1
|
Herrera JC, Savoi S, Dostal J, Elezovic K, Chatzisavva M, Forneck A, Savi T. The legacy of past droughts induces water-sparingly behaviour in Grüner Veltliner grapevines. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38315499 DOI: 10.1111/plb.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Drought is becoming more frequent and severe in numerous wine-growing regions. Nevertheless, limited research has examined the legacy of recurrent droughts, focusing on leaf physiology and anatomy over consecutive seasons. We investigated drought legacies (after 2 years of drought exposure) in potted grapevines, focusing on stomatal behaviour under well-watered conditions during the third year. Vines were subjected for two consecutive years to short- (SD) or long-term (LD) seasonal droughts, or well-watered conditions (WW). In the third year, all plants were grown without water limitation. Water potential and gas exchange were monitored throughout the three seasons, while leaf morpho-anatomical traits were measured at the end of the third year. During droughts (1st and 2nd year), stem water potential of SD and LD plants fell below -1.1 MPa, with a consequent 75% reduction in stomatal conductance (gs ) compared to WW. In the 3rd year, when all vines were daily irrigated to soil capacity (midday stem water potential ~ -0.3 MPa), 45% lower values of gs were observed in the ex-LD group compared to both ex-SD and ex-WW. Reduced midrib vessel diameter, lower leaf theoretical hydraulic conductivity, and smaller stomata were measured in ex-LD leaves compared to ex-SD and ex-WW, likely contributing to the reduced gas exchange. Our findings suggest that grapevines exposed to drought may adopt a more water-conserving strategy in subsequent seasons, irrespective of current soil water availability, with the degree of change influenced by the intensity and duration of past drought events.
Collapse
Affiliation(s)
- J C Herrera
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - S Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - J Dostal
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - K Elezovic
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - M Chatzisavva
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - A Forneck
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - T Savi
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Wagner Y, Volkov M, Nadal-Sala D, Ruehr NK, Hochberg U, Klein T. Relationships between xylem embolism and tree functioning during drought, recovery, and recurring drought in Aleppo pine. PHYSIOLOGIA PLANTARUM 2023; 175:e13995. [PMID: 37882273 DOI: 10.1111/ppl.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023]
Abstract
Recent findings suggest that trees can survive high levels of drought-induced xylem embolism. In many cases, the embolism is irreversible and, therefore, can potentially affect post-drought recovery and tree function under recurring droughts. We examined the development of embolism in potted Aleppo pines, a common species in hot, dry Mediterranean habitats. We asked (1) how post-drought recovery is affected by different levels of embolism and (2) what consequences this drought-induced damage has under a recurring drought scenario. Young trees were dehydrated to target water potential (Ψx ) values of -3.5, -5.2 and -9.5 MPa (which corresponded to ~6%, ~41% and ~76% embolism), and recovery of the surviving trees was measured over an 8-months period (i.e., embolism, leaf gas-exchange, Ψx ). An additional group of trees was exposed to Ψx of -6.0 MPa, either with or without preceding drought (Ψx of -5.2 MPa) to test the effect of hydraulic damage during repeated drought. Trees that reached -9.5 MPa died, but none from the other groups. Embolism levels in dying trees were on average 76% of conductive xylem and no tree was dying below 62% embolism. Stomatal recovery was negatively proportional to the level of hydraulic damage sustained during drought, for at least a month after drought relief. Trees that experienced drought for the second time took longer to reach fatal Ψx levels than first-time dehydrating trees. Decreased stomatal conductance following drought can be seen as "drought legacy," impeding recovery of tree functioning, but also as a safety mechanism during a consecutive drought.
Collapse
Affiliation(s)
- Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mila Volkov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Nadal-Sala
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
| | - Nadine Katrin Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Théroux-Rancourt G, Herrera JC, Voggeneder K, De Berardinis F, Luijken N, Nocker L, Savi T, Scheffknecht S, Schneck M, Tholen D. Analyzing anatomy over three dimensions unpacks the differences in mesophyll diffusive area between sun and shade Vitis vinifera leaves. AOB PLANTS 2023; 15:plad001. [PMID: 36959914 PMCID: PMC10029806 DOI: 10.1093/aobpla/plad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Leaves grown at different light intensities exhibit considerable differences in physiology, morphology and anatomy. Because plant leaves develop over three dimensions, analyses of the leaf structure should account for differences in lengths, surfaces, as well as volumes. In this manuscript, we set out to disentangle the mesophyll surface area available for diffusion per leaf area (S m,LA) into underlying one-, two- and three-dimensional components. This allowed us to estimate the contribution of each component to S m,LA, a whole-leaf trait known to link structure and function. We introduce the novel concept of a 'stomatal vaporshed,' i.e. the intercellular airspace unit most closely connected to a single stoma, and use it to describe the stomata-to-diffusive-surface pathway. To illustrate our new theoretical framework, we grew two cultivars of Vitis vinifera L. under high and low light, imaged 3D leaf anatomy using microcomputed tomography (microCT) and measured leaf gas exchange. Leaves grown under high light were less porous and thicker. Our analysis showed that these two traits and the lower S m per mesophyll cell volume (S m,Vcl) in sun leaves could almost completely explain the difference in S m,LA. Further, the studied cultivars exhibited different responses in carbon assimilation per photosynthesizing cell volume (A Vcl). While Cabernet Sauvignon maintained A Vcl constant between sun and shade leaves, it was lower in Blaufränkisch sun leaves. This difference may be related to genotype-specific strategies in building the stomata-to-diffusive-surface pathway.
Collapse
Affiliation(s)
- Guillaume Théroux-Rancourt
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| | - José Carlos Herrera
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Viticulture and Pomology, 3430 Tulln an der Donau, Austria
| | - Klara Voggeneder
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| | - Federica De Berardinis
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Viticulture and Pomology, 3430 Tulln an der Donau, Austria
| | - Natascha Luijken
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| | - Laura Nocker
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Viticulture and Pomology, 3430 Tulln an der Donau, Austria
| | - Tadeja Savi
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| | - Susanne Scheffknecht
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| | - Moritz Schneck
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| | - Danny Tholen
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| |
Collapse
|
4
|
Mariotti B, Martini S, Raddi S, Ugolini F, Oliet JA, Jacobs DF, Maltoni A. Cultivation Using Coir Substrate and P or K Enriched Fertilizer Provides Higher Resistance to Drought in Ecologically Diverse Quercus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:525. [PMID: 36771610 PMCID: PMC9920752 DOI: 10.3390/plants12030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Nursery cultivation practices can be modified to increase resistance to water stress in forest seedlings following field establishment, which may be increasingly important under climate change. We evaluated the morphological (survival, growth) and physiological (chlorophyll fluorescence, leaf water potential) responses to water stress for three ecologically diverse Quercus species (Q. robur, Q. pubescens, and Q. ilex) with varying traits resulting from the combination of growing media (peat, coir) and fertilization (standard, P-enriched, K-enriched). For all species under water stress, seedlings grown in coir had generally higher growth than those grown in peat. Seedlings fertilized with P performed better, particularly for survival; conversely, K fertilization resulted in inconsistent findings. Such results could be explained by a combination of factors. P fertilization resulted in higher P accumulation in seedlings, while no K accumulation was observed in K fertilized seedlings. As expected, the more drought-sensitive species, Q. robur, showed the worst response, while Q. pubescens had a drought resistance equal or better to Q. ilex despite being classified as intermediate in drought resistance in Mediterranean environments.
Collapse
Affiliation(s)
- Barbara Mariotti
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Sofia Martini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Sabrina Raddi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Francesca Ugolini
- Istituto per la Bioeconomia, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Juan A. Oliet
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Douglass F. Jacobs
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, IN 47907, USA
| | - Alberto Maltoni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| |
Collapse
|
5
|
Lacombe B. Increasing our knowledge on grapevines physiology to increase yield, quality and sustainably. PHYSIOLOGIA PLANTARUM 2022; 174:e13664. [PMID: 35474456 DOI: 10.1111/ppl.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Benoit Lacombe
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier Cedex, France
| |
Collapse
|