1
|
Ahsan R, Khan MM, Mishra A, Noor G, Ahmad U. Plumbagin as a potential therapeutic agent for scopolamine-induced Alzheimer's disease: Mechanistic insights into GSK-3β inhibition. Brain Res 2025; 1859:149650. [PMID: 40250748 DOI: 10.1016/j.brainres.2025.149650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND The study aimed to evaluate Plumbagin's neuroprotective potential against scopolamine-induced Alzheimer's disease, proposing that its effects may involve GSK-3β inhibition, a key factor in tau hyperphosphorylation, to promote neuroprotection in Wistar rats. METHODS Alzheimer's was induced in male Wistar rats. After acclimatization, the rats were subjected to daily intraperitoneal treatment with scopolamine (0.7 mg/kg) and oral administration of Plumbagin (10 mg/kg) for 13 days. The cognitive function of treated rats was evaluated using the Morris water maze test, along with assessments of locomotor activity, acetylcholinesterase activity (AChE), protein levels, antioxidant parameters, cytokines and Brain-Derived Neurotrophic Factor (BDNF) and brain histopathology (hippocampus). RESULTS The Plumbagin (10 mg/kg, oral) as given orally significantly improved neurobehavioral alterations compared to Alzheimer's induced group. Scopolamine impaired cognitive function and increased locomotor activity (#P < 0.05). Treatments improved Morris water maze performance, reducing Escape latency time and increasing Time spent in the target quadrant (*P < 0.05). Biochemically, treatments significantly improved BDNF (*P < 0.05), decreased AChE activity, oxidative stress, reduced Interleukin-6 and Tumor Necrosis Factor Alpha (*P < 0.05) and reversed Scopolamine induced hippocampal neuronal loss (##P < 0.01). Plumbagin showed significant (*P < 0.05) neuroprotective effects, improving cognitive function, reducing AChE activity, Malondialdehyde, oxidative stress, and neuroinflammatory markers exceeding individual treatments in the scopolamine-induced Alzheimer's disease model. These improvements suggest a possible mechanism through the inhibition of GSK-3β, which may contribute to the observed neuroprotective effects. CONCLUSION This study suggests that Plumbagin's neuroprotective effects in scopolamine-induced Alzheimer's disease may involve GSK-3β inhibition. Plumbagin shows significant therapeutic potential for Alzheimer's treatment, warranting further investigation of its mechanism.
Collapse
Affiliation(s)
- Rabiya Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India
| | - Mohd Muazzam Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India.
| | - Anuradha Mishra
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow Campus, AmityUniversity, Uttar Pradesh, Sector 125, Noida 201313, India
| | - Gazala Noor
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India
| | - Usama Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
2
|
Ding X, Wang Q, Kan H, Zhao F, Zhu M, Chen H, Fu E, Li Z. The regulation mechanism of perceived stress on cognitive function of patients with breast cancer undergoing chemotherapy: a multiple mediation analysis. Breast Cancer Res Treat 2025; 211:245-259. [PMID: 39976866 DOI: 10.1007/s10549-025-07641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025]
Abstract
AIM Cancer-related cognitive impairment (CRCI) is one of the severe side effects affecting the quality of life of breast cancer (BC) patients. However, the mechanisms underlying CRCI are still unclear. The study aimed to examine the multiple mediating roles of resilience, social support, cortisol, and neutrophil-lymphocyte ratio (NLR) in the relationship between perceived stress and cognitive function. DESIGN The study was a descriptive, cross-sectional study. METHODS The study investigated 450 BC patients with chemotherapy in China. Convenience sampling was conducted from February to August 2023. The study used the Perceived Stress Scale, the Connor-Davidson Resilience Scale, the Social Support Rating Scale, the Functional Assessment of Cancer Therapy-Cognitive Function, the Montreal Cognitive Assessment, salivary cortisol, and NLR. SPSS 25.0 and AMOS 26.0 conducted bivariate correlations and multiple mediation analysis. RESULTS The correlations of magnitude variables ranged from no correlation to moderate level (r = - 0.002 to - 0.617). The multiple mediation path demonstrated that resilience and morning cortisol levels mediated the relationship between perceived stress and cognitive function, with a 95% confidence interval (CI) not including 0 for the direct, indirect, and total effects. CONCLUSIONS The study confirmed that when BC patients endure physical and psychological stress during diagnosis and treatment, individuals' resilience can buffer the stress on cognitive function. Morning salivary cortisol levels, as the product and indicator of the hypothalamic-pituitary-adrenal (HPA) axis function, may play a significant role in the effect of perceived stress on cognitive function while incapable of finding NLR as the marker of individuals' immune inflammatory response and social support play a role in this relationship. The study, based on a stress perspective, explored the regulatory mechanisms by which perceived stress affects cognitive function in patients undergoing chemotherapy for breast cancer, providing intervenable targets for subsequent improvement of patients' cognitive function.
Collapse
Affiliation(s)
- Xiaotong Ding
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba Dachu Road, Shijingshan District, Beijing, 100144, China
| | - Qing Wang
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba Dachu Road, Shijingshan District, Beijing, 100144, China
- School of Nursing, Lanzhou University, 28 Yanxi Road, Chengguan District, Lanzhou, 730010, China
| | - Houming Kan
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Fang Zhao
- Department of Internal Medicine, National Cancer Center/ National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingyue Zhu
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba Dachu Road, Shijingshan District, Beijing, 100144, China
| | - Hongli Chen
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba Dachu Road, Shijingshan District, Beijing, 100144, China
| | - Enfeng Fu
- Department of Internal Medicine, National Cancer Center/ National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zheng Li
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba Dachu Road, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
3
|
Salian VS, Curan GL, Lowe VJ, Tang X, Kalari KR, Kandimalla KK. Elucidating Molecular Mechanisms Governing TNF-Alpha-Mediated Regulation of Amyloid Beta 42 Uptake in Blood-Brain Barrier Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635286. [PMID: 39975134 PMCID: PMC11838320 DOI: 10.1101/2025.01.28.635286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cerebrovascular inflammation is prevalent in a majority of Alzheimer's patients. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), circulating in the plasma have been shown to cause the inflammation of blood-brain barrier (BBB) endothelium lining the cerebral microvasculature. The BBB inflammation has been implicated in the increase of toxic Aβ accumulation within Alzheimer's disease (AD) brain. TNF-alpha in the peripheral circulation can aggravate the accumulation of amyloid-beta (Aβ) peptides in Alzheimer's disease brain. In the current study, we have shown that the exposure to TNF-alpha leads to an increase in Aβ42 accumulation in mice and BBB endothelial cells in vitro. Moreover, dynamic SPECT/CT imaging in wild-type (WT) mice infused with TNF-alpha increased the permeability and influx of Aβ42 into the mice brain. In addition, our results show that TNF-alpha modifies the expression of cofilin, actin, and dynamin, which are critical components for Aβ endocytosis by BBB endothelial cells. These results offer a mechanistic understanding of how TNF-alpha may promote Aβ accumulation at the BBB and the underlying interactions between inflammation and Aβ exposure that drives BBB dysfunction. Hence, a therapeutic intervention aimed at addressing cerebrovascular inflammation in Alzheimer's disease may potentially reduce Aβ induced cerebrovascular toxicity in Alzheimer's disease brain. Significance statement Increased levels of TNF-alpha circulating in the plasma are considered significant factors in the consequences of Aβ pathology in Alzheimer's disease, where it can promote cerebrovascular inflammation and BBB dysfunction. However, the role of TNF-alpha, in exacerbating Aβ pathology by increasing Aβ accumulation at the BBB endothelial cells remains only partially understood. In this study, we demonstrated that TNF-alpha enhances Aβ42 accumulation in the BBB endothelium by altering the expression of the BBB endocytosis machinery, specifically cofilin, actin, and dynamin. These findings are anticipated to contribute to the development of therapeutic approaches aimed at addressing elevated cytokine levels in Alzheimer's disease.
Collapse
|
4
|
Yin W, Fang F, Zhang Y, Xi L. Timing of transcutaneous acupoint electrical stimulation for postoperative recovery in geriatric patients with gastrointestinal tumors: study protocol for a randomized controlled trial. Front Med (Lausanne) 2025; 12:1497647. [PMID: 40109717 PMCID: PMC11919863 DOI: 10.3389/fmed.2025.1497647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/30/2025] [Indexed: 03/22/2025] Open
Abstract
Purpose To develop a study protocol for determining the optimal timing of Transcutaneous Electrical Acupoint Stimulation (TEAS) to enhance postoperative recovery in elderly patients. The study aims to evaluate different timing strategies for TEAS administration and their effects on postoperative outcomes, with the goal of improving clinical practices and guiding future research. Methods A total of 266 geriatric patients who underwent radical resection of gastrointestinal tumors will be divided into seven groups: one control group (receiving standardized perioperative management), one sham intervention group (receiving TEAS treatment without electrical stimulation), and five intervention groups (receiving TEAS at different time intervals). The intervention groups will receive TEAS at bilateral Neiguan (PC6) and Zusanli (ST36) acupoints. The TEAS treatment will employ an altered frequency of 2/100 Hz with disperse-dense waveforms and an adjustable intensity, ensuring the stimulation remains below 10 mA and within a tolerable range for the patient. The device will output an asymmetrical biphasic pulse wave, with a pulse width of 0.2 ms ± 30%, based on electromagnetic compatibility basic performance testing. The primary outcome will assess changes in cognition, measured using neuropsychological tests administered preoperatively and 3 days postoperatively, as well as the Telephone Interview for Cognitive Status-Modified (TICS-m) at 1, 3, and 6 months postoperatively. Secondary outcomes will include preoperative and 3-day postoperative measurements of interleukin-6 (IL-6), S100 calcium-binding protein β (S100β), tumor necrosis factor alpha (TNF-α), insulin-like growth factor 1 (IGF-1), and C-reactive protein (CRP). Additional data will be collected on the time to postoperative exhaust, defecation, eating, and the first postoperative ambulation. Numeric Rating Scale (NRS) scores will be recorded before and on the third day after the operation, alongside Activities of Daily Living (ADL) and Braden scale scores, which will be assessed before the operation and at the time of discharge. Discussion This protocol aims to determine the optimal timing of TEAS for improving postoperative recovery in geriatric patients with gastrointestinal tumor. Clinical trial registration ClinicalTrials.gov, identifier NCT05482477.
Collapse
Affiliation(s)
- Weijuan Yin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Fang Fang
- The Nursing Department, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yan Zhang
- Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Lijuan Xi
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Abdelkader MAE, Mediatrice H, Lin D, Lin Z, Aggag SA. Mitigating Oxidative Stress and Promoting Cellular Longevity with Mushroom Extracts. Foods 2024; 13:4028. [PMID: 39766971 PMCID: PMC11727512 DOI: 10.3390/foods13244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress can disrupt the body's ability to fight harmful free radicals, leading to premature aging and various health complications. This study investigated the antioxidant and anti-aging properties of four medicinal and edible mushrooms: Ganoderma lucidum, Hericium erinaceus, Pleurotus ostreatus, and Agaricus bisporus. The antioxidant activity of mushroom extracts was evaluated using (DPPH-ABTS-Reducing power). The anti-aging effects were assessed using Human Skin Fibroblasts (HSF) cells subjected to D-galactose-induced aging (30 g/L/72 h) and treated with mushroom extracts (0.03-0.25 mg/mL/72 h). The results demonstrated that all mushrooms have significant antioxidant and anti-aging properties, with low concentrations of extracts (0.03 mg/mL) effectively promoting cell proliferation at an 87% rate in the Agaricus bisporus extract, enhancing cell cycle progression by reducing the arrested cells in the G0/G1 phase to 75%, and promoting DNA synthesis in S phase by more than 16.36% in the Hericium erinaceus extract. Additionally, the extracts reduced DNA damage and Reactive Oxygen Species (ROS) levels, protecting cells from oxidative stress and potentially contributing to anti-aging effects. The mushrooms also exhibited immunomodulatory and anti-inflammatory effects by upregulating the IL-2, IL-4, and downregulating IL-6 expression, indicating their potential to promote general health. These findings suggest the potential of mushroom extracts as natural agents for reducing the negative effects of aging while promoting cellular health. Further research is required to explore the specific bioactive compounds responsible for these beneficial effects and to evaluate their efficacy in vivo.
Collapse
Affiliation(s)
- Menna-Allah E. Abdelkader
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Hatungimana Mediatrice
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
- Rwanda Agriculture and Animal Resources Development Board, P.O. Box 5016 Kigali, Rwanda
| | - Dongmei Lin
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
| | - Zhanxi Lin
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
| | - Sarah A. Aggag
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| |
Collapse
|
6
|
Liu M, Pan J, Li X, Zhang X, Tian F, Li M, Wu X, Zhang L, Qin C. Interleukin-6 deficiency reduces neuroinflammation by inhibiting the STAT3-cGAS-STING pathway in Alzheimer's disease mice. J Neuroinflammation 2024; 21:282. [PMID: 39487531 PMCID: PMC11529443 DOI: 10.1186/s12974-024-03277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood. METHODS The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR. To explore the effects of IL-6 deficiency, Il6+/- mice were crossed with 5×FAD mice, and the subsequent impact on hippocampal STAT3 pathway activity, cGAS-STING pathway activation, amyloid pathology, neuroinflammation, and cognitive function was evaluated through WB, qRT-PCR, immunohistochemistry, ThS staining, ELISA, and behavioral tests. The regulatory role of STAT3 in the transcription of the Cgas and Sting genes was further validated using ChIP-seq and ChIP-qPCR on hippocampal tissue from 5×FAD and Il6-/-: 5×FAD mice. Additionally, in the BV2 microglial cell line, the impact of STAT3 activation on the transcriptional regulation of Cgas and Sting genes, as well as the production of inflammatory mediators, was examined through WB and qRT-PCR. RESULTS We observed marked activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of AD mice, which was attenuated in the absence of IL-6. IL-6 deficiency reduced beta-amyloid deposition and neuroinflammation in the hippocampus of AD mice, contributing to cognitive improvements. Further analysis revealed that STAT3 directly regulates the transcription of both the Cgas and Sting genes. These findings suggest a potential mechanism involving the STAT3-cGAS-STING pathway, wherein IL-6 deficiency mitigates neuroinflammation in AD mice by modulating this pathway. CONCLUSION These findings indicate that the STAT3-cGAS-STING pathway is critical in mediating neuroinflammation associated with AD and may represent a potential therapeutic target for modulating this inflammatory process in AD.
Collapse
Affiliation(s)
- Min Liu
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China
- National Human Diseases Animal Model Resource Center, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Jirong Pan
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China
- National Human Diseases Animal Model Resource Center, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Xiaomeng Li
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China
- National Human Diseases Animal Model Resource Center, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Xueling Zhang
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China
- National Human Diseases Animal Model Resource Center, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Fan Tian
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China
- National Human Diseases Animal Model Resource Center, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Mingfeng Li
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China
- National Human Diseases Animal Model Resource Center, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Xinghan Wu
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China
- National Human Diseases Animal Model Resource Center, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- National Center of Technology Innovation for Animal Model, Beijing, China
| | - Ling Zhang
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China.
- National Human Diseases Animal Model Resource Center, Beijing, China.
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China.
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.
- National Center of Technology Innovation for Animal Model, Beijing, China.
| | - Chuan Qin
- Institute of Laboratory Animal Science, CAMS & Comparative Medicine Center, PUMC, Beijing, China.
- Changping National Laboratory, Beijing, China.
- National Human Diseases Animal Model Resource Center, Beijing, China.
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China.
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.
- National Center of Technology Innovation for Animal Model, Beijing, China.
| |
Collapse
|
7
|
Lin YY, Chang WH, Hsieh SL, Cheng IHJ. The deficient CLEC5A ameliorates the behavioral and pathological deficits via the microglial Aβ clearance in Alzheimer's disease mouse model. J Neuroinflammation 2024; 21:273. [PMID: 39443966 PMCID: PMC11515658 DOI: 10.1186/s12974-024-03253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that causes cognitive dysfunction in older adults. One of the AD pathological factors, β-Amyloid (Aβ), triggers inflammatory responses and phagocytosis of microglia. C-type lectin domain family 5 member A (CLEC5A) induces over-reactive inflammatory responses in several virus infections. Yet, the role of CLEC5A in AD progression remains unknown. This study aimed to elucidate the contribution of CLEC5A to Aβ-induced microglial activation and behavioral deficits. METHODS The AD mouse model was crossed with Clec5a knockout mice for subsequent behavioral and pathological tests. The memory deficit was revealed by the Morris water maze, while the nociception abnormalities were examined by the von Frey filament and hotplate test. The Aβ deposition and microglia recruitment were identified by ELISA and immunohistochemistry. The inflammatory signals were identified by ELISA and western blotting. In the Clec5a knockdown microglial cell model and Clec5a knockout primary microglia, the microglial phagocytosis was revealed using the fluorescent-labeled Aβ. RESULTS The AD mice with Clec5a knockout improved Aβ-induced memory deficit and abnormal nociception. These mice have reduced Aβ deposition and increased microglia coverage surrounding the amyloid plaque, suggesting the involvement of CLEC5A in AD progression and Aβ clearance. Moreover, the phagocytosis was also increased in the Aβ-stressed Clec5a knockdown microglial cell lines and Clec5a knockout primary microglia. CONCLUSION The Clec5a knockout ameliorates AD-like deficits by modulating microglial Aβ clearance. This study implies that targeting microglial Clec5a could offer a promising approach to mitigate AD progression.
Collapse
MESH Headings
- Animals
- Lectins, C-Type/metabolism
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Microglia/metabolism
- Microglia/pathology
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Alzheimer Disease/genetics
- Mice
- Amyloid beta-Peptides/metabolism
- Disease Models, Animal
- Mice, Knockout
- Mice, Inbred C57BL
- Male
- Mice, Transgenic
- Maze Learning/physiology
- Phagocytosis
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
Collapse
Affiliation(s)
- Yu-Yi Lin
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Chang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.
- Institute of Clinical Medicine, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Ho SK, Hsiao IT, Lin KJ, Wu YM, Wu KY. Relationships among tumor necrosis factor-alpha levels, beta-amyloid accumulation, and hippocampal atrophy in patients with late-life major depressive disorder. Brain Behav 2024; 14:e70016. [PMID: 39236111 PMCID: PMC11376440 DOI: 10.1002/brb3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by hippocampal volume reduction, impacting cognitive function. Inflammation, particularly elevated tumor necrosis factor-alpha (TNF-α) levels, is consistently implicated in MDD pathophysiology. This study investigates the relationships between TNF-α levels, hippocampal volume, beta-amyloid (Aβ) burden, and cognitive abilities in MDD patients, aiming to illuminate the complex interplay among inflammatory markers, pathology indicators, structural brain alterations, and cognitive performance in non-demented MDD individuals. METHOD Fifty-two non-demented MDD patients, comprising 25 with mild cognitive impairment (MCI), were recruited along with 10 control subjects. Each participant underwent a thorough assessment encompassing TNF-α blood testing, 18F-florbetapir positron emission tomography, magnetic resonance imaging scans, and neuropsychological testing. Statistical analyses, adjusted for age and education, were performed to investigate the associations between TNF-α levels, adjusted hippocampal volume (HVa), global Aβ burden, and cognitive performance. RESULTS MCI MDD patients displayed elevated TNF-α levels and reduced HVa relative to controls. Correlation analyses demonstrated inverse relationships between TNF-α level and HVa in MCI MDD, all MDD, and all subjects groups. Both TNF-α level and HVa exhibited significant correlations with processing speed across all MDD and all subjects. Notably, global 18F-florbetapir standardized uptake value ratio did not exhibit significant correlations with TNF-α level, HVa, and cognitive measures. CONCLUSION This study highlights elevated TNF-α levels and reduced hippocampal volume in MCI MDD patients, indicating a potential association between peripheral inflammation and structural brain alterations in depression. Furthermore, our results suggest that certain cases of MDD may be affected by non-amyloid-mediated process, which impacts their TNF-α and hippocampal volume. These findings emphasize the importance of further investigating the complex interplay among inflammation, neurodegeneration, and cognitive function in MDD.
Collapse
Affiliation(s)
- Szu-Kai Ho
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
9
|
Kryńska K, Kuliś K, Mazurek W, Gudowska-Sawczuk M, Zajkowska M, Mroczko B. The Influence of SARS-CoV-2 Infection on the Development of Selected Neurological Diseases. Int J Mol Sci 2024; 25:8715. [PMID: 39201402 PMCID: PMC11354773 DOI: 10.3390/ijms25168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
In 2024, over 775 million cases of COVID-19 were recorded, including approximately 7 million deaths, indicating its widespread and dangerous nature. The disease is caused by the SARS-CoV-2 virus, which can manifest a wide spectrum of symptoms, from mild infection to respiratory failure and even death. Neurological symptoms, such as headaches, confusion, and impaired consciousness, have also been reported in some COVID-19 patients. These observations suggest the potential of SARS-CoV-2 to invade the central nervous system and induce neuroinflammation during infection. This review specifically explores the relationship between SARS-CoV-2 infection and selected neurological diseases such as multiple sclerosis (MS), ischemic stroke (IS), and Alzheimer's disease (AD). It has been observed that the SARS-CoV-2 virus increases the production of cytokines whose action can cause the destruction of the myelin sheaths of nerve cells. Subsequently, the body may synthesize autoantibodies that attack nerve cells, resulting in damage to the brain's anatomical elements, potentially contributing to the onset of multiple sclerosis. Additionally, SARS-CoV-2 exacerbates inflammation, worsening the clinical condition in individuals already suffering from MS. Moreover, the secretion of pro-inflammatory cytokines may lead to an escalation in blood clot formation, which can result in thrombosis, obstructing blood flow to the brain and precipitating an ischemic stroke. AD is characterized by intense inflammation and heightened oxidative stress, both of which are exacerbated during SARS-CoV-2 infection. It has been observed that the SARS-CoV-2 demonstrates enhanced cell entry in the presence of both the ACE2 receptor, which is already elevated in AD and the ApoE ε4 allele. Consequently, the condition worsens and progresses more rapidly, increasing the mortality rate among AD patients. The above information underscores the numerous connections between SARS-CoV-2 infection and neurological diseases.
Collapse
Affiliation(s)
- Klaudia Kryńska
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Katarzyna Kuliś
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Wiktoria Mazurek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| |
Collapse
|
10
|
Gáll Z, Boros B, Kelemen K, Urkon M, Zolcseak I, Márton K, Kolcsar M. Melatonin improves cognitive dysfunction and decreases gliosis in the streptozotocin-induced rat model of sporadic Alzheimer's disease. Front Pharmacol 2024; 15:1447757. [PMID: 39135795 PMCID: PMC11317391 DOI: 10.3389/fphar.2024.1447757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Alzheimer's disease (AD) and other forms of dementia have a devastating effect on the community and healthcare system, as neurodegenerative diseases are causing disability and dependency in older population. Pharmacological treatment options are limited to symptomatic alleviation of cholinergic deficit and accelerated clearance of β-amyloid aggregates, but accessible disease-modifying interventions are needed especially in the early phase of AD. Melatonin was previously demonstrated to improve cognitive function in clinical setting and experimental studies also. Methods In this study, the influence of melatonin supplementation was studied on behavioral parameters and morphological aspects of the hippocampus and amygdala of rats. Streptozotocin (STZ) was injected intracerebroventricularly to induce AD-like symptoms in male adult Wistar rats (n = 18) which were compared to age-matched, sham-operated animals (n = 16). Melatonin was administered once daily in a dose of 20 mg/kg body weight by oral route. Behavioral analysis included open-field, novel object recognition, and radial-arm maze tests. TNF-α and MMP-9 levels were determined from blood samples to assess the anti-inflammatory and neuroprotective effects of melatonin. Immunohistological staining of brain sections was performed using anti-NeuN, anti-IBA-1, and anti-GFAP primary antibodies to evaluate the cellular reorganization of hippocampus. Results and Discussion The results show that after 40 days of treatment, melatonin improved the cognitive performance of STZ-induced rats and reduced the activation of microglia in both CA1 and CA3 regions of the hippocampus. STZ-injected animals had higher levels of GFAP-labeled astrocytes in the CA1 region, but melatonin treatment reduced this to that of the control group. In conclusion, melatonin may be a potential therapeutic option for treating AD-like cognitive decline and neuroinflammation.
Collapse
Affiliation(s)
- Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Bernadett Boros
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Krisztina Kelemen
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Melinda Urkon
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - István Zolcseak
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Kincső Márton
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Melinda Kolcsar
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| |
Collapse
|
11
|
Kathpalia M, Mishra P, Majid A, Khan MA, Sharma A, Bhurani D, Nidhi. Attenuated adiponectin, omentin, increased interleukin-6 and tumor necrosis factor-alpha levels with altered cognition and depression in non-Hodgkin lymphoma patients: A case-control study. J Neuroimmunol 2024; 392:578372. [PMID: 38788317 DOI: 10.1016/j.jneuroim.2024.578372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AND PURPOSE Immune dysfunction is one of the risk factors which plays an important role in the development of non-Hodgkin lymphoma (NHL), and inflammation may be involved in its etiology. Minimal data is available on the effect of cytokine levels on neurobehavioral function in lymphoma before the initiation of chemotherapy. Therefore, we aimed to explore the risk of NHL by assessment of cytokine and adipokine levels and their correlation with neurobehavioral changes. METHODS This case-control study enrolled 62 subjects (age-sex matched: 31 cases and 31 controls). Neurobehavioral assessment was done using Montreal Cognitive Assessment questionnaire (MoCA) and Patient Health Questionnaire (PHQ-9). EORTC Core Quality of Life questionnaire (EORTC QLQ-C30) was used to assess quality of life. Questionnaire assessment and sample collection were done after the patient enrolment and before first cycle of chemotherapy. RESULTS Mean age of NHL patients and healthy controls was 51.9 ± 11.8 and 50 ± 10.9 years, respectively. NHL patients showed significantly higher levels of IL-6 (0.77 ± 0.11) and TNF- α (1.47 ± 1.31) than controls (0.55 ± 0.4 and 0.66 ± 0.89, respectively) with p-value<0.005. Also, NHL patients showed significantly lower levels of adiponectin (0.31 ± 0.24) and omentin (0.46 ± 0.1) than controls (0.42 ± 0.13 and 0.53 ± 0.11, respectively) with p-value<0.005. Lower MoCA and EORTC QLQ C-30 scores and higher PHQ-9 scores were observed in NHL patients in comparison to healthy control. CONCLUSION Our results showed that adiponectin, omentin IL-6 and TNF-α may be used as pre-diagnostic markers of NHL risk. Neurobehavioral changes observed in NHL patients may alter the quality of life.
Collapse
Affiliation(s)
- Meghavi Kathpalia
- Department of Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Pinki Mishra
- Department of Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Afsha Majid
- Department of Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashif Khan
- Department of Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anurag Sharma
- Department of Statistics, Ram Lal Anand College, University of Delhi, India
| | - Dinesh Bhurani
- Department of Haemato-oncology and BMT, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
12
|
Zabot GC, Medeiros EB, Macarini BMN, Peruchi BB, Keller GS, Lídio AV, Boaventura A, de Jesus LC, de Bem Silveira G, Silveira PCL, Chede BC, Réus GZ, Budni J. The involvement of neuroinflammation in an animal model of dementia and depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:110999. [PMID: 38552774 DOI: 10.1016/j.pnpbp.2024.110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) and depression are inflammatory pathologies, leading to increased inflammatory response and neurotoxicity. Therefore, this study aimed to evaluate the effect of the treatment with fluoxetine and/or galantamine and/or donepezil on the levels of proinflammatory and anti-inflammatory cytokines in a mixed animal model of depression and dementia. Adult male Wistar rats underwent chronic mild stress (CMS) protocol for 40 days and were subjected to stereotaxic surgery for intra-hippocampal administration of amyloid-beta (Aꞵ) peptide or artificial cerebrospinal fluid (ACSF) to mimic the dementia animal model. On the 42nd day, animals were treated with water, galantamine, donepezil, and/or fluoxetine, orally for 17 days. On the 57th and 58th days, the Splash and Y-maze tests for behavior analysis were performed. The frontal cortex and hippocampus were used to analyze the tumor necrosis factor alfa (TNF-α), interleukin 1 beta (IL-1ꞵ), IL-6, and IL-10 levels. The results of this study show that animals subjected to CMS and administration of Aꞵ had anhedonia, cognitive impairment, increased TNF-α and IL-1ꞵ levels in the frontal cortex, and reduced IL-10 levels in the hippocampus. All treatment groups were able to reverse the cognitive impairment. Only donepezil did not decrease the TNF-α levels in the hippocampus. Fluoxetine + galantamine and fluoxetine + donepezil reversed the anhedonia. Fluoxetine reversed the anhedonia and IL-1ꞵ levels in the frontal cortex. In addition, fluoxetine + donepezil reversed the reduction of IL-10 levels in the hippocampus. The results indicate a pathophysiological interaction between AD and depression, and the association of medications in the future may be a possible therapeutic strategy to reduce inflammation, especially the fluoxetine-associated treatments.
Collapse
Affiliation(s)
- Gabriel Casagrande Zabot
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Bárbara Machado Naspolini Macarini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Bruno Búrigo Peruchi
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriela Serafim Keller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Adrielly Vargas Lídio
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Amanda Boaventura
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Laura Ceolin de Jesus
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Beatriz Costa Chede
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
13
|
Ceprián N, Martínez de Toda I, Maté I, Garrido A, Gimenez-Llort L, De la Fuente M. Prodromic Inflammatory-Oxidative Stress in Peritoneal Leukocytes of Triple-Transgenic Mice for Alzheimer's Disease. Int J Mol Sci 2024; 25:6976. [PMID: 39000092 PMCID: PMC11241217 DOI: 10.3390/ijms25136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic mice for AD (3xTgAD) and non-transgenic mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1β, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD mice show a worse pro-inflammatory response and higher oxidative stress than NTg mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.
Collapse
Affiliation(s)
- Noemí Ceprián
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Irene Martínez de Toda
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Ianire Maté
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Antonio Garrido
- Department of Biosciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Lydia Gimenez-Llort
- Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Mónica De la Fuente
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
14
|
de Aquino AMI, Gomes KAL, de Brito LLM, de Lima LD, Gomes ERDM, Andrade SMMDS. Diagnostic accuracy of interleukin-6, interleukin-10 and tumor necrosis factor alpha cytokine levels in patients with mild cognitive impairment: systematic review and meta-analysis. Dement Neuropsychol 2024; 18:e20230027. [PMID: 38933077 PMCID: PMC11206232 DOI: 10.1590/1980-5764-dn-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/28/2024] Open
Abstract
There is growing evidence suggesting an association between neurodegeneration and inflammation playing a role in the pathogenesis of age-associated diseases, including Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). Objective A systematic review and meta-analysis were performed to verify evidence on the diagnostic accuracy parameters of the inflammatory cytokines interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor alpha (TNF-α). Methods A search of Medical Literature Analysis and Retrieval System Online (Medline), Scientific Electronic Library Online (SciELO), Web of Science and Science Direct databases was performed and nine observational studies associated with peripheral inflammatory biomarkers in MCI were identified. Mean (±standard deviation - SD) concentrations of these biomarkers and values of true positives, true negatives, false positives and false negatives for MCI and healthy controls (HC) were extracted from these studies. Results Significantly higher levels of IL-10 were observed in subjects in the MCI group and Mini-Mental State Examination (MMSE) scores were lower compared to HC. For the other investigations, no differences were found between the groups. Our meta-analysis for the TNF-α biomarker revealed high heterogeneity between studies in terms of sensitivity and specificity. Conclusion These findings do not support the involvement of inflammatory biomarkers for detection of MCI, although significant heterogeneity was observed. More studies are needed to evaluate the role of these cytokines in MCI, as well as in other stages of cognitive decline and all-cause dementias.
Collapse
Affiliation(s)
- Alana Mara Inácio de Aquino
- Universidade Federal da Paraíba, Laboratório de Envelhecimento e Neurociências, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Programa de Graduação em Neurociências e Comportamento, João Pessoa PB, Brazil
| | - Kedma Anne Lima Gomes
- Universidade Federal da Paraíba, Laboratório de Envelhecimento e Neurociências, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Programa de Graduação em Neurociências e Comportamento, João Pessoa PB, Brazil
| | | | - Luciana Domingos de Lima
- Universidade Federal da Paraíba, Laboratório de Envelhecimento e Neurociências, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Graduação em Fisioterapia, João Pessoa PB, Brazil
| | - Eneas Ricardo de Morais Gomes
- Universidade Federal da Paraíba, Cento de Biotecnologia, Departamento de Biotecnolgia, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Graduação em Biotecnologia, João Pessoa PB, Brazil
| | - Suellen Mary Marinho dos Santos Andrade
- Universidade Federal da Paraíba, Laboratório de Envelhecimento e Neurociências, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Programa de Graduação em Neurociências e Comportamento, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Departamento de Fisioterapia, João Pessoa PB, Brazil
| |
Collapse
|
15
|
Nouraeinejad A. The bidirectional links between coronavirus disease 2019 and Alzheimer's disease. Int J Neurosci 2024:1-15. [PMID: 38451045 DOI: 10.1080/00207454.2024.2327403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Coronavirus disease 2019 (COVID-19) can be a critical disease, particularly in the elderly and those with comorbidities. Patients with Alzheimer's disease are more vulnerable to COVID-19 consequences. The latest results have indicated some common risk factors for both diseases. An understanding of the pathological link between COVID-19 and Alzheimer's disease will help develop timely strategies to treat both diseases. This review explores the bidirectional links between COVID-19 and Alzheimer's disease.
Collapse
Affiliation(s)
- Ali Nouraeinejad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| |
Collapse
|
16
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
17
|
Tuon L, Tramontin NS, Custódio I, Comim VH, Costa B, Tietbohl LTW, Muller AP. Serum Biomarkers to Mild Cognitive Deficits in Children and Adolescents. Mol Neurobiol 2023; 60:7080-7087. [PMID: 37526895 DOI: 10.1007/s12035-023-03536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Intellectual disability (ID) is a condition characterized by significant limitations in both cognitive development and adaptive behavior. The diagnosis is made through clinical assessment, standardized tests, and intelligence quotient (IQ). Genetic, inflammation, oxidative stress, and diet have been suggested to contribute to ID, and biomarkers could potentially aid in diagnosis and treatment. Study included children and adolescents aged 6-16 years. The ID group (n = 16) and the control group (n = 18) underwent the Wechsler Intelligence Scale for Children (WISC-IV) test, and blood samples were collected. Correlations between biomarker levels and WISC-IV test scores were analyzed. The ID group had an IQ score below 75, and the values of four domains (IQ, IOP, IMO, and IVP) were lower compared to the control group. Serum levels of FKN, NGF-β, and vitamin B12 were decreased in the ID group, while DCFH and nitrite levels were increased. Positive correlations were found between FKN and the QIT and IOP domains, NGF and the QIT and IMO domains, and vitamin B12 and the ICV domain. TNF-α showed a negative correlation with the ICV domain. Our study identified FKN, NGF-β, and vitamin B12 as potential biomarkers specific to ID, which could aid in the diagnosis and treatment of ID. TNF-α and oxidative stress biomarkers suggest that ID has a complex etiology, and further research is needed to better understand this condition and develop effective treatments. Future studies could explore the potential implications of these biomarkers and develop targeted interventions based on their findings.
Collapse
Affiliation(s)
- Lisiane Tuon
- Pós-Graduação em Saúde Coletiva, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | | | - Isis Custódio
- Pós-Graduação em Saúde Coletiva, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Vitor Hugo Comim
- Pós-Graduação em Saúde Coletiva, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Barbara Costa
- Pós-Graduação em Saúde Coletiva, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | | | - Alexandre Pastoris Muller
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Post-Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
18
|
Ren J, Xiao H. Exercise Intervention for Alzheimer's Disease: Unraveling Neurobiological Mechanisms and Assessing Effects. Life (Basel) 2023; 13:2285. [PMID: 38137886 PMCID: PMC10744739 DOI: 10.3390/life13122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a major cause of age-related dementia, characterized by cognitive dysfunction and memory impairment. The underlying causes include the accumulation of beta-amyloid protein (Aβ) in the brain, abnormal phosphorylation, and aggregation of tau protein within nerve cells, as well as neuronal damage and death. Currently, there is no cure for AD with drug therapy. Non-pharmacological interventions such as exercise have been widely used to treat AD, but the specific molecular and biological mechanisms are not well understood. In this narrative review, we integrate the biology of AD and summarize the knowledge of the molecular, neural, and physiological mechanisms underlying exercise-induced improvements in AD progression. We discuss various exercise interventions used in AD and show that exercise directly or indirectly affects the brain by regulating crosstalk mechanisms between peripheral organs and the brain, including "bone-brain crosstalk", "muscle-brain crosstalk", and "gut-brain crosstalk". We also summarize the potential role of artificial intelligence and neuroimaging technologies in exercise interventions for AD. We emphasize that moderate-intensity, regular, long-term exercise may improve the progression of Alzheimer's disease through various molecular and biological pathways, with multimodal exercise providing greater benefits. Through in-depth exploration of the molecular and biological mechanisms and effects of exercise interventions in improving AD progression, this review aims to contribute to the existing knowledge base and provide insights into new therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Child, Lingnan Normal University, Zhanjiang 524037, China
- Institute of Sport and Health, South China Normal University, Guangzhou 510631, China
| | - Haili Xiao
- Institute of Sport and Health, Lingnan Normal University, Zhanjiang 524037, China;
| |
Collapse
|
19
|
Das SS, Gopal PM, Thomas JV, Mohan MC, Thomas SC, Maliakel BP, Krishnakumar IM, Pulikkaparambil Sasidharan BC. Influence of CurQfen ®-curcumin on cognitive impairment: a randomized, double-blinded, placebo-controlled, 3-arm, 3-sequence comparative study. FRONTIERS IN DEMENTIA 2023; 2:1222708. [PMID: 39081970 PMCID: PMC11285547 DOI: 10.3389/frdem.2023.1222708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2024]
Abstract
Background Although curcumin is a blood-brain-barrier permeable molecule with the ability to bind and segregate β-amyloid plaques and neurofibrillary tangles of hyperphosphorylated tau proteins, its poor oral bioavailability, rapid biotransformation to inactive metabolites, fast elimination from the systemic circulation, and hence the poor neuronal uptake has been limiting its clinical efficacy under neurodegenerative conditions. Objective We hypothesized that the highly bioavailable CurQfen-curcumin (CGM), which has been shown to possess significant blood-brain-barrier permeability and brain bioavailability, would ameliorate dementia in neurodegenerative conditions. Methods In the present double-blinded placebo-controlled 3-arm 3-sequence comparative study, 48 subjects characterized with moderate dementia due to the onset of Alzheimer's disease were randomized into three groups (N = 16/group) and supplemented with 400 mg × 2/day of either placebo (MCC), unformulated standard curcumin complex with 95% purity (USC), or CGM as a sachet for six months. The relative changes in cognitive and locomotor functions and biochemical markers were compared. Results Supplementation with CGM produced significant (P < 0.05) improvement in the Mini-Mental State Examination (MMSE) and the Geriatric Locomotive Function Scale (GLFS) scores in both intra- and inter-group comparison by 2 × 2 repeated measures (RM) ANOVA. Further, analysis of the serum levels of specific biomarkers (BDNF, Aβ42, tau protein, IL-6, and TNF-α) also revealed a significant (P < 0.05) improvement among CGM subjects as compared to placebo and the USC groups. Conclusion Supplementation with CGM as sachet was found to offer significant delay in the progress of Alzheimer's disease, as evident from the improvements in locomotive and cognitive functions related to dementia. Clinical trial registration http://ctri.nic.in, identifier: CTRI/2018/03/012410.
Collapse
Affiliation(s)
- S. Syam Das
- Akay Natural Ingredients, Kochi, Kerala, India
| | - Prasad M. Gopal
- Alzheimer's and Related Disorders Society of India, Kochi, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Jestin V. Thomas
- Leads Clinical Research & Bio Services Private Limited, Bengaluru, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Siju C. Thomas
- Alzheimer's and Related Disorders Society of India, Kochi, Kerala, India
| | | | | | - Baby Chakrapani Pulikkaparambil Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kochi, Kerala, India
| |
Collapse
|
20
|
Taheri M, Ghafoori H, Sepehri H, Mohammadi A. Neuroprotective Effect of Thiazolidine-2,4-dione Derivatives on Memory Deficits and Neuropathological Symptoms of Dementia on a Scopolamine-Induced Alzheimer's Model in Adult Male Wistar Rats. ACS Chem Neurosci 2023; 14:3156-3172. [PMID: 37561907 DOI: 10.1021/acschemneuro.3c00294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with a decline in memory deficits and neuropathological diagnosis with loss of cholinergic neurons in the brains of older adults. Based on these facts and an increasing number of involved people worldwide, this investigation aimed to study the improvement of memory and cognitive impairments via an anticholinergic approach of thiazolidine-2,4-diones (TZDs) in the scopolamine-induced model of Alzheimer type in adult male Wistar rats (n = 40). The results indicated data analysis obtained from in vivo and in vitro tests for (E)-5-(3-hydroxybenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ3O) (2 and 4 mg/kg) with the meta-hydroxy group and (E)-5-(4-methoxybenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ4M) (2 and 3 mg/kg) with the para-methoxy group showed a neuroprotective effect. TZ3O and TZ4M alleviated the scopolamine-induced cognitive decline of the Alzheimer model in adult male Wistar rats. These initial and noteworthy results could be assumed as a starting point for the evolution of new anti-Alzheimer agents.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| | - Hossein Ghafoori
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| | - Hamid Sepehri
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan 4913815739, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
21
|
Leonardo S, Fregni F. Association of inflammation and cognition in the elderly: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1069439. [PMID: 36815174 PMCID: PMC9939705 DOI: 10.3389/fnagi.2023.1069439] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Background The development of mild cognitive impairment (MCI) and Alzheimer's disease (AD) may be associated with an inflammatory process. Inflammatory cytokines may be a surrogate for systemic inflammation leading to worsening neurological function. We aim to investigate the association between cognitive impairment and inflammation by pooling and analyzing the data from previously published studies. Methods We performed a systematic literature search on MEDLINE, PubMed, Embase, Web of Science, and Scopus for prospective longitudinal and cross-sectional studies evaluating the relationship between inflammation and cognitive functions. Results A total of 79 articles were included in our systematic review and meta-analysis. Pooled estimates from cross-sectional studies have demonstrated an increased level of C-reactive protein (CRP) [Hedges's g 0.35, 95% CI (0.16, 0.55), p < 0.05], IL-1β [0.94, 95% CI (-0.04, 1.92), p < 0.05], interleukin-6 (IL-6) [0.46, 95% CI (0.05, 0.88), p < 0.005], TNF alpha [0.22, 95% CI (-0.24, 0.68), p < 0.05], sTNFR-1 [0.74, 95% CI (0.46, 1.02), p < 0.05] in AD compared to controls. Similarly, higher levels of IL-1β [0.17, 95% CI (0.05, 0.28), p < 0.05], IL-6 [0.13, 95% CI (0.08, 0.18), p < 0.005], TNF alpha [0.28, 95% CI (0.07, 0.49), p < 0.05], sTNFR-1 [0.21, 95% CI (0.05, 0.48), p < 0.05] was also observed in MCI vs. control samples. The data from longitudinal studies suggested that levels of IL-6 significantly increased the risk of cognitive decline [OR = 1.34, 95% CI (1.13, 1.56)]. However, intermediate levels of IL-6 had no significant effect on the final clinical endpoint [OR = 1.06, 95% CI (0.8, 1.32)]. Conclusion The data from cross-sectional studies suggest a higher level of inflammatory cytokines in AD and MCI as compared to controls. Moreover, data from longitudinal studies suggest that the risk of cognitive deterioration may increase by high IL-6 levels. According to our analysis, CRP, antichymotrypsin (ACT), Albumin, and tumor necrosis factor (TNF) alpha may not be good surrogates for neurological degeneration over time.
Collapse
Affiliation(s)
- Sofia Leonardo
- Ph.D. Department, Universidad Francisco Marroquín, Guatemala City, Guatemala,*Correspondence: Sofia Leonardo,
| | - Felipe Fregni
- Center for Neuromodulation and Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
22
|
Huang P, Zhang LY, Tan YY, Chen SD. Links between COVID-19 and Parkinson's disease/Alzheimer's disease: reciprocal impacts, medical care strategies and underlying mechanisms. Transl Neurodegener 2023; 12:5. [PMID: 36717892 PMCID: PMC9885419 DOI: 10.1186/s40035-023-00337-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The impact of coronavirus disease 2019 (COVID-19) pandemic on patients with neurodegenerative diseases and the specific neurological manifestations of COVID-19 have aroused great interest. However, there are still many issues of concern to be clarified. Therefore, we review the current literature on the complex relationship between COVID-19 and neurodegenerative diseases with an emphasis on Parkinson's disease (PD) and Alzheimer's disease (AD). We summarize the impact of COVID-19 infection on symptom severity, disease progression, and mortality rate of PD and AD, and discuss whether COVID-19 infection could trigger PD and AD. In addition, the susceptibility to and the prognosis of COVID-19 in PD patients and AD patients are also included. In order to achieve better management of PD and AD patients, modifications of care strategies, specific drug therapies, and vaccines during the pandemic are also listed. At last, mechanisms underlying the link of COVID-19 with PD and AD are reviewed.
Collapse
Affiliation(s)
- Pei Huang
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Lin-Yuan Zhang
- grid.412478.c0000 0004 1760 4628Department of Neurology, Shanghai General Hospital, Shanghai, 200080 China
| | - Yu-Yan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
23
|
Rudnicka-Drożak E, Drożak P, Mizerski G, Zaborowski T, Ślusarska B, Nowicki G, Drożak M. Links between COVID-19 and Alzheimer's Disease-What Do We Already Know? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2146. [PMID: 36767513 PMCID: PMC9915236 DOI: 10.3390/ijerph20032146] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is a life-changing condition whose etiology is explained by several hypotheses. Recently, a new virus contributed to the evidence of viral involvement in AD: the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-19 coronavirus disease. AD was found to be one of the most common COVID-19 comorbidities, and it was found to increase mortality from this disease as well. Moreover, AD patients were observed to present with the distinct clinical features of COVID-19, with delirium being prevalent in this group. The SARS-CoV-2 virus enters host cells through the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is overexpressed in brains with AD, which thus increases the viral invasion. Furthermore, the inhibition of the ACE2 receptor by the SARS-CoV-2 virus may also decrease the brain-derived neurotrophic factor (BDNF), contributing to neurodegeneration. The ApoE ε4 allele, which increases the risk of AD, was found to facilitate the SARS-CoV-2 entry into cells. Furthermore, the neuroinflammation and oxidative stress existing in AD patients enhance the inflammatory response associated with COVID-19. Moreover, pandemic and associated social distancing measures negatively affected the mental health, cognitive function, and neuro-psychiatric symptoms of AD patients. This review comprehensively covers the links between COVID-19 and Alzheimer's disease, including clinical presentation, molecular mechanisms, and the effects of social distancing.
Collapse
Affiliation(s)
- Ewa Rudnicka-Drożak
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Paulina Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Grzegorz Mizerski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Tomasz Zaborowski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Grzegorz Nowicki
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Martyna Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| |
Collapse
|
24
|
Golzari-Sorkheh M, Weaver DF, Reed MA. COVID-19 as a Risk Factor for Alzheimer's Disease. J Alzheimers Dis 2023; 91:1-23. [PMID: 36314211 DOI: 10.3233/jad-220800] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although a primarily respiratory disease, recent reports indicate that it also affects the central nervous system (CNS). Over 25% of COVID-19 patients report neurological symptoms such as memory loss, anosmia, hyposmia, confusion, and headaches. The neurological outcomes may be a result of viral entry into the CNS and/or resulting neuroinflammation, both of which underlie an elevated risk for Alzheimer's disease (AD). Herein, we ask: Is COVID-19 a risk factor for AD? To answer, we identify the literature and review mechanisms by which COVID-19-mediated neuroinflammation can contribute to the development of AD, evaluate the effects of acute versus chronic phases of infection, and lastly, discuss potential therapeutics to address the rising rates of COVID-19 neurological sequelae.
Collapse
Affiliation(s)
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Bacterial DNAemia in Alzheimer's Disease and Mild Cognitive Impairment: Association with Cognitive Decline, Plasma BDNF Levels, and Inflammatory Response. Int J Mol Sci 2022; 24:ijms24010078. [PMID: 36613538 PMCID: PMC9820596 DOI: 10.3390/ijms24010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial dysbiosis (MD) provokes gut barrier alterations and bacterial translocation in the bloodstream. The increased blood bacterial DNA (BB-DNA) may promote peripheral- and neuro-inflammation, contributing to cognitive impairment. MD also influences brain-derived neurotrophic factor (BDNF) production, whose alterations contribute to the etiopathogenesis of Alzheimer's disease (AD). The purpose of this study is to measure BB-DNA in healthy elderly controls (EC), and in patients with mild cognitive impairment (MCI) and AD to explore the effect on plasma BDNF levels (pBDNF), the inflammatory response, and the association with cognitive decline during a two-year follow-up. Baseline BB-DNA and pBDNF were significantly higher in MCI and AD than in EC. BB-DNA was positively correlated with pBDNF in AD, plasma Tumor necrosis factor-alpha (TNF-α), and Interleukin-10 (IL-10) levels in MCI. AD patients with BB-DNA values above the 50th percentile had lower baseline Mini-Mental State Examination (MMSE). After a two-year follow-up, AD patients with the highest BB-DNA tertile had a worse cognitive decline, while higher BB-DNA levels were associated with higher TNF-α and lower IL-10 in MCI. Our study demonstrates that, in early AD, the higher the BB-DNA levels, the higher the pBDNF levels, suggesting a defensive attempt; BB-DNA seems to play a role in the AD severity/progression; in MCI, higher BB-DNA may trigger an increased inflammatory response.
Collapse
|
26
|
Wang SS, Li XH, Liu P, Li J, Liu L. The relationship between Alzheimer's disease and intestinal microflora structure and inflammatory factors. Front Aging Neurosci 2022; 14:972982. [PMID: 36437994 PMCID: PMC9681782 DOI: 10.3389/fnagi.2022.972982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 09/29/2023] Open
Abstract
To analyze the structural characteristics of intestinal microflora and changes of serum inflammatory factors of the Alzheimer's disease, and to explore the relationship between them and dementia, we selected 30 patients in the AD group and 30 patients in the normal group, and collected stool samples to analyze the intestinal flora structure characteristics of the two groups of patients, and statistically analyzed the inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 by ELISA from the venous blood of the two groups. The results show that the dominant Bacteroides in the two groups are Bacteroides, Firmicutes, Proteobacteria, and Actinobacteria. The abundance of Bacteroides, Firmicutes, and Proteobacteria in the AD group shows a statistical difference. At the genus level, the abundance of anti-inflammatory bacteria such as Lactobacillus, Bifidobacterium, and Ruminococcus drops in AD group, while the abundance of pro-inflammatory bacteria such as Escherichia and Enterococcus raises. Statistical analysis of inflammatory cytokines in the two groups suggests that TNF-α and IL-6 levels significantly increase in the AD group, with statistical differences. Therefore, it is speculated that the increased abundance of pro-inflammatory bacteria in intestinal flora may lead to or aggravate neuroinflammation through the release of inflammatory factors, thus further leading to the occurrence and development of AD.
Collapse
Affiliation(s)
- Su-shan Wang
- Department of General Practice, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xiao-hui Li
- Six Health Care Department, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Ping Liu
- Department of General Practice, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jing Li
- Department of General Practice, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Li Liu
- Department of General Practice, The Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Ramos A, Joshi RS, Szabo G. Innate immune activation: Parallels in alcohol use disorder and Alzheimer’s disease. Front Mol Neurosci 2022; 15:910298. [PMID: 36157070 PMCID: PMC9505690 DOI: 10.3389/fnmol.2022.910298] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol use disorder is associated with systemic inflammation and organ dysfunction especially in the liver and the brain. For more than a decade, studies have highlighted alcohol abuse-mediated impairment of brain function and acceleration of neurodegeneration through inflammatory mechanisms that directly involve innate immune cells. Furthermore, recent studies indicate overlapping genetic risk factors between alcohol use and neurodegenerative disorders, specifically regarding the role of innate immunity in the pathomechanisms of both areas. Considering the pressing need for a better understanding of the relevance of alcohol abuse in dementia progression, here we summarize the molecular mechanisms of neuroinflammation observed in alcohol abuse and Alzheimer’s disease, the most common cause of dementia. In addition, we highlight mechanisms that are already established in the field of Alzheimer’s disease that may be relevant to explore in alcoholism to better understand alcohol mediated neurodegeneration and dementia, including the relevance of the liver-brain axis.
Collapse
Affiliation(s)
- Adriana Ramos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Radhika S. Joshi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Gyongyi Szabo,
| |
Collapse
|
28
|
Asadi MR, Talebi M, Gharesouran J, Sabaie H, Jalaiei A, Arsang-Jang S, Taheri M, Sayad A, Rezazadeh M. Analysis of ROQUIN, Tristetraprolin (TTP), and BDNF/miR-16/TTP regulatory axis in late onset Alzheimer’s disease. Front Aging Neurosci 2022; 14:933019. [PMID: 36016853 PMCID: PMC9397504 DOI: 10.3389/fnagi.2022.933019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/14/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous degenerative disorder of the brain that is on the rise worldwide. One of the critical processes that might be disturbed in AD is gene expression regulation. Tristetraprolin (TTP) and RC3H1 gene (ROQUIN) are two RNA-binding proteins (RBPs) that target AU-rich elements (AREs) and constitutive decay elements (CDEs), respectively. TTP and ROQUIN, members of the CCCH zinc-finger protein family, have been demonstrated to fine-tune numerous inflammatory factors. In addition, miR-16 has distinct characteristics and may influence the target mRNA through the ARE site. Interestingly, BDNF mRNA has ARE sites in the 3’ untranslated region (UTR) and can be targeted by regulatory factors, such as TTP and miR-16 on MRE sequences, forming BDNF/miR-16/TTP regulatory axis. A number of two microarray datasets were downloaded, including information on mRNAs (GSE106241) and miRNAs (GSE157239) from individuals with AD and corresponding controls. R software was used to identify BDNF, TTP, ROQUIN, and miR-16 expression levels in temporal cortex (TC) tissue datasets. Q-PCR was also used to evaluate the expression of these regulatory factors and the expression of BDNF in the blood of 50 patients with AD and 50 controls. Bioinformatic evaluation showed that TTP and miR-16 overexpression might act as post-transcriptional regulatory factors to control BDNF expression in AD in TC samples. Instead, this expression pattern was not found in peripheral blood samples from patients with AD compared to normal controls. ROQUIN expression was increased in the peripheral blood of patients with AD. Hsa-miR-16-5p levels did not show significant differences in peripheral blood samples. Finally, it was shown that TTP and BDNF, based on evaluating the receiver operating characteristic (ROC), effectively identify patients with AD from healthy controls. This study could provide a new perspective on the molecular regulatory processes associated with AD pathogenic mechanisms linked to the BDNF growth factor, although further research is needed on the possible roles of these factors in AD.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Arsang-Jang
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Arezou Sayad,
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Maryam Rezazadeh,
| |
Collapse
|
29
|
Heinze-Milne SD, Banga S, Howlett SE. Frailty and cytokines in preclinical models: Comparisons with humans. Mech Ageing Dev 2022; 206:111706. [PMID: 35835224 DOI: 10.1016/j.mad.2022.111706] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
Chronic low-grade elevations of blood-borne cytokines/chemokines in older age tend to associate with frailty in humans. This persistent inflammation is often called "inflammageing" and likely contributes to frailty progression. Preclinical models such as ageing and/or genetically modified mice offer a unique opportunity to mechanistically study how these inflammatory mediators affect frailty. In this review, we summarize and contrast evidence relating cytokines/chemokines to frailty in humans and in mouse models of frailty. In humans and mice, higher levels of the pro-inflammatory cytokine interleukin-6 regularly increased in proportion to the degree of frailty. Evidence linking other cytokines/chemokines to frailty in humans and mice is less certain. The chemokines CXCL-10 and monocyte chemoattractant protein-1 related to frailty across both species, but evidence is limited and inconsistent. Several other cytokines/chemokines, including tumour necrosis factor-α relate to frailty in humans or in mice, but evidence to date is species- and tissue-dependent. It is important for future studies to validate common mechanistic inflammatory biomarkers of frailty between humans and mice. Achieving this goal will accelerate the search for drugs to treat frailty.
Collapse
Affiliation(s)
| | - Shubham Banga
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
30
|
Aksnes M, Aass HCD, Tiiman A, Terenius L, Bogdanović N, Vukojević V, Knapskog AB. Serum Amyloidogenic Nanoplaques and Cytokines in Alzheimer's Disease: Pilot Study in a Small Naturalistic Memory Clinic Cohort. J Alzheimers Dis 2022; 86:1459-1470. [PMID: 35213378 PMCID: PMC9108575 DOI: 10.3233/jad-215504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Neuroinflammation is a central component of Alzheimer’s disease (AD) and correlates closely with amyloid pathology. Markers of inflammation such as cytokines, and amyloidogenic aggregates, so-called nanoplaques, are both promising biomarker candidates for AD. We have previously shown that there is a relationship between the levels of nanoplaques and cytokines in cerebrospinal fluid, but it is unknown whether this association extends to serum. Objective: Investigate in a naturalistic memory clinic cohort whether the associations between nanoplaques and cytokines in the cerebrospinal fluid extends to serum. Methods: We collected serum from 49 patients assessed for cognitive complaints at the Oslo University Hospital Memory Clinic (15 with clinical AD). We assessed the levels of serum nanoplaques with the novel Thioflavin-T fluorescence correlation spectroscopy (ThT-FCS) assay. Serum levels of nine cytokines (eotaxin-1, granulocyte colony-stimulating factor [G-CSF], interleukin [IL]-6, IL-7, IL-8, monocyte chemoattractant protein-1 (MCP-1), gamma induced protein 10 (IP-10), macrophage inflammatory protein [MIP]-1α, and MIP-1β) were quantified with a multiplex assay and read on a Luminex IS 200 instrument. Results: Serum nanoplaques were not increased in clinical AD patients compared to non-AD memory clinic patients and nanoplaques were not associated with any cytokines. The cytokines IL-8 and G-CSF were increased in patients with clinical AD compared to non-AD patients. Conclusion: In this small pilot study, serum nanoplaques were not associated with serum cytokines. Nanoplaque levels could not be used to separate clinical AD patients from non-AD patients in this unselected memory clinic cohort.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | | | - Ann Tiiman
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanović
- Department of Geriatric Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Neurobiology, Care Science and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Vladana Vukojević
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Norway
| |
Collapse
|
31
|
Villa C, Rivellini E, Lavitrano M, Combi R. Can SARS-CoV-2 Infection Exacerbate Alzheimer's Disease? An Overview of Shared Risk Factors and Pathogenetic Mechanisms. J Pers Med 2022; 12:29. [PMID: 35055344 PMCID: PMC8780286 DOI: 10.3390/jpm12010029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, is affecting every aspect of global society, including public healthcare systems, medical care access, and the economy. Although the respiratory tract is primarily affected by SARS-CoV-2, emerging evidence suggests that the virus may also reach the central nervous system (CNS), leading to several neurological issues. In particular, people with a diagnosis of Alzheimer's disease (AD) are a vulnerable group at high risk of contracting COVID-19, and develop more severe forms and worse outcomes, including death. Therefore, understanding shared links between COVID-19 and AD could aid the development of therapeutic strategies against both. Herein, we reviewed common risk factors and potential pathogenetic mechanisms that might contribute to the acceleration of neurodegenerative processes in AD patients infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Eleonora Rivellini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
32
|
Morrow A, Panyard DJ, Deming YK, Jonaitis E, Dong R, Vasiljevic E, Betthauser TJ, Kollmorgen G, Suridjan I, Bayfield A, Van Hulle CA, Zetterberg H, Blennow K, Carlsson CM, Asthana S, Johnson SC, Engelman CD. Cerebrospinal Fluid Sphingomyelins in Alzheimer's Disease, Neurodegeneration, and Neuroinflammation. J Alzheimers Dis 2022; 90:667-680. [PMID: 36155504 PMCID: PMC9809197 DOI: 10.3233/jad-220349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Sphingomyelin (SM) levels have been associated with Alzheimer's disease (AD), but the association direction has been inconsistent and research on cerebrospinal fluid (CSF) SMs has been limited by sample size, breadth of SMs examined, and diversity of biomarkers available. OBJECTIVE Here, we seek to build on our understanding of the role of SM metabolites in AD by studying a broad range of CSF SMs and biomarkers of AD, neurodegeneration, and neuroinflammation. METHODS Leveraging two longitudinal AD cohorts with metabolome-wide CSF metabolomics data (n = 502), we analyzed the relationship between the levels of 12 CSF SMs, and AD diagnosis and biomarkers of pathology, neurodegeneration, and neuroinflammation using logistic, linear, and linear mixed effects models. RESULTS No SMs were significantly associated with AD diagnosis, mild cognitive impairment, or amyloid biomarkers. Phosphorylated tau, neurofilament light, α-synuclein, neurogranin, soluble triggering receptor expressed on myeloid cells 2, and chitinase-3-like-protein 1 were each significantly, positively associated with at least 5 of the SMs. CONCLUSION The associations between SMs and biomarkers of neurodegeneration and neuroinflammation, but not biomarkers of amyloid or diagnosis of AD, point to SMs as potential biomarkers for neurodegeneration and neuroinflammation that may not be AD-specific.
Collapse
Affiliation(s)
- Autumn Morrow
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| | - Daniel J. Panyard
- Department of Genetics, School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, United States of America
| | - Yuetiva K. Deming
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | - Erin Jonaitis
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Wisconsin Alzheimer’s Institute, UW School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726
| | - Ruocheng Dong
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| | - Eva Vasiljevic
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
- Center for Demography of Health and Aging, University of Wisconsin-Madison, 1180 Observatory Drive, Madison, WI 53706
| | - Tobey J Betthauser
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | | | - Ivonne Suridjan
- Roche Diagnostics International Ltd, Forrenstrasse 2, 6343 Rotkreuz, Switzerland
| | - Anna Bayfield
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Carol A. Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
- United Kingdom Dementia Research Institute at UCL, London, WC1E6BT, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1H0AL, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| |
Collapse
|
33
|
Wanhella KJ, Fernandez-Patron C. Biomarkers of ageing and frailty may predict COVID-19 severity. Ageing Res Rev 2022; 73:101513. [PMID: 34838734 PMCID: PMC8611822 DOI: 10.1016/j.arr.2021.101513] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) - the culprit of an ongoing pandemic responsible for the loss of over 3 million lives worldwide within a year and a half. While the majority of SARS-CoV-2 infected people develop no or mild symptoms, some become severely ill and may die from COVID-19-related complications. In this review, we compile and comment on a number of biomarkers that have been identified and are expected to enhance the detection, protection and treatment of individuals at high risk of developing severe illnesses, as well as enable the monitoring of COVID-19 prognosis and responsiveness to therapeutic interventions. Consistent with the emerging notion that the majority of COVID-19 deaths occur in older and frail individuals, we researched the scientific literature and report the identification of a subset of COVID-19 biomarkers indicative of increased vulnerability to developing severe COVID-19 in older and frail patients. Mechanistically, increased frailty results from reduced disease tolerance, a phenomenon aggravated by ageing and comorbidities. While biomarkers of ageing and frailty may predict COVID-19 severity, biomarkers of disease tolerance may predict resistance to COVID-19 with socio-economic factors such as access to adequate health care remaining as major non-biomolecular influencers of COVID-19 outcomes.
Collapse
|
34
|
Anuradha U, Kumar A, Singh RK. The clinical correlation of proinflammatory and anti-inflammatory biomarkers with Alzheimer disease: a meta-analysis. Neurol Sci 2022; 43:285-298. [PMID: 34032945 DOI: 10.1007/s10072-021-05343-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies have indicated the role of inflammation in the pathogenesis of Alzheimer's disease (AD). However, the exact role of inflammatory markers in AD is still unclear. OBJECTIVE The main objective of the current study was to find out the association between the level of inflammatory markers and AD. MATERIAL AND METHODS The relevant articles have been extracted from PubMed as per the inclusion and exclusion criteria of the study. The mean value with standard deviation and number of participants in AD and control groups were extracted from relevant articles. The inverse variance was used as a statistical method and standard mean difference (SMD) as effect measure with 95% C.I. The random effect model was used and all analyses were done using Rev. Man 5.0. RESULTS A total of 38 articles have been found relevant and selected for analysis. The overall estimate results have shown that the level of IL-6, TGF-β1, and IL-1α were increased significantly in AD patients as compared to the control group among all other pro-inflammatory, inflammatory and anti-inflammatory mediators. CONCLUSION The findings of the current study suggest that IL-6, TGF-β1, and IL-1α may be a useful early marker in AD. However, further studies are required to confirm the exact utility of these inflammatory markers.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, (U.P), Lucknow, 226002, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, (U.P), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
35
|
Neshan M, Malakouti SK, Kamalzadeh L, Makvand M, Campbell A, Ahangari G. Alterations in T-Cell Transcription Factors and Cytokine Gene Expression in Late-Onset Alzheimer's Disease. J Alzheimers Dis 2021; 85:645-665. [PMID: 34864659 DOI: 10.3233/jad-210480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is associated with many environmental and genetic factors. The effect of systemic inflammation on the pathogenesis of neurodegenerative diseases such as AD has been strongly suggested. T helper cells (Th) are one of the important components of the immune system and can easily infiltrate the brain in pathological conditions. The development of each Th-subset depends on the production of unique cytokines and their main regulator. OBJECTIVE This study aimed to compare the mRNA levels of Th-related genes derived from peripheral blood mononuclear cells of LOAD patients with control. Also, the identification of the most important Th1/Th2 genes and downstream pathways that may be involved in the pathogenesis of AD was followed by computational approaches. METHODS This study invloved 30 patients with LOAD and 30 non-demented controls. The relative expression of T-cell cytokines (IFN-γ, TNF-α, IL-4, and IL-5) and transcription factors (T-bet and GATA-3) were assessed using real-time PCR. Additionally, protein-protein interaction (PPI) was investigated by gene network construction. RESULTS A significant decrease at T-bet, IFN-γ, TNF-α, and GATA-3 mRNA levels was detected in the LOAD group, compared to the controls. However, there was no significant difference in IL-4 or IL-5 mRNA levels. Network analysis revealed a list of the highly connected protein (hubs) related to mitogen-activated protein kinase (MAPK) signaling and Th17 cell differentiation pathways. CONCLUSION The findings point to a molecular dysregulation in Th-related genes, which can promising in the early diagnosis or targeted interventions of AD. Furthermore, the PPI analysis showed that upstream off-target stimulation may involve MAPK cascade activation and Th17 axis induction.
Collapse
Affiliation(s)
- Masoud Neshan
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Kazem Malakouti
- Mental Health Research Center, Tehran Institute of Psychiatry-School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Kamalzadeh
- Mental Health Research Center, Tehran Institute of Psychiatry-School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Makvand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
36
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
37
|
Poutoglidou F, Pourzitaki C, Manthou ME, Saitis A, Malliou F, Kouvelas D. Infliximab and tocilizumab reduce anxiety-like behavior, improve cognitive performance and reverse neuropathological alterations in juvenile rats with severe autoimmune arthritis. Int Immunopharmacol 2021; 99:107917. [PMID: 34217991 DOI: 10.1016/j.intimp.2021.107917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Several studies have demonstrated that rheumatic diseases, including Juvenile Idiopathic Arthritis (JIA), are associated with anxiety-like behavior and a cognitive decline. Infliximab, a Tumor Necrosis Factor-alpha (TNF-a) inhibitor, and tocilizumab, an antibody against Interleukin-6 (IL-6) receptor, are commonly used in the treatment of JIA. Here, we aimed to evaluate the effects of infliximab and tocilizumab on anxiety symptoms and cognitive function in a juvenile model of severe autoimmune arthritis. We found that both infliximab and tocilizumab improved anxiety-like behavior in the elevated-plus and elevated-zero maze tests. Tocilizumab, also, improved cognitive performance in the passive avoidance and olfactory social memory tests. Histological examination showed that anti-cytokine treatment reversed the histopathological alterations in the brain induced by arthritis. Further, infliximab and tocilizumab treatment increased Brain-Derived Neurotrophic Factor (BDNF) expression in the hippocampal and amygdaloid area of rat brain. In summary, our findings provide evidence that infliximab and tocilizumab have a beneficial effect on anxiety-like behavior and cognitive function and alleviate neuropathological alterations in a juvenile rat model of severe arthritis, suggesting that inhibition of TNF-a and IL-6 in the periphery, may be associated with a mood and memory enhancement in JIA patients.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece.
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| |
Collapse
|
38
|
Poutoglidou F, Pourzitaki C, Manthou ME, Saitis A, Malliou F, Kouvelas D. Infliximab and Tocilizumab Reduce Anxiety-Like Behaviour and Improve Cognitive Performance in a Juvenile Collagen-Induced Arthritis Rat Model. Inflammation 2021; 45:445-459. [PMID: 34515956 DOI: 10.1007/s10753-021-01560-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Anxiety disorders and cognitive decline are highly prevalent in rheumatic diseases, including Juvenile Idiopathic Arthritis (JIA). In this study, we investigated the effect of long-term treatment with infliximab and tocilizumab on anxiety-like behaviour and cognitive performance in a juvenile collagen-induced arthritis (CIA) rat model. Forty-nine rats with established moderate arthritis were randomly allocated into 7 equal groups: negative control, vehicle, methotrexate, infliximab, tocilizumab, methotrexate + infliximab and methotrexate + tocilizumab groups. Behavioural tests were performed to evaluate anxiety-like behaviour and cognitive function. Neuropathological changes were investigated by histological examination at the level of the hippocampus, the amygdala and the prefrontal cortex. Also, the expression of Brain-Derived Neurotrophic Factor (BDNF), a biomarker associated with neuronal survival and plasticity, was determined in the hippocampus and the amygdala by RT-qPCR. We found that both infliximab and tocilizumab reduced anxiety-like behaviour in the elevated-plus and elevated-zero maze tests. Tocilizumab, also, improved cognitive function in the olfactory social memory and passive avoidance tests. Anti-cytokine treatment reversed the histopathological changes in the brain induced by CIA. BDNF expression was higher in all treatment groups and especially those receiving monoclonal antibodies combined with methotrexate. Our data provide evidence that chronic infliximab and tocilizumab treatment reduces anxiety-like behaviour, improves cognitive function, reverses neuropathological changes and increases central BDNF expression in a juvenile arthritis rat model. These findings may be translated to humans to address behavioural comorbidities associated with JIA.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece.
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| |
Collapse
|
39
|
Yeram N, Dalvi S, Mankeshwar R, Patil V, Kale V, Jagiasi K, Abichandani L. Relationship between cortisol, Interleukin-6 and homocysteine in Alzheimer's disease. Qatar Med J 2021; 2021:1-10. [PMID: 34604020 PMCID: PMC8473151 DOI: 10.5339/qmj.2021.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/13/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is characterised by progressive cognitive decline due to neurodegeneration. Over activation of the hypothalamic-pituitary-adrenal axis, oxidative stress and inflammation potentially damage the neuronal system, affecting cognition. AIM This study aimed to assess the relationship between serum cortisol, Interleukin-6 (IL-6) and homocysteine (Hcy) levels in AD. METHODS Case-Control observational study consisting of 71 patients with AD and 70 healthy controls above 60 years of age. Serum samples were analysed for cortisol, IL-6 and Hcy levels using chemiluminescence immunoassay (Immulite 1000) technique. Cognitive functions were measured using the Mini-Mental State Examination (MMSE) Score. AD subjects were categorised based on the modified Kuppuswamy socioeconomic status scale. Statistical evaluation was conducted using SPSS Statistics software. Group data were analysed using a two-tailed Student's t-test, analysis of variance (ANOVA), the Mann-Whitney U test and Pearson's correlation test. RESULTS Serum cortisol, IL-6 and Hcy levels were significantly increased (p < 0.01) in AD (cortisol: 19.69 ± 8.96 ug/dl; IL-6: 10.27 ± 2.76 pg/ml; Hcy: 23.29 ± 3.81 μmol/l), as compared with the controls (cortisol: 13.37 ± 5.59 ug/dl; IL-6: 3.37 ± 0.79 pg/ml; Hcy: 8.25 ± 2.36 μmol/l). MMSE scores in AD were negatively correlated with cortisol, IL-6 and Hcy levels. CONCLUSIONS Serum cortisol, IL-6 and Hcy levels are independent biomarkers for AD progression. Hypercortisolaemia, hyperhomocysteinemia and inflammation play important roles in AD-related cognitive dysfunction and are interlinked.
Collapse
Affiliation(s)
- Neelam Yeram
- Department of Biochemistry, Grant Government Medical College & Sir J. J. Group of Hospitals, Mumbai, India E-mail:
| | - Shubhangi Dalvi
- Department of Biochemistry, Grant Government Medical College & Sir J. J. Group of Hospitals, Mumbai, India E-mail:
| | - Ranjit Mankeshwar
- Grant Government Medical College & Sir J. J. Group of Hospitals, Mumbai, India
- Department of Community Medicine, Grant Government Medical College & Sir J. J. Group of Hospitals, Mumbai, India
| | - Vinayak Patil
- Department of Biochemistry, Grant Government Medical College & Sir J. J. Group of Hospitals, Mumbai, India E-mail:
- Department of Biochemistry, Vedantaa Institute of Medical Sciences, Dahanu, India
| | - Vinayak Kale
- Department of Psychiatry, GGMC & Sir J. J. Group of Hospitals, Mumbai, India
| | - Kamlesh Jagiasi
- Department of Neurology, GGMC & Sir J. J. Group of Hospitals, Mumbai, India
| | - Leela Abichandani
- Department of Biochemistry, Grant Government Medical College & Sir J. J. Group of Hospitals, Mumbai, India E-mail:
| |
Collapse
|
40
|
Xi L, Fang F, Yuan H, Wang D. Transcutaneous electrical acupoint stimulation for postoperative cognitive dysfunction in geriatric patients with gastrointestinal tumor: a randomized controlled trial. Trials 2021; 22:563. [PMID: 34425851 PMCID: PMC8383437 DOI: 10.1186/s13063-021-05534-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background This study aimed to evaluate the effect of perioperative transcutaneous electrical acupoint stimulation (TEAS) on postoperative cognitive dysfunction (POCD) in older patients who were diagnosed with gastrointestinal tumor and received radical resection of gastrointestinal tumors under general anesthesia. Methods A total of 68 patients who received radical resection of gastrointestinal tumors under general anesthesia were randomly divided into two groups. TEAS group patients received TEAS treatment. The treatment time was 30 min before the induction of anesthesia until the end of the surgery, 1 day before operation and from the first day to the third day after the operation. Except on the day of surgery, we treated the patients for 30 min once a day. In the sham TEAS group, the electronic stimulation was not applied and the treatment was the same as the TEAS group. The primary outcome was perioperative cognition evaluated by the Mini-Mental State Examination (MMSE) and secondary outcomes were the perioperative level of interleukin-6 (IL-6), S100 calcium-binding protein β (S100β), and C-reactive protein (CRP). Results The postoperative score of MMSE, orientation, memory, and short-term recall in the sham TEAS group was significantly lower than the preoperative and TEAS group (P < 0.05). The incidence of POCD in the TEAS group (21.88%) was lower than those in the sham TEAS group (40.63%). S100β, IL-6, and CRP in the TEAS group were significantly lower than those in the sham TEAS group on the third day after the operation (P< 0.05). Postoperative S100β, IL-6, and CRP in two groups were significantly higher than those before operation except for S100β on the third day after the operation in the TEAS group (P < 0.05). Conclusions Perioperative TEAS treatment reduced the postoperative inflammatory response and increased the postoperative cognitive function score and decrease the incidence of POCD in geriatric patients with gastrointestinal tumor. Trial registration ClinicalTrials.gov NCT04606888. Registered on 27 October 2020. https://register.clinicaltrials.gov.
Collapse
Affiliation(s)
- Lijuan Xi
- School of Nursing, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Clinical Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Fang Fang
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Haijuan Yuan
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Daorong Wang
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China. .,General Surgery Institute of Yangzhou, Yangzhou University, Jiangsu, Yangzhou, 225001, China. .,Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
41
|
Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer's disease: how one crisis worsens the other. Transl Neurodegener 2021; 10:15. [PMID: 33941272 PMCID: PMC8090526 DOI: 10.1186/s40035-021-00237-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) has emerged as a key comorbidity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The morbidity and mortality of COVID-19 are elevated in AD due to multiple pathological changes in AD patients such as the excessive expression of viral receptor angiotensin converting enzyme 2 and pro-inflammatory molecules, various AD complications including diabetes, lifestyle alterations in AD, and drug-drug interactions. Meanwhile, COVID-19 has also been reported to cause various neurologic symptoms including cognitive impairment that may ultimately result in AD, probably through the invasion of SARS-CoV-2 into the central nervous system, COVID-19-induced inflammation, long-term hospitalization and delirium, and post-COVID-19 syndrome. In addition, the COVID-19 crisis also worsens behavioral symptoms in uninfected AD patients and poses new challenges for AD prevention. In this review, we first introduce the symptoms and pathogenesis of COVID-19 and AD. Next, we provide a comprehensive discussion on the aggravating effects of AD on COVID-19 and the underlying mechanisms from molecular to social levels. We also highlight the influence of COVID-19 on cognitive function, and propose possible routes of viral invasion into the brain and potential mechanisms underlying the COVID-19-induced cognitive impairment. Last, we summarize the negative impacts of COVID-19 pandemic on uninfected AD patients and dementia prevention.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
42
|
Basta M, Koutentaki E, Vgontzas A, Zaganas I, Vogiatzi E, Gouna G, Bourbouli M, Panagiotakis S, Kapetanaki S, Fernandez-Mendoza J, Simos P. Objective Daytime Napping is Associated with Disease Severity and Inflammation in Patients with Mild to Moderate Dementia1. J Alzheimers Dis 2021; 74:803-815. [PMID: 32116246 DOI: 10.3233/jad-190483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with dementia report excessive daytime sleep/sleepiness, which is associated with worse cognitive performance. Inflammatory markers may be elevated in patients with dementia and have been proposed as mediators of sleep/sleepiness. OBJECTIVE To examine the association of objective daytime napping with cognitive performance and peripheral markers of inflammation in patients with dementia as compared to not cognitively impaired (NCI) controls. METHODS A sub-sample of 46 patients with mild-to-moderate dementia and 85 NCI controls, were recruited from a large, population-based cohort of 3,140 elders (≥60 years) in Crete, Greece. All participants underwent medical history/physical examination, extensive neuropsychiatric and neuropsychological evaluation, 3-day 24 h actigraphy and a single morning measure of IL-6 and TNFα plasma levels. Comparisons of sleep parameters and inflammation markers between diagnostic groups, and between nappers and non-nappers within each diagnostic group, were conducted using ANCOVA controlling for demographics/related clinical factors. Associations between inflammatory markers, sleep variables, and neuropsychological performance were assessed within each group using partial correlation analysis controlling for confounders. RESULTS Patients with dementia slept 15 minutes longer during the day than NCI. Within dementia patients, nappers had significantly worse performance on autobiographic memory (p = 0.002), working memory (p = 0.007), episodic memory (p = 0.010), and assessment of daily function (p = 0.012) than non-nappers. Finally, IL-6 levels were significantly associated with nap duration within dementia patients who napped (r = 0.500, p = 0.01). CONCLUSIONS Daytime napping in patients with dementia is associated with worse cognitive performance and increased IL-6 levels. In dementia, objective daytime napping, may be a marker of the severity of the disease.
Collapse
Affiliation(s)
- Maria Basta
- Department of Psychiatry, University Hospital of Heraklion, Heraklion, Crete, Greece.,Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, Hershey, PA, USA
| | - Eirini Koutentaki
- Department of Psychiatry, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- Department of Psychiatry, University Hospital of Heraklion, Heraklion, Crete, Greece.,Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, Hershey, PA, USA
| | - Ioannis Zaganas
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Emmanouela Vogiatzi
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Garyfalia Gouna
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Mara Bourbouli
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Symeon Panagiotakis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Stefania Kapetanaki
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, Hershey, PA, USA
| | - Panagiotis Simos
- Department of Psychiatry, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
43
|
Mygind L, Bergh MSS, Tejsi V, Vaitheeswaran R, Lambertsen KL, Finsen B, Metaxas A. Tumor Necrosis Factor (TNF) Is Required for Spatial Learning and Memory in Male Mice under Physiological, but Not Immune-Challenged Conditions. Cells 2021; 10:608. [PMID: 33803476 PMCID: PMC8002217 DOI: 10.3390/cells10030608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence demonstrates that inflammatory cytokines-such as tumor necrosis factor (TNF)-are produced at low levels in the brain under physiological conditions and may be crucial for synaptic plasticity, neurogenesis, learning and memory. Here, we examined the effects of developmental TNF deletion on spatial learning and memory using 11-13-month-old TNF knockout (KO) and C57BL6/J wild-type (WT) mice. The animals were tested in the Barnes maze (BM) arena under baseline conditions and 48 h following an injection of the endotoxin lipopolysaccharide (LPS), which was administered at a dose of 0.5 mg/kg. Vehicle-treated KO mice were impaired compared to WT mice during the acquisition and memory-probing phases of the BM test. No behavioral differences were observed between WT and TNF-KO mice after LPS treatment. Moreover, there were no differences in the hippocampal content of glutamate and noradrenaline between groups. The effects of TNF deletion on spatial learning and memory were observed in male, but not female mice, which were not different compared to WT mice under baseline conditions. These results indicate that TNF is required for spatial learning and memory in male mice under physiological, non-inflammatory conditions, however not following the administration of LPS. Inflammatory signalling can thereby modulate spatial cognition in male subjects, highlighting the importance of sex- and probably age-stratified analysis when examining the role of TNF in the brain.
Collapse
Affiliation(s)
- Leda Mygind
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
| | - Marianne Skov-Skov Bergh
- Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Loviseberggata, 60456 Oslo, Norway;
| | - Vivien Tejsi
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
| | - Ramanan Vaitheeswaran
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
| | - Kate L. Lambertsen
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark
| | - Bente Finsen
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
| | - Athanasios Metaxas
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
- School of Science, Department of Life Sciences, European University Cyprus, 6 Diogenis Str., Nicosia 1516, Cyprus
| |
Collapse
|
44
|
Liu J, Jin Y, Ye Y, Tang Y, Dai S, Li M, Zhao G, Hong G, Lu ZQ. The Neuroprotective Effect of Short Chain Fatty Acids Against Sepsis-Associated Encephalopathy in Mice. Front Immunol 2021; 12:626894. [PMID: 33584734 PMCID: PMC7876449 DOI: 10.3389/fimmu.2021.626894] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids (SCFAs) are known to be actively involved in multiple brain disorders, but their roles in sepsis-associated encephalopathy (SAE) remain unclear. Here, we investigated the neuroprotective effects of SCFAs on SAE in mice. Male C57BL/6 mice were intragastrically pretreated with SCFAs for seven successive days, and then subjected to SAE induced by cecal ligation and puncture. The behavioral impairment, neuronal degeneration, and levels of inflammatory cytokines were assessed. The expressions of tight junction (TJ) proteins, including occludin and zoula occludens-1 (ZO-1), cyclooxygenase-2 (COX-2), cluster of differentiation 11b (CD11b), and phosphorylation of JNK and NF-κB p65 in the brain, were measured by western blot and Immunofluorescence analysis. Our results showed that SCFAs significantly attenuated behavioral impairment and neuronal degeneration, and decreased the levels of IL-1β and IL-6 in the brain of SAE mice. Additionally, SCFAs upregulated the expressions of occludin and ZO-1 and downregulated the expressions of COX-2, CD11b, and phosphorylation of JNK and NF-κB p65 in the brain of SAE mice. These findings suggested that SCFAs could exert neuroprotective effects against SAE in mice.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangjie Jin
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanglie Ye
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yahui Tang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Dai
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengfang Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Qiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Moniruzzaman M, Kadota A, Akash MS, Pruitt PJ, Miura K, Albin R, Dodge HH. Effects of physical activities on dementia-related biomarkers: A systematic review of randomized controlled trials. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 6:e12109. [PMID: 33521235 PMCID: PMC7816814 DOI: 10.1002/trc2.12109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/01/2020] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Physical activities (PA) may lead to improved cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), and dementia. The mechanisms mediating potential PA effects are unknown. Assessment of PA effects on relevant biomarkers may provide insights into mechanisms underlying potential PA effects on cognition. METHODS We systematically reviewed randomized controlled trials (RCTs) that studied PA effects on biomarkers in MCI, AD, and dementia populations. We examined whether biological mechanisms were hypothesized to explain associations among PA, biomarkers, and cognitive functions. We used the PubMed database and searched for RCTs with PA until October 31, 2019. RESULTS Of 653 studies examining changes in biomarkers in PA trials, 18 studies met inclusion criteria for the present review. Some studies found favorable effects of PA on neurotrophic and inflammatory biomarkers. AD pathological markers were rarely investigated, with inconclusive results. Most studies were relatively small in sample size, of limited duration, and not all studies compared the changes in biomarkers between the control and experimental groups. DISCUSSION There is only limited use of potentially informative biomarkers in PA trials for MCI, AD, and dementia. Most studies did not examine the role of biomarkers to study associations between PA and cognitive functions in their analyses. Several potential biomarkers remain uninvestigated. Careful use of biomarkers may clarify mechanisms underlying PA effects on cognition. Our review serves as a useful resource for developing future PA RCTs aimed at improving cognitive functions in MCI, AD, and dementias.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Center for Epidemiologic Research in Asia (CERA)Shiga University of Medical ScienceOtsuJapan
- Department of Public HealthShiga University of Medical ScienceOtsuJapan
| | - Aya Kadota
- Center for Epidemiologic Research in Asia (CERA)Shiga University of Medical ScienceOtsuJapan
- Department of Public HealthShiga University of Medical ScienceOtsuJapan
| | | | - Patrick J Pruitt
- Institute of Gerontology, Wayne State UniversityDetroitMichiganUSA
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Katsuyuki Miura
- Center for Epidemiologic Research in Asia (CERA)Shiga University of Medical ScienceOtsuJapan
- Department of Public HealthShiga University of Medical ScienceOtsuJapan
| | - Roger Albin
- VAAAHSNeurology Service & GRECCAnn ArborMichiganUSA
- Department of Neurology, Michigan Alzheimer's Disease CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Hiroko H. Dodge
- Center for Epidemiologic Research in Asia (CERA)Shiga University of Medical ScienceOtsuJapan
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
46
|
Sarcopenia and Its Relationships with Depression, Cognition, and Physical Activity in Thai Community-Dwelling Older Adults. Curr Gerontol Geriatr Res 2020; 2020:8041489. [PMID: 33424964 PMCID: PMC7773447 DOI: 10.1155/2020/8041489] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Background Age-related sarcopenia is associated with physical decline, including poor functional capacity, lack of physical activity, problems with activities of daily living, and disability. However, little is known about the association between mental health problems and cognitive function in older adults with sarcopenia. Therefore, this study explored community-dwelling older adults' sarcopenia prevalence and related associations with depression, cognitive performance, and physical activity. Methods This cross-sectional study included 330 community-dwelling older adults (66.85 ± 5.54 years, 76.06% female). Based on the Asian Working Group for Sarcopenia guidelines, gait speed, muscle mass, and handgrip were assessed. All participants responded to a set of questionnaires (e.g., Global Physical Activity Questionnaire, cognitive assessment, and depression scale). Logistic regression analysis and multivariate logistic regression were used to determine independent predictors for sarcopenia. Results Overall, 16.1% of the participants were identified as having sarcopenia. Further, advanced age (i.e., mean age ≥ 70 years; odds ratio: 4.67), high depression scores (odds ratio: 2.09), mild cognitive impairment (odds ratio: 0.22), and low physical activity levels (odds ratio: 1.96) were significant associated risk factors for sarcopenia after adjusting for age, sex, and educational level. Conclusions Sarcopenia can lead to adverse health outcomes (i.e., depressive symptoms, cognitive decline, and low physical activity) in older adults.
Collapse
|
47
|
Slachevsky A, Zitko P, Martínez-Pernía D, Forno G, Court FA, Lillo P, Villagra R, Duran-Aniotz C, Parrao T, Assar R, Orellana P, Toledo C, Rivera R, Ibañez A, Parra MA, González-Billault C, Amieva H, Thumala D. GERO Cohort Protocol, Chile, 2017-2022: Community-based Cohort of Functional Decline in Subjective Cognitive Complaint elderly. BMC Geriatr 2020; 20:505. [PMID: 33238908 PMCID: PMC7690082 DOI: 10.1186/s12877-020-01866-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/03/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND With the global population aging and life expectancy increasing, dementia has turned a priority in the health care system. In Chile, dementia is one of the most important causes of disability in the elderly and the most rapidly growing cause of death in the last 20 years. Cognitive complaint is considered a predictor for cognitive and functional decline, incident mild cognitive impairment, and incident dementia. The GERO cohort is the Chilean core clinical project of the Geroscience Center for Brain Health and Metabolism (GERO). The objective of the GERO cohort is to analyze the rate of functional decline and progression to clinical dementia and their associated risk factors in a community-dwelling elderly with subjective cognitive complaint, through a population-based study. We also aim to undertake clinical research on brain ageing and dementia disorders, to create data and biobanks with the appropriate infrastructure to conduct other studies and facilitate to the national and international scientific community access to the data and samples for research. METHODS The GERO cohort aims the recruitment of 300 elderly subjects (> 70 years) from Santiago (Chile), following them up for at least 3 years. Eligible people are adults not diagnosed with dementia with subjective cognitive complaint, which are reported either by the participant, a proxy or both. Participants are identified through a household census. The protocol for evaluation is based on a multidimensional approach including socio-demographic, biomedical, psychosocial, neuropsychological, neuropsychiatric and motor assessments. Neuroimaging, blood and stool samples are also obtained. This multidimensional evaluation is carried out in a baseline and 2 follow-ups assessments, at 18 and 36 months. In addition, in months 6, 12, 24, and 30, a telephone interview is performed in order to keep contact with the participants and to assess general well-being. DISCUSSION Our work will allow us to determine multidimensional risks factors associated with functional decline and conversion to dementia in elderly with subjective cognitive complain. The aim of our GERO group is to establish the capacity to foster cutting edge and multidisciplinary research on aging in Chile including basic and clinical research. TRIAL REGISTRATION NCT04265482 in ClinicalTrials.gov. Registration Date: February 11, 2020. Retrospectively Registered.
Collapse
Affiliation(s)
- Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile.
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile.
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Pedro Zitko
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Health Service & Population Research Department, IoPPN, King's College London, London, UK
- Escuela de Salud Pública, Universidad de Chile, Santiago, Chile
| | - David Martínez-Pernía
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Gonzalo Forno
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Felipe A Court
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, USA
| | - Patricia Lillo
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- South Neurology Department, Faculty of Medicine, University of Chile, Santiago, Chile
- Unidad de Neurología, Hospital San José, Santiago, Chile
| | - Roque Villagra
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- East Neurology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudia Duran-Aniotz
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Teresa Parrao
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Facultad de Psicología, Universidad Alberto Hurtado, Santiago, Chile
| | - Rodrigo Assar
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paulina Orellana
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Carolina Toledo
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Rodrigo Rivera
- Neuroradiologic Department, Instituto de Neurocirugia Asenjo, SSMO, Santiago, Chile
| | - Agustín Ibañez
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Universidad Autónoma del Caribe, Barranquilla, Colombia
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA
| | - Mario A Parra
- Universidad Autónoma del Caribe, Barranquilla, Colombia
- Psychology Department, School of Psychological Sciences & Health, University of Strathclyde, Glasgow, UK
| | - Christian González-Billault
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, USA
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Helena Amieva
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Daniela Thumala
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Escuela de Psicologia, Facultad de Ciencias Sociales, University of Chile, Santiago, Chile
| |
Collapse
|
48
|
Semochkina YP, Moskaleva EY, Malashenkova IK, Krynskiy SA, Hailov NA, Ogurtsov DP, Ponomareva EV, Gavrilova SI. [Effectiveness of the DNA double-strand breaks repair system in lymphocytes of patients with cognitive impairments and healthy volunteers]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:345-352. [PMID: 32893818 DOI: 10.18097/pbmc20206604345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The individual differences in the efficiency of DNA DSB repair were estimated by the level of residual γH2AX foci after γ-irradiation at a dose of 2 Gy, in lymphocytes of patients with amnestic mild cognitive impairment (AMCI) and Alzheimer's disease (AD) and of healthy volunteers. Lymphocytes were isolated from the peripheral blood of the examined patients and were frozen in a medium for freezing cells. Before the study, the lymphocytes were thawed, suspended in RPMI 1640 culture medium supplemented with 10% inactivated fetal bovine serum, and half of the cells were γ-irradiated at 4°C from a 60Co source on a GUT-200M facility at a dose of 2 Gy (a dose rate of 0.75 Gy/min). Control and irradiated lymphocytes were cultured for 24 h, collected, fixed, and stored until the study of the number of spontaneous and residual foci of γH2AX using fluorescent microscopy after staining with fluorescent labeled antibodies. In lymphocytes of patients with AMCI and AD a higher number of residual γH2AX foci in lymphocytes and the higher number of lymphocytes with foci were found compared with healthy volunteers. This indicates a decrease in the ability to repair DNA DSB in these patients. Indicators of cellular immunity and the concentration of TNF-α in the blood serum in the group of examined patients were normal. In the group of patients with the cognitive impairments (AMCI+AD), a correlation was found between the number of residual foci of γH2AX and the number of CD3+CD4+ lymphocytes and the concentration of proinflammatory cytokine TNF-α in the blood serum. This suggests the development of stronger neuroinflammation in patients with reduced ability to repair DNA DSB in this pathology.
Collapse
|
49
|
Uslu FI, Demir E, Güler EM, Koçyiğit A. Circulating levels of cytokines are increased in restless legs syndrome. Sleep Breath 2020; 25:1581-1585. [PMID: 33083922 DOI: 10.1007/s11325-020-02218-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Restless legs syndrome [RLS] is known as a disease of iron and dopaminergic dysregulation but inflammatory processes might also have a role in the pathogenesis. In this study, we compared the circulating levels of hsCRP, IL-1β, IL-6, and TNF-α in patients with primary restless legs syndrome [RLS] and healthy control subjects. METHODS We prospectively included 29 patients with primary RLS and 65 healthy controls [HC], all age-sex matched. The diagnosis of RLS was established using international guidelines. IRLSSG Severity Scale was used to evaluate the severity of RLS. Plasma levels of hsCRP, IL-1β, IL-6, and TNF-α were measured in all participants. RESULTS The mean age of patients was 37.8 ± 11.3 and 52% of RLS group were women. Serum IL-1β, IL-6, and TNF-α levels of the patient group were statistically significantly higher compared to HC [p < 0.001 for all variables]. Plasma levels of hsCRP did not differ between groups. There were 8 patients with mild RLS [28%], 13 patients with moderate RLS [45%], and 8 patients with severe RLS [28%]. Only IL-6 values were significantly different between the groups. In the severe group, the value of IL-6 was significantly higher than in the other groups [p: 0.03]. CONCLUSION These results showing higher circulating levels of inflammatory cytokines in patients with RLS support the notion that inflammation may be involved in the pathogenesis of primary RLS. However, it is necessary to perform further studies to determine if this finding is a cause or an effect.
Collapse
Affiliation(s)
- Ferda Ilgen Uslu
- Neurology Department, Bezmialem Vakıf University Medical Faculty, İstanbul, Turkey.
| | - Ervanur Demir
- Bezmialem Vakıf University Medical Faculty, İstanbul, Turkey
| | - Eray Metin Güler
- Biochemistry Department, Bezmialem Vakıf University Medical Faculty, İstanbul, Turkey
| | - Abdürahim Koçyiğit
- Biochemistry Department, Bezmialem Vakıf University Medical Faculty, İstanbul, Turkey
| |
Collapse
|
50
|
Shen XN, Lu Y, Tan CTY, Liu LY, Yu JT, Feng L, Larbi A. Identification of inflammatory and vascular markers associated with mild cognitive impairment. Aging (Albany NY) 2020; 11:2403-2419. [PMID: 31039131 PMCID: PMC6520012 DOI: 10.18632/aging.101924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Biochemical processes have been associated with the pathogenesis of mild cognitive impairment (MCI) and dementia, including chronic inflammation, dysregulation of membrane lipids and disruption of neurotransmitter pathways. However, research investigating biomarkers of these processes in MCI remained sparse and inconsistent. To collect fresh evidence, we evaluated the performance of several potential markers in a cohort of 57 MCI patients and 57 cognitively healthy controls. MCI patients showed obviously increased levels of plasma TNF-α (p = 0.045) and C-peptide (p = 0.004) as well as decreased levels of VEGF-A (p = 0.042) and PAI-1 (p = 0.019), compared with controls. In addition, our study detected significant correlations of plasma sTNFR-1 (MCI + Control: B = -6.529, p = 0.020; MCI: B = -9.865, p = 0.011) and sIL-2Rα (MCI + Control: B = -7.010, p = 0.007; MCI: B = -11.834, p = 0.003) levels with MoCA scores in the whole cohort and the MCI group. These findings corroborate the inflammatory and vascular hypothesis for dementia. Future studies are warranted to determine their potential as early biomarkers for cognitive deficits and explore the related mechanisms.
Collapse
Affiliation(s)
- Xue-Ning Shen
- Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanxia Lu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Crystal Tze Ying Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling-Yun Liu
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Neurology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|