1
|
Amirinia F, Jabrodini A, Morovati H, Ardi P, Motamedi M. Fungal β-Glucans: Biological Properties, Immunomodulatory Effects, Diagnostic and Therapeutic Applications. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2025; 7:1-16. [PMID: 40225707 PMCID: PMC11991713 DOI: 10.36519/idcm.2025.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/11/2025] [Indexed: 04/15/2025]
Abstract
Research from the past to the present has shown that natural ingredients in the human daily diet play a crucial role in preventing various diseases. One well-known compound is β-glucan, a natural polysaccharide found in the cell walls of many fungi, yeasts, and some microorganisms, as well as in plants such as barley and wheat. β-glucans are widely recognized for their ability to lower cholesterol and blood glucose levels, thereby reducing the risk of cardiovascular disease and diabetes. In addition to their effects on lipid levels and glucose metabolism, these molecules exhibit antioxidant properties by eliminating reactive oxygen species. As a result, they help lower the risk of conditions such as atherosclerosis, cardiovascular disease, neurological disorders, diabetes, and cancer. Furthermore, β-glucans have been reported to possess immune-boosting and antitumor effects. By binding to specific receptors on the surface of immune cells, they stimulate immune activity. Additionally, β-glucans belong to a group of probiotics that promote the growth and activity of beneficial gut microbiota, preventing the proliferation of harmful pathogens. They play a vital role in maintaining gastrointestinal health, reducing inflammation, and lowering the risk of colon cancer. Further research on the health benefits of β-glucans may be key to improving overall well-being and preventing many chronic non-communicable diseases such as diabetes, high cholesterol, obesity, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Fatemeh Amirinia
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jabrodini
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pegah Ardi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Motamedi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Rensink S, van Nieuwenhuijzen EJ, Sailer MF, Struck C, Wösten HAB. Use of Aureobasidium in a sustainable economy. Appl Microbiol Biotechnol 2024; 108:202. [PMID: 38349550 PMCID: PMC10864419 DOI: 10.1007/s00253-024-13025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. KEY POINTS: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.
Collapse
Affiliation(s)
- Stephanie Rensink
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands.
| | - Elke J van Nieuwenhuijzen
- Faculty of Technology, Amsterdam University of Applied Sciences, Rhijnspoorplein 2, 1091 GC, Amsterdam, The Netherlands
| | - Michael F Sailer
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands
| | - Christian Struck
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands
| | - Han A B Wösten
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
3
|
Murphy EJ, Rezoagli E, Collins C, Saha SK, Major I, Murray P. Sustainable production and pharmaceutical applications of β-glucan from microbial sources. Microbiol Res 2023; 274:127424. [PMID: 37301079 DOI: 10.1016/j.micres.2023.127424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
β-glucans are a large class of complex polysaccharides found in abundant sources. Our dietary sources of β-glucans are cereals that include oats and barley, and non-cereal sources can consist of mushrooms, microalgae, bacteria, and seaweeds. There is substantial clinical interest in β-glucans; as they can be used for a variety of diseases including cancer and cardiovascular conditions. Suitable sources of β-glucans for biopharmaceutical applications include bacteria, microalgae, mycelium, and yeast. Environmental factors including culture medium can influence the biomass and ultimately β-glucan content. Therefore, cultivation conditions for the above organisms can be controlled for sustainable enhanced production of β-glucans. This review discusses the various sources of β-glucans and their cultivation conditions that may be optimised to exploit sustainable production. Finally, this article discusses the immune-modulatory potential of β-glucans from these sources.
Collapse
Affiliation(s)
- Emma J Murphy
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland; PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland.
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Catherine Collins
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Sushanta Kumar Saha
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Ian Major
- PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Patrick Murray
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| |
Collapse
|
4
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
5
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Low-Molecular-Weight β-1,3-1,6-Glucan Derived from Aureobasidium pullulans Exhibits Anticancer Activity by Inducing Apoptosis in Colorectal Cancer Cells. Biomedicines 2023; 11:biomedicines11020529. [PMID: 36831065 PMCID: PMC9953391 DOI: 10.3390/biomedicines11020529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
β-glucan, a plant polysaccharide, mainly exists in plant cell walls of oats, barley, and wheat. It is attracting attention due to its high potential for use as functional foods and pharmaceuticals. We have previously reported that low-molecular-weight Aureobasidium pullulans-fermented β-D-glucan (LMW-AP-FBG) could inhibit inflammatory responses by inhibiting mitogen-activated protein kinases and nuclear factor-κB signaling pathways. Bases on previous results, the objective of the present study was to investigate the therapeutic potential of LMW-AP-FBG in BALB/c mice intracutaneously transplanted with CT-26 colon cancer cells onto their backs. Daily intraperitoneal injections of LMW-AP-FBG (5 mg/kg) for two weeks significantly suppressed tumor growth in mice bearing CT-26 tumors by reducing tumor proliferation and inducing apoptosis as compared to phosphate buffer-treated control mice. In addition, LMW-AP-FBG treatment reduced the viability of CT-26 cells in a dose-dependent manner by inducing apoptosis with loss of mitochondrial transmembrane potential and increased activated caspases. Taken together, LMW-AP-FBG exhibits anticancer properties both in vivo and in vitro.
Collapse
|
7
|
β-Glucans from Yeast—Immunomodulators from Novel Waste Resources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-glucans are a large class of complex polysaccharides with bioactive properties, including immune modulation. Natural sources of these compounds include yeast, oats, barley, mushrooms, and algae. Yeast is abundant in various processes, including fermentation, and they are often discarded as waste products. The production of biomolecules from waste resources is a growing trend worldwide with novel waste resources being constantly identified. Yeast-derived β-glucans may assist the host’s defence against infections by influencing neutrophil and macrophage inflammatory and antibacterial activities. β-glucans were long regarded as an essential anti-cancer therapy and were licensed in Japan as immune-adjuvant therapy for cancer in 1980 and new mechanisms of action of these molecules are constantly emerging. This paper outlines yeast β-glucans’ immune-modulatory and anti-cancer effects, production and extraction, and their availability in waste streams.
Collapse
|
8
|
Anti-inflammatory effects of β-1,3-1,6-glucan derived from black yeast Aureobasidium pullulans in RAW264.7 cells. Int J Biol Macromol 2021; 193:592-600. [PMID: 34678386 DOI: 10.1016/j.ijbiomac.2021.10.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022]
Abstract
β-glucan derived from the black yeast Aureobasidium pullulans (A. pullulans) is one of the natural products attracting attention due to its high potential for application as a functional food and pharmaceutical. Our team of researchers obtained a highly soluble, low-molecular-weight β-glucan from the fermentation culture medium of A. pullulans via mechanochemical ball milling method, that is, the low-molecular-weight A. pullulans-fermented β-D-glucan (LMW-AP-FBG). We investigated the anti-inflammatory effect of LMW-AP-FBG using lipopolysaccharide (LPS)-stimulated murine macrophages (RAW264.7 cells) in the current study. LMW-AP-FBG altered LPS-stimulated inflammatory responses by reducing the release of inflammatory mediators such as nitric oxide (NO), interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. As well, the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways were downregulated by LMW-AP-FBG. Furthermore, LMW-AP-FBG markedly reduced LPS-induced expression of cell surface molecules, CD14, CD86, and MHC class II, which mediate macrophage activation. These findings suggest that LMW-AP-FBG can be used as an effective immune modulator to attenuate the progression of inflammatory disease.
Collapse
|
9
|
Suzuki T, Kusano K, Kondo N, Nishikawa K, Kuge T, Ohno N. Biological Activity of High-Purity β-1,3-1,6-Glucan Derived from the Black Yeast Aureobasidium pullulans: A Literature Review. Nutrients 2021; 13:242. [PMID: 33467004 PMCID: PMC7830965 DOI: 10.3390/nu13010242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
The black yeast Aureobasidium pullulans produces abundant soluble β-1,3-1,6-glucan-a functional food ingredient with known health benefits. For use as a food material, soluble β-1,3-1,6-glucan is produced via fermentation using sucrose as the carbon source. Various functionalities of β-1,3-1,6-glucan have been reported, including its immunomodulatory effect, particularly in the intestine. It also exhibits antitumor and antimetastatic effects, alleviates influenza and food allergies, and relieves stress. Moreover, it reduces the risk of lifestyle-related diseases by protecting the intestinal mucosa, reducing fat, lowering postprandial blood glucose, promoting bone health, and healing gastric ulcers. Furthermore, it induces heat shock protein 70. Clinical studies have reported the antiallergic and triglyceride-reducing effects of β-1,3-1,6-glucan, which are indicators of improvement in lifestyle-related diseases. The primary and higher-order structures of β-1,3-1,6-glucan have been elucidated. Specifically, it comprises a single highly-branched glucose residue with the β-1,6 bond (70% or more) on a backbone of glucose with 1,3-β bonds. β-Glucan shows a triple helical structure, and studies on its use as a drug delivery system have been actively conducted. β-Glucan in combination with anti-inflammatory substances or fullerenes can be used to target macrophages. Based on its health functionality, β-1,3-1,6-glucan is an interesting material as both food and medicine.
Collapse
Affiliation(s)
- Toshio Suzuki
- Research and Development Laboratories, Fujicco, Co., Ltd., 6-13-4 Minatojima-Nakamachi, Chuo-ku, Kobe, Hyogo 650-8558, Japan
| | - Kisato Kusano
- Aureo Co., Ltd., 54-1, Kazusa Koito, Kimitsu-shi, Chiba 292-1149, Japan;
| | - Nobuhiro Kondo
- Research and Development Division, Itochu Sugar Co., Ltd., 3, Tamatsuura, Hekinan, Aichi 447-8506, Japan;
| | - Kouji Nishikawa
- Innovation Center, Osaka Soda Co., Ltd., 9, Otakasu-cho, Amagasaki, Hyogo 660-0842, Japan;
| | - Takao Kuge
- Life Science Materials Laboratory, ADEKA Corporation., 7-2-34, Higashi-Ogu, Arakawa-ku, Tokyo 116-8553, Japan
| | - Naohito Ohno
- Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan;
| |
Collapse
|
10
|
Anti-Influenza A Virus Activity of Rhamnan Sulfate from Green Algae Monostroma nitidum in Mice with Normal and Compromised Immunity. Mar Drugs 2020; 18:md18050254. [PMID: 32414158 PMCID: PMC7281209 DOI: 10.3390/md18050254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses cause a significant public health burden each year despite the availability of anti-influenza drugs and vaccines. Therefore, new anti-influenza virus agents are needed. Rhamnan sulfate (RS) is a sulfated polysaccharide derived from the green alga Monostroma nitidum. Here, we aimed to demonstrate the antiviral activity of RS, especially against influenza A virus (IFV) infection, in vitro and in vivo. RS showed inhibitory effects on viral proliferation of enveloped viruses in vitro. Evaluation of the anti-IFV activity of RS in vitro showed that it inhibited both virus adsorption and entry steps. The oral administration of RS in IFV-infected immunocompetent and immunocompromised mice suppressed viral proliferation in both mouse types. The oral administration of RS also had stimulatory effects on neutralizing antibody production. Fluorescent analysis showed that RS colocalized with M cells in Peyer’s patches, suggesting that RS bound to the M cells and may be incorporated into the Peyer’s patches, which are essential to intestinal immunity. In summary, RS inhibits influenza virus infection and promotes antibody production, suggesting that RS is a potential candidate for the treatment of influenza virus infections.
Collapse
|
11
|
Han B, Baruah K, Cox E, Vanrompay D, Bossier P. Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review. Front Immunol 2020; 11:658. [PMID: 32391005 PMCID: PMC7188827 DOI: 10.3389/fimmu.2020.00658] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
β-Glucans are a heterogeneous group of glucose polymers with a common structure comprising a main chain of β-(1,3) and/or β-(1,4)-glucopyranosyl units, along with side chains with various branches and lengths. β-Glucans initiate immune responses via immune cells, which become activated by the binding of the polymer to specific receptors. However, β-glucans from different sources also differ in their structure, conformation, physical properties, binding affinity to receptors, and thus biological functions. The mechanisms behind this are not fully understood. This mini-review provides a comprehensive and up-to-date commentary on the relationship between β-glucans' structure and function in relation to their use for immunomodulation.
Collapse
Affiliation(s)
- Biao Han
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.,Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
12
|
de Mattos BO, López-Olmeda JF, Guerra-Santos B, Ruiz CE, García-Beltrán JM, Ángeles-Esteban M, Sánchez-Vázquez FJ, Fortes-Silva R. Coping with exposure to hypoxia: modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer's yeast (Saccharomyces cerevisiae). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1801-1812. [PMID: 31273480 DOI: 10.1007/s10695-019-00677-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the stress response of Sparus aurata specimens fed with nutraceutical aquafeed brewer's yeast (Saccharomyces cerevisiae) and spirulina (Arthrospira platensis). For that purpose, 96 (169.0 ± 2.8 g) animals were distributed randomly in 12 tanks (8 fish per tank, 4 replicates) and divided in 3 groups (D1, casein/gelatin, control; D2, brewer's yeast; D3, spirulina) and fed for 30 days. At the end of this period, fish from two replicates of each experimental diet were submitted to air exposure for 60 s while the fish from the other two replicates were maintained undisturbed (control). Afterwards, samples of blood, skin mucus, and head kidney were collected. The results revealed that after air exposure, cortisol, and glucose levels increased in the groups fed D1 (18.5 ± 2.6 mg/mL; 7.3 ± 0.6 mmol/L, respectively) and D2 (20.0 ± 6.2 mg/mL; 7.7 ± 0.6 mmol/L), but glucose not increased in fish fed D3 (13.7 ± 2.6 mg/mL; 5.5 ± 0.3 mmol/L). Lactate levels increased in all stressed groups, but in D1, its levels were significantly higher. After stress procedure, immunoglobulin M (IgM) levels in mucus increased only in fish fed D3 (0.1901 ± 0.0126 U/mL). Furthermore, there was a reduction in the expression of some genes involved in stress response (coxIV, prdx3, csfl-r, ucp1, and sod in fish fed D2 and D3). csf1 decreased only in stressed fish fed D2. However, cat increased in fish fed with D3. In summary, these findings points to the beneficial effects of spirulina and brewer's yeast to improve stress resistance in aquaculture practices of gilthead seabream.
Collapse
Affiliation(s)
- Bruno Olivetti de Mattos
- Laboratory of Aquatic Organisms Nutrition, Postgraduate Program in Aquaculture, University Nilton Lins, Manaus, AM, 69058-030, Brazil.
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Bartira Guerra-Santos
- Department of Animal Science and Veterinary Medicine, Campus Salvador, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Cristóbal Espinosa Ruiz
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José María García-Beltrán
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Ángeles-Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Rodrigo Fortes-Silva
- Laboratory of Fish Nutrition and Feeding Behavior, Faculty of Fishing Engineering, Center of Agricultural Science, Environmental and Biological, University of Bahia, Cruz das Almas, BA, 44380-000, Brazil.
| |
Collapse
|
13
|
da Cunha MA, Albornoz S, Queiroz Santos V, Sánchez W, Barbosa-Dekker A, Dekker R. Structure and Biological Functions of d -Glucans and Their Applications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Hirabayashi K, Kondo N, Hayashi S. Characterization and enzymatic hydrolysis of hydrothermally treated β-1,3–1,6-glucan from Aureobasidium pullulans. World J Microbiol Biotechnol 2016; 32:206. [DOI: 10.1007/s11274-016-2167-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
|
15
|
Taheri Sarvtin M, Alamian AA. Natural Habitat of Aureobasidium pullulans in Sari, Iran. Jundishapur J Microbiol 2015; 8:e22008. [PMID: 26464769 PMCID: PMC4600328 DOI: 10.5812/jjm.22008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/20/2014] [Accepted: 12/30/2014] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mehdi Taheri Sarvtin
- Department of Medical Mycology and Parasitology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, IR Iran
- Corresponding author: Mehdi Taheri Sarvtin, Department of Medical Mycology and Parasitology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, IR Iran. Tel: +98-9132489448, Fax: +98-3482318084, E-mail:
| | - Ali Asghar Alamian
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| |
Collapse
|
16
|
Miyazato S, Kishimoto Y, Takahashi K, Kaminogawa S, Hosono A. Continuous intake of resistant maltodextrin enhanced intestinal immune response through changes in the intestinal environment in mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2015; 35:1-7. [PMID: 26858925 PMCID: PMC4735028 DOI: 10.12938/bmfh.2015-009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022]
Abstract
We investigated the effect of resistant maltodextrin (RMD), a non-viscous soluble dietary fiber, on
intestinal immune response and its mechanism in mice. Intestinal and fecal immunoglobulin A (IgA) were
determined as indicators of intestinal immune response, and changes in the intestinal environment were focused
to study the mechanism. BALB/c mice were fed one of three experimental diets, a control diet or a diet
containing either 5% or 7.5% RMD, for two weeks. Continuous intake of RMD dose-dependently increased total IgA
levels in the intestinal tract. Total IgA production from the cecal mucosa was significantly increased by RMD
intake, while there were no significant differences in mucosal IgA production between the control group and
experimental groups in the small intestine and colon. Continuous intake of RMD changed the composition of the
cecal contents; that is, the composition of the cecal microbiota was changed, and short-chain fatty acids
(SCFAs) were increased. There was an increased trend in Bacteroidales in the cecal microbiota, and butyrate,
an SCFA, was significantly increased. Our study demonstrated that continuous intake of RMD enhanced the
intestinal immune response by increasing the production of IgA in the intestinal tract. It suggested that the
increase in total SCFAs and changes in the intestinal microbiota resulting from the fermentation of RMD orally
ingested were associated with the induction of IgA production in intestinal immune cells, with the IgA
production of the cecal mucosa in particular being significantly increased.
Collapse
Affiliation(s)
- Shoko Miyazato
- Matsutani Chemical Industry Co., Ltd., 5-3 Kitaitami, Itami, Hyogo 664-8508, Japan; College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuka Kishimoto
- Matsutani Chemical Industry Co., Ltd., 5-3 Kitaitami, Itami, Hyogo 664-8508, Japan
| | - Kyoko Takahashi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Shuichi Kaminogawa
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Akira Hosono
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
17
|
Rhodomyrtone modulates innate immune responses of THP-1 monocytes to assist in clearing methicillin-resistant Staphylococcus aureus. PLoS One 2014; 9:e110321. [PMID: 25329066 PMCID: PMC4199624 DOI: 10.1371/journal.pone.0110321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/19/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The increasing resistance of Staphylococcus aureus to conventional antibiotics poses a major health problem. Moreover, S. aureus can survive within phagocytes, thus evading some antibiotics and the innate immune response. Rhodomyrtone, a bioactive compound from the leaves of Rhodomyrtus tomentosa, possesses potent antibacterial activity against methicillin-resistant S. aureus (MRSA). This study was to investigate the immunomodulatory effects of rhodomyrtone on THP-1 monocytes in response to MRSA. METHODS THP-1 monocytes were stimulated with heat-killed MRSA, followed by treatment with rhodomyrtone. The cell pellets were prepared to detect pro-inflammatory molecules using real-time PCR. The supernatants were collected to assess nitric oxide production using Griess assay. Assays for phagocytosis and bacterial killing by THP-1 monocytes were performed to determine if they were affected by rhodomyrtone. RESULTS Expression of pro-inflammatory molecules including IL-1β, TNF-α, IL-6, and iNOS was enhanced in THP-1 monocytes stimulated with high doses of heat-killed MRSA (108 to 109 cfu/ml). In contrast, monocytes stimulated with MRSA at lower doses (106 to 107 cfu/ml) did not induce the expression of these cytokines. However, rhodomyrtone significantly increased the expression of pro-inflammatory mediators, IL-6 and iNOS in monocytes stimulated with heat-killed MRSA at low doses, and displayed some anti-inflammatory activity by reducing TNF-α expression in monocytes stimulated with heat-killed MRSA at high doses. Treatment with rhodomyrtone also significantly up-regulated the expression of the key pattern recognition receptors, TLR2 and CD14, in THP-1 monocytes stimulated with heat-killed MRSA at 106 to 109 cfu/ml, while heat-killed MRSA alone did not induce the expression of these molecules. The ability of rhodomyrtone to eliminate MRSA from the monocytes was observed within 24 h after treatment. CONCLUSION Rhodomyrtone enhanced the expression of pattern recognition receptors by monocytes in response to MRSA. Increased expression of these receptors might improve MRSA clearance by modulating pro- and anti-inflammatory cytokine responses.
Collapse
|