1
|
Teshome DT, Zharare GE, Ployet R, Naidoo S. Transcriptional reprogramming during recovery from drought stress in Eucalyptus grandis. TREE PHYSIOLOGY 2023; 43:979-994. [PMID: 36851855 DOI: 10.1093/treephys/tpad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/23/2023] [Indexed: 06/11/2023]
Abstract
The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants' resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.
Collapse
Affiliation(s)
- Demissew Tesfaye Teshome
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| | - Godfrey Elijah Zharare
- Department of Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa
| | - Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| |
Collapse
|
2
|
Noleto-Dias C, Picoli EADT, Porzel A, Wessjohann LA, Tavares JF, Farag MA. Metabolomics characterizes early metabolic changes and markers of tolerant Eucalyptus ssp. clones against drought stress. PHYTOCHEMISTRY 2023; 212:113715. [PMID: 37156433 DOI: 10.1016/j.phytochem.2023.113715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
EUCALYPTUS L'Hér. (Myrtaceae) is one of the economically most important and widely cultivated trees for wood crop purposes worldwide. Climatic changes together with the constant need to expand plantations to areas that do not always provide optimal conditions for plant growth highlight the need to assess the impact of abiotic stresses on eucalypt trees. We aimed to unveil the drought effect on the leaf metabolome of commercial clones with differential phenotypic response to this stress. For this, seedlings of 13 clones were grown at well-watered (WW) and water-deficit (WD) conditions and their leaf extracts were subjected to comparative analysis using ultra-high performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and nuclear magnetic resonance spectroscopy (NMR). UPLC-MS and NMR analyses led to the annotation of over 100 molecular features of classes such as cyclitols, phenolics, flavonoids, formylated phloroglucinol compounds (FPCs) and fatty acids. Multivariate data analysis was employed for specimens' classifications and markers identification from both platforms. The results obtained in this work allowed us to classify clones differing in drought tolerance. Classification models were validated using an extra subset of samples. Tolerant plants exposed to water deficit accumulated arginine, gallic acid derivatives, caffeic acid and tannins at higher levels. In contrast, stressed drought-sensitive clones were characterised by a significant reduction in glucose, inositol and shikimic acid levels. These changes in contrasting drought response eucalypt pave ways for differential outcomes of tolerant and susceptible phenotypes. Under optimal growth conditions, all clones were rich in FPCs. These results can be used for early screening of tolerant clones and to improve our understanding of the role of these biomarkers in Eucalyptus tolerance to drought stress.
Collapse
Affiliation(s)
- Clarice Noleto-Dias
- Natural and Synthetic Bioactive Products Graduate Program, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Edgard A de T Picoli
- Plant Biology Department, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany.
| | - Josean F Tavares
- Natural and Synthetic Bioactive Products Graduate Program, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Morais MC, Ferreira H, Cabral JA, Gonçalves B. Differential tolerance of the woody invasive Hakea sericea to drought and terminal heat stress. TREE PHYSIOLOGY 2023; 43:47-56. [PMID: 35961009 DOI: 10.1093/treephys/tpac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Drought and extreme temperatures are likely to be more common and intense in the Mediterranean region as a consequence of climate change. Both stresses usually arise together in the field, but our understanding of their joint influence on the performance of invasive alien species (IAS) is limited. Thus, the main objective of the present study is to fill this gap by analyzing the individual and combined effects of drought and terminal heat stress on the leaf physiology, biochemistry and growth of Hakea sericea Schrader, one of the most problematic IAS in the Mediterranean-type ecosystems. In this study, 1-year-old plants of H. sericea were exposed to four treatments under controlled conditions: control (CT), drought (DS), terminal heat stress (Ht), and combined Ht and DS (DHt). The DS treatment alone caused a marked reduction in shoot biomass, net photosynthetic (A) rate and stomatal conductance, while increasing the proline content, as compared with CT plants. In turn, the Ht treatment promoted the accumulation of malondialdehyde but hastened the decline in all gas exchange parameters, and also decreased leaf photosynthetic pigments, carotenoids, proline and relative water contents Exposure of H. sericea plants to the combined DHt exacerbated the impacts of Ht, which was accompanied by significant decreases in net photosynthetic and transpiration rates, and intrinsic water-use efficiency. Principal component analysis clearly separated the DHt from the other treatments and revealed similarities between DS and CT treatment. These findings suggest that xerothermic weather conditions might modify the fitness, competitive ability, resilience and spread of this IAS, thereby providing opportunities for its control.
Collapse
Affiliation(s)
- Maria C Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João A Cabral
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
De novo transcriptome assembly and analysis of genes involved in desiccation tolerance in Grimmia pilifera. Gene 2022; 847:146841. [PMID: 36075326 DOI: 10.1016/j.gene.2022.146841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
The anatomically simple plants that transition from the aquatic to the terrestrial have a certain mechanism to deal with the damage caused by the changing living environment. Grimmia pilifera is a type of resurrection plants that can survive a long period of desiccation. To understand the molecular mechanisms of desiccation tolerance, nine cDNA libraries were constructed in triplicate from mRNA obtained from G. pilifera for the 0 h, 6 h and 18 h desiccation treatment. RNA-Seq generated ∼ 666 million reads which were assembled into 135,850 unigenes. The differentially expressed genes (DEGs) were identified between different period of time of desiccation. Gene ontology analysis showed that a significant number of genes involved in water deprivation, chloroplast organization, xyloglucan metabolic process, regulation of signaling pathway. In addition, genes involved in osmotic stress, oxidative stress, accumulation of soluble matter, such as gene encoding antioxidant enzymes, trehalose synthase and channel protein, were up-regulated in response to drought stress. These results will be helpful for further studying on the molecular mechanisms of desiccation responses in G. pilifera.
Collapse
|
5
|
Effects of Spring Warming and Drought Events on the Autumn Growth of Larix kaempferi Seedlings. WATER 2022. [DOI: 10.3390/w14121962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High temperatures and droughts following winter dormancy can negatively affect seedling growth and mortality. An open-field experiment was conducted to study the growth and mortality of Larix kaempferi seedlings in response to spring warming and drought treatments and to determine whether seedlings could regain their growth capability once the treatments were discontinued. In May 2020, 1-year-old seedlings were exposed to four treatments: control, warming-only, drought-only, and the combined warming and drought. Drought treatment reduced the seedling height and root collar diameter and increased the mortality rate. The combined warming and drought treatments had the highest mortality rates, followed by the drought, control, and warming treatments. However, after the cessation of the treatments, the combined warming and drought treatments increased seedling height, root collar diameter, and individual seedling biomass because the high mortality rate relaxed competition among seedlings. This suggests that the effects of low competition on the surviving seedlings may mitigate the negative effects of warming and drought on seedling growth. Our study demonstrates that despite the high mortality and decreased growth during the treatment period, seedlings subjected to combined high temperature and drought stress showed short-term high levels of growth compared to seedlings subjected to a single stress.
Collapse
|
6
|
Martins J, Pétriacq P, Flandin A, Gómez-Cadenas A, Monteiro P, Pinto G, Canhoto J. Genotype determines Arbutus unedo L. physiological and metabolomic responses to drought and recovery. FRONTIERS IN PLANT SCIENCE 2022; 13:1011542. [PMID: 36483964 PMCID: PMC9723149 DOI: 10.3389/fpls.2022.1011542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Strawberry tree (Arbutus unedo) is a small resilient species with a circum-Mediterranean distribution, high ecological relevance in southern European forests and with several economical applications. As most orchards are usually installed on marginal lands where plants usually face severe drought, selecting plants that can better cope with water restriction is critical, and a better understanding of the tolerance mechanisms is required. Strawberry tree plants under drought follow a typical isohydric strategy, by limiting transpiration through stomata closure. However, the contribution of genotype and its bio-geographic origin on plant performance needs clarification, as well as the involvement of a specific metabolic reactions associated with the mechanical response. To test this hypothesis, several eco-physiological and biochemical parameters were assessed on different genotypes, and the metabolic profiles studied, including important stress-related phytohormones, on plants under different water regimes (plants watered to 70% and 18% field capacity) and a recovery assay. A contrasting drought tolerance was found in plants from different genotypes, associated with physiological and metabolic responses. Metabolomics revealed more than 500 metabolic features were differentially accumulated, including abscisic and salicylic acids, for the genotype with better performance under drought (A4). This genotype also recovered faster when the imposed stress was interrupted, thus indicating the relevance of metabolic adaptation under water deficit conditions. By correlating carbon assimilation with identified metabolites, some proved to be satisfactory predictors of plant performance under drought and might be used for marker assisted breeding. Therefore, our study proves the importance of genotype as a major selection criterion of resistant plants to drought and provides empirical knowledge of the metabolic response involved. We also hypothesized the involvement of phenolics on response mechanisms under drought, which is worth to be explored to shed light on the metabolic pathways involved in plant response to water stress.
Collapse
Affiliation(s)
- João Martins
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
- *Correspondence: João Martins,
| | - Pierre Pétriacq
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d’Ornon, France
| | - Amélie Flandin
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d’Ornon, France
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
| | - Pedro Monteiro
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| |
Collapse
|
7
|
Morpho-Physiological and Biochemical Changes in Syzygium cumini and Populus deltoides: A Case Study on Young Saplings under Water Stress. FORESTS 2021. [DOI: 10.3390/f12101319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drought is one of the most devastating climate factors in terms of its spatial extent and intensity. Therefore, a study was conducted to evaluate the water stress tolerance in young saplings of Syzygium cumini (L.) Skeels and Populus deltoides Marchall that are cultivated in the rain fed areas of Pakistan. Plants were subjected to three levels of moisture regimes: well-watered (WW, 90% of field capacity), mild stress (MS, 60% field capacity), and severe stress (SS, 30% of field capacity). Results showed that dry biomass production (leaf, stem, and root), chlorophyll a, b and carotenoid contents decreased significantly while osmolyte accumulation increased in both species, with the highest increase was evidenced in Populus deltoides saplings. A significant decrease was evidenced in CO2 assimilation rate and stomatal conductance that resulted in a significant increase in intrinsic water use efficiency in both species under MS and SS. In both the species, along with a significant increase in the production of hydrogen peroxide and superoxide radical, the antioxidants enzyme activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase also increased significantly in both species under MS and SS with highest activity evidenced in Syzygium cumini. The results suggest that Syzygium cumini saplings showed better a tolerance mechanism to water stress.
Collapse
|
8
|
Zafar Z, Rasheed F, Ul Haq A, Ibrahim FH, Afzal S, Nazre M, Akram S, Hussain Z, Kudus KA, Mohsin M, Qadeer A, Raza Z, Khan WR. Interspecific Differences in Physiological and Biochemical Traits Drive the Water Stress Tolerance in Young Morus alba L. and Conocarpus erectus L. Saplings. PLANTS (BASEL, SWITZERLAND) 2021; 10:1615. [PMID: 34451659 PMCID: PMC8398188 DOI: 10.3390/plants10081615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Mitigating climate change requires the identification of tree species that can tolerate water stress with fewer negative impacts on plant productivity. Therefore, the study aimed to evaluate the water stress tolerance of young saplings of C. erectus and M. alba under three soil water deficit treatments (control, CK, 90% field capacity, FC, medium stress MS, 60% FC and high stress, HS, 30% FC) under controlled conditions. Results showed that leaf and stem dry weight decreased significantly in both species under MS and HS. However, root dry weight and root/shoot ratio increased, and total dry weight remained similar to CK under MS in C. erectus saplings. Stomatal conductance, CO2 assimilation rate decreased, and intrinsic water use efficiency increased significantly in both species under MS and HS treatments. The concentration of hydrogen peroxide, superoxide radical, malondialdehyde and electrolyte leakage increased in both the species under soil water deficit but was highest in M. alba. The concentration of antioxidative enzymes like superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase also increased in both species under MS and HS but was highest in C. erectus. Therefore, results suggest that C. erectus saplings depicted a better tolerance to MS due to an effective antioxidative enzyme system.
Collapse
Affiliation(s)
- Zikria Zafar
- Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan; (Z.Z.); (A.U.H.); (Z.R.)
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Buesgenweg, Germany
| | - Fahad Rasheed
- Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan; (Z.Z.); (A.U.H.); (Z.R.)
| | - Ahsan Ul Haq
- Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan; (Z.Z.); (A.U.H.); (Z.R.)
| | - Faridah Hanum Ibrahim
- Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Shazia Afzal
- Department of Forestry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mohd Nazre
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia; (M.N.); (K.A.K.)
| | - Seemab Akram
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia;
| | - Zafar Hussain
- Department of Forestry, Range Management and Wildlife, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Kamziah Abdul Kudus
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia; (M.N.); (K.A.K.)
| | - Muhammad Mohsin
- School of Forest Sciences, University of Eastern Finland, 80100 Joensuu, Finland;
| | - Abdul Qadeer
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Zohaib Raza
- Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan; (Z.Z.); (A.U.H.); (Z.R.)
| | - Waseem Razzaq Khan
- Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| |
Collapse
|
9
|
Zafar Z, Rasheed F, Atif RM, Javed MA, Maqsood M, Gailing O. Foliar Application of Salicylic Acid Improves Water Stress Tolerance in Conocarpus erectus L. and Populus deltoides L. Saplings: Evidence from Morphological, Physiological, and Biochemical Changes. PLANTS (BASEL, SWITZERLAND) 2021; 10:1242. [PMID: 34207257 PMCID: PMC8233798 DOI: 10.3390/plants10061242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Reforestation efforts are being challenged as water stress is hampering the sapling growth and survival in arid to semiarid regions. A controlled experiment was conducted to evaluate the effect of foliar application of salicylic acid (SA) on water stress tolerance of Conocarpus erectus and Populus deltoides. Saplings were watered at 90%, 60%, and 30% of field capacity (FC), and half of the saplings under 60% and 30% FC were sprayed with 1.0 mM SA. Results indicated that dry weight production decreased significantly in Populus deltoides under both water deficit conditions, and leaf gas exchange parameters decreased significantly in both the species under both soil water deficit conditions. Foliar application of SA resulted in a significant increase in leaf gas exchange parameters, and compatible solutes, thereby increasing the dry weight production in both of the species under soil water deficit. Oxidative stress (hydrogen peroxide and superoxide anions) increased under soil water deficit and decreased after the foliar application of SA and was parallel to the increased antioxidant enzymes activity (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase). Therefore, it can be concluded that foliar application of 1.0 mM SA can significantly improve the water stress tolerance in both species, however, positive impacts of SA application were higher in Conocarpus erectus due to improved photosynthetic capacity and increased antioxidant enzyme activity.
Collapse
Affiliation(s)
- Zikria Zafar
- Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan; (Z.Z.); (M.A.J.)
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg, 2 D-37077 Göttingen, Germany
| | - Fahad Rasheed
- Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan; (Z.Z.); (M.A.J.)
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan;
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Asif Javed
- Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan; (Z.Z.); (M.A.J.)
| | - Muhammad Maqsood
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg, 2 D-37077 Göttingen, Germany
| |
Collapse
|
10
|
El Rasafi T, Pereira R, Pinto G, Gonçalves FJM, Haddioui A, Ksibi M, Römbke J, Sousa JP, Marques CR. Potential of Eucalyptus globulus for the phytoremediation of metals in a Moroccan iron mine soil-a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15782-15793. [PMID: 33242196 DOI: 10.1007/s11356-020-11494-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
The contamination left by abandoned mines demands sustainable mitigation measures. Hence, the aim of this study was to examine the phytoremediator ability of Eucalyptus globulus Labill. to be used for cleaning up metal-contaminated soils from an African abandoned iron (Fe) mine (Ait Ammar, Oued Zem, Morocco). Plantlets of this species were exposed to a control (CTL), a reference (REF), and a mine-contaminated soil (CS). Morphological (growth, leaf area) and physiological stress biomarkers (photosynthetic efficiency, pigments content, leaf relative water, and malondialdehyde (MDA) levels) and metal bioaccumulation were assessed. The growth and leaf area of E. globulus increased overtime in all soils, although at a lower rate in the CS. Its photosynthetic efficiency was not markedly impaired, as well as MDA levels decreased throughout the experiment in CS. In this soil, higher metal contents were detected in E. globulus roots than in leaves, especially Fe (roots: 15.98-213.99 μg g-1; leaves: 5.97-15.98 μg g-1) and Zn (roots: 1.64-1.99 μg g-1; leaves: 0.67-1.19 μg g-1), indicating their reduced translocation. Additionally, though at low extent, the plants bioaccumulated some metals (Pb > Zn > Cu) from CS. Overall, E. globulus may be potentially used for the phytoremediation of metals in metal-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Department of Biology, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Ruth Pereira
- 1GreenUPorto - Sustainable Agrifood Production Research Centre & Department of Biology, 8 Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Glória Pinto
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Abdelmajid Haddioui
- Department of Biology, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Mohamed Ksibi
- Laboratory of Water, Energy and Environment (3E), National School of Engineering of Sfax, University of Sfax, Route de Soukra Km 3.5, PO Box 1173, 3038, Sfax, Tunisia
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, D-65439, Flörsheim a.M, Germany
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Catarina R Marques
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Li C, Wang Z, Nong Q, Lin L, Xie J, Mo Z, Huang X, Song X, Malviya MK, Solanki MK, Li Y. Physiological changes and transcriptome profiling in Saccharum spontaneum L. leaf under water stress and re-watering conditions. Sci Rep 2021; 11:5525. [PMID: 33750876 PMCID: PMC7943799 DOI: 10.1038/s41598-021-85072-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
As the polyploidy progenitor of modern sugarcane, Saccharum spontaneum is considered to be a valuable resistance source to various biotic and abiotic stresses. However, little has been reported on the mechanism of drought tolerance in S. spontaneum. Herein, the physiological changes of S. spontaneum GXS87-16 at three water-deficit levels (mild, moderate, and severe) and after re-watering during the elongation stage were investigated. RNA sequencing was utilized for global transcriptome profiling of GXS87-16 under severe drought and re-watered conditions. There were significant alterations in the physiological parameters of GXS87-16 in response to drought stress and then recovered differently after re-watering. A total of 1569 differentially expressed genes (DEGs) associated with water stress and re-watering were identified. Notably, the majority of the DEGs were induced by stress. GO functional annotations and KEGG pathway analysis assigned the DEGs to 47 GO categories and 93 pathway categories. The pathway categories were involved in various processes, such as RNA transport, mRNA surveillance, plant hormone signal transduction, and plant-pathogen interaction. The reliability of the RNA-seq results was confirmed by qRT-PCR. This study shed light on the regulatory processes of drought tolerance in S. spontaneum and identifies useful genes for genetic improvement of drought tolerance in sugarcane.
Collapse
Affiliation(s)
- Changning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zhen Wang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qian Nong
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Jinlan Xie
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zhanghong Mo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xing Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xiupeng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Manoj Kumar Solanki
- Department of Food Quality and Safety, The Volcani Center, Institute for Post-Harvest and Food Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| |
Collapse
|
12
|
Proteomic analyses unraveling water stress response in two Eucalyptus species originating from contrasting environments for aridity. Mol Biol Rep 2020; 47:5191-5205. [PMID: 32564226 DOI: 10.1007/s11033-020-05594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.
Collapse
|
13
|
Ammitzboll H, Vaillancourt RE, Potts BM, Harrison PA, Brodribb T, Sussmilch FC, Freeman JS. Independent genetic control of drought resistance, recovery, and growth of Eucalyptus globulus seedlings. PLANT, CELL & ENVIRONMENT 2020; 43:103-115. [PMID: 31472076 DOI: 10.1111/pce.13649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Drought is a major stress impacting forest ecosystems worldwide. We utilized quantitative trait loci (QTL) analysis to study the genetic basis of variation in (a) drought resistance and recovery and (b) candidate traits that may be associated with this variation in the forest tree Eucalyptus globulus. QTL analysis was performed using a large outcrossed F2 mapping population from which 300 trees were phenotyped based on the mean performance of their open-pollinated F3 progeny. Progenies were grown in a glasshouse in a randomized complete block design. A subset of seedlings was subjected to a drought treatment after which they were rewatered and scored for damage and growth postdrought. Nondroughted seedlings were assessed for growth traits as well as lignotuber size and resprouting following severe damage to the main stem. QTL were detected for most traits. Importantly, independent QTL were detected for (a) drought damage and plant size, (b) drought damage and growth recovery, and (c) lignotuber size and resprouting capacity. Such independence argues that trade-offs are unlikely to be a major limitation to the response to selection and at the early life history stage studied; there are opportunities to improve resilience to drought without adverse effects on productivity.
Collapse
Affiliation(s)
- Hans Ammitzboll
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Peter A Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Tim Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Frances C Sussmilch
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
- Institute of Plant Physiology and Biophysics, University of Würzburg, 97082, Würzburg, Germany
| | - Jules S Freeman
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
- Forest Genetics, Scion, Rotorua, 3046, New Zealand
| |
Collapse
|
14
|
Variability and Plasticity in Cuticular Transpiration and Leaf Permeability Allow Differentiation of Eucalyptus Clones at an Early Age. FORESTS 2019. [DOI: 10.3390/f11010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background and Objectives. Water stress is a major constraining factor of Eucalyptus plantations’ growth. Within a genetic improvement program, the selection of genotypes that improve drought resistance would help to improve productivity and to expand plantations. Leaf characteristics, among others, are important factors to consider when evaluating drought resistance evaluation, as well as the clone’s ability to modify leaf properties (e.g., stomatal density (d) and size, relative water content at the time of stomatal closure (RWCc), cuticular transpiration (Ec), specific leaf area (SLA)) according to growing conditions. Therefore, this study aimed at analyzing these properties in nursery plants of nine high-productivity Eucalyptus clones. Material and Methods: Five Eucalyptus globulus Labill. clones and four hybrids clones (Eucalyptus urophylla S.T. Blake × Eucalyptus grandis W. Hill ex Maiden, 12€; Eucalyptus urograndis × E. globulus, HE; Eucalyptus dunnii Maiden–E. grandis × E. globulus, HG; Eucalyptus saligna Sm. × Eucalyptus maidenii F. Muell., HI) were studied. Several parameters relating to the aforementioned leaf traits were evaluated for 2.5 years. Results: Significant differences in stomatal d and size, RWCc, Ec, and SLA among clones (p < 0.001) and according to the dates (p < 0.001) were obtained. Each clone varied seasonally the characteristics of its new developing leaves to acclimatize to the growth conditions. The pore opening surface potential (i.e., the stomatal d × size) did not affect transpiration rates with full open stomata, so the water transpired under these conditions might depend on other leaf factors. The clones HE, HG, and 12€ were the ones that differed the most from the drought resistant E. globulus control clone (C14). Those three clones showed lower leaf epidermis impermeability (HE, HG, 12€), higher SLA (12€, HG), and lower stomatal control under moderate water stress (HE, HG) not being, therefore, good candidates to be selected for drought resistance, at least for these measured traits. Conclusions: These parameters can be incorporated into genetic selection and breeding programs, especially Ec, SLA, RWCc, and stomatal control under moderate water stress.
Collapse
|
15
|
Correia B, Hancock RD, Valledor L, Pinto G. Gene expression analysis in Eucalyptus globulus exposed to drought stress in a controlled and a field environment indicates different strategies for short- and longer-term acclimation. TREE PHYSIOLOGY 2018; 38:1623-1639. [PMID: 30496539 DOI: 10.1093/treephys/tpy067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/18/2018] [Indexed: 06/09/2023]
Abstract
Previous knowledge suggested the involvement of specific pathways/proteins that could be identified as potential molecular indicators linked to enhanced drought tolerance in Eucalyptus globulus. Here, we looked for specific variations in key transcripts of two Eucalyptus globulus clones (AL-18 and AL-13) exposed to water deficit and rehydration with two main goals: (i) to check if and how transcripts potentially associated with stress response and protection are modulated in a controlled experiment; and (ii) to verify if the transcript response is robust in a field case study. Our results showed that the controlled experiment induced a severe acute stress that resulted in a strong realignment of gene expression resulting from an overwhelming of physiological adjustments to water limitation. A number of transcripts exhibited altered abundance after the acute water stress: reduction of RuBisCO activase and mitochondrial glycine cleavage system H protein, and increase of isoflavone reductase. Malate dehydrogenase, catalase, dehydration response element B1A and potassium channel GORK showed a different abundance pattern in each clone. The stress in the field was more moderate and chronic and the plants were able to deal with the stress primarily through physiological adjustments resulting in much smaller changes in gene expression. The transcripts of clone AL-18 showed few alterations between irrigated and non-irrigated plants throughout the experiment, while the transcript changes found in clone AL-13 highlighted the impact of early rewatering rather than growing under extended drought typical of a Mediterranean summer. Although a few concurrent responses were found, the results obtained in the field study draw a very distinct picture when compared with the controlled experiment.
Collapse
Affiliation(s)
- Barbara Correia
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
| | - Glória Pinto
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
16
|
Brito C, Dinis LT, Meijón M, Ferreira H, Pinto G, Moutinho-Pereira J, Correia C. Salicylic acid modulates olive tree physiological and growth responses to drought and rewatering events in a dose dependent manner. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:21-32. [PMID: 30142470 DOI: 10.1016/j.jplph.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The predicted accentuation of drought events highlights the importance of optimize plants capacity to tolerate drought, but also the capacity to recovery from it, especially in species, as olive tree (Olea europaea L.), that grows in particularly susceptible regions. Three different concentrations (10, 100 and 1000 μM) of salicylic acid (SA), a stress signaling phytohormone, was sprayed on 3-year-old potted olive trees subjected to three successive drought and rewatering events. Trees responses to SA application are concentration dependent, being 100 μM the most effective concentration to improve drought tolerance and recovery capacity. During drought events, this effectiveness was achieved by osmolytes accumulation, leaf water status maintenance, reduced photosynthetic systems drought-associated damages, and by optimizing shoot/root ratio. The better plant fitness during drought allowed a fast recovery of the physiological functions upon rewatering and reduced the necessity to invest in extra repair damages, allowing the regrowth. The intense abscisic acid (ABA) signal close to upper epidermis in stressed controls suggests a "memory" of the worst water status displayed by those plants. SA attenuated the limitation of total biomass accumulation imposed by drought, mainly in root system, increased water use efficiency and lead to a higher intense signal of indoleacetic acid (IAA) in leaves during recovery period. In summary, in a suitable concentration, SA demonstrate to be a promising tool to increase drought adaptability of olive trees.
Collapse
Affiliation(s)
- Cátia Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lia-Tânia Dinis
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mónica Meijón
- Plant Physiology, Department B.O.S., Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Helena Ferreira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Glória Pinto
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José Moutinho-Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Carlos Correia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.
| |
Collapse
|
17
|
Correia B, Hancock RD, Amaral J, Gomez-Cadenas A, Valledor L, Pinto G. Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That Are Not Activated When Subjected to Drought or Heat Stress Alone. FRONTIERS IN PLANT SCIENCE 2018; 9:819. [PMID: 29973941 PMCID: PMC6019450 DOI: 10.3389/fpls.2018.00819] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/28/2018] [Indexed: 05/08/2023]
Abstract
Aiming to mimic a more realistic field condition and to determine convergent and divergent responses of individual stresses in relation to their combination, we explored physiological, biochemical, and metabolomic alterations after drought and heat stress imposition (alone and combined) and recovery, using a drought-tolerant Eucalyptus globulus clone. When plants were exposed to drought alone, the main responses included reduced pre-dawn water potential (Ψpd) and gas exchange. This was accompanied by increases in malondialdehyde (MDA) and total glutathione, indicative of oxidative stress. Abscisic acid (ABA) levels increased while the content of jasmonic acid (JA) fell. Metabolic alterations included reductions in the levels of sugar phosphates accompanied by increases in starch and non-structural carbohydrates. Levels of α-glycerophosphate and shikimate were also reduced while free amino acids increased. On the other hand, heat alone triggered an increase in relative water content (RWC) and Ψpd. Photosynthetic rate and pigments were reduced accompanied by a reduction in water use efficiency. Heat-induced a reduction of salicylic acid (SA) and JA content. Sugar alcohols and several amino acids were enhanced by the heat treatment while starch, fructose-6-phosphate, glucose-6-phosphate, and α-glycerophosphate were reduced. Contrary to what was observed under drought, heat stress activated the shikimic acid pathway. Drought-stressed plants subject to a heat shock exhibited a sharp decrease in gas exchange, Ψpd and JA, no alterations in electrolyte leakage, MDA, starch, and pigments and increased glutathione pool in relation to control. Comparing this with drought stress alone, subjecting drought stressed plants to an additional heat stress alleviated Ψpd and MDA, maintained an increased glutathione pool and reduced starch content and non-structural carbohydrates. A novel response triggered by the combined stress was the accumulation of cinnamate. Regarding recovery, most of the parameters affected by each stress condition reversed after re-establishment of control growing conditions. These results highlight that the combination of drought and heat provides significant protection from more detrimental effects of drought-stressed eucalypts, confirming that combined stress alter plant metabolism in a novel manner that cannot be extrapolated by the sum of the different stresses applied individually.
Collapse
Affiliation(s)
- Barbara Correia
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Robert D. Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Joana Amaral
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Aurelio Gomez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
| | - Glória Pinto
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
18
|
Sun C, Gao X, Chen X, Fu J, Zhang Y. Metabolic and growth responses of maize to successive drought and re-watering cycles. AGRICULTURAL WATER MANAGEMENT 2016; 172:62-73. [PMID: 0 DOI: 10.1016/j.agwat.2016.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
19
|
Niinemets Ü. Uncovering the hidden facets of drought stress: secondary metabolites make the difference. TREE PHYSIOLOGY 2016; 36:129-32. [PMID: 26687175 DOI: 10.1093/treephys/tpv128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 05/10/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
20
|
McKiernan AB, Potts BM, Brodribb TJ, Hovenden MJ, Davies NW, McAdam SAM, Ross JJ, Rodemann T, O'Reilly-Wapstra JM. Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species. TREE PHYSIOLOGY 2016; 36:133-147. [PMID: 26496959 DOI: 10.1093/treephys/tpv106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Water deficit associated with drought can severely affect plants and influence ecological interactions involving plant secondary metabolites. We tested the effect of mild water deficit and rewatering on physiological, morphological and chemical traits of juvenile Eucalyptus globulus Labill. and Eucalyptus viminalis Labill. We also tested if responses of juvenile eucalypts to water deficit and rewatering varied within species using provenances across a rainfall gradient. Both species and all provenances were similarly affected by mild water deficit and rewatering, as only foliar abscisic acid levels differed among provenances during water deficit. Across species and provenances, water deficit decreased leaf water potential, above-ground biomass and formylated phloroglucinol compound concentrations, and increased condensed tannin concentrations. Rewatering reduced leaf carbon : nitrogen, and total phenolic and chlorogenic acid concentrations. Water deficit and rewatering had no effect on total oil or individual terpene concentrations. Levels of trait plasticity due to water deficit and rewatering were less than levels of constitutive trait variation among provenances. The overall uniformity of responses to the treatments regardless of native provenance indicates limited diversification of plastic responses when compared with the larger quantitative variation of constitutive traits within these species. These responses to mild water deficit may differ from responses to more extreme water deficit or to responses of juvenile/mature eucalypts growing at each locality.
Collapse
Affiliation(s)
- Adam B McKiernan
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Brad M Potts
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Mark J Hovenden
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - John J Ross
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Thomas Rodemann
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - Julianne M O'Reilly-Wapstra
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| |
Collapse
|
21
|
Cano FJ, López R, Warren CR. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species. PLANT, CELL & ENVIRONMENT 2014; 37:2470-90. [PMID: 24635724 DOI: 10.1111/pce.12325] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 05/26/2023]
Abstract
Water stress (WS) slows growth and photosynthesis (A(n)), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (g(sw)) decreased to two pre-defined values for 24 d, WS was maintained at the target g(sw) for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (g(m)) of accounting for the resistance to refixation of CO(2). The diffusive limitations to CO(2), dominated by the stomata, were the most important constraints to A(n). Full recovery of A(n) was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of g(sw). The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.
Collapse
Affiliation(s)
- F Javier Cano
- Unidad Docente de Anatomía, Fisiología y Genética Forestal, E.T.S.I. Montes, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | | | | |
Collapse
|
22
|
Correia B, Pintó-Marijuan M, Castro BB, Brossa R, López-Carbonell M, Pinto G. Hormonal dynamics during recovery from drought in two Eucalyptus globulus genotypes: from root to leaf. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:151-60. [PMID: 24954071 DOI: 10.1016/j.plaphy.2014.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/31/2014] [Indexed: 05/05/2023]
Abstract
Drought is a limiting environmental stress that represents a growing constraint to the forestry sector. Eucalyptus globulus is a widely planted coppice species, which capacity to cope with water deficit has already been described. However, the capacity of this species to recover is still poorly understood. In this study, we aimed to investigate the changes in abscisic acid (ABA), ABA-glucose ester (ABA-GE) and jasmonic acid (JA) content in leaves, xylem sap and roots of two genotypes (AL-10 and AL-18) during rewatering (2 h, 4 h, 24 h, and 168 h), after a drought stress period (0 h). We wished to clarify the role of these hormones in the recovery from drought and to determine whether these hormonal relations were related to specific genotype metabolisms. Our results showed that drought caused an increased in ABA and ABA-GE levels in all analysed plant parts, while JA content decreased in leaves, increased in xylem sap and did not change in roots. Some of these responses were genotype specific. During rewatering, ABA and ABA-GE content decreased in both genotypes and all plant parts, but at different time scales, and JA levels did not greatly change. Again, the genotypes responded differently. Altogether, our results characterised the response pattern of clone AL-10 as more responsive and defended that leaf should be used in preliminary screening methods of stress tolerance. The hormonal dynamics were related to the previously documented responses of these genotypes and sustain further physiological and molecular studies of water stress in this and other tree species.
Collapse
Affiliation(s)
- Barbara Correia
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Pintó-Marijuan
- Molecular Ecophysiology Lab., ITQB (Instituto de Tecnologia Química e Biológica), 2780-901 Oeiras, Portugal; Departament de Biologia Vegetal, Facultat de Biologia, University of Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Bruno B Castro
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricard Brossa
- Departament de Biologia Vegetal, Facultat de Biologia, University of Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Marta López-Carbonell
- Departament de Biologia Vegetal, Facultat de Biologia, University of Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Glória Pinto
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Granda V, Delatorre C, Cuesta C, Centeno ML, Fernández B, Rodríguez A, Feito I. Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach. TREE PHYSIOLOGY 2014; 34:778-86. [PMID: 25009154 DOI: 10.1093/treephys/tpu052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Seasonal drought, typical of temperate and Mediterranean environments, creates problems in establishing plantations and affects development and yield, and it has been widely studied in numerous species. Forestry fast-growing species such as Eucalyptus spp. are an important resource in such environments, selected clones being generally used for production purposes in plantations in these areas. However, use of mono-specific plantations increases risk of plant loss due to abiotic stresses, making it essential to understand differences in an individual clone's physiological responses to drought stress. In order to study clonal differences in drought responses, nine Eucalyptus globulus (Labill.) clones (C14, C46, C97, C120, C222, C371, C405, C491 and C601) were gradually subjected to severe drought stress (<14% of field capacity). A total of 31 parameters, physiological (e.g., photosynthesis, gas exchange), biochemical (e.g., chlorophyll content) and hormonal (abscisic acid [ABA] content), were analysed by classic and multivariate techniques. Relationships between parameters were established, allowing related measurements to be grouped into functional units (pigment, growth, water and ABA). Differences in these units showed that there were two distinct groups of E. globulus clones on the basis of their different strategies when faced with drought stress. The C14 group (C14, C120, C405, C491 and C601) clones behave as water savers, maintaining high water content and showing high stomatal adjustment, and reducing their aerial growth to a great extent. The C46 group (C46, C97, C222 and C371) clones behave as water spenders, reducing their water content drastically and presenting osmotic adjustment. The latter maintains the highest growth rate under the conditions tested. The method presented here can be used to identify appropriate E. globulus clones for drought environments, facilitating the selection of material for production and repopulation environments.
Collapse
Affiliation(s)
- Víctor Granda
- Área de Fisiología Vegetal, Departamento de Biología de Organismos y Sistemas, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, c/Catedrático Rodrigo Uría, s/n, 33071 Oviedo, Spain
| | - Carolina Delatorre
- Estación Experimental de La Mata del Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33820 Asturias, Spain
| | - Candela Cuesta
- Área de Fisiología Vegetal, Departamento de Biología de Organismos y Sistemas, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, c/Catedrático Rodrigo Uría, s/n, 33071 Oviedo, Spain
| | - María L Centeno
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Belén Fernández
- Área de Fisiología Vegetal, Departamento de Biología de Organismos y Sistemas, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, c/Catedrático Rodrigo Uría, s/n, 33071 Oviedo, Spain
| | - Ana Rodríguez
- Área de Fisiología Vegetal, Departamento de Biología de Organismos y Sistemas, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, c/Catedrático Rodrigo Uría, s/n, 33071 Oviedo, Spain
| | - Isabel Feito
- Estación Experimental de La Mata del Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33820 Asturias, Spain
| |
Collapse
|