1
|
Sepahi A, Ho HE, Vyas P, Umiker B, Kis-Toth K, Wiederschain D, Radigan L, Cunningham-Rundles C. ICOS agonist vopratelimab modulates follicular helper T cells and improves B cell function in common variable immunodeficiency. Clin Immunol 2024; 264:110217. [PMID: 38621471 DOI: 10.1016/j.clim.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Common variable immunodeficiency (CVID) is an immune defect characterized by hypogammaglobulinemia and impaired development of B cells into plasma cells. As follicular helper T cells (TFH) play a central role in humoral immunity, we examined TFH cells in CVID, and investigated whether an inducible T cell co-stimulator (ICOS) agonist, vopratelimab, could modulate TFH, B cell interactions and enhance immunoglobulin production. CVID subjects had decreased TFH17 and increased TFH1 subsets; this was associated with increased transitional B cells and decreased IgG+ B and IgD-IgM-CD27+ memory B cells. ICOS expression on CVID CD4+ T cells was also decreased. However, ICOS activation of CD4+ T cells by vopratelimab significantly increased total CVID TFH, TFH2, cell numbers, as well as IL-4, IL-10 and IL-21 secretion in vitro. Vopratelimab treatment also increased plasma cells, IgG+ B cells, reduced naïve & transitional B cells and significantly increased IgG1 secretion by CVID B cells. Interestingly, vopratelimab treatment also restored IgA secretion in PBMCs from several CVID patients who had a complete lack of endogenous serum IgA. Our data demonstrate the potential of TFH modulation in restoring TFH and enhancing B cell maturation in CVID. The effects of an ICOS agonist in antibody defects warrants further investigation. This biologic may also be of therapeutic interest in other clinical settings of antibody deficiency.
Collapse
Affiliation(s)
- Ali Sepahi
- PharmaEssentia Innovation Research Center, Bedford, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Hsi-En Ho
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prapti Vyas
- ReNAgade Therapeutics, Cambridge, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Benjamin Umiker
- AstraZeneca, Cambridge, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Katalin Kis-Toth
- NextPoint Therapeutics, Inc., Cambridge, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Dmitri Wiederschain
- Crossbow Therapeutics, Cambridge, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Lin Radigan
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
2
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
3
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
4
|
Zhong Y, Xiao Q, Li S, Chen L, Long J, Fang W, Yu F, Huang J, Zhao H, Liu D. Bupi Yichang Pill alleviates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the homeostasis of follicular helper T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154091. [PMID: 35395566 DOI: 10.1016/j.phymed.2022.154091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Follicular helper T (Tfh) cells-based therapy represents a new treatment option for inflammatory bowel disease. Bupi Yichang Pill (BPYCP), a traditional Chinese formula for the treatment of dysentery and diarrhea, exhibits potential anti-inflammatory activities in treating various kinds of inflammation. However, its anti-inflammatory effect on colitis and the underlying mechanisms remain unknown. PURPOSE To explore the protective role and underlying immunomodulatory effects of BPYCP in the treatment of UC. METHODS The dextran sodium sulfate (DSS) free-drinking method induced UC in C57BL/6 mice, and BPYCP was orally administrated at a dosage of 1.5, 3.0, or 6.0 g/kg/day. Throughout the experimental period, the effects of BPYCP on DSS-induced clinical symptoms and disease activity index (DAI) were monitored and analyzed. Hematoxylin-eosin staining was used to observe the histopathological injury of the colon. Flow cytometry was used to detect the levels of Tfh cells, Tfh cell subpopulations, and memory Tfh cells. ELISA, Western blot, and qRT-PCR were used to detect the expression of inflammatory cytokines and Tfh cell-related biomarkers. RESULTS Medium and high dosages of BPYCP effectively alleviated DSS-induced experimental colitis with increased body weight, survival rate and colonic length, and decreased DAI, colonic weight, and colonic index, as well as less ulcer formation and inflammatory cell infiltration, increased anti-inflammatory cytokine IL-10, and decreased pro-inflammatory cytokines IL-17A, IL-6, and TNF-ɑ. Moreover, BPYCP administration significantly decreased the percentage of Tfh cells and the expression of Tfh markers ICOS, PD-1 and Bcl-6 in the mesenteric lymph nodes of colitis mice. In addition, BPYCP treatment obviously decreased the percentages of Tfh1, Tfh17 and Tem-Tfh cells and upregulated Tfr cells in colitis mice. However, there were no significant regulatory effects of BPYCP on Tfh cell response in normal mice. CONCLUSION Taken together, these results demonstrated a protective effect of BPYCP against DSS-induced experimental colitis by regulating Tfh cell homeostasis.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330004, Jiangxi Province, China
| | - Shanshan Li
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jian Long
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Weiyan Fang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Feihao Yu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
5
|
Louis K, Macedo C, Lefaucheur C, Metes D. Adaptive immune cell responses as therapeutic targets in antibody-mediated organ rejection. Trends Mol Med 2022; 28:237-250. [PMID: 35093288 PMCID: PMC8882148 DOI: 10.1016/j.molmed.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/17/2023]
Abstract
Humoral alloimmunity of organ transplant recipient to donor can lead to antibody-mediated rejection (ABMR), causing thousands of organ transplants to fail each year worldwide. However, the mechanisms of adaptive immune cell responses at the basis of humoral alloimmunity have not been entirely understood. In this review, we discuss how recent investigations have uncovered the key contributions of T follicular helper (TFH) and B cells and their coordinated actions in driving donor-specific antibody generation and immune progression towards ABMR. We show how recognition of the role of TFH-B cell interactions may allow the elaboration of improved clinical strategies for immune monitoring and the identification of novel therapeutic targets to tackle ABMR that will ultimately improve organ transplant survival.
Collapse
Affiliation(s)
- Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale UMR 976, Université de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR 970, Université de Paris, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Louis K, Macedo C, Metes D. Targeting T Follicular Helper Cells to Control Humoral Allogeneic Immunity. Transplantation 2021; 105:e168-e180. [PMID: 33909968 PMCID: PMC8484368 DOI: 10.1097/tp.0000000000003776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Humoral allogeneic immunity driven by anti-HLA donor-specific antibodies and antibody-mediated rejection (AMR) significantly impede prolonged survival of organ allografts after transplantation. Although the importance of T follicular helper (TFH) cells in controlling antibody responses has been long established, their role in directing donor-specific antibody generation leading to AMR was only recently appreciated in the clinical setting of organ transplantation. In this review, we provide a comprehensive summary of the current knowledge on the biology of human TFH cells as well as their circulating counterparts and describe their pivotal role in driving humoral alloimmunity. In addition, we discuss the intrinsic effects of current induction therapies and maintenance immunosuppressive drugs as well as of biotherapies on TFH cells and provide future directions and novel opportunities of biotherapeutic targeting of TFH cells that have the potential of bringing the prophylactic and curative treatments of AMR toward personalized and precision medicine.
Collapse
Affiliation(s)
- Kevin Louis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Human Immunology and Immunopathology, Inserm UMR 976, Université de Paris, Paris, France
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Pre-transplant donor-reactive IL-21 producing T cells as a tool to identify an increased risk for acute rejection. Sci Rep 2021; 11:12445. [PMID: 34127739 PMCID: PMC8203783 DOI: 10.1038/s41598-021-91967-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Pre-transplant screening focuses on the detection of anti-HLA alloantibodies. Previous studies have shown that IFN-γ and IL-21 producing T cells are associated with the development of acute rejection (AR). The aim of this study, was to assess whether pre-transplant donor-reactive T cells and/or B cells are associated with increased rejection risk. Samples from 114 kidney transplant recipients (transplanted between 2010 and 2013) were obtained pre-transplantation. The number of donor-reactive IFN-γ and IL-21 producing cells was analyzed by ELISPOT assay. The presence of donor specific antibodies (DSA) was also determined before transplantation. Numbers of donor-reactive IFN-γ producing cells were similar in patients with or without AR whereas those of IL-21 producing cells were higher in patients with AR (p = 0.03). Significantly more patients with AR [6/30(20%)] had detectable DSA compared to patients without AR [5/84(5.9%), p = 0.03]. Multivariate logistic regression showed that donor age (OR 1.06), pre-transplant DSA (OR 5.61) and positive IL-21 ELISPOT assay (OR 2.77) were independent predictors of an increased risk for the development of AR. Aside from an advanced donor-age and pre-transplant DSA, also pre-transplant donor-reactive IL-21 producing cells are associated with the development of AR after transplantation.
Collapse
|
8
|
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21:E8011. [PMID: 33126494 PMCID: PMC7663252 DOI: 10.3390/ijms21218011] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Xiu MX, Liu ZT, Tang J. Screening and identification of key regulatory connections and immune cell infiltration characteristics for lung transplant rejection using mucosal biopsies. Int Immunopharmacol 2020; 87:106827. [PMID: 32791489 PMCID: PMC7417178 DOI: 10.1016/j.intimp.2020.106827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to explore key regulatory connections underlying lung transplant rejection. The differentially expressed genes (DEGs) between rejection and stable lung transplantation (LTx) samples were screened using R package limma, followed by functional enrichment analysis and protein-protein interaction network construction. Subsequently, a global triple network, including miRNAs, mRNAs, and transcription factors (TFs), was constructed. Furthermore, immune cell infiltration characteristics were analyzed to investigate the molecular immunology of lung transplant rejection. Finally, potential drug-target interactions were generated. In brief, 739 DEGs were found between rejection and stable LTx samples. PTPRC, IL-6, ITGAM, CD86, TLR8, TYROBP, CXCL10, ITGB2, and CCR5 were defined as hub genes. Eight TFs, including STAT1, SPIB, NFKB1, SPI1, STAT5A, RUNX1, VENTX, and BATF, and five miRNAs, including miR-335-5p, miR-26b-5p, miR-124-3p, miR-1-3p, and miR-155-5p, were involved in regulating hub genes. The immune cell infiltration analysis revealed higher proportions of activated memory CD4 T cells, follicular helper T cells, γδ T cells, monocytes, M1 and M2 macrophages, and eosinophils in rejection samples, besides lower proportions of resting memory CD4 T cells, regulatory T cells, activated NK cells, M0 macrophages, and resting mast cells. This study provided a comprehensive perspective of the molecular co-regulatory network underlying lung transplant rejection.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, PR China
| | - Zu-Ting Liu
- Medical School of Nanchang University, Nanchang, PR China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
10
|
Niu Q, Mendoza Rojas A, Dieterich M, Roelen DL, Clahsen-van Groningen MC, Wang L, van Gelder T, Hesselink DA, van Besouw NM, Baan CC. Immunosuppression Has Long-Lasting Effects on Circulating Follicular Regulatory T Cells in Kidney Transplant Recipients. Front Immunol 2020; 11:1972. [PMID: 32983131 PMCID: PMC7483930 DOI: 10.3389/fimmu.2020.01972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Background: FoxP3+ follicular regulatory T cells (Tfr) have been identified as the cell population controlling T follicular helper (Tfh) cells and B cells which, are both involved in effector immune responses against transplanted tissue. Methods: To understand the biology of Tfr cells in kidney transplant patients treated with tacrolimus and mycophenolate mofetil (MMF) combination immunosuppression, we measured circulating (c)Tfh and cTfr cells in peripheral blood by flow cytometry in n = 211 kidney transplant recipients. At the time of measurement patients were 5–7 years after transplantation. Of this cohort of patients, 23.2% (49/211) had been previously treated for rejection. Median time after anti-rejection therapy was 4.9 years (range 0.4–7 years). Age and gender matched healthy individuals served as controls. Results: While the absolute numbers of cTfh cells were comparable between kidney transplant recipients and healthy controls, the numbers of cTfr cells were 46% lower in immunosuppressed recipients (p < 0.001). More importantly, in transplanted patients, the ratio of cTfr to cTfh was decreased (median; 0.10 vs. 0.06), indicating a disruption of the balance between cTfr and cTfh cells. This shifted balance was observed for both non-rejectors and rejectors. Previous pulse methylprednisolone or combined pulse methylprednisolone + intravenous immunoglobulin anti-rejection therapy led to a non-significant 30.6% (median) and 51.2% (median) drop in cTfr cells, respectively when compared to cTfr cell numbers in transplant patients who did not receive anti-rejection therapy. A history of alemtuzumab therapy did lead to a significant decrease in cTfr cells of 85.8% (median) compared with patients not treated with anti-rejection therapy (p < 0.0001). No association with tacrolimus or MMF pre-dose concentrations was found. Conclusion: This cross-sectional study reveals that anti-rejection therapy with alemtuzumab significantly lowers the number of cTfr cells in kidney transplant recipients. The observed profound effects by these agents might dysregulate cTfr functions.
Collapse
Affiliation(s)
- Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Aleixandra Mendoza Rojas
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,The Rotterdam Transplant Group, Department of Clinical Pharmacology, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein Dieterich
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Marian C Clahsen-van Groningen
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,The Rotterdam Transplant Group, Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Teun van Gelder
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,The Rotterdam Transplant Group, Department of Clinical Pharmacology, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dennis A Hesselink
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicole M van Besouw
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Carla C Baan
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
11
|
Louis K, Macedo C, Bailly E, Lau L, Ramaswami B, Marrari M, Landsittel D, Chang A, Chandran U, Fadakar P, Yamada M, Chalasani G, Randhawa P, Zeevi A, Singh H, Lefaucheur C, Metes D. Coordinated Circulating T Follicular Helper and Activated B Cell Responses Underlie the Onset of Antibody-Mediated Rejection in Kidney Transplantation. J Am Soc Nephrol 2020; 31:2457-2474. [PMID: 32723838 DOI: 10.1681/asn.2020030320] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although antibody-mediated rejection (ABMR) has been long recognized as a leading cause of allograft failure after kidney transplantation, the cellular and molecular processes underlying the induction of deleterious donor-specific antibody (DSA) responses remain poorly understood. METHODS Using high-dimensional flow cytometry, in vitro assays, and RNA sequencing, we concomitantly investigated the role of T follicular helper (TFH) cells and B cells during ABMR in 105 kidney transplant recipients. RESULTS There were 54 patients without DSAs; of those with DSAs, ABMR emerged in 20 patients, but not in 31 patients. We identified proliferating populations of circulating TFH cells and activated B cells emerging in blood of patients undergoing ABMR. Although these circulating TFH cells comprised heterogeneous phenotypes, they were dominated by activated (ICOS+PD-1+) and early memory precursor (CCR7+CD127+) subsets, and were enriched for the transcription factors IRF4 and c-Maf. These circulating TFH cells produced large amounts of IL-21 upon stimulation with donor antigen and induced B cells to differentiate into antibody-secreting cells that produced DSAs. Combined analysis of the matched circulating TFH cell and activated B cell RNA-sequencing profiles identified highly coordinated transcriptional programs in circulating TFH cells and B cells among patients with ABMR, which markedly differed from those of patients who did not develop DSAs or ABMR. The timing of expansion of the distinctive circulating TFH cells and activated B cells paralleled emergence of DSAs in blood, and their magnitude was predictive of IgG3 DSA generation, more severe allograft injury, and higher rate of allograft loss. CONCLUSIONS Patients undergoing ABMR may benefit from monitoring and therapeutic targeting of TFH cell-B cell interactions.
Collapse
Affiliation(s)
- Kevin Louis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 976, Université de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Elodie Bailly
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 976, Université de Paris, Paris, France
| | - Louis Lau
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bala Ramaswami
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marilyn Marrari
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas Landsittel
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul Fadakar
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Masaki Yamada
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Geetha Chalasani
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Parmjeet Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Harinder Singh
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Inserm UMR S970, Université de Paris, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania .,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Dandel M, Hetzer R. Impact of rejection-related immune responses on the initiation and progression of cardiac allograft vasculopathy. Am Heart J 2020; 222:46-63. [PMID: 32018202 DOI: 10.1016/j.ahj.2019.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
|
13
|
van Besouw NM, Mendoza Rojas A, Baan CC. The role of follicular T helper cells in the humoral alloimmune response after clinical organ transplantation. HLA 2019; 94:407-414. [PMID: 31423738 PMCID: PMC6852567 DOI: 10.1111/tan.13671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Over the past decade, antibody‐mediated or humoral rejection in combination with development of de novo donor‐specific antibodies (DSA) has been recognized as a distinct and common cause of transplant dysfunction and is responsible for one‐third of the failed allografts. Detailed knowledge of the mechanisms that initiate and maintain B‐cell driven antidonor reactivity is required to prevent and better treat this antidonor response in organ transplant patients. Over the past few years, it became evident that this response largely depends on the actions of both T follicular helper (Tfh) cells and the controlling counterparts, the T follicular regulatory (Tfr) cells. In this overview paper, we review the latest insights on the functions of circulating (c)Tfh cells, their subsets Tfh1, Tfh2 and Tfh17 cells, IL‐21 and Tfr cells in antibody mediated rejection (ABMR). This may offer new insights in the process to reduce de novo DSA secretion resulting in a decline in the incidence of ABMR. In addition, monitoring these cell populations could be helpful for the development of biomarkers identifying patients at risk for ABMR and provide novel therapeutic drug targets to treat ABMR.
Collapse
Affiliation(s)
- Nicole M van Besouw
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aleixandra Mendoza Rojas
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|