1
|
Lu Z, Xiao P, Liu S, Huang C, Li W, Mao Y, Xu Y, Tian Y. Osteoimmunology: Crosstalk Between T Cells and Osteoclasts in Osteoporosis. Clin Rev Allergy Immunol 2025; 68:41. [PMID: 40208457 DOI: 10.1007/s12016-025-09046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Osteoporosis, a common metabolic condition that affects the bones, increases the risk of fractures, thereby diminishing one's quality of life and, in severe cases, can even result in life-threatening conditions. Osteoporosis is becoming increasingly prevalent worldwide as the population ages. Previous research on osteoporosis has focused on skeletal cellular components such as osteoblasts and osteoclasts. The emerging field of "osteoimmunology" has recently been introduced through new research. The concept highlights the critical impact of bone-immune system interactions on osteoporosis progression. The pathogenesis of osteoporosis is significantly influenced by T cells, particularly cytotoxic and helper T cells, which modulate osteoclast differentiation and activity. A crucial aspect of understanding osteoporosis is how T lymphocytes interact with osteoclasts. However, the precise mechanisms underlying T cell-osteoclast crosstalk remain poorly understood. This review systematically examines T cell and osteoclast involvement in osteoimmunology, with a particular focus on their involvement in osteoporosis. It seeks to elucidate the immune mechanisms driving the progression of osteoporosis and identify key molecules involved in T cell-osteoclast interactions. This aims to discover novel molecular targets and intervention strategies to improve early diagnosis and management of osteoporosis. Furthermore, this article will explore the potential of intervening in T cell-osteoclast interactions using conventional therapies, traditional Chinese medicine, immunomodulatory agents, and nanomaterial-based treatments, providing new perspectives for future osteoporosis management.
Collapse
Affiliation(s)
- Zeyao Lu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijia Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chongjun Huang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weishang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanheng Mao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
3
|
Slaets H, Veeningen N, de Keizer PLJ, Hellings N, Hendrix S. Are immunosenescent T cells really senescent? Aging Cell 2024; 23:e14300. [PMID: 39113243 PMCID: PMC11464117 DOI: 10.1111/acel.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 10/11/2024] Open
Abstract
Loss of proper T-cell functioning is a feature of aging that increases the risk of developing chronic diseases. In aged individuals, highly differentiated T cells arise with a reduced expression of CD28 and CD27 and an increased expression of KLRG-1 or CD57. These cells are often referred to as immunosenescent T cells but may still be highly active and contribute to autoimmunity. Another population of T cells known as exhausted T cells arises after chronic antigen stimulation and loses its effector functions, leading to a failure to combat malignancies and viral infections. A process called cellular senescence also increases during aging, and targeting this process has proven to be fruitful against a range of age-related pathologies in animal models. Cellular senescence occurs in cells that are irreparably damaged, limiting their proliferation and typically leading to chronic secretion of pro-inflammatory factors. To develop therapies against pathologies caused by defective T-cell function, it is important to understand the differences and similarities between immunosenescence and cellular senescence. Here, we review the hallmarks of cellular senescence versus senescent and exhausted T cells and provide considerations for the development of specific therapies against age-related diseases.
Collapse
Affiliation(s)
- Helena Slaets
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Naomi Veeningen
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Peter L. J. de Keizer
- Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Niels Hellings
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Sven Hendrix
- Institute of Translational Medicine, Medical School HamburgHamburgGermany
| |
Collapse
|
4
|
Deng T, Wang Z, Geng Q, Wang Z, Jiao Y, Diao W, Xu J, Deng T, Luo J, Tao Q, Xiao C. Methylation of T and B Lymphocytes in Autoimmune Rheumatic Diseases. Clin Rev Allergy Immunol 2024; 66:401-422. [PMID: 39207646 DOI: 10.1007/s12016-024-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The role of abnormal epigenetic modifications, particularly DNA methylation, in the pathogenesis of autoimmune rheumatic diseases (ARDs) has garnered increasing attention. Lymphocyte dysfunction is a significant contributor to the pathogenesis of ARDs. Methylation is crucial for maintaining normal immune system function, and aberrant methylation can hinder lymphocyte differentiation, resulting in functional abnormalities that disrupt immune tolerance, leading to the excessive expression of inflammatory cytokines, thereby exacerbating the onset and progression of ARDs. Recent studies suggest that methylation-related factors have the potential to serve as biomarkers for monitoring the activity of ARDs. This review summarizes the current state of research on the impact of DNA and RNA methylation on the development, differentiation, and function of T and B cells and examines the progress of these epigenetic modifications in studies of six specific ARDs: systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, juvenile idiopathic arthritis, and ankylosing spondylitis. Additionally, we propose that exploring the interplay between RNA methylation and DNA methylation may represent a novel direction for understanding the pathogenesis of ARDs and developing novel treatment strategies.
Collapse
Affiliation(s)
- Tiantian Deng
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zihan Wang
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhaoran Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Jiao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenya Diao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- China-Japan Friendship Hospital, Peking University, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
5
|
Yu PJ, Zhou M, Liu Y, Du J. Senescent T Cells in Age-Related Diseases. Aging Dis 2024; 16:AD.2024.0219. [PMID: 38502582 PMCID: PMC11745454 DOI: 10.14336/ad.2024.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Age-induced alterations in human immunity are often considered deleterious and are referred to as immunosenescence. The immune system monitors the number of senescent cells in the body, while immunosenescence may represent the initiation of systemic aging. Immune cells, particularly T cells, are the most impacted and involved in age-related immune function deterioration, making older individuals more prone to different age-related diseases. T-cell senescence can impact the effectiveness of immunotherapies that rely on the immune system's function, including vaccines and adoptive T-cell therapies. The research and practice of using senescent T cells as therapeutic targets to intervene in age-related diseases are in their nascent stages. Therefore, in this review, we summarize recent related literature to investigate the characteristics of senescent T cells as well as their formation mechanisms, relationship with various aging-related diseases, and means of intervention. The primary objective of this article is to explore the prospects and possibilities of therapeutically targeting senescent T cells, serving as a valuable resource for the development of immunotherapy and treatment of age-related diseases.
Collapse
Affiliation(s)
- Pei-Jie Yu
- Beijing Anzhen Hospital, Capital Medical University
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education
- Beijing Collaborative Innovative Research Center for Cardiovascular Diseases
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education
- Beijing Collaborative Innovative Research Center for Cardiovascular Diseases
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yan Liu
- Correspondence should be addressed to: Dr. Jie Du () and Dr. Yan Liu (), Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jie Du
- Correspondence should be addressed to: Dr. Jie Du () and Dr. Yan Liu (), Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
6
|
Zhu M, Ding Q, Lin Z, Fu R, Zhang F, Li Z, Zhang M, Zhu Y. New Targets and Strategies for Rheumatoid Arthritis: From Signal Transduction to Epigenetic Aspect. Biomolecules 2023; 13:biom13050766. [PMID: 37238636 DOI: 10.3390/biom13050766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint damage and even permanent disability, seriously affecting patients' quality of life. At present, the complete cure for RA is not achievable, only to relieve the symptoms to reduce the pain of patients. Factors such as environment, genes, and sex can induce RA. Presently, non-steroidal anti-inflammatory drugs, DRMADs, and glucocorticoids are commonly used in treating RA. In recent years, some biological agents have also been applied in clinical practice, but most have side effects. Therefore, finding new mechanisms and targets for treating RA is necessary. This review summarizes some potential targets discovered from the perspective of epigenetics and RA mechanisms.
Collapse
Affiliation(s)
- Menglin Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Rong Fu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Fuyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Mei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
Lu Y, Ruan Y, Hong P, Rui K, Liu Q, Wang S, Cui D. T-cell senescence: A crucial player in autoimmune diseases. Clin Immunol 2023; 248:109202. [PMID: 36470338 DOI: 10.1016/j.clim.2022.109202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Senescent T cells are proliferative disabled lymphocytes that lack antigen-specific responses. The development of T-cell senescence in autoimmune diseases contributes to immunological disorders and disease progression. Senescent T cells lack costimulatory markers with the reduction of T cell receptor repertoire and the uptake of natural killer cell receptors. Senescent T cells exert cytotoxic effects through the expression of perforin, granzymes, tumor necrosis factor, and other molecules without the antigen-presenting process. DNA damage accumulation, telomere damage, and limited DNA repair capacity are important features of senescent T cells. Impaired mitochondrial function and accumulation of reactive oxygen species contribute to T cell senescence. Alleviation of T-cell senescence could provide potential targets for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yinyun Lu
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Yongchun Ruan
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Pan Hong
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, China
| | - Ke Rui
- Department of Transfusion, Shaoxing People's Hospital, Shaoxing, China
| | - Qi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
9
|
Huang Y, Pan C, Liu Y, Lin S, Zhan Y, Zhang Y, Zhan F. Immune Function and Mechanism of Costimulating Molecules PD-1 and OX40 in Rheumatoid Arthritis. J Interferon Cytokine Res 2021; 40:530-539. [PMID: 33201766 DOI: 10.1089/jir.2020.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a T lymphocyte-mediated autoimmune disease, although its immune mechanism has not been fully studied. In this study, healthy controls (HC), osteoarthritis patients (OA), and RA patients were enrolled, and mice were evenly divided into control, collagen-induced arthritis (CIA), PD-1 Fc/CIA (PD-1 Fc membrane fusion protein administered to CIA mice), OX40 Fc/CIA (OX40 Fc membrane fusion protein administered to CIA mice), and PD-1 Fc + OX40 Fc/CIA groups. The expressions of programmed death-1 (PD-1) and OX40 in CD4+ T lymphocytes and the levels of sPD-1, immunoglobulin, and proinflammatory factors in patients and mice were measured. The results showed that the expression levels of PD-1 and OX40 in CD4+ T lymphocytes separated from the peripheral blood and synovial fluid of RA patients and the spleen of CIA mice were observably elevated. The levels of soluble PD-1, interleukin (IL)-2, IL-4, IL-5, IL-17, and interferon-γ (IFN-γ) in RA patients obviously increased. In animal experiments, PD-1 Fc not only increased the serum levels of immunoglobulin G (IgG), IgG1, and IgG2a in CIA mice, but also increased the levels of IL-4, IL-2, IL-5, IL-17, and IFN-γ in mouse spleen cells and joint tissues, which, however, were reversed by OX40 Fc. In conclusion, OX40 inhibition could reverse the progression of RA caused by PD-1 blocking, and PD-1 might be a potential target for RA. Clinical Trials.gov ID: HGH2018012203.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Rheumatology and Immunology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Chuying Pan
- Department of Rheumatology and Immunology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Ying Liu
- Department of Rheumatology and Immunology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Shudian Lin
- Department of Rheumatology and Immunology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yuwei Zhan
- Department of Rheumatology and Immunology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng Zhan
- Department of Rheumatology and Immunology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
10
|
González-Osuna L, Sierra-Cristancho A, Rojas C, Cafferata EA, Melgar-Rodríguez S, Cárdenas AM, Vernal R. Premature Senescence of T-cells Favors Bone Loss During Osteolytic Diseases. A New Concern in the Osteoimmunology Arena. Aging Dis 2021; 12:1150-1161. [PMID: 34341698 PMCID: PMC8279535 DOI: 10.14336/ad.2021.0110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a biological process triggered in response to time-accumulated DNA damage, which prioritizes cell survival over cell function. Particularly, senescent T lymphocytes can be generated prematurely during chronic inflammatory diseases regardless of chronological aging. These senescent T lymphocytes are characterized by the loss of CD28 expression, a co-stimulatory receptor that mediates antigen presentation and effective T-cell activation. An increased number of premature senescent CD4+CD28- T lymphocytes has been frequently observed in osteolytic diseases, including rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, osteopenia, osteoporosis, and osteomyelitis. Indeed, CD4+CD28- T lymphocytes produce higher levels of osteoclastogenic molecular mediators directly related to pathologic bone loss, such as tumor necrosis factor (TNF)-α, interleukin (IL)-17A, and receptor-activator of nuclear factor κB ligand (RANKL), as compared with regular CD4+CD28+ T lymphocytes. In addition, premature senescent CD8+CD28- T lymphocytes have been negatively associated with bone healing and regeneration by inhibiting osteoblast differentiation and mesenchymal stromal cell survival. Therefore, accumulated evidence supports the role of senescent T lymphocytes in osteoimmunology. Moreover, premature senescence of T-cells seems to be associated with the functional imbalance between the osteolytic T-helper type-17 (Th17) and bone protective T regulatory (Treg) lymphocytes, as well as the phenotypic instability of Treg lymphocytes responsible for its trans-differentiation into RANKL-producing exFoxp3Th17 cells, a key cellular phenomenon directly related to bone loss. Herein, we present a framework for the understanding of the pathogenic characteristics of T lymphocytes with a premature senescent phenotype; and particularly, we revise and discuss their role in the osteoimmunology of osteolytic diseases.
Collapse
Affiliation(s)
- Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile.
| | - Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú.
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| | - Angélica M Cárdenas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Health Sciences Division, Faculty of Dentistry, Universidad Santo Tomás, Bucaramanga, Colombia.
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Rioseras B, Moro-García MA, García-Torre A, Bueno-García E, López-Martínez R, Iglesias-Escudero M, Diaz-Peña R, Castro-Santos P, Arias-Guillén M, Alonso-Arias R. Acquisition of New Migratory Properties by Highly Differentiated CD4+CD28 null T Lymphocytes in Rheumatoid Arthritis Disease. J Pers Med 2021; 11:jpm11070594. [PMID: 34202487 PMCID: PMC8306508 DOI: 10.3390/jpm11070594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Expanded CD4+CD28null T lymphocytes are found in the tissues and peripheral blood of patients with many autoimmune diseases, such as rheumatoid arthritis (RA). These highly differentiated cells present potent inflammatory activity and capability to induce tissue destruction, which has been suggested to predispose to the development of more aggressive disease. In fact, preferential migration to inflammatory sites has been proposed to be a contributing factor in the progression of autoimmune and cardiovascular diseases frequently found in these patients. The functional activity of CD4+CD28null T lymphocytes is largely dependent on interleukin 15 (IL-15), and this cytokine may also act as a selective attractor of these cells to local inflammatory infiltrates in damaged tissues. We have analysed, in RA patients, the migratory properties and transcriptional motility profile of CD4+CD28null T lymphocytes compared to their counterparts CD28+ T lymphocytes and the enhancing role of IL-15. Identification of the pathways involved in this process will allow us to design strategies directed to block effector functions that CD4+CD28null T lymphocytes have in the target tissue, which may represent therapeutic approaches in this immune disorder.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Marco Antonio Moro-García
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Alejandra García-Torre
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Eva Bueno-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Rocio López-Martínez
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | | | - Roberto Diaz-Peña
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Patricia Castro-Santos
- Inmunologia, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
| | - Miguel Arias-Guillén
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Servicio de Neumología, Hospital Universitario Central Asturias, 33011 Oviedo, Spain;
- CIBER—Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Correspondence:
| |
Collapse
|
12
|
Sun L, Gang X, Li Z, Zhao X, Zhou T, Zhang S, Wang G. Advances in Understanding the Roles of CD244 (SLAMF4) in Immune Regulation and Associated Diseases. Front Immunol 2021; 12:648182. [PMID: 33841431 PMCID: PMC8024546 DOI: 10.3389/fimmu.2021.648182] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Proteins in the signaling lymphocytic activating molecule (SLAM) family play crucial roles in regulating the immune system. CD244 (SLAMF4) is a protein in this family, and is also a member of the CD2 subset of the immunoglobulin (Ig) superfamily. CD244 is a cell surface protein expressed by NK cells, T cells, monocytes, eosinophils, myeloid-derived suppressor cells, and dendritic cells. CD244 binds to the ligand CD48 on adjacent cells and transmits stimulatory or inhibitory signals that regulate immune function. In-depth studies reported that CD244 functions in many immune-related diseases, such as autoimmune diseases, infectious diseases, and cancers, and its action is essential for the onset and progression of these diseases. The discovery of these essential roles of CD244 suggests it has potential as a prognostic indicator or therapeutic target. This review describes the molecular structure and function of CD244 and its roles in various immune cells and immune-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Hong X, Meng S, Tang D, Wang T, Ding L, Yu H, Li H, Liu D, Dai Y, Yang M. Single-Cell RNA Sequencing Reveals the Expansion of Cytotoxic CD4 + T Lymphocytes and a Landscape of Immune Cells in Primary Sjögren's Syndrome. Front Immunol 2021; 11:594658. [PMID: 33603736 PMCID: PMC7884617 DOI: 10.3389/fimmu.2020.594658] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, and its pathogenetic mechanism is far from being understood. In this study, we aimed to explore the cellular and molecular mechanisms that lead to pathogenesis of this disease. Methods We applied single-cell RNA sequencing (scRNA-seq) to 57,288 peripheral blood mononuclear cells (PBMCs) from five patients with pSS and five healthy controls. The immune cell subsets and susceptibility genes involved in the pathogenesis of pSS were analyzed. Flow cytometry was preformed to verify the result of scRNA-seq. Results We identified two subpopulations significantly expand in pSS patients. The one highly expressing cytotoxicity genes is named as CD4+ CTLs cytotoxic T lymphocyte, and another highly expressing T cell receptor (TCR) variable gene is named as CD4+ TRAV13-2+ T cell. Flow cytometry results showed the percentages of CD4+ CTLs, which were profiled with CD4+ and GZMB+ staining; the total T cells of 10 patients with pSS were significantly higher than those of 10 healthy controls (P= 0.008). The expression level of IL-1β in macrophages, TCL1A in B cells, as well as interferon (IFN) response genes in most cell subsets was upregulated in the patients with pSS. Susceptibility genes including HLA-DRB5, CTLA4, and AQP3 were highly expressed in patients with pSS. Conclusions Our data revealed disease-specific immune cell subsets and provided some potential new targets of pSS. Specific expansion of CD4+ CTLs may be involved in the pathogenesis of pSS, which might give valuable insights for therapeutic interventions of pSS.
Collapse
Affiliation(s)
- Xiaoping Hong
- Department of Rheumatology and Immunology, Southern Medical University, Nanfang Hospital, Guangzhou, China.,Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Shuhui Meng
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Donge Tang
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Liping Ding
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Haiyan Yu
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Heng Li
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Yong Dai
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Min Yang
- Department of Rheumatology and Immunology, Southern Medical University, Nanfang Hospital, Guangzhou, China
| |
Collapse
|
14
|
Comparative Study of Senescent Th Biomarkers in Healthy Donors and Early Arthritis Patients. Analysis of VPAC Receptors and Their Influence. Cells 2020; 9:cells9122592. [PMID: 33291545 PMCID: PMC7761848 DOI: 10.3390/cells9122592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory CD4+CD28− T cells are characteristic of immunosenescence, but also of several autoimmune/inflammatory diseases. Vasoactive intestinal peptide (VIP) acts as an anti-inflammatory and immunomodulatory mediator on these cells. Our objective was to study the mutual influence between senescent Th cells and VIP axis in early arthritis (EA), comparing with non-EA donors. We characterized the correlation between senescent Th cells and clinic parameters of EA as well as the behavior of senescent Th biomarkers by real-time PCR. Clinical data were systematically recorded at baseline and after 6 months of follow-up. The number of CD4+CD28− T cells measured by sorting is higher in patients who initially meet ACR classification criteria for rheumatoid arthritis (RA) compared to those who were classified as undifferentiated arthritis (UA). A slight positive correlation between EA CD4+CD28− T cells and CRP or ESR and a negative correlation with bone mineral density were found. Th senescent biomarkers in EA CD4+CD28− T cells were similar to donors, however some of them increased after 6 months of follow-up. VPAC receptors were analyzed by real-time PCR and immunofluorescence, and CD4+CD28− T cells showed higher expression of VPAC2 and lower of VPAC1, VPAC2 showing a significant increased expression in EA cells. Sorted CD4+CD28− T cells were in vitro expanded in presence of VIP, wherein VIP increased senescent biomarker CD27, while it diminished CD57 or NKG2 senescent biomarkers. Our study demonstrates for the first time the existence of a link between senescent Th cells and the VIP axis.
Collapse
|
15
|
Sulen A, Islam S, Wolff ASB, Oftedal BE. The prospects of single-cell analysis in autoimmunity. Scand J Immunol 2020; 92:e12964. [PMID: 32869859 DOI: 10.1111/sji.12964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022]
Abstract
In the last decade, there has been a tremendous development of technologies focused on analysing various molecular attributes in single cells, with an ever-increasing number of parameters becoming available at the DNA, RNA and protein levels. Much of this progress has involved cells in suspension, but also in situ analysis of tissues has taken great leaps. Paralleling the development in the laboratory, and because of increasing complexity, the analysis of single-cell data is also constantly being updated with new algorithms and analysis platforms. Our immune system shares this complexity, and immunologists have therefore been in the forefront of this technological development. These technologies clearly open new avenues for immunology research, maybe particularly within autoimmunity where the interaction between the faulty immune system and the thymus or the target organ is important. However, the technologies currently available can seem overwhelming and daunting. The aim of this review is to remedy this by giving a balanced overview of the prospects of using single-cell analysis in basal and clinical autoimmunity research, with an emphasis on endocrine autoimmunity.
Collapse
Affiliation(s)
- André Sulen
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shahinul Islam
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bergithe E Oftedal
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Youssef SR, Elsalakawy WA. First report of expansion of CD4 +/CD28 null T-helper lymphocytes in adult patients with idiopathic autoimmune hemolytic anemia. Hematol Transfus Cell Ther 2020; 43:396-401. [PMID: 32709527 PMCID: PMC8572999 DOI: 10.1016/j.htct.2020.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
CD28 null T helper (Th) cells are rare in healthy individuals, but they are increased in various inflammatory and immune-mediated diseases. In this study, we determined the size of the CD4+/CD28 null T lymphocyte compartment in the peripheral blood of 40 autoimmune hemolytic anemia (AIHA) patients (idiopathic and secondary) and 20 healthy control subjects, using tri-color flow cytometry. The frequency and absolute count of CD4+/CD28 null T helper (Th) cells was significantly higher in idiopathic AIHA patients, compared to healthy controls (p = 0.001 and 0.001, respectively) and to patients with secondary AIHA (p = 0.04 and 0.01, respectively). The percentage of CD4+/CD28 null Th cells was also negatively correlated to the hemoglobin (Hb) level (p = 0.03). These findings demonstrate, for the first time, the expansion of this phenotypically-defined population of T lymphocytes in patients with idiopathic AIHA and indicate that it likely plays an etiological role in the development of this disease. However, establishing the use of this marker for diagnosis or monitoring treatment of such patients needs further studies.
Collapse
Affiliation(s)
- Soha R Youssef
- Departments of Clinical Pathology, faculty of medicine, Ain Shams University, Cairo; Egypt
| | - Walaa A Elsalakawy
- Internal Medicine department, Clinical Hematology and BMT unit (2), faculty of medicine, Ain Shams University, Cairo; Egypt.
| |
Collapse
|
17
|
Kosmaczewska A, Ciszak L, Stosio M, Szteblich A, Madej M, Frydecka I, Wiland P, Szmyrka M. CD4 +CD28 null T cells are expanded in moderately active systemic lupus erythematosus and secrete pro-inflammatory interferon gamma, depending on the Disease Activity Index. Lupus 2020; 29:705-714. [PMID: 32279585 DOI: 10.1177/0961203320917749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pathogenic CD4+CD28null cells are characterized by inflammatory cytokine synthesis and tropism to the inflamed tissues. Recent studies showed the involvement of CD28null T cells in a severe clinical outcome of lupus. However, their role in moderately active disease is still unresolved. METHODS We examined the levels of circulating CD4+CD28null cells and CD8+CD28null suppressor T cells. We also compared the CD4+CD28null and CD4+CD28+ T-cell functional properties, including the expression of interferon gamma (IFN-γ) and Ki67 among systemic lupus erythematosus (SLE) patients (n = 20) and healthy controls (n = 20). All the patients were under immunosuppressive treatment and exhibited moderate SLE activity (median SLE Disease Activity Index (SLEDAI) = 6). RESULTS In patients, we found elevated CD4+CD28null and unchanged levels of suppressor CD8+CD28null T cells. There was no difference between patients and controls in IFN-γ and Ki67-expressing CD4+, CD4+CD28+, and CD4+CD28null T cells, except for higher IFN-γ levels in CD4+CD28+ T cells in SLE. In each studied group, we observed a higher preponderance of IFN-γ- and Ki67-expressing cells among CD4+CD28null T cells and lower levels of IFN-γ in CD4+CD28null T cells compared to the CD28+ subset. Similarly, Ki67 intensity was decreased in healthy CD4+CD28null cells, whereas in patients, comparably high expression was observed in both subsets. IFN-γ intensity in CD4+CD28null T cells correlated with SLEDAI. CONCLUSION SLE with a moderately active clinical course is characterized by peripheral blood expansion of CD4+CD28null T cells and a normal abundance of suppressor CD8+CD28null T cells. The demonstration that these pathogenic CD4+ T cells, despite the lack of CD28, maintain the ability to produce pro-inflammatory IFN-γ positively correlated with disease activity as well as relatively high proliferative capacity may suggest their potentially predictive role in SLE flares.
Collapse
Affiliation(s)
- Agata Kosmaczewska
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Ciszak
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Malgorzata Stosio
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Aleksandra Szteblich
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marta Madej
- Department of Rheumatology and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Irena Frydecka
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Wiland
- Department of Rheumatology and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Szmyrka
- Department of Rheumatology and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
18
|
Bauer ME. Accelerated immunosenescence in rheumatoid arthritis: impact on clinical progression. IMMUNITY & AGEING 2020; 17:6. [PMID: 32190092 PMCID: PMC7068869 DOI: 10.1186/s12979-020-00178-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Patients with rheumatoid arthritis (RA) develop features of accelerated ageing, including immunosenescence. These changes include decreased thymic functionality, expansion of late-differentiated effector T cells, increased telomeric attrition, and excessive production of cytokines (senescence-associated secretory phenotype). The progression of RA has been associated with the early development of age-related co-morbidities, including osteoporosis, cardiovascular complications, and cognitive impairment. Here I review data supporting the hypothesis that immune-senescence contributes to the aggravation of both articular and extra-articular manifestations. Of note, poor cognitive functions in RA were associated with senescent CD28- T cells, inflammaging, and autoantibodies against brain antigens. The pathways of immune-to-brain communication are discussed and provide the rationale for the cognitive impairment reported in RA.
Collapse
Affiliation(s)
- Moisés E Bauer
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900 Brazil
| |
Collapse
|
19
|
García-Chagollán M, Ledezma-Lozano IY, Hernández-Bello J, Sánchez-Hernández PE, Gutiérrez-Ureña SR, Muñoz-Valle JF. Expression patterns of CD28 and CTLA-4 in early, chronic, and untreated rheumatoid arthritis. J Clin Lab Anal 2020; 34:e23188. [PMID: 31907973 PMCID: PMC7246387 DOI: 10.1002/jcla.23188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Background T‐cell activation pathways have been proposed as trigger mechanisms in the pathogenesis of rheumatoid arthritis (RA). CD28 and CTLA‐4 play major roles in regulating the stimulatory and inhibitory co‐signals in T cells. Objective To analyze the association between soluble and surface expression of CD28 and CTLA‐4 with the clinical parameters of RA patients. Methods A total of 35 RA patients classified as early RA (n = 14), chronic RA (n = 14), and untreated RA (n = 7), as well as 7 age‐ and sex‐matched control subjects (CS) were included. Surface expression of CD28 and CTLA‐4 on T cells was evaluated by flow cytometry. Soluble levels of CD28 (sCD28), CTLA‐4 (sCTLA‐4), and anti‐CCP antibodies were measured by ELISA. Results A significant lower percentage of CD8 + T cells positive to CD28 (CS = 64.9% vs RA = 42.7%, P = .04), and diminished surface expression of CD28 (CS: MFI = 122.9 vs RA: MFI = 33.1, P = .006), were found in chronic RA patients compared to CS. Higher sCD28 were observed in early RA patients compared with chronic RA patients (P < .05). sCTLA‐4 was found increased in untreated RA patients compared to early RA patients (P < .05). sCD28 concentration correlated with anti‐CCP levels (rho = −0.12; P = .032). The soluble and surface expressions of CTLA‐4 were not associated with RA clinical parameters. Conclusions In RA, the percentage of CD8 + CD28+ T cells decreases and expresses fewer membrane CD28 than CS. sCD28 levels are lower in chronic RA and are associated negatively with anti‐CCP levels. sCTLA 4 levels are lower in early RA patients than in untreated RA patients.
Collapse
Affiliation(s)
- Mariel García-Chagollán
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Iris Yolanda Ledezma-Lozano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | | | | | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
20
|
Zahran AM, Abdallah AM, Saad K, Osman NS, Youssef MAM, Abdel-Raheem YF, Elsayh KI, Abo Elgheet AM, Darwish SF, Alblihed MA, Elhoufey A. Peripheral Blood B and T Cell Profiles in Children with Active Juvenile Idiopathic Arthritis. Arch Immunol Ther Exp (Warsz) 2019; 67:427-432. [PMID: 31535168 DOI: 10.1007/s00005-019-00560-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is one of the most common autoimmune diseases in children. Our study aimed to evaluate the peripheral blood B and T lymphocyte subpopulations in children with JIA. This case-control study included 20 children with JIA as well as 20 healthy children with matching age and sex as a control group. All patients included in the study were in activity as determined by visual analog scale. In addition to complete clinical evaluation, basic investigations, peripheral blood B and T lymphocyte subpopulations were done to all participants by flow cytometry. JIA patients displayed a significant decrease in IgM memory B lymphocytes, switched memory B lymphocytes, and total memory B lymphocytes when compared to the healthy controls. The percentages of naïve B lymphocytes were significantly increased in JIA patients than in controls. Total T lymphocytes, CD8+CD28null cells, and CD4+CD28null cells were significantly increased in JIA patients as compared to controls. In conclusion; JIA patients have an alteration in both B and T lymphocytes with the predisposition of memory cells which may have a role in sustaining the JIA disease activity.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Alameldin M Abdallah
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| | - Naglaa S Osman
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Mervat A M Youssef
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | | | - Khalid I Elsayh
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Amir M Abo Elgheet
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Sanaa F Darwish
- Department of Microbiology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamd A Alblihed
- Department of Medical Biochemistry, School of Medicine Taif University, Taif, Kingdom of Saudi Arabia
| | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Sabia University College, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Ibáñez-Cabellos JS, Seco-Cervera M, Osca-Verdegal R, Pallardó FV, García-Giménez JL. Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis. Front Genet 2019; 10:1104. [PMID: 31798626 PMCID: PMC6863924 DOI: 10.3389/fgene.2019.01104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accepted that epigenetic pathways play an essential role in the development and function of the immune system. Although many published studies have attempted to elucidate the relation between epigenetic modifications (e.g. DNA methylation, histone post-translational modifications, miRNAs) and autoimmune disorders, the contribution of epigenetic regulation to the pathogenesis of SS and RA is at present poorly understood. This review attempts to shed light from a critical point of view on the identification of the most relevant epigenetic mechanisms related to RA and SS by explaining intricate regulatory processes and phenotypic features of both autoimmune diseases. Moreover, we point out some epigenetic markers which can be used to monitor the inflammation status and the dysregulated immunity in SS and RA. Finally, we discuss the inconvenience of using epigenetic data obtained from bulk immune cell populations instead specific immune cell subpopulations.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
El-Menoufy MA, El-Kak AEAA, Ahmed MA. Unusual CD4+CD28− T lymphocyte subset is implicated in the pathogenesis of early atherosclerosis in patients with rheumatoid arthritis. THE EGYPTIAN RHEUMATOLOGIST 2019. [DOI: 10.1016/j.ejr.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
El-Samahy MH, Tantawy AAG, Adly AAM, Habeeb NM, Ismail EAR, Hamed GM, Eladawy R. Expression of CD4 + CD28 null T lymphocytes in children and adolescents with type 1 diabetes mellitus: Relation to microvascular complications, aortic elastic properties, and carotid intima media thickness. Pediatr Diabetes 2017; 18:785-793. [PMID: 28102614 DOI: 10.1111/pedi.12484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cardiovascular risk in type 1 diabetes mellitus (T1DM) is associated with endothelial dysfunction, inflammation, and altered immunity. CD4+ CD28null T-cells are a subset of long-lived cytotoxic CD4+ T-lymphocytes with proatherogenic and plaque-destabilizing properties. We hypothesized that the frequency of CD4+ CD28null T-cells may be altered in T1DM and related to vascular complications. AIM To assess the percentage of CD4+ CD28null T-lymphocytes in children and adolescents with T1DM and their relation to vascular structure and glycemic control. METHODS Totally 100 patients with T1DM were divided into 2 groups according to the presence of microvascular complications and compared with 50 healthy controls. CD4+ CD28null T-lymphocytes were analyzed using flow cytometry. Aortic elastic properties and carotid intima media thickness (CIMT) were assessed. RESULTS Aortic stiffness index and CIMT were significantly higher among patients compared with healthy controls while aortic strain and distensibility were decreased. The percentage of CD4+ CD28null T-cells was significantly higher in patients with and without microvascular complications compared with controls. High frequency of CD4+ CD28null T-cells was found among patients with microalbuminuria or peripheral neuropathy. Patients with CD4+ CD28null T-cells ≥10% had higher HbA1c, urinary albumin creatinine ratio, aortic stiffness, and CIMT. CD4+ CD28null T-cells were positively correlated to HbA1c, aortic stiffness index, and CIMT. CONCLUSIONS Changes in aortic elastic properties and increased CIMT among young patients with T1DM may enable the recognition of preclinical cardiac impairment. The correlation between CD4+ CD28null T-cells and assessed parameters of vascular structure highlights the role of altered immune response in the occurrence of diabetic vascular complications.
Collapse
Affiliation(s)
- Mona H El-Samahy
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Azza A G Tantawy
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira A M Adly
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevin M Habeeb
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A R Ismail
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gehan M Hamed
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rasha Eladawy
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 2017; 174:3956-3972. [PMID: 28471481 DOI: 10.1111/bph.13845] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia
| | - Yi Li
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Peter Tipping
- Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Ban-Hock Toh
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
25
|
Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat Genet 2017; 49:1120-1125. [PMID: 28553958 DOI: 10.1038/ng.3885] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 05/03/2017] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that a substantial portion of complex disease risk alleles modify gene expression in a cell-specific manner. To identify candidate causal genes and biological pathways of immune-related complex diseases, we conducted expression quantitative trait loci (eQTL) analysis on five subsets of immune cells (CD4+ T cells, CD8+ T cells, B cells, natural killer (NK) cells and monocytes) and unfractionated peripheral blood from 105 healthy Japanese volunteers. We developed a three-step analytical pipeline comprising (i) prediction of individual gene expression using our eQTL database and public epigenomic data, (ii) gene-level association analysis and (iii) prediction of cell-specific pathway activity by integrating the direction of eQTL effects. By applying this pipeline to rheumatoid arthritis data sets, we identified candidate causal genes and a cytokine pathway (upregulation of tumor necrosis factor (TNF) in CD4+ T cells). Our approach is an efficient way to characterize the polygenic contributions and potential biological mechanisms of complex diseases.
Collapse
|
26
|
Rolfes MC, Juhn YJ, Wi CI, Sheen YH. Asthma and the Risk of Rheumatoid Arthritis: An Insight into the Heterogeneity and Phenotypes of Asthma. Tuberc Respir Dis (Seoul) 2017; 80:113-135. [PMID: 28416952 PMCID: PMC5392483 DOI: 10.4046/trd.2017.80.2.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/03/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Asthma is traditionally regarded as a chronic airway disease, and recent literature proves its heterogeneity, based on distinctive clusters or phenotypes of asthma. In defining such asthma clusters, the nature of comorbidity among patients with asthma is poorly understood, by assuming no causal relationship between asthma and other comorbid conditions, including both communicable and noncommunicable diseases. However, emerging evidence suggests that the status of asthma significantly affects the increased susceptibility of the patient to both communicable and noncommunicable diseases. Specifically, the impact of asthma on susceptibility to noncommunicable diseases such as chronic systemic inflammatory diseases (e.g., rheumatoid arthritis), may provide an important insight into asthma as a disease with systemic inflammatory features, a conceptual understanding between asthma and asthma-related comorbidity, and the potential implications on the therapeutic and preventive interventions for patients with asthma. This review discusses the currently under-recognized clinical and immunological phenotypes of asthma; specifically, a higher risk of developing a systemic inflammatory disease such as rheumatoid arthritis and their implications, on the conceptual understanding and management of asthma. Our discussion is divided into three parts: literature summary on the relationship between asthma and the risk of rheumatoid arthritis; potential mechanisms underlying the association; and implications on asthma management and research.
Collapse
Affiliation(s)
| | - Young Jun Juhn
- Department of Pediatric and Adolescent Medicine/Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chung-Il Wi
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Youn Ho Sheen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
27
|
Jiang J, Liu C, Liu M, Shen Y, Hu X, Wang Q, Wu J, Wu M, Fang Q, Zhang X. OX40 signaling is involved in the autoactivation of CD4 +CD28 - T cells and contributes to the pathogenesis of autoimmune arthritis. Arthritis Res Ther 2017; 19:67. [PMID: 28320444 PMCID: PMC5359925 DOI: 10.1186/s13075-017-1261-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background CD4+CD28− T cells exhibit autoreactive potential in autoimmune disorders, including rheumatoid arthritis (RA). It is not well known which costimulator functions as an alternative second signal in the activation of this subset after CD28 expression is downregulated. Tumor necrosis factor receptor superfamily member OX40 is a key costimulator in the activation of T cells. The aim of this study was to investigate the costimulatory effects of OX40 on CD4+CD28− T cells in autoimmune arthritis. Methods Clinical samples were collected from patients with RA and control subjects. Collagen-induced arthritis (CIA) was induced with collagen type II (CII) in DBA/1 mice. The CD4+CD28−OX40+ T-cell subset and its cytokine production were detected by flow cytometry. After T-cell purification, adoptive transfer was performed in CIA mice. The regulatory role of OX40 was determined by blocking experiments in vitro and in vivo. Results OX40 and OX40L were abnormally expressed in patients with RA and CIA mice. Further analysis showed that CD4+CD28−OX40+ T cells accumulated in patients with RA and in animal models. These cells produced higher levels of proinflammatory cytokines and were closely correlated with the clinicopathological features of the affected individuals. Adoptive transfer of CII-specific CD4+CD28−OX40+ T cells remarkably aggravated arthritic development and joint pathology in CIA mice. Moreover, OX40 blockade significantly reduced the proinflammatory responses and ameliorated arthritis development. Conclusions OX40 acts as an alternative costimulator of CD4+CD28− T cells and plays a pathogenic role in autoimmune arthritic development, suggesting that it is a potential target for immunomodulatory therapy of RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1261-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juean Jiang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Mi Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Xiaohan Hu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Qin Wang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Jian Wu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Min Wu
- Departments of Rheumatology, Third Affiliated Hospital of Soochow University, No. 185 Juqian Road, Changzhou, 213003, Jiangsu, China
| | - Qi Fang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China.
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
28
|
Jiang J, Liu C, Liu M, Shen Y, Hu X, Wang Q, Wu J, Wu M, Fang Q, Zhang X. OX40 signaling is involved in the autoactivation of CD4 +CD28 - T cells and contributes to the pathogenesis of autoimmune arthritis. Arthritis Res Ther 2017. [PMID: 28320444 DOI: 10.1186/s13075-017-1261-9.pmid:28320444;pmcid:pmc5359925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND CD4+CD28- T cells exhibit autoreactive potential in autoimmune disorders, including rheumatoid arthritis (RA). It is not well known which costimulator functions as an alternative second signal in the activation of this subset after CD28 expression is downregulated. Tumor necrosis factor receptor superfamily member OX40 is a key costimulator in the activation of T cells. The aim of this study was to investigate the costimulatory effects of OX40 on CD4+CD28- T cells in autoimmune arthritis. METHODS Clinical samples were collected from patients with RA and control subjects. Collagen-induced arthritis (CIA) was induced with collagen type II (CII) in DBA/1 mice. The CD4+CD28-OX40+ T-cell subset and its cytokine production were detected by flow cytometry. After T-cell purification, adoptive transfer was performed in CIA mice. The regulatory role of OX40 was determined by blocking experiments in vitro and in vivo. RESULTS OX40 and OX40L were abnormally expressed in patients with RA and CIA mice. Further analysis showed that CD4+CD28-OX40+ T cells accumulated in patients with RA and in animal models. These cells produced higher levels of proinflammatory cytokines and were closely correlated with the clinicopathological features of the affected individuals. Adoptive transfer of CII-specific CD4+CD28-OX40+ T cells remarkably aggravated arthritic development and joint pathology in CIA mice. Moreover, OX40 blockade significantly reduced the proinflammatory responses and ameliorated arthritis development. CONCLUSIONS OX40 acts as an alternative costimulator of CD4+CD28- T cells and plays a pathogenic role in autoimmune arthritic development, suggesting that it is a potential target for immunomodulatory therapy of RA.
Collapse
Affiliation(s)
- Juean Jiang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Mi Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Xiaohan Hu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Qin Wang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Jian Wu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China
| | - Min Wu
- Departments of Rheumatology, Third Affiliated Hospital of Soochow University, No. 185 Juqian Road, Changzhou, 213003, Jiangsu, China
| | - Qi Fang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China.
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
29
|
Broadley I, Pera A, Morrow G, Davies KA, Kern F. Expansions of Cytotoxic CD4 +CD28 - T Cells Drive Excess Cardiovascular Mortality in Rheumatoid Arthritis and Other Chronic Inflammatory Conditions and Are Triggered by CMV Infection. Front Immunol 2017; 8:195. [PMID: 28303136 PMCID: PMC5332470 DOI: 10.3389/fimmu.2017.00195] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
A large proportion of cardiovascular (CV) pathology results from immune-mediated damage, including systemic inflammation and cellular proliferation, which cause a narrowing of the blood vessels. Expansions of cytotoxic CD4+ T cells characterized by loss of CD28 (“CD4+CD28− T cells” or “CD4+CD28null cells”) are closely associated with cardiovascular disease (CVD), in particular coronary artery damage. Direct involvement of these cells in damaging the vasculature has been demonstrated repeatedly. Moreover, CD4+CD28− T cells are significantly increased in rheumatoid arthritis (RA) and other autoimmune conditions. It is striking that expansions of this subset beyond 1–2% occur exclusively in CMV-infected people. CMV infection itself is known to increase the severity of autoimmune diseases, in particular RA and has also been linked to increased vascular pathology. A review of the recent literature on immunological changes in CVD, RA, and CMV infection provides strong evidence that expansions of cytotoxic CD4+CD28− T cells in RA and other chronic inflammatory conditions are limited to CMV-infected patients and driven by CMV infection. They are likely to be responsible for the excess CV mortality observed in these situations. The CD4+CD28− phenotype convincingly links CMV infection to CV mortality based on a direct cellular-pathological mechanism rather than epidemiological association.
Collapse
Affiliation(s)
- Iain Broadley
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Alejandra Pera
- Division of Medicine, Brighton and Sussex Medical School, Brighton, UK; Department of Immunology, Maimonides Institute for Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - George Morrow
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Kevin A Davies
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Florian Kern
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| |
Collapse
|
30
|
Chalan P, van den Berg A, Kroesen BJ, Brouwer L, Boots A. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Curr Aging Sci 2016. [PMID: 26212057 PMCID: PMC5388800 DOI: 10.2174/1874609808666150727110744] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age is the most important risk factor for the development of infectious diseases, cancer and chronic inflammatory diseases including rheumatoid arthritis (RA). The very act of living causes damage to cells. A network of molecular, cellular and physiological maintenance and repair systems creates a buffering capacity against these damages. Aging leads to progressive shrinkage of the buffering capacity and increases vulnerability. In order to better understand the complex mammalian aging processes, nine hallmarks of aging and their interrelatedness were recently put forward. RA is a chronic autoimmune disease affecting the joints. Although RA may develop at a young age, the incidence of RA increases with age. It has been suggested that RA may develop as a consequence of premature aging (immunosenescence) of the immune system. Alternatively, premature aging may be the consequence of the inflammatory state in RA. In an effort to answer this chicken and egg conundrum, we here outline and discuss the nine hallmarks of aging, their contribution to the pre-aged phenotype and the effects of treatment on the reversibility of immunosenescence in RA.
Collapse
Affiliation(s)
| | | | | | | | - Annemieke Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
31
|
Söderberg-Nauclér C, Fornara O, Rahbar A. Cytomegalovirus driven immunosenescence-An immune phenotype with or without clinical impact? Mech Ageing Dev 2016; 158:3-13. [PMID: 27318107 DOI: 10.1016/j.mad.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
The continuous emerging increase in life span has led to vulnerability to a number of different diseases in the elderly. Some of these risks may be attributed to specific changes in the immune system referred to as immunoscenescence. This term aims to describe decreased immune functions among elderly individuals, and is characterized to be harmful age-associated changes in the immune system that lead to its gradual immune dysfunction. An impaired function of the immune system may increase susceptibility to various diseases in the elderly population such as infections, cardiovascular diseases and cancer. Although it is unclear how this immune phenotype develops, emerging evidence suggest that it may reflect an exhaustion of the immune system, possibly caused by one or several chronic infections. The main candidate is human cytomegalovirus (CMV), which can induce immune dysfunctions observed in immunoscenescence. Although the immune system is currently considered to be exhausted in CMV positive elderly individuals, it is not known whether such dysfunction of the immune system is a main reason for increased susceptibility to other diseases, or if direct effects of the virus in disease pathogenesis reflect the increased vulnerability to them. These aspects will be discussed in this review.
Collapse
Affiliation(s)
- Cecilia Söderberg-Nauclér
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden.
| | - Olesja Fornara
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Eaton LH, Kimber I, Griffiths CEM. A fresh look at T cells in psoriasis. Br J Dermatol 2015; 173:891-2. [PMID: 26511827 DOI: 10.1111/bjd.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L H Eaton
- Dermatology Centre, University of Manchester, Manchester Academic Health Science Centre, Manchester, U.K.,Faculty of Life Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, U.K
| | - I Kimber
- Faculty of Life Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, U.K
| | - C E M Griffiths
- Dermatology Centre, University of Manchester, Manchester Academic Health Science Centre, Manchester, U.K
| |
Collapse
|
33
|
Cribbs A, Feldmann M, Oppermann U. Towards an understanding of the role of DNA methylation in rheumatoid arthritis: therapeutic and diagnostic implications. Ther Adv Musculoskelet Dis 2015; 7:206-19. [PMID: 26425149 DOI: 10.1177/1759720x15598307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The term 'epigenetics' loosely describes DNA-templated processes leading to heritable changes in gene activity and expression, which are independent of the underlying DNA sequence. Epigenetic mechanisms comprise of post-translational modifications of chromatin, methylation of DNA, nucleosome positioning as well as expression of noncoding RNAs. Major advances in understanding the role of DNA methylation in regulating chromatin functions have been made over the past decade, and point to a role of this epigenetic mechanism in human disease. Rheumatoid arthritis (RA) is an autoimmune disorder where altered DNA methylation patterns have been identified in a number of different disease-relevant cell types. However, the contribution of DNA methylation changes to RA disease pathogenesis is at present poorly understood and in need of further investigation. Here we review the current knowledge regarding the role of DNA methylation in rheumatoid arthritis and indicate its potential therapeutic implications.
Collapse
Affiliation(s)
- Adam Cribbs
- Kennedy Institute of Rheumatology, Oxford, and Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, and Structural Genomics Consortium, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Wang F, Chen L, Shen Q, Liu T, Jiang L, Gu X, Chen L, Sun J, Liu C. Characterization and clinical relevance of circulating CD4+CD28- T cells in Graves' disease. Immunol Lett 2015; 165:47-51. [PMID: 25839128 DOI: 10.1016/j.imlet.2015.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/10/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
Abstract
During autoimmune disease the fraction of CD4+CD28- T cells in the peripheral blood of has been found to be elevated. In the present study, peripheral blood was collected from 61 patients with Graves' disease (GD) and 30 healthy control participants. Serum concentrations of thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4) and thyrotropin receptor autoantibody (TRAb) were measured and peripheral blood mononuclear cell (PBMC) surface expression of CD4 and CD28 molecules was detected by flow cytometry. CD4+CD28- cells were sorted from six patients undergoing subtotal thyroidectomy and cultured ex vivo. The influence of TSH pretreated thyroid follicular cells on CD4+CD28- cell proliferation was evaluated using the agonist CD40 mAb 5C11, the blocking CD40L mAb 4F1 or B7-1 mAb 4E5 in 3H-TdR assays. Our data showed that the fraction of CD4+CD28- T cells was higher in GD patients than healthy donors (10.21%±8.56% vs. 2.33%±1.94%; P<0.001), and further elevated in 24 of 61 patients with Graves' ophthalmopathy (GO) (7.00±6.57% vs. 15.21±8.96%; P<0.001). A higher proportion of CD4+CD28- cells was detected in patients with degree II or III goiter than those with degree I goiter (11.53±9.18% vs. 6.11±3.97%; P<0.05 and 14.50±10.41% vs. 6.11±3.97%; P<0.01). The percentage of CD4+CD28- T cells correlated positively with serum levels of FT3 (r=0.354, P<0.01) and TRAb (r=0.304, P<0.05), but did not correlate with serum FT4 or TSH. Ex vivo, 5C11 enhanced proliferation of CD4+CD28+ cells (P<0.05), but did not influence the proliferation of CD4+CD28- cells. 4F1 inhibited the proliferation of both CD4+CD28+ (P<0.05) and CD4+CD28- (P<0.01) cells, and 4E5 inhibited proliferation of CD4+CD28+ cells (P<0.05). The elevation in circulating CD4+CD28- cells in GD patients correlates with disease severity and maybe plays an important role in the pathogenesis of GD.
Collapse
Affiliation(s)
- Fengming Wang
- Testing Center, Center for Disease Prevention and Control, Changzhou 213000, Jiangsu, China; Institute of Medical Biotechnology, Medical College of Soochow University, Suzhou 215007, Jiangsu, China
| | - Lei Chen
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Qiong Shen
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Tong Liu
- Institute of Medical Biotechnology, Medical College of Soochow University, Suzhou 215007, Jiangsu, China
| | - Lian Jiang
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Lujun Chen
- Institute of Medical Biotechnology, Medical College of Soochow University, Suzhou 215007, Jiangsu, China
| | - Jing Sun
- Institute of Medical Biotechnology, Medical College of Soochow University, Suzhou 215007, Jiangsu, China
| | - Cuiping Liu
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215007, Jiangsu, China
| |
Collapse
|
35
|
The story of CD4+ CD28- T cells revisited: solved or still ongoing? J Immunol Res 2015; 2015:348746. [PMID: 25834833 PMCID: PMC4365319 DOI: 10.1155/2015/348746] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023] Open
Abstract
CD4+CD28− T cells are a unique type of proinflammatory T cells characterised by blockade of costimulatory CD28 receptor expression at the transcriptional level, which is still reversible by IL-12. In healthy individuals older than 65 years, these cells may accumulate to up to 50% of total CD4+ T lymphocytes as in many immune-mediated diseases, immunodeficiency, and specific infectious diseases. Here we focus on CD4+CD28− T cells in chronic immune-mediated diseases, summarizing various phenotypic and functional characteristics, which vary depending on the underlying disease, disease activity, and concurrent treatment. CD4+CD28− T cells present as effector/memory cells with increased replicative history and oligoclonality but reduced apoptosis. As an alternative costimulatory signal instead of CD28, not only natural killer cell receptors and Toll-like receptors, but also CD47, CTLA-4, OX40, and 4-1BB have to be considered. The proinflammatory and cytotoxic capacities of these cells indicate an involvement in progression and maintenance of chronic immune-mediated disease. So far it has been shown that treatment with TNF-α blockers, abatacept, statins, and polyclonal antilymphocyte globulins (ATG) mediates reduction of the CD4+CD28− T cell level. The clinical relevance of targeting CD4+CD28− T cells as a therapeutic option has not been examined so far.
Collapse
|
36
|
Abstract
BACKGROUND Although the present understanding of the immunopathogenesis of rheumatoid inflammation is still incomplete, there is substantial evidence that effector CD4+ T helper (Th) cells play a central role. RESULTS In recent years, in addition to the established Th cell subsets Th1 and Th2 cells, other subsets, such as Th9, Th17, Th22 and T follicular helper (Tfh) cells have been described. Defining the contribution of T cells in the initiation and maintenance of inflammation has been augmented by the identification of functionally distinct subsets of effector Th cells that can be classified based on their cytokine and transcription factor profiles. CONCLUSION Increasing knowledge of the role of these various T cell populations in chronic inflammation provides a better understanding and insights into the pathogenic mechanisms and chronification of rheumatic diseases.
Collapse
Affiliation(s)
- J Leipe
- Sektion für Rheumatologie und Klinische Immunologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Pettenkoferstr. 8a, 80336, München, Deutschland,
| | | |
Collapse
|
37
|
Picchianti Diamanti A, Rosado MM, Scarsella M, Germano V, Giorda E, Cascioli S, Laganà B, D'Amelio R, Carsetti R. Abatacept (cytotoxic T lymphocyte antigen 4-immunoglobulin) improves B cell function and regulatory T cell inhibitory capacity in rheumatoid arthritis patients non-responding to anti-tumour necrosis factor-α agents. Clin Exp Immunol 2014; 177:630-40. [PMID: 24773026 PMCID: PMC4137847 DOI: 10.1111/cei.12367] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 12/13/2022] Open
Abstract
The use of biological agents combined with methotrexate (MTX) in rheumatoid arthritis (RA) patients has strongly improved disease outcome. In this study, the effects of abatacept on the size and function of circulating B and T cells in RA patients not responding to anti-tumour necrosis factor (TNF)-α have been analysed, with the aim of identifying immunological parameters helpful to choosing suitable tailored therapies. We analysed the frequency of peripheral B and T cell subsets, B cell function and T regulatory cell (Treg ) inhibitory function in 20 moderate/severe RA patients, according to the European League Against Rheumatism (EULAR)/American College of Rheumatology (ACR) criteria, primary non-responders to one TNF-α blocking agent, who received abatacept + MTX. Patients were studied before and 6 months after therapy. We found that abatacept therapy significantly reduced disease activity score on 44 joints (DAS)/erythrocyte sedimentation rate (ESR) values without causing severe side effects. The size of the circulating B and T cell compartments in RA patients was not significantly different from healthy donors, but B cell proliferation and plasma cell differentiation was impaired before therapy and restored by abatacept. While Treg cell frequency was normal, its inhibitory function was absent before therapy and was partially recovered 6 months after abatacept. B and Treg cell function is impaired in RA patients not responding to the first anti-TNF-α agent. Abatacept therapy was able to rescue immune function and led to an effective and safe clinical outcome, suggesting that RA patients, in whom anti-TNF-α failed, are immunologically prone to benefit from an agent targeting a different pathway.
Collapse
Affiliation(s)
- A Picchianti Diamanti
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, School of Medicine and Psychology, 'Sapienza' University, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|