis and genotype-dependent response have been mentioned in the development of somatic embryogenesis protocols of Elaeis oleifera × E. guineensis elite hybrids, which requires more detailed investigations of the process. Thus, the initial cellular responses of immature leaves of adult genotypes of this hybrid were investigated for the first time, emphasizing histological, epigenetic, and endogenous auxin changes. Leaf segments from two genotypes, one responsive to somatic embryogenesis (B351733) and another non-responsive (B352933), were inoculated in Murashige and Skoog medium with 450 µM of 4-amino-3, 5, 6-trichloropicolinic acid. For anatomical analysis, samples of both genotypes were collected at 0, 20, 90, and 105 days of cultivation. Samples of both genotypes were also taken at different cultivation periods to analyze DNA methylation status (% 5-mC-5 methylcytosine) via ELISA test. Immunolocalization assays were performed with anti-indole-3-acetic acid and anti-5-methyl-deoxycytosine antibodies from samples of hybrid B351733. We distinguished two groups of cells reactive to the induction of embryogenic callogenesis, parenchymatous sheath cells, and procambial cells; however, only the latter are directly involved with the formation of calluses. The data obtained indicate that the formation of calluses in hybrid B351733 is related to DNA hypomethylation, while the non-responsiveness of leaf explants in hybrid B352932 is related to DNA hypermethylation. The in situ immunolocalization enabled the identification of initial markers of the callogenic process, such as IAA accumulation and hypomethylation. Identifying these events brings the possibility of establishing strategies for efficient manipulation of somatic embryogenesis protocols in palm trees.
Collapse
Affiliation(s)
| | | | - Jonny Everson Scherwinski-Pereira
- Laboratório de Microscopia, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
- Laboratório de Cultura de Tecidos e Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
5
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
6
|
Somasundaram S, Satheesh V, Singh M, Anandhan S. A simple flow cytometry-based assay to study global methylation levels in onion, a non-model species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1859-1865. [PMID: 34539120 PMCID: PMC8405793 DOI: 10.1007/s12298-021-01047-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED DNA methylation is an important epigenetic mark and global methylation dynamics regulate plant developmental processes. Even though genome sequencing technologies have made DNA methylation studies easier, it is difficult in non-model species where genome information is not available. Therefore in this study, we developed a simple assay for analysing global methylation levels in plants by washless immunolabelling of unfixed nuclei using flow cytometry. Onion leaf tissue was used as a model system, and mean fluorescence intensity due to anti-5- methyl cytosine (5-mC) antibodies were used as a measure of global methylation levels. Among three nuclear isolation buffers evaluated, the highest nuclear yield with the low background was obtained with LB01. To maintain a balance between high DNA fluorescence value and low coefficient of variation of DNA peaks, 45 min of hydrolysis with 0.2 N hydrochloric acid was used for chromatin denaturation resulting in six-fold increase in 5-mC fluorescence compared to control. This method was used successfully to detect 5-Azacytidine induced DNA hypomethylation in onion leaf tissues. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01047-6.
Collapse
Affiliation(s)
- Saravanakumar Somasundaram
- ICAR-Directorate of Onion and Garlic Research, Pune, 410505 India
- Present Address: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Pune, 410505 India
| | | |
Collapse
|
7
|
Pérez-Pastrana J, Testillano PS, Barany I, Canto-Flick A, Álvarez-López D, Pijeira-Fernández G, Avilés-Viñas SA, Peña-Yam L, Muñoz-Ramírez L, Nahuat-Dzib S, Islas-Flores I, Santana-Buzzy N. Endogenous auxin accumulation/localization during zygotic and somatic embryogenesis of Capsicum chinense Jacq. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153333. [PMID: 33581559 DOI: 10.1016/j.jplph.2020.153333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Zygotic and somatic embryogenesis in plants is a fascinating event that is finely regulated through the expression of a specific group of genes and dynamic levels of plant hormones whose concerted action determines the fate that specific cells follow towards zygotic or somatic embryo development. This work studied different stages of Capsicum chinense Jacq. zygotic and somatic embryogenesis. HPLC quantification determined that the levels of indole-3-acetic acid (IAA) increase as the zygotic or somatic embryogenesis progresses, being higher at maturity, thus supporting a positive correlation between embryo cell differentiation and IAA increase. A monoclonal anti-IAA-antibody was used to detect IAA levels. Findings revealed a dynamic pattern of auxin distribution along the different embryogenic embryonic stages. In the early stages of zygotic embryos, the IAA gradient was observed in the basal cells of the suspensor and the hypostases, suggesting that they are the initial source of the IAA hormone. As embryogenesis proceeds, the dynamic of the IAA gradient is displaced to the embryo and endosperm cells. In the case of induced somatic embryogenesis, the IAA gradient was detected in the dividing cells of the endodermis, from where pre-embryogenic cells emerge. However, the analysis of somatic embryos revealed that IAA was homogeneously distributed. This study shows evidence supporting a correlation between IAA levels during zygotic or somatic embryogenesis in Capsicum chinense species.
Collapse
Affiliation(s)
- Jacobo Pérez-Pastrana
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Pilar S Testillano
- Pollen biotechnology of crop plants group, Centro de Investigaciones Biológicas-CSIC, Ramiro Maeztu 9, 28040, Madrid, Spain
| | - Ivett Barany
- Pollen biotechnology of crop plants group, Centro de Investigaciones Biológicas-CSIC, Ramiro Maeztu 9, 28040, Madrid, Spain
| | - Adriana Canto-Flick
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Dulce Álvarez-López
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130 x 32 y 34, colonia Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico
| | - Gema Pijeira-Fernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Susana A Avilés-Viñas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Laura Peña-Yam
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Liliana Muñoz-Ramírez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Sara Nahuat-Dzib
- Laboratorio de Biotecnología, Departamento Ingeniería Química-Bioquímica, TecNM/ Instituto Tecnológico de Mérida, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.
| | - Nancy Santana-Buzzy
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
8
|
Immunochemical Detection of Modified Species of Cytosine in Plant Tissues. Methods Mol Biol 2020. [PMID: 32822034 DOI: 10.1007/978-1-0716-0876-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Methylated cytosine (5-methylcytosine) is the most studied epigenetic mark involved in the regulation of gene expression. Although it displays highly variable dynamics during plant ontogenesis, it is possible to gain a fine spatial perspective with immunohistochemistry techniques that use specific antibodies and fluorochromes. Besides, there are other cytosine modifications described in plants, although their biological significance is still unknown (i.e., 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine). Here we present a standardized protocol to detect cytosine modifications in plant tissues.
Collapse
|
9
|
Ahmadi B, Ahmadi M, Teixeira da Silva JA. Microspore embryogenesis in Brassica: calcium signaling, epigenetic modification, and programmed cell death. PLANTA 2018; 248:1339-1350. [PMID: 30171331 DOI: 10.1007/s00425-018-2996-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/28/2018] [Indexed: 05/08/2023]
Abstract
Stress induction followed by excessive calcium influx causes multiple changes in microspores resulting in chromatin remodeling, epigenetic modifications, and removal of unwanted gametophytic components via autophagy, switching microspores towards ME. In Brassica, isolated microspores that are placed under specific external stresses can switch their default developmental pathway towards an embryogenic state. Microspore embryogenesis is a unique system that speeds up breeding programs and, in the context of developmental biology, provides an excellent tool for embryogenesis to be investigated in greater detail. The last few years have provided ample evidence that has allowed Brassica researchers to markedly increase their understanding of the molecular and sub-cellular changes underlying this process. We review recent advances in this field, focusing mainly on the perception to inductive stresses, signal transduction, molecular and structural alterations, and the involvement of programmed cell death at the onset of embryogenic induction.
Collapse
Affiliation(s)
- Behzad Ahmadi
- Department of Maize and Forage Crops Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Medya Ahmadi
- Department of Plant Pathology, Ferdowsi Mashhad University, Mashhad, Iran
| | | |
Collapse
|
10
|
Agrelius T, Dudycha JL, Morris JT. Global DNA cytosine methylation variation in Spartina alterniflora at North Inlet, SC. PLoS One 2018; 13:e0203230. [PMID: 30199541 PMCID: PMC6130869 DOI: 10.1371/journal.pone.0203230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022] Open
Abstract
Spartina alterniflora, marsh grass, is a vegetative apomicticly-reproducing halophyte native to marshes along the east coast of the United States and invasive across the world. S. alterniflora provides many ecosystem services including, but not limited to, water filtration, habitats for invertebrates, and sediment retention. Widespread diebacks of longstanding marsh grass colonies launched extensive investigations into probable mechanisms leading to patchy diebacks. There is still current debate as to the causes of a marsh dieback but environmental stress is acknowledged as a constant. Spatial epigenetic variation could contribute to variation of stress susceptibility, but the scale and structure of epigenetic variation is unknown. The current study investigates patterns of epigenetic variation in a natural population of S. alterniflora. This study examines variation of global DNA methylation within and among clones of the marsh grass Spartina alterniflora using an ELISA-like microplate reaction and observed significant heterogeneity of global DNA methylation within and among clones of S. alterniflora across the North Inlet basin, as well as significant differences of global methylation between adults and sexually produced seedlings. The present study also characterized differences for plants in a section of the population that experienced an acute marsh dieback in the year 2001 and have subsequently recolonized, finding a significant positive correlation between cytosine methylation and time period of colonization. The significant heterogeneity of global DNA methylation both within and among clones observed within this natural population of S. alterniflora and potential impacts from hypersaline environments at North Inlet suggests the need for more in-depth epigenetic studies to fully understand DNA methylation within an ecological context. Future studies should consider the effects of varying saline conditions on both global DNA and gene specific methylation.
Collapse
Affiliation(s)
- Trenton Agrelius
- Belle W. Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - Jeffry L. Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - James T. Morris
- Belle W. Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
11
|
Corredoira E, Cano V, Bárány I, Solís MT, Rodríguez H, Vieitez AM, Risueño MC, Testillano PS. Initiation of leaf somatic embryogenesis involves high pectin esterification, auxin accumulation and DNA demethylation in Quercus alba. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:42-54. [PMID: 28315794 DOI: 10.1016/j.jplph.2017.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 05/18/2023]
Abstract
Somatic embryogenesis is considered a convenient tool for investigating the regulating mechanisms of embryo formation; it is also a feasible system for in vitro regeneration procedures, with many advantages in woody species. Nevertheless, trees have shown recalcitrance to somatic embryogenesis, and its efficiency remains very low in many cases. Consequently, despite the clear potential of somatic embryogenesis in tree breeding programs, its application is limited since factors responsible for embryogenesis initiation have not yet been completely elucidated. In the present work, we investigated key cellular factors involved in the change of developmental program during leaf somatic embryogenesis initiation of white oak (Quercus alba), aiming to identify early markers of the process. The results revealed that pectin esterification, auxin accumulation and DNA demethylation were induced during embryogenesis initiation and differentially found in embryogenic cells, while they were not present in leaf cells before induction or in non-embryogenic cells after embryogenesis initiation. These three factors constitute early markers of leaf embryogenesis and represent processes that could be interconnected and involved in the regulation of cell reprogramming and embryogenesis initiation. These findings provide new insights into the mechanisms underlying plant cell reprogramming, totipotency and embryogenic competence acquisition, especially in tree species for which information is scarce, thus opening up the possibility of efficient manipulation of somatic embryogenesis induction.
Collapse
Affiliation(s)
- Elena Corredoira
- Instituto de Investigaciones Agrobiológicas de Galicia, CSIC, Avda. de Vigo s/n, Apartado 122, 15780 Santiago de Compostela, Spain
| | - Vanesa Cano
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain; Instituto de Investigaciones Agrobiológicas de Galicia, CSIC, Avda. de Vigo s/n, Apartado 122, 15780 Santiago de Compostela, Spain
| | - Ivett Bárány
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María-Teresa Solís
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Héctor Rodríguez
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana-María Vieitez
- Instituto de Investigaciones Agrobiológicas de Galicia, CSIC, Avda. de Vigo s/n, Apartado 122, 15780 Santiago de Compostela, Spain
| | - María C Risueño
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Berenguer E, Bárány I, Solís MT, Pérez-Pérez Y, Risueño MC, Testillano PS. Inhibition of Histone H3K9 Methylation by BIX-01294 Promotes Stress-Induced Microspore Totipotency and Enhances Embryogenesis Initiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1161. [PMID: 28706533 PMCID: PMC5489599 DOI: 10.3389/fpls.2017.01161] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/16/2017] [Indexed: 05/18/2023]
Abstract
Microspore embryogenesis is a process of cell reprogramming, totipotency acquisition and embryogenesis initiation, induced in vitro by stress treatments and widely used in plant breeding for rapid production of doubled-haploids, but its regulating mechanisms are still largely unknown. Increasing evidence has revealed epigenetic reprogramming during microspore embryogenesis, through DNA methylation, but less is known about the involvement of histone modifications. In this study, we have analyzed the dynamics and possible role of histone H3K9 methylation, a major repressive modification, as well as the effects on microspore embryogenesis initiation of BIX-01294, an inhibitor of histone methylation, tested for the first time in plants, in Brassica napus and Hordeum vulgare. Results revealed that microspore reprogramming and initiation of embryogenesis involved a low level of H3K9 methylation. With the progression of embryogenesis, methylation of H3K9 increased, correlating with gene expression profiles of BnHKMT SUVR4-like and BnLSD1-like (writer and eraser enzymes of H3K9me2). At early stages, BIX-01294 promoted cell reprogramming, totipotency and embryogenesis induction, while diminishing bulk H3K9 methylation. DNA methylation was also reduced by short-term BIX-01294 treatment. By contrast, long BIX-01294 treatments hindered embryogenesis progression, indicating that H3K9 methylation is required for embryo differentiation. These findings open up new possibilities to enhance microspore embryogenesis efficiency in recalcitrant species through pharmacological modulation of histone methylation by using BIX-01294.
Collapse
|
13
|
Detection of Epigenetic Modifications During Microspore Embryogenesis: Analysis of DNA Methylation Patterns Dynamics. Methods Mol Biol 2016; 1359:491-502. [PMID: 26619883 DOI: 10.1007/978-1-4939-3061-6_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Methylation of 5-deoxy-cytidines of DNA constitutes a prominent epigenetic modification of the chromatin fiber which is locked in a transcriptionally inactive conformation. Changes in global DNA methylation are involved in many plant developmental processes during proliferation and differentiation events. The analysis of the changes of global DNA methylation distribution patterns during microspore embryogenesis induction and progression will inform on the regulatory mechanisms of the process, helping in the design of protocols to improve its efficiency in different species. To investigate the DNA methylation dynamics during microspore embryogenesis in the different cell types present in the cultures, the analysis of spatial and temporal pattern of nuclear distribution of 5-methyl-deoxy-cytidine (5mdC) constitutes a potent approach. The immunolocalization of 5mdC on sections and subsequent confocal laser microscopy analysis have been developed for in situ cellular analysis of a variety of plant samples, including embryogenic microspore and anther cultures. Quantification of 5mdC immunofluorescence intensity by image analysis software also permits to estimate differences in global DNA methylation levels among different cell types during development.
Collapse
|
14
|
Michalak M, Plitta-Michalak BP, Naskręt-Barciszewska M, Barciszewski J, Bujarska-Borkowska B, Chmielarz P. Global 5-methylcytosine alterations in DNA during ageing of Quercus robur seeds. ANNALS OF BOTANY 2015; 116:369-76. [PMID: 26133690 PMCID: PMC4549962 DOI: 10.1093/aob/mcv104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/21/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Epigenetic regulation plays an important role in the management of plant growth, development and response to stress factors, and several reports have indicated that DNA methylation plays a critical role in seed development and viability. This study examines changes in 5-methylcytosine (m(5)C) levels in the DNA of seeds during ageing, a process that has important implications for plant conservation and agriculture. METHODS Changes in the global level of m(5)C were measured in mature seeds of oak, Quercus robur. The extent of DNA methylation was measured using a protocol based on two-dimensional thin-layer chromatography. Viability of seeds was determined by germination and seedling emergence tests. KEY RESULTS An ageing-related decrease in total m(5)C during storage of recalcitrant seeds was highly and significantly correlated with a decrease in seed viability, as reflected by a reduction in germination (r = 0·8880) and seedling emergence (r = 0·8269). CONCLUSIONS The decrease in viability during ageing of Q. robur seeds is highly correlated with a global decline in the amount of m(5)C in genomic DNA, and it is possible that this may represent a typical response to ageing and senescence in recalcitrant seeds. Potential mechanisms that drive changes in genomic DNA methylation during ageing are discussed, together with their implications for seed viability.
Collapse
Affiliation(s)
- Marcin Michalak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland and
| | | | | | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Paweł Chmielarz
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland and
| |
Collapse
|
15
|
De-la-Peña C, Nic-Can GI, Galaz-Ávalos RM, Avilez-Montalvo R, Loyola-Vargas VM. The role of chromatin modifications in somatic embryogenesis in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:635. [PMID: 26347757 PMCID: PMC4539545 DOI: 10.3389/fpls.2015.00635] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/31/2015] [Indexed: 05/20/2023]
Abstract
Somatic embryogenesis (SE) is a powerful tool for plant genetic improvement when used in combination with traditional agricultural techniques, and it is also an important technique to understand the different processes that occur during the development of plant embryogenesis. SE onset depends on a complex network of interactions among plant growth regulators, mainly auxins and cytokinins, during the proembryogenic early stages, and ethylene and gibberellic and abscisic acids later in the development of the somatic embryos. These growth regulators control spatial and temporal regulation of multiple genes in order to initiate change in the genetic program of somatic cells, as well as moderating the transition between embryo developmental stages. In recent years, epigenetic mechanisms have emerged as critical factors during SE. Some early reports indicate that auxins and in vitro conditions modify the levels of DNA methylation in embryogenic cells. The changes in DNA methylation patterns are associated with the regulation of several genes involved in SE, such as WUS, BBM1, LEC, and several others. In this review, we highlight the more recent discoveries in the understanding of the role of epigenetic regulation of SE. In addition, we include a survey of different approaches to the study of SE, and new opportunities to focus SE studies.
Collapse
Affiliation(s)
- Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, MéridaMexico
| | - Geovanny I. Nic-Can
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, MéridaMexico
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, MéridaMexico
| | - Randy Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, MéridaMexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, MéridaMexico
| |
Collapse
|
16
|
Solís MT, El-Tantawy AA, Cano V, Risueño MC, Testillano PS. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. FRONTIERS IN PLANT SCIENCE 2015; 6:472. [PMID: 26161085 PMCID: PMC4479788 DOI: 10.3389/fpls.2015.00472] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 05/18/2023]
Abstract
Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs.
Collapse
Affiliation(s)
- María-Teresa Solís
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| | - Ahmed-Abdalla El-Tantawy
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| | - Vanesa Cano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| | - María C Risueño
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| |
Collapse
|
17
|
Liu C, Yang X, Zhang H, Wang X, Zhang Z, Bian Y, Zhu B, Dong Y, Liu B. Genetic and epigenetic modifications to the BBAA component of common wheat during its evolutionary history at the hexaploid level. PLANT MOLECULAR BIOLOGY 2015; 88:53-64. [PMID: 25809554 DOI: 10.1007/s11103-015-0307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/12/2015] [Indexed: 05/11/2023]
Abstract
The formation and evolution of common wheat (Triticum aestivum L., genome BBAADD) involves allopolyploidization events at two ploidy levels. Whether the two ploidy levels (tetraploidy and hexaploidy) have impacted the BBAA subgenomes differentially remains largely unknown. We have reported recently that extensive and distinct modifications of transcriptome expression occurred to the BBAA component of common wheat relative to the evolution of gene expression at the tetraploid level in Triticum turgidum. As a step further, here we analyzed the genetic and cytosine DNA methylation differences between an extracted tetraploid wheat (ETW) harboring genome BBAA that is highly similar to the BBAA subgenomes of common wheat, and a set of diverse T. turgidum collections, including both wild and cultivated genotypes. We found that while ETW had no significantly altered karyotype from T. turgidum, it diverged substantially from the later at both the nucleotide sequence level and in DNA methylation based on molecular marker assay of randomly sampled loci across the genome. In particular, ETW is globally less cytosine-methylated than T. turgidum, consistent with earlier observations of a generally higher transcriptome expression level in ETW than in T. turgidum. Together, our results suggest that genome evolution at the allohexaploid level has caused extensive genetic and DNA methylation modifications to the BBAA subgenomes of common wheat, which are distinctive from those accumulated at the tetraploid level in both wild and cultivated T. turgidum genotypes.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rodríguez-Sanz H, Manzanera JA, Solís MT, Gómez-Garay A, Pintos B, Risueño MC, Testillano PS. Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC PLANT BIOLOGY 2014; 14:224. [PMID: 25162300 PMCID: PMC4147960 DOI: 10.1186/s12870-014-0224-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/11/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND In Quercus suber, cork oak, a Mediterranean forest tree of economic and social interest, rapid production of isogenic lines and clonal propagation of elite genotypes have been achieved by developing in vitro embryogenesis from microspores and zygotic embryos respectively. Despite its high potential in tree breeding strategies, due to their recalcitrancy, the efficiency of embryogenesis in vitro systems in many woody species is still very low since factors responsible for embryogenesis initiation and embryo development are still largely unknown. The search for molecular and cellular markers during early stages of in vitro embryogenesis constitutes an important goal to distinguish, after induction, responsive from non-responsive cells, and to elucidate the mechanisms involved in embryogenesis initiation for their efficient manipulation. In this work, we have performed a comparative analysis of two embryogenesis pathways derived from microspores and immature zygotic embryos in cork oak in order to characterize early markers of reprogrammed cells in both pathways. Rearrangements of the cell structural organization, changes in epigenetic marks, cell wall polymers modifications and endogenous auxin changes were analyzed at early embryogenesis stages of the two in vitro systems by a multidisciplinary approach. RESULTS Results showed that early embryo cells exhibited defined changes of cell components which were similar in both embryogenesis in vitro systems, cellular features that were not found in non-embryogenic cells. DNA methylation level and nuclear pattern, proportion of esterified pectins in cell walls, and endogenous auxin levels were different in embryo cells in comparison with microspores and immature zygotic embryo cells from which embryos originated, constituting early embryogenesis markers. CONCLUSIONS These findings suggest that DNA hypomethylation, cell wall remodeling by pectin esterification and auxin increase are involved in early in vitro embryogenesis in woody species, providing new evidences of the developmental pattern similarity between both embryogenesis pathways, from microspores and immature zygotic embryos, in woody species.
Collapse
Affiliation(s)
- Héctor Rodríguez-Sanz
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José-Antonio Manzanera
- />ETSI Montes, Technical University of Madrid, UPM, Ciudad Universitaria, 28040 Madrid, Spain
| | - María-Teresa Solís
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Aránzazu Gómez-Garay
- />Department of Plant Physiology, Faculty of Biology, Complutense University of Madrid, UCM, Ciudad Universitaria, 28040 Madrid, Spain
| | - Beatriz Pintos
- />Department of Plant Physiology, Faculty of Biology, Complutense University of Madrid, UCM, Ciudad Universitaria, 28040 Madrid, Spain
| | - María C Risueño
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
19
|
El-Tantawy AA, Solís MT, Risueño MC, Testillano PS. Changes in DNA methylation levels and nuclear distribution patterns after microspore reprogramming to embryogenesis in barley. Cytogenet Genome Res 2014; 143:200-8. [PMID: 25074410 DOI: 10.1159/000365232] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Under specific stress treatments, the microspore can be induced in vitro to deviate from its gametophytic development and to reprogram towards embryogenesis, becoming a totipotent cell and forming haploid embryos. These can further regenerate homozygous plants for production of new isogenic lines, an important biotechnological tool for crop breeding. DNA methylation constitutes a prominent epigenetic modification of the chromatin fiber which regulates gene expression. Changes in DNA methylation accompany the reorganization of the nuclear architecture during plant cell differentiation and proliferation; however, the relationship between global DNA methylation and genome-wide expression patterns is still poorly understood. In this work, the dynamics of global DNA methylation levels and distribution patterns were analyzed during microspore reprogramming to embryogenesis and during pollen development in Hordeum vulgare. Quantification of global DNA methylation levels and 5-methyl-deoxycytidine (5mdC) immunofluorescence were conducted at specific stages of pollen development and after reprogramming to embryogenesis to analyze the epigenetic changes that accompany the change of developmental program and cell fate. The results showed low DNA methylation levels in microspores and a high increase along pollen development and maturation; an intense 5mdC signal was concentrated in the generative and sperm nuclei whereas the vegetative nucleus exhibited a weaker DNA methylation signal. After inductive stress treatment, low methylation levels and faint 5mdC signals were observed in nuclei of reprogrammed microspores and 2-4-cell proembryos. This data revealed a global DNA hypomethylation during the change of the developmental program and first embryogenic divisions. This is in contrast with the hypermethylation of generative and sperm cells of the male germline during pollen maturation, suggesting an epigenetic regulation after induction of microspore embryogenesis. At later embryogenesis stages, global DNA methylation progressively increased, accompanying embryo development and differentiation events like in zygotic embryos, corroborating that DNA methylation is critical for the regulation of gene expression in microspore embryogenesis.
Collapse
Affiliation(s)
- Ahmed-Abdalla El-Tantawy
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas, (CIB) CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Rodríguez-Sanz H, Moreno-Romero J, Solís MT, Köhler C, Risueño MC, Testillano PS. Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with Bn HKMT and Bn HAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenet Genome Res 2014; 143:209-18. [PMID: 25060767 DOI: 10.1159/000365261] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In response to stress treatments, microspores can be reprogrammed to become totipotent cells that follow an embryogenic pathway producing haploid and double-haploid embryos which are important biotechnological tools in plant breeding. Recent studies have revealed the involvement of DNA methylation in regulating this process, but no information is available on the role of histone modifications in microspore embryogenesis. Histone modifications are major epigenetic marks controlling gene expression during plant development and in response to environmental changes. Lysine methylation of histones, accomplished by histone lysine methyltransferases (HKMTs), can occur on different lysine residues, with histone H3K9 methylation being mainly associated with transcriptionally silenced regions. In contrast, histone H3 and H4 acetylation is carried out by histone acetyltransferases (HATs) and is associated with actively transcribed genes. In this work, we analyzed 3 different histone epigenetic marks: dimethylation of H3K9 (H3K9me2) and acetylation of H3 and H4 (H3Ac and H4Ac) during microspore embryogenesis in Brassica napus by Western blot and immunofluorescence assays. The expression patterns of histone methyltransferase BnHKMT and histone acetyltransferase BnHAT genes have also been analyzed by qPCR. Our results revealed different spatial and temporal distribution patterns for methylated and acetylated histone variants during microspore embryogenesis and their similarity with the expression profiles of BnHKMT and BnHAT, respectively. The data presented suggest the participation of H3K9me2 and HKMT in embryo cell differentiation and heterochromatinization events, whereas H3Ac, H4Ac, and HAT would be involved in transcriptional activation, totipotency, and proliferation events during cell reprogramming and embryo development.
Collapse
Affiliation(s)
- Héctor Rodríguez-Sanz
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas (CIB) CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Solís MT, Chakrabarti N, Corredor E, Cortés-Eslava J, Rodríguez-Serrano M, Biggiogera M, Risueño MC, Testillano PS. Epigenetic changes accompany developmental programmed cell death in tapetum cells. PLANT & CELL PHYSIOLOGY 2014; 55:16-29. [PMID: 24151205 DOI: 10.1093/pcp/pct152] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The tapetum, the nursing tissue inside anthers, undergoes cellular degradation by programmed cell death (PCD) during late stages of microspore-early pollen development. Despite the key function of tapetum, little is known about the molecular mechanisms regulating this cell death process in which profound nuclear and chromatin changes occur. Epigenetic features (DNA methylation and histone modifications) have been revealed as hallmarks that establish the functional status of chromatin domains, but no evidence on the epigenetic regulation of PCD has been reported. DNA methylation is accomplished by DNA methyltransferases, among which DNA methyl transferase 1 (MET1) constitutes one of the CG maintenance methyltransferase in plants, also showing de novo methyltransferase activity. In this work, the changes in epigenetic marks during the PCD of tapetal cells have been investigated by a multidisciplinary approach to reveal the dynamics of DNA methylation and the pattern of expression of MET1 in relation to the main cellular changes of this PCD process which have also been characterized in two species, Brassica napus and Nicotiana tabacum. The results showed that tapetum PCD progresses with the increase in global DNA methylation and MET1 expression, epigenetic changes that accompanied the reorganization of the nuclear architecture and a high chromatin condensation, activity of caspase 3-like proteases and Cyt c release. The reported data indicate a relationship between the PCD process and the DNA methylation dynamics and MET1 expression in tapetal cells, suggesting a possible new role for the epigenetic marks in the nuclear events occurring during this cell death process and providing new insights into the epigenetic control of plant PCD.
Collapse
Affiliation(s)
- María-Teresa Solís
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
El-Tantawy AA, Solís MT, Da Costa ML, Coimbra S, Risueño MC, Testillano PS. Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. PLANT REPRODUCTION 2013; 26:231-43. [PMID: 23729197 DOI: 10.1007/s00497-013-0217-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/17/2013] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39-4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39-4 gene, JIM13 and JIM14 epitopes found specifically in 2-4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.
Collapse
Affiliation(s)
- Ahmed-Abdalla El-Tantawy
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|