1
|
Busch JD, Stone NE, Pemberton GL, Roberts ML, Turner RE, Thornton NB, Sahl JW, Lemmer D, Buckmeier G, Davis SK, Guerrero-Solorio RI, Karim S, Klafke G, Thomas DB, Olafson PU, Ueti M, Mosqueda J, Scoles GA, Wagner DM. Fourteen anti-tick vaccine targets are variably conserved in cattle fever ticks. Parasit Vectors 2025; 18:140. [PMID: 40234925 PMCID: PMC12001435 DOI: 10.1186/s13071-025-06683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/23/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Rhipicephalus (Boophilus) microplus causes significant cattle production losses worldwide because it transmits Babesia bovis and B. bigemina, the causative agents of bovine babesiosis. Control of these ticks has primarily relied on treatment of cattle with chemical acaricides, but frequent use, exacerbated by the one-host lifecycle of these ticks, has led to high-level resistance to multiple classes of acaricides. Consequently, new approaches for control, such as anti-tick vaccines, are critically important. Key to this approach is targeting highly conserved antigenic epitopes to reduce the risk of vaccine escape in heterologous tick populations. METHODS We evaluated amino acid conservation within 14 tick proteins across 167 R. microplus collected from geographically diverse locations in the Americas and Pakistan using polymerase chain reaction (PCR) amplicon sequencing and in silico translation of exons. RESULTS We found that amino acid conservation varied considerably across these proteins. Only the voltage-dependent anion channel (VDAC) was fully conserved in all R. microplus samples (protein similarity 1.0). Four other proteins were highly conserved: the aquaporin RmAQP1 (0.989), vitellogenin receptor (0.985), serpin-1 (0.985), and subolesin (0.981). In contrast, the glycoprotein Bm86 was one of the least conserved (0.889). The Bm86 sequence used in the original Australian TickGARD vaccine carried many amino acid replacements compared with the R. microplus populations examined here, supporting the hypothesis that this vaccine target is not optimal for use in the Americas. By mapping amino acid replacements onto predicted three-dimensional (3D) protein models, we also identified amino acid changes within several small-peptide vaccines targeting portions of the aquaporin RmAQP2, chitinase, and Bm86. CONCLUSIONS These findings emphasize the importance of thoroughly analyzing protein variation within anti-tick vaccine targets across diverse tick populations before selecting candidate vaccine antigens. When considering protein conservation alone, RmAQP1, vitellogenin receptor, serpin-1, subolesin, and especially VDAC rank as high-priority anti-tick vaccine candidates for use in the Americas and perhaps globally.
Collapse
Affiliation(s)
- Joseph D Busch
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA.
| | - Nathan E Stone
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Grant L Pemberton
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Mackenzie L Roberts
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Rebekah E Turner
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Natalie B Thornton
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Darrin Lemmer
- TGen-North, 3051 W. Shamrell Blvd #106, Flagstaff, AZ, 86005, USA
| | - Greta Buckmeier
- USDA, ARS, KBUSLIRL-LAPRU, 2700 Fredericksburg Rd., Kerrville, TX, 78028-9184, USA
| | - Sara K Davis
- USDA, ARS, ADRU, Washington State University, 3003 ADBF, Pullman, WA, 99164-6630, USA
| | - Roberto I Guerrero-Solorio
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Querétaro, 76230, Querétaro, Mexico
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Guilherme Klafke
- Instituto de Pesquisas Veterinarias Desidério Finamor, Estrada do conde, 6000, Eldorado do sul, 92990-000, Brazil
| | - Donald B Thomas
- Cattle Fever Tick Research Laboratory, USDA, ARS, Moore Air Base, Building 6419, 22675 N. Moorefield Road, Edinburg, TX, 78541, USA
| | - Pia U Olafson
- USDA, ARS, KBUSLIRL-LAPRU, 2700 Fredericksburg Rd., Kerrville, TX, 78028-9184, USA
| | - Massaro Ueti
- USDA, ARS, ADRU, Washington State University, 3003 ADBF, Pullman, WA, 99164-6630, USA
| | - Juan Mosqueda
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Querétaro, 76230, Querétaro, Mexico
| | - Glen A Scoles
- USDA, ARS, IIBBL, Beltsville Agricultural Research Center, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| |
Collapse
|
2
|
Gou F, Zhang D, Chen S, Zhang M, Chen J. Role of nuclear protein Akirin in the modulation of female reproduction in Nilaparvata lugens (Hemiptera: Delphacidae). Front Physiol 2024; 15:1415746. [PMID: 39045218 PMCID: PMC11264338 DOI: 10.3389/fphys.2024.1415746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction: Akirin as a highly conserved transcription factor, exerts a profound influence on the growth, development, immune response, and reproductive processes in animals. The brown planthopper (BPH), Nilaparvata lugens, a major pest in rice production in Asia, possesses high reproductive capacity, a critical factor contributing to reduced rice yields. The aims of this study were to demonstrate the regulatory role of Akirin in the reproduction of BPH. Methods: In this study, quantitative PCR (qPCR) was used to detect the mRNA expression of genes. RNA interference (RNAi) was used to downregulate the expression of Akirin gene, and RNA sequencing (RNA-seq) was used to screen for differentially expressed genes caused by Akirin downregulation. Hormone contents were measured with the enzyme linked immunosorbent assay (ELISA), and protein content was evaluated with the bicinchoninic acid (BCA) method. Results: Using BPH genome data, we screened for an Akirin gene (NlAkirin). An analysis of tissue-specific expressions showed that NlAkirin was expressed in all tissues tested in female BPH, but its expression level was highest in the ovary. After inhibiting the mRNA expression of NlAkirin in BPH females, the number of eggs laid, hatching rate, and number of ovarioles decreased. Transcriptome sequencing was performed, following a NlAkirin double-stranded RNA treatment. Compared with the genes of the control, which was injected with GFP double-stranded RNA, there were 438 upregulated genes and 1012 downregulated genes; the expression of vitellogenin (Vg) and vitellogenin receptor (VgR) genes as well as the mRNA expression of genes related to the target of rapamycin (TOR), juvenile hormone (JH), and insulin pathways involved in Vg synthesis was significantly downregulated. As a result of NlAkirin knockdown, the titers of JH III and Ecdysone (Ecd) were downregulated in unmated females but returned to normal levels in mated females. The ovarian protein contents in both unmated and mated females were downregulated. Discussion and conclusion: Our results suggest that NlAkirin affects female BPH reproduction by regulating the mRNA expression of genes related to the Vg, VgR, TOR, JH, and insulin signaling pathways, in addition to the titers of JH III and Ecd. The findings of this research provide novel insights into the regulatory role of Akirin in insect reproductive capacity.
Collapse
Affiliation(s)
- Feiyan Gou
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Daowei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Siqi Chen
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Mingjing Zhang
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Jing Chen
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Nandy K, Tamakloe C, Sonenshine DE, Sultana H, Neelakanta G. Anti-tick vaccine candidate subolesin is important for blood feeding and innate immune gene expression in soft ticks. PLoS Negl Trop Dis 2023; 17:e0011719. [PMID: 37934730 PMCID: PMC10629623 DOI: 10.1371/journal.pntd.0011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Subolesin is a conserved molecule in both hard and soft ticks and is considered as an effective candidate molecule for the development of anti-tick vaccine. Previous studies have reported the role of subolesin in blood feeding, reproduction, development, and gene expression in hard ticks. However, studies addressing the role of subolesin in soft ticks are limited. In this study, we report that subolesin is not only important in soft tick Ornithodoros turicata americanus blood feeding but also in the regulation of innate immune gene expression in these ticks. We identified and characterized several putative innate immune genes including Toll, Lysozyme precursor (Lp), fibrinogen-domain containing protein (FDP), cystatin and ML-domain containing protein (MLD) in O. turicata americanus ticks. Quantitative real-time polymerase chain reaction analysis revealed the expression of these genes in both O. turicata americanus salivary glands and midgut and in all developmental stages of these soft ticks. Significantly increased expression of fdp was noted in salivary glands and midgut upon O. turicata americanus blood feeding. Furthermore, RNAi-mediated knockdown of O. turicata americanus subolesin expression affected blood feeding and innate immune gene expression in these ticks. Significant downregulation of toll, lp, fdp, cystatin, and mld transcripts was evident in sub-dsRNA-treated ticks when compared to the levels noted in mock-dsRNA-treated control. Collectively, our study not only reports identification and characterization of various innate immune genes in O. turicata americanus ticks but also provides evidence on the role of subolesin in blood feeding and innate immune gene expression in these medically important ticks.
Collapse
Affiliation(s)
- Krittika Nandy
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Comfort Tamakloe
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- The University of Queensland- Ochsner Clinical School, Jefferson, Loiusiana, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
4
|
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel) 2023; 13:2031. [PMID: 37370541 DOI: 10.3390/ani13122031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Misao Onuma
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
5
|
The Ixodes ricinus salivary gland proteome during feeding and B. Afzelii infection: New avenues for an anti-tick vaccine. Vaccine 2023; 41:1951-1960. [PMID: 36797101 DOI: 10.1016/j.vaccine.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Borrelia burgdorferi sensu lato, the causative agents of Lyme borreliosis, are transmitted by Ixodes ticks. Tick saliva proteins are instrumental for survival of both the vector and spirochete and have been investigated as targets for vaccine targeting the vector. In Europe, the main vector for Lyme borreliosis is Ixodes ricinus, which predominantly transmits Borrelia afzelii. We here investigated the differential production of I. ricinus tick saliva proteins in response to feeding and B. afzelii infection. METHOD Label-free Quantitative Proteomics and Progenesis QI software was used to identify, compare, and select tick salivary gland proteins differentially produced during tick feeding and in response to B. afzelii infection. Tick saliva proteins were selected for validation, recombinantly expressed and used in both mouse and guinea pig vaccination and tick-challenge studies. RESULTS We identified 870 I. ricinus proteins from which 68 were overrepresented upon 24-hours of feeding and B. afzelii infection. Selected tick proteins were successfully validated by confirming their expression at the RNA and native protein level in independent tick pools. When used in a recombinant vaccine formulation, these tick proteins significantly reduced the post-engorgement weights of I. ricinus nymphs in two experimental animal models. Despite the reduced ability of ticks to feed on vaccinated animals, we observed efficient transmission of B. afzelii to the murine host. CONCLUSION Using quantitative proteomics, we identified differential protein production in I. ricinus salivary glands in response to B. afzelii infection and different feeding conditions. These results provide novel insights into the process of I. ricinus feeding and B. afzelii transmission and revealed novel candidates for an anti-tick vaccine.
Collapse
|
6
|
The Correlation between Subolesin-Reactive Epitopes and Vaccine Efficacy. Vaccines (Basel) 2022; 10:vaccines10081327. [PMID: 36016215 PMCID: PMC9414912 DOI: 10.3390/vaccines10081327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccination is an environmentally-friendly alternative for tick control. The tick antigen Subolesin (SUB) has shown protection in vaccines for the control of multiple tick species in cattle. Additionally, recent approaches in quantum vaccinomics have predicted SUB-protective epitopes and the peptide sequences involved in protein−protein interactions in this tick antigen. Therefore, the identification of B-cell−reactive epitopes by epitope mapping using a SUB peptide array could be essential as a novel strategy for vaccine development. Subolesin can be used as a model to evaluate the effectiveness of these approaches for the identification of protective epitopes related to vaccine protection and efficacy. In this study, the mapping of B-cell linear epitopes of SUB from three different tick species common in Uganda (Rhipicephalus appendiculatus, R. decoloratus, and Amblyomma variegatum) was conducted using serum samples from two cattle breeds immunized with SUB-based vaccines. The results showed that in cattle immunized with SUB from R. appendiculatus (SUBra) all the reactive peptides (Z-score > 2) recognized by IgG were also significant (Z-ratio > 1.96) when compared to the control group. Additionally, some of the reactive peptides recognized by IgG from the control group were also recognized in SUB cocktail−immunized groups. As a significant result, cattle groups that showed the highest vaccine efficacy were Bos indicus immunized with a SUB cocktail (92%), and crossbred cattle were immunized with SUBra (90%) against R. appendiculatus ticks; the IgG from these groups recognized overlapping epitopes from the peptide SPTGLSPGLSPVRDQPLFTFRQVGLICERMMKERESQIRDEYDHVLSAKLAEQYDTFVKFTYDQKRFEGATPSYLS (Z-ratio > 1.96), which partially corresponded to a Q38 peptide and the SUB protein interaction domain. These identified epitopes could be related to the protection and efficacy of the SUB-based vaccines, and new chimeras containing these protective epitopes could be designed using this new approach.
Collapse
|
7
|
Neelakanta G, Sultana H. Tick Saliva and Salivary Glands: What Do We Know So Far on Their Role in Arthropod Blood Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2022; 11:816547. [PMID: 35127563 PMCID: PMC8809362 DOI: 10.3389/fcimb.2021.816547] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Ticks are blood-sucking arthropods that have developed myriad of strategies to get a blood meal from the vertebrate host. They first attach to the host skin, select a bite site for a blood meal, create a feeding niche at the bite site, secrete plethora of molecules in its saliva and then starts feeding. On the other side, host defenses will try to counter-attack and stop tick feeding at the bite site. In this constant battle between ticks and the host, arthropods successfully pacify the host and completes a blood meal and then replete after full engorgement. In this review, we discuss some of the known and emerging roles for arthropod components such as cement, salivary proteins, lipocalins, HSP70s, OATPs, and extracellular vesicles/exosomes in facilitating successful blood feeding from ticks. In addition, we discuss how tick-borne pathogens modulate(s) these components to infect the vertebrate host. Understanding the biology of arthropod blood feeding and molecular interactions at the tick-host interface during pathogen transmission is very important. This information would eventually lead us in the identification of candidates for the development of transmission-blocking vaccines to prevent diseases caused by medically important vector-borne pathogens.
Collapse
|
8
|
O'Neal AJ, Singh N, Mendes MT, Pedra JHF. The genus Anaplasma: drawing back the curtain on tick-pathogen interactions. Pathog Dis 2021; 79:ftab022. [PMID: 33792663 PMCID: PMC8062235 DOI: 10.1093/femspd/ftab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tick-borne illnesses pose a serious concern to human and veterinary health and their prevalence is on the rise. The interactions between ticks and the pathogens they carry are largely undefined. However, the genus Anaplasma, a group of tick-borne bacteria, has been instrumental in uncovering novel paradigms in tick biology. The emergence of sophisticated technologies and the convergence of entomology with microbiology, immunology, metabolism and systems biology has brought tick-Anaplasma interactions to the forefront of vector biology with broader implications for the infectious disease community. Here, we discuss the use of Anaplasma as an instrument for the elucidation of novel principles in arthropod-microbe interactions. We offer an outlook of the primary areas of study, outstanding questions and future research directions.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Additional evidence on the efficacy of different Akirin vaccines assessed on Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors 2021; 14:209. [PMID: 33879250 PMCID: PMC8056099 DOI: 10.1186/s13071-021-04711-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background Anopheles arabiensis is an opportunistic malaria vector that rests and feeds outdoors, circumventing current indoor vector control methods. Furthermore, this vector will readily feed on both animals and humans. Targeting this vector while feeding on animals can provide an additional intervention for the current vector control activities. Previous results have displayed the efficacy of using Subolesin/Akirin ortholog vaccines for the control of multiple ectoparasite infestations. This made Akirin a potential antigen for vaccine development against An. arabiensis. Methods The efficacy of three antigens, namely recombinant Akirin from An. arabiensis, recombinant Akirin from Aedes albopictus, and recombinant Q38 (Akirin/Subolesin chimera) were evaluated as novel interventions for An. arabiensis vector control. Immunisation trials were conducted based on the concept that mosquitoes feeding on vaccinated balb/c mice would ingest antibodies specific to the target antigen. The antibodies would interact with the target antigen in the arthropod vector, subsequently disrupting its function. Results All three antigens successfully reduced An. arabiensis survival and reproductive capacities, with a vaccine efficacy of 68–73%. Conclusions These results were the first to show that hosts vaccinated with recombinant Akirin vaccines could develop a protective response against this outdoor malaria transmission vector, thus providing a step towards the development of a novel intervention for An. arabiensis vector control. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04711-8.
Collapse
|
10
|
Liu L, Tang H, Feng LL, Cheng TY. Hemalin from Haemaphysalis flava ticks: cloning, expression and antithrombogenicity. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:42-50. [PMID: 32748973 DOI: 10.1111/mve.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Hemalin, initially described in Haemaphysalis longicornis, is a protein with anticoagulant activity. We retrieved a gene fragment functionally annotated as hemalin from H. flava salivary gland transcriptomic library, but its full-length complementary DNA (cDNA) and antithrombogenicity have not been investigated in the species. Here we cloned the full length of hemalin (Hf-hemalin) by 3'-end rapid-amplification of cDNA ends, and the open reading frame (ORF) of Hf-hemalin was expressed in Escherichia coli. The recombinant protein (rHf-Hemalin) was tested for antithrombogenicity. The full-length of Hf-hemalin was 607 bp with an ORF of423 bp. Protein encoded by Hf-hemalin was predicted to contain 2 Kunitz domains and a signal peptide. The expression of Hf-hemalin in salivary glands, midguts and ovaries was higher in the semi-engorged than the fully engorged. Prokaryotic expression yielded a product of 40 kDa containing a glutathione S-transferase (GST) tag. Incubation of rHf-Hemalin with rat plasma significantly extended prothrombin time and activated partial thromboplastin time compared with normal saline and GST controls. Our data demonstrated that Hemalin from H. flava shared a similar primary structure with that from H. longicornis, and was also anticoagulant. Further investigations are needed to test its feasibility to be an antigen candidate for the development of vaccines against ticks.
Collapse
Affiliation(s)
- L Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - H Tang
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - L-L Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - T-Y Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Boulanger N, Wikel S. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases? Front Immunol 2021; 12:625993. [PMID: 33643313 PMCID: PMC7907174 DOI: 10.3389/fimmu.2021.625993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Early Bacterial Virulence, Group Borrelia, Université de Strasbourg, Strasbourg, France.,Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Stephen Wikel
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine, Quinnipiac University, Hamden, CT, United States
| |
Collapse
|
12
|
Ndawula C, Tabor AE. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines (Basel) 2020; 8:E457. [PMID: 32824962 PMCID: PMC7564958 DOI: 10.3390/vaccines8030457] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Ticks are second to mosquitoes as vectors of disease. Ticks affect livestock industries in Asia, Africa and Australia at ~$1.13 billion USD per annum. For instance, 80% of the global cattle population is at risk of infestation by the Rhipicephalus microplus species-complex, which in 2016 was estimated to cause $22-30 billion USD annual losses. Although the management of tick populations mainly relies on the application of acaricides, this raises concerns due to tick resistance and accumulation of chemical residues in milk, meat, and the environment. To counteract acaricide-resistant tick populations, immunological tick control is regarded among the most promising sustainable strategies. Indeed, immense efforts have been devoted toward identifying tick vaccine antigens. Until now, Bm86-based vaccines have been the most effective under field conditions, but they have shown mixed success worldwide. Currently, of the two Bm86 vaccines commercialized in the 1990s (GavacTM in Cuba and TickGARDPLUSTM in Australia), only GavacTM is available. There is thus growing consensus that combining antigens could broaden the protection range and enhance the efficacies of tick vaccines. Yet, the anticipated outcomes have not been achieved under field conditions. Therefore, this review demystifies the potential limitations and proposes ways of sustaining enhanced cocktail tick vaccine efficacy.
Collapse
Affiliation(s)
- Charles Ndawula
- Vaccinology Research program, National Livestock Resources Research Institute, P O. Box 5746, Nakyesasa 256, Uganda
| | - Ala E. Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland Australia, St Lucia 4072, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
13
|
Kasaija PD, Contreras M, Kabi F, Mugerwa S, de la Fuente J. Vaccination with Recombinant Subolesin Antigens Provides Cross-Tick Species Protection in Bos indicus and Crossbred Cattle in Uganda. Vaccines (Basel) 2020; 8:vaccines8020319. [PMID: 32570925 PMCID: PMC7350222 DOI: 10.3390/vaccines8020319] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cattle tick infestations and transmitted pathogens affect animal health, production and welfare with an impact on cattle industry in tropical and subtropical countries. Anti-tick vaccines constitute an effective and sustainable alternative to the traditional methods for the control of tick infestations. Subolesin (SUB)-based vaccines have shown efficacy for the control of multiple tick species, but several factors affect the development of new and more effective vaccines for the control of tick infestations. To address this challenge, herein we used a regional and host/tick species driven approach for vaccine design and implementation. The objective of the study was to develop SUB-based vaccines for the control of the most important tick species (Rhipicephalus appendiculatus, R. decoloratus and Amblyomma variegatum) affecting production of common cattle breeds (Bos indicus and B. indicus x B. taurus crossbred) in Uganda. In this way, we addressed the development of anti-tick vaccines as an intervention to prevent the economic losses caused by ticks and tick-borne diseases in the cattle industry in Uganda. The results showed the possibility of using SUB antigens for the control of multiple tick species in B. indicus and crossbred cattle and suggested the use of R. appendiculatus SUB to continue research on vaccine design and formulation for the control of cattle ticks in Uganda. Future directions would include quantum vaccinology approaches based on the characterization of the SUB protective epitopes, modeling of the vaccine E under Ugandan ecological and epidemiological conditions and optimization of vaccine formulation including the possibility of oral administration.
Collapse
Affiliation(s)
- Paul D. Kasaija
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.D.K.); (M.C.)
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704 Kampala, Uganda; (F.K.); (S.M.)
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.D.K.); (M.C.)
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704 Kampala, Uganda; (F.K.); (S.M.)
| | - Swidiq Mugerwa
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704 Kampala, Uganda; (F.K.); (S.M.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.D.K.); (M.C.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: or
| |
Collapse
|
14
|
Liu L, He XM, Feng LL, Duan DY, Zhan Y, Cheng TY. Cloning of four HSPA multigene family members in Haemaphysalis flava ticks. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:192-200. [PMID: 31802518 DOI: 10.1111/mve.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The heat shock protein 70 (HSPA) family and their genes have been studied in ticks and are considered as possible antigen candidates for the development of anti-tick vaccines. However, knowledge about their members, structure and function in ticks is incomplete. Based on our transcriptomic data, the full length of four HSPA genes in Haemaphysalis flava (Acari: Ixodidae) was cloned via rapid amplification of cDNA ends. The open reading frame of HSPA2A, HSPA2B, HSPA5 and HSPA9 was 1920, 1911, 1983 and 2088 bp in length, respectively. Three family signatures and one localization motif were in the encoding proteins. HSPA2A and HSPA2B were predicted to be located at cytoplasm/nucleus, whereas HSPA5 and HSPA9 were at endoplasmic reticulum and mitochondria, respectively. In silico simulation demonstrated that those proteins had distinct numbers of α-helixes, extended strands and coils, and different antigenic epitopes. Expression of HSPA5 and HSPA9 in the salivary gland was significantly higher in partially-engorged female adult ticks than the fully-engorged (P < 0.01) as shown by a quantitative polymerase chain reaction. Our data indicated that H. flava ticks had at least four HSPA genes encoding proteins with different cellular locations, structures and expression profiles, suggesting their diverse roles in tick biology.
Collapse
Affiliation(s)
- L Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - X-M He
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - L-L Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - D-Y Duan
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - Y Zhan
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - T-Y Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
15
|
Ndawula C, Amaral Xavier M, Villavicencio B, Cortez Lopes F, Juliano MA, Parizi LF, Verli H, da Silva Vaz I, Ligabue-Braun R. Prediction, mapping and validation of tick glutathione S-transferase B-cell epitopes. Ticks Tick Borne Dis 2020; 11:101445. [PMID: 32354639 DOI: 10.1016/j.ttbdis.2020.101445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
In search of ways to address the increasing incidence of global acaricide resistance, tick control through vaccination is regarded as a sustainable alternative approach. Recently, a novel cocktail antigen tick-vaccine was developed based on the recombinant glutathione S-transferase (rGST) anti-sera cross-reaction to glutathione S-transferases of Rhipicephalus appendiculatus (GST-Ra), Amblyomma variegatum (GST-Av), Haemaphysalis longicornis (GST-Hl), Rhipicephalus decoloratus (GST-Rd) and Rhipicephalus microplus (GST-Rm). Therefore, the current study aimed to predict the shared B-cell epitopes within the GST sequences of these tick species. Prediction of B-cell epitopes and proteasomal cleavage sites were performed using immunoinformatics algorithms. The conserved epitopes predicted within the sequences were mapped on the homodimers of the respective tick GSTs, and the corresponding peptides were independently used for rabbit immunization experiments. Based on the dot blot assay, the immunogenicity of the peptides and their potential to be recognized by corresponding rGST anti-sera raised by rabbit immunization in a previous work were investigated. This study revealed that the predicted conserved B-cell epitopes within the five tick GST sequences were localized on the surface of the respective GST homodimers. The epitopes of GST-Ra, GST-Rd, GST-Av, and GST-Hl were also shown to contain a seven residue-long peptide sequence with no proteasomal cleavage sites, whereas proteasomal digestion of GST-Rm was predicted to yield a 4-residue fragment. Given that a few proteasomal cleavage sites were found within the conserved epitope sequences of the four GSTs, the sequences could also contain a T-cell epitope. Finally, the peptide and rGST anti-sera reacted against the corresponding peptide, confirming their immunogenicity. These data support the claim that the rGSTs, used in the previous study, contain conserved B-cell epitopes, which elucidates why the rGST anti-sera cross-reacted to non-homologous tick GSTs. Taken together, the data suggest that the B-cell epitopes predicted in this study could be useful for constituting epitope-based GST tick vaccines.
Collapse
Affiliation(s)
- Charles Ndawula
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Villavicencio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Cortez Lopes
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Farmacociências, Universidade Federal das Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Letinić BD, Dahan-Moss Y, Koekemoer LL. Characterising the effect of Akirin knockdown on Anopheles arabiensis (Diptera: Culicidae) reproduction and survival, using RNA-mediated interference. PLoS One 2020; 15:e0228576. [PMID: 32049962 PMCID: PMC7015393 DOI: 10.1371/journal.pone.0228576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/17/2020] [Indexed: 11/18/2022] Open
Abstract
Anopheles arabiensis is an opportunistic malaria vector that rests and feeds outdoors, circumventing current vector control methods. Furthermore, this vector will readily feed on animal as well as human hosts. Targeting the vector, while feeding on animals, can provide an additional intervention for the current vector control activities. Agricultural animals are regularly vaccinated with recombinant proteins for the control of multiple endo- and ecto-parasitic infestations. The use of a Subolesin-vaccine showed a mark reduction in tick reproductive fitness. The orthologous gene of Subolesin, called Akirin in insects, might provide a valuable species-specific intervention against outdoor biting An. arabiensis. However, the biological function of this nuclear protein has not yet been investigated in this mosquito. The effects on An. arabiensis lifetable parameters were evaluated after Akirin was knocked down using commercial small-interfering RNA (siRNA) and in vitro transcribed double-stranded RNA (dsRNA). The siRNA mediated interference of Akirin significantly reduced fecundity by 17%, fertility by 23% and longevity by 32% when compared to the controls in the female mosquitoes tested. Similarly, dsRNA treatment had a 25% decrease in fecundity, 29% decrease in fertility, and 48% decrease in longevity, when compared to the control treatments. Mosquitoes treated with Akirin dsRNA had a mean survival time of 15-days post-inoculation, which would impact on their ability to transmit malaria parasites. These results strongly suggest that Akirin has a pleiotropic function in An. arabiensis longevity and reproductive fitness.
Collapse
Affiliation(s)
- Blaženka D. Letinić
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
17
|
Artigas-Jerónimo S, Pastor Comín JJ, Villar M, Contreras M, Alberdi P, León Viera I, Soto L, Cordero R, Valdés JJ, Cabezas-Cruz A, Estrada-Peña A, de la Fuente J. A Novel Combined Scientific and Artistic Approach for the Advanced Characterization of Interactomes: The Akirin/Subolesin Model. Vaccines (Basel) 2020; 8:vaccines8010077. [PMID: 32046307 PMCID: PMC7157757 DOI: 10.3390/vaccines8010077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
The main objective of this study was to propose a novel methodology to approach challenges in molecular biology. Akirin/Subolesin (AKR/SUB) are vaccine protective antigens and are a model for the study of the interactome due to its conserved function in the regulation of different biological processes such as immunity and development throughout the metazoan. Herein, three visual artists and a music professor collaborated with scientists for the functional characterization of the AKR2 interactome in the regulation of the NF-κB pathway in human placenta cells. The results served as a methodological proof-of-concept to advance this research area. The results showed new perspectives on unexplored characteristics of AKR2 with functional implications. These results included protein dimerization, the physical interactions with different proteins simultaneously to regulate various biological processes defined by cell type-specific AKR–protein interactions, and how these interactions positively or negatively regulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in a biological context-dependent manner. These results suggested that AKR2-interacting proteins might constitute suitable secondary transcription factors for cell- and stimulus-specific regulation of NF-κB. Musical perspective supported AKR/SUB evolutionary conservation in different species and provided new mechanistic insights into the AKR2 interactome. The combined scientific and artistic perspectives resulted in a multidisciplinary approach, advancing our knowledge on AKR/SUB interactome, and provided new insights into the function of AKR2–protein interactions in the regulation of the NF-κB pathway. Additionally, herein we proposed an algorithm for quantum vaccinomics by focusing on the model proteins AKR/SUB.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Juan J. Pastor Comín
- Centro de Investigación y Documentación Musical CIDoM-UCLM-CSIC, Facultad de Educación de Ciudad Real, Ronda Calatrava 3, 13071 Ciudad Real, Spain;
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Israel León Viera
- León Viera Studio, Calle 60 No. 338 M por 31, Colonia Alcalá Martín, Mérida 97000, Mexico;
| | | | - Raúl Cordero
- Raúl Cordero Studio, Calle Rio Elba 21-8, Colonia Cuauhtémoc, CDMX 06500, Mexico;
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic;
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | | | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence:
| |
Collapse
|
18
|
Rodríguez-Mallon A, Encinosa Guzmán PE, Bello Soto Y, Rosales Perdomo K, Montero Espinosa C, Vargas M, Estrada García MP. A chemical conjugate of the tick P0 peptide is efficacious against Amblyomma mixtum. Transbound Emerg Dis 2020; 67 Suppl 2:175-177. [PMID: 31975511 DOI: 10.1111/tbed.13455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
After Rhipicephalus microplus, the most important tick species affecting livestock industry in Cuba belong to the Amblyomma genus. There are few reports of effective vaccine antigens for these species. Recently, vaccination and challenge trials using a peptide from the P0 acidic ribosomal protein of R. microplus ticks (pP0) as antigen have shown an efficacy around 90% against tick species from the Rhipicephalus genus. Given the high degree of sequence conservation among tick species, pP0 could be an antigen of versatile use in anti-tick vaccine formulations. In this paper, seven rabbits were immunized with a chemical conjugate of pP0 to keyhole limpet haemocyanin. Rabbits were challenged with an average of 1,900 Amblyomma mixtum larvae from a Cuban tick strain. The average number of recovered fed larvae and the viability of larvae in the moulting process were significantly lower in vaccinated animals compared with the control group. The overall vaccine efficacy of the P0 peptide antigen is 54% according to the calculated parameters.
Collapse
Affiliation(s)
- Alina Rodríguez-Mallon
- Department of Animal Biotechnology, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Pedro E Encinosa Guzmán
- Department of Animal Biotechnology, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Yamil Bello Soto
- Department of Animal Biotechnology, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Karen Rosales Perdomo
- Department of Animal Biotechnology, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Carlos Montero Espinosa
- Department of Animal Biotechnology, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Milagros Vargas
- Department of Animal Biotechnology, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Mario Pablo Estrada García
- Department of Animal Biotechnology, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
19
|
Contreras M, Karlsen M, Villar M, Olsen RH, Leknes LM, Furevik A, Yttredal KL, Tartor H, Grove S, Alberdi P, Brudeseth B, de la Fuente J. Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. Vaccines (Basel) 2020; 8:vaccines8010032. [PMID: 31963779 PMCID: PMC7157638 DOI: 10.3390/vaccines8010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Infestation with the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) affects Atlantic salmon (Salmo salar L.) production in European aquaculture. Furthermore, high levels of salmon lice in farms significantly increase challenge pressure against wild salmon populations. Currently, available control methods for salmon louse have limitations, and vaccination appears as an attractive, environmentally sound strategy. In this study, we addressed one of the main limitations for vaccine development, the identification of candidate protective antigens. Based on recent advances in tick vaccine research, herein, we targeted the salmon louse midgut function and blood digestion for the identification of candidate target proteins for the control of ectoparasite infestations. The results of this translational approach resulted in the identification and subsequent evaluation of the new candidate protective antigens, putative Toll-like receptor 6 (P30), and potassium chloride, and amino acid transporter (P33). Vaccination with these antigens provided protection in Atlantic salmon by reducing adult female (P33) or chalimus II (P30) sea lice infestations. These results support the development of vaccines for the control of sea lice infestations.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
| | - Marius Karlsen
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Rolf Hetlelid Olsen
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Lisa Marie Leknes
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Anette Furevik
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Karine Lindmo Yttredal
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Haitham Tartor
- Norwegian Veterinary Institute, 0106 Oslo, Norway; (H.T.); (S.G.)
| | - Soren Grove
- Norwegian Veterinary Institute, 0106 Oslo, Norway; (H.T.); (S.G.)
- Institute of Marine Research, 5005 Bergen, Norway
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
| | - Bjorn Brudeseth
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
- Correspondence: (B.B.); (J.d.l.F.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: (B.B.); (J.d.l.F.)
| |
Collapse
|
20
|
Hassan IA, Wang Y, Zhou Y, Cao J, Zhang H, Zhou J. Cross protection induced by combined Subolesin-based DNA and protein immunizations against adult Haemaphysalis longicornis. Vaccine 2019; 38:907-915. [PMID: 31699505 DOI: 10.1016/j.vaccine.2019.10.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/31/2023]
Abstract
Vaccination against ticks is an environmentally friendly alternative control method compared to chemical acaricide applications. Subolesin is a conserved protein in ticks, which can provide protection against some tick species. In this study, we evaluated the capacity of cocktail vaccination with Subolesin and ribosomal acidic protein 0 (P0) peptide against adults of Haemaphysalis longicornis. Priming with DNA vaccine expressing subolesin, followed by boosters of a single antigen (rRhSub) or a chimeric polypeptide (rRhSub/P0), provided cross protection. This treatment resulted in significant mortality, reduced blood ingestion and reduced reproduction in H. longicornis adults. Vaccination efficacies of 79.3% and 86.6% are reported in groups supplemented with rRhSub and rRhSub/P0, respectively. Conserved antigens, such as subolesin, formulated as DNA vaccine and enhanced with chimeric polypeptides, could be used as an anti-tick vaccine application, especially for control of infestation involving several tick species.
Collapse
Affiliation(s)
- Ibrahim A Hassan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
21
|
Lima-Barbero JF, Contreras M, Bartley K, Price DRG, Nunn F, Sanchez-Sanchez M, Prado E, Höfle U, Villar M, Nisbet AJ, de la Fuente J. Reduction in Oviposition of Poultry Red Mite ( Dermanyssus gallinae) in Hens Vaccinated with Recombinant Akirin. Vaccines (Basel) 2019; 7:vaccines7030121. [PMID: 31546944 PMCID: PMC6789658 DOI: 10.3390/vaccines7030121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a hematophagous ectoparasite of birds with worldwide distribution that causes economic losses in the egg-production sector of the poultry industry. Traditional control methods, mainly based on acaricides, have been only partially successful, and new vaccine-based interventions are required for the control of PRM. Vaccination with insect Akirin (AKR) and its homolog in ticks, Subolesin (SUB), have shown protective efficacy for the control of ectoparasite infestations and pathogen infection/transmission. The aim of this study was the identification of the akr gene from D. gallinae (Deg-akr), the production of the recombinant Deg-AKR protein, and evaluation of its efficacy as a vaccine candidate for the control of PRM. The anti-Deg-AKR serum IgY antibodies in hen sera and egg yolk were higher in vaccinated than control animals throughout the experiment. The results demonstrated the efficacy of the vaccination with Deg-AKR for the control of PRM by reducing mite oviposition by 42% following feeding on vaccinated hens. A negative correlation between the levels of serum anti-Deg-AKR IgY and mite oviposition was obtained. These results support Deg-AKR as a candidate protective antigen for the control of PRM population growth.
Collapse
Affiliation(s)
- Jose Francisco Lima-Barbero
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
- Sabiotec, Ed. Polivalente UCLM, Camino de Moledores s/n, 13005 Ciudad Real, Spain.
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | - Marta Sanchez-Sanchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Eduardo Prado
- Department of Applied Physics, Faculty of Science, University of Castilla La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain.
| | - Ursula Höfle
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
22
|
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019; 12:229. [PMID: 31088506 PMCID: PMC6518728 DOI: 10.1186/s13071-019-3468-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Jos J. A. Trentelman
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | | | - Tal Azagi
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martin Strnad
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Jalovecka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sabína Fumačová Havlíková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Ličková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Joppe W. Hovius
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Debalke S, Habtewold T, Duchateau L, Christophides GK. The effect of silencing immunity related genes on longevity in a naturally occurring Anopheles arabiensis mosquito population from southwest Ethiopia. Parasit Vectors 2019; 12:174. [PMID: 30992084 PMCID: PMC6469062 DOI: 10.1186/s13071-019-3414-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Vector control remains the most important tool to prevent malaria transmission. However, it is now severely constrained by the appearance of physiological and behavioral insecticide resistance. Therefore, the development of new vector control tools is warranted. Such tools could include immunization of blood hosts of vector mosquitoes with mosquito proteins involved in midgut homeostasis (anti-mosquito vaccines) or genetic engineering of mosquitoes that can drive population-wide knockout of genes producing such proteins to reduce mosquito lifespan and malaria transmission probability. METHODS To achieve this, candidate genes related to midgut homeostasis regulation need to be assessed for their effect on mosquito survival. Here, different such candidate genes were silenced through dsRNA injection in the naturally occurring Anopheles arabiensis mosquitoes and the effect on mosquito survival was evaluated. RESULTS Significantly higher mortality rates were observed in the mosquitoes silenced for FN3D1 (AARA003032), FN3D3 (AARA007751) and GPRGr9 (AARA003963) genes as compared to the control group injected with dsRNA against a non-related bacterial gene (LacZ). This observed difference in mortality rate between the candidate genes and the control disappeared when gene-silenced mosquitoes were treated with antibiotic mixtures, suggesting that gut microbiota play a key role in the observed reduction of mosquito survival. CONCLUSIONS We demonstrated that interference with the expression of the FN3D1, FN3D3 or GPRGr9 genes causes a significant reduction of the longevity of An. arabiensis mosquito in the wild.
Collapse
Affiliation(s)
- Serkadis Debalke
- Department of Medical Laboratory Science & Pathology, Jimma University, Jimma, Ethiopia
- Biometrics Research Group, Ghent University, Ghent, Belgium
| | - Tibebu Habtewold
- Biometrics Research Group, Ghent University, Ghent, Belgium
- Department of Life Sciences, Imperial College London, London, UK
| | - Luc Duchateau
- Biometrics Research Group, Ghent University, Ghent, Belgium
| | | |
Collapse
|
24
|
Boulanger N. [Immunomodulatory effect of tick saliva in pathogen transmission]. Biol Aujourdhui 2019; 212:107-117. [PMID: 30973140 DOI: 10.1051/jbio/2019001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Ticks are the most important vectors of pathogens in human and veterinary medicine. These strictly haematophagous acarines produce a saliva containing a variety of bioactive molecules affecting host pharmacology and immunity. This process is vital for hard ticks to prevent rejection by the host during the blood meal that lasts several days. All actors involved in the immunity interplay are impacted by this saliva, the innate immunity being represented by resident and migrating immune cells, as well as the T and B lymphocytes of the adaptive immune system. The skin plays a key role in vector-borne diseases. During the long co-evolution with the tick, the infectious agents benefit from this favorable environment to be transmitted efficiently into the skin and to multiply in the vertebrate host. Therefore, the saliva is an important virulence booster, which enhances substantially their pathogenicity.
Collapse
Affiliation(s)
- Nathalie Boulanger
- EA7290, Virulence Bactérienne Précoce, Groupe Borrelia, Facultés de Pharmacie et Médecine, Université de Strasbourg, Institut de bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France - Centre National de Référence Borrelia, Plateau technique de Microbiologie, CHRU Strasbourg, 1 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|
25
|
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol 2018; 9:1612. [PMID: 30542290 PMCID: PMC6277881 DOI: 10.3389/fphys.2018.01612] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
The Subolesin/Akirin constitutes a good model for the study of functional evolution because these proteins have been conserved throughout the metazoan and play a role in the regulation of different biological processes. Here, we investigated the evolutionary history of Subolesin/Akirin with recent results on their structure, protein-protein interactions and function in different species to provide insights into the functional evolution of these regulatory proteins, and their potential as vaccine antigens for the control of ectoparasite infestations and pathogen infection. The results suggest that Subolesin/Akirin evolved conserving not only its sequence and structure, but also its function and role in cell interactome and regulome in response to pathogen infection and other biological processes. This functional conservation provides a platform for further characterization of the function of these regulatory proteins, and how their evolution can meet species-specific demands. Furthermore, the conserved functional evolution of Subolesin/Akirin correlates with the protective capacity shown by these proteins in vaccine formulations for the control of different arthropod and pathogen species. These results encourage further research to characterize the structure and function of these proteins, and to develop new vaccine formulations by combining Subolesin/Akirin with interacting proteins for the control of multiple ectoparasite infestations and pathogen infection.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Paris, France
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Virology, Veterinary Research Institute, Brno, Czechia
| | | | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
26
|
Artigas-Jerónimo S, De La Fuente J, Villar M. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases. Expert Rev Proteomics 2018; 15:627-635. [PMID: 30067120 DOI: 10.1080/14789450.2018.1506701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Ticks are obligate hematophagous arthropod ectoparasites that transmit pathogens responsible for a growing number of tick-borne diseases (TBDs) throughout the world. Vaccines have been shown to be the most efficient, cost-effective, and environmentally friendly approach for the control of ticks and the prevention of TBDs. Although at its infancy, interactomics has shown the possibilities that the knowledge of the interactome offers in understanding tick biology and the molecular mechanisms involved in pathogen infection and transmission. Furthermore, interactomics has provided information for the identification of candidate vaccine protective antigens. Areas covered: In this special report, we review the different approaches used for the study of protein-protein physical and functional interactions, and summarize the application of interactomics to the characterization of tick biology and tick-host-pathogen interactions, and the possibilities that offers to vaccine development for the control of ticks and TBDs. Expert commentary: The combination of interacting proteins in antigen formulations may increase vaccine efficacy. In the near future, the combination of interactomics with other omics approaches such as transcriptomics, proteomics, metabolomics, and regulomics together with intelligent Big Data analytic techniques will improve the high throughput discovery and characterization of vaccine protective antigens for the prevention and control of TBDs.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| | - José De La Fuente
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain.,b Department of Veterinary Pathobiology , Center for Veterinary Health Sciences, Oklahoma State University , Stillwater OK , USA
| | - Margarita Villar
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| |
Collapse
|
27
|
Neelakanta G, Sultana H, Sonenshine DE, Andersen JF. Identification and characterization of a histamine-binding lipocalin-like molecule from the relapsing fever tick Ornithodoros turicata. INSECT MOLECULAR BIOLOGY 2018; 27:177-187. [PMID: 29164729 DOI: 10.1111/imb.12362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lipocalins are low molecular weight membrane transporters that are abundantly expressed in the salivary glands and other tissues of ticks. In this study, we identified a lipocalin-like molecule, designated as otlip, from the soft ticks Ornithodoros turicata, the vector for the relapsing fever causing spirochete Borrelia turicatae. We noted that the expression of otlip was developmentally regulated, with adult ticks expressing significantly higher levels in comparison to the larvae or nymphal ticks. Expression of otlip was evident in both fed and unfed O. turicata ticks, with significantly increased expression in the salivary glands in comparison to the midgut or ovary tissues. High conservation of the biogenic amine-binding motif was evident in the deduced primary amino acid sequence of Otlip. Protein modelling of Otlip revealed conservation of most of the residues involved in binding histamine or serotonin ligand. In vitro assays demonstrated binding of recombinant Otlip with histamine. Furthermore, prediction of post-translational modifications revealed that Otlip contained phosphorylation and myristoylation sites. Taken together, our study not only provides evidence for the presence of a lipocalin-like molecule in O. turicata ticks but also suggests a role for this molecule in the salivary glands of this medically important vector.
Collapse
Affiliation(s)
- G Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - H Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - D E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, MA, USA
| | - J F Andersen
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, MA, USA
| |
Collapse
|
28
|
Liu L, Liu YS, Liu GH, Cheng TY. Proteomics analysis of faecal proteins in the tick Haemaphysalis flava. Parasit Vectors 2018; 11:89. [PMID: 29422072 PMCID: PMC5806362 DOI: 10.1186/s13071-018-2673-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ticks and tick-borne diseases are of major public health concern. Currently, development of vaccines against ticks is considered crucial for their control. A critical step in this process is the screening of viable antigens. Faeces are byproducts of digestion and blood meal utilization, and partly reflect the vitality and vector potential of ticks. However, an integrated analysis of proteins in tick faeces is lacking. The present study explored the protein components in the faeces of the tick Haemaphysalis flava, by liquid chromatography-tandem mass spectrometry (LC/MS-MS) to identify potential protein antigens for vaccine development against ticks. METHODS Faeces from adult H. flava engorged females were collected. Proteins were extracted from faeces, and the trypsin-digested peptides were analyzed by LC/MS-MS. High confidence proteins were identified based on unique peptides revealed by MS. Potential faecal protein genes, as well as their sources, were also characterized by searching previous transcriptome datasets from the salivary glands and midgut of H. flava. RESULTS In total, 21 were recognized with confidence. Amongst these, 18 were of likely tick origin, while three proteins (serum albumin, haemoglobin α and β subunits) were likely from hosts. Seventeen unigenes corresponding to these proteins were retrieved by searching our previous H. flava salivary glands and midgut transcriptomic datasets. Some proteins were reported to prevent blood clotting, play a role in immunity and antibiosis, and formation of musculature. The functions of the remaining proteins are unknown. CONCLUSIONS Identifying antigens for tick vaccine development is feasible by analyzing the faecal proteome as well as the transcriptomes of salivary glands and midguts. The vast number of proteins detected in tick faeces highlights the complexity of blood digestion in ticks, a field that needs more investigation.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan Province, 410128, People's Republic of China
| | - Yi-Song Liu
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan Province, 410128, People's Republic of China
| | - Guo-Hua Liu
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan Province, 410128, People's Republic of China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan Province, 410128, People's Republic of China.
| |
Collapse
|
29
|
Contreras M, Villar M, Artigas-Jerónimo S, Kornieieva L, Mуtrofanov S, de la Fuente J. A reverse vaccinology approach to the identification and characterization of Ctenocephalides felis candidate protective antigens for the control of cat flea infestations. Parasit Vectors 2018; 11:43. [PMID: 29347954 PMCID: PMC5774092 DOI: 10.1186/s13071-018-2618-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/02/2018] [Indexed: 01/30/2023] Open
Abstract
Background Despite the abundance of the domestic cat flea, Ctenocephalides felis (Bouché, 1835) and disease risks associated with them, flea control is difficult and requires the development of new control interventions such as vaccines. In this study, a reverse vaccinology approach was designed to achieve a rational selection of cat flea candidate protective antigens. Methods Based on transcriptomics and proteomics data from unfed adult fleas it was possible to select more specific candidate protective antigens based on highly represented and functionally relevant proteins present in the predicted exoproteome. The protective capacity of the recombinant antigens was evaluated for the control of C. felis infestations in vaccinated cats. Results Vaccination with recombinant antigens induced an antibody response in immunized cats. Furthermore, a correlation was obtained between the effect of vaccination (antibody levels) and vaccine efficacy on flea phenotype (egg hatchability). The results suggested that the main effect of vaccination with these antigens was on reducing cat flea egg hatchability and fertility, with an overall vaccine efficacy of 32–46%. Although vaccination with these antigens did not have an effect on flea infestations, vaccines affecting reproductive capacity could reduce cat flea populations, particularly under conditions of direct insect transmission between cats. Conclusions These results support the development of vaccines with protective antigens affecting flea reproduction and development after feeding on immunized animals for the control of cat flea infestations. Electronic supplementary material The online version of this article (10.1186/s13071-018-2618-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Lidiia Kornieieva
- Acro Veterinary Laboratories, 15a Privokzalna Street, Pilipovichi village, Kyiv region, Ukraine
| | - Sergіі Mуtrofanov
- Acro Veterinary Laboratories, 15a Privokzalna Street, Pilipovichi village, Kyiv region, Ukraine
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain. .,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
30
|
Antunes S, Rosa C, Couto J, Ferrolho J, Domingos A. Deciphering Babesia-Vector Interactions. Front Cell Infect Microbiol 2017; 7:429. [PMID: 29034218 PMCID: PMC5627281 DOI: 10.3389/fcimb.2017.00429] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Understanding host-pathogen-tick interactions remains a vitally important issue that might be better understood by basic research focused on each of the dyad interplays. Pathogens gain access to either the vector or host during tick feeding when ticks are confronted with strong hemostatic, inflammatory and immune responses. A prominent example of this is the Babesia spp.—tick—vertebrate host relationship. Babesia spp. are intraerythrocytic apicomplexan organisms spread worldwide, with a complex life cycle. The presence of transovarial transmission in almost all the Babesia species is the main difference between their life cycle and that of other piroplasmida. With more than 100 species described so far, Babesia are the second most commonly found blood parasite of mammals after trypanosomes. The prevalence of Babesia spp. infection is increasing worldwide and is currently classified as an emerging zoonosis. Babesia microti and Babesia divergens are the most frequent etiological agents associated with human babesiosis in North America and Europe, respectively. Although the Babesia-tick system has been extensively researched, the currently available prophylactic and control methods are not efficient, and chemotherapeutic treatment is limited. Studying the molecular changes induced by the presence of Babesia in the vector will not only elucidate the strategies used by the protozoa to overcome mechanical and immune barriers, but will also contribute toward the discovery of important tick molecules that have a role in vector capacity. This review provides an overview of the identified molecules involved in Babesia-tick interactions, with an emphasis on the fundamentally important ones for pathogen acquisition and transmission.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Rosa
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Kuleš J, Horvatić A, Guillemin N, Galan A, Mrljak V, Bhide M. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. MOLECULAR BIOSYSTEMS 2017; 12:2680-94. [PMID: 27384976 DOI: 10.1039/c6mb00268d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Anita Horvatić
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
32
|
Villar M, Marina A, de la Fuente J. Applying proteomics to tick vaccine development: where are we? Expert Rev Proteomics 2017; 14:211-221. [PMID: 28099817 DOI: 10.1080/14789450.2017.1284590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ticks are second to mosquitoes as a vector of human diseases and are the first vector of animal diseases with a great impact on livestock farming. Tick vaccines represent a sustainable and effective alternative to chemical acaricides for the control of tick infestations and transmitted pathogens. The application of proteomics to tick vaccine development is a fairly recent area, which has resulted in the characterization of some tick-host-pathogen interactions and the identification of candidate protective antigens. Areas covered: In this article, we review the application and possibilities of various proteomic approaches for the discovery of tick and pathogen derived protective antigens, and the design of effective vaccines for the control of tick infestations and pathogen infection and transmission. Expert commentary: In the near future, the application of reverse proteomics, immunoproteomics, structural proteomics, and interactomics among other proteomics approaches will likely contribute to improve vaccine design to control multiple tick species with the ultimate goal of controlling tick-borne diseases.
Collapse
Affiliation(s)
- Margarita Villar
- a Sabio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| | - Anabel Marina
- b Centro de Biología Molecular Severo Ochoa CBM-SO (CSIC-UAM) , Cantoblanco , Spain
| | - José de la Fuente
- a Sabio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain.,c Department of Veterinary Pathobiology , Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , OK , USA
| |
Collapse
|
33
|
Liu L, Cheng TY, Yan F. Expression pattern of subA in different tissues and blood-feeding status in Haemaphysalis flava. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 70:511-522. [PMID: 27631766 DOI: 10.1007/s10493-016-0088-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/14/2016] [Indexed: 06/06/2023]
Abstract
Tick-borne-diseases (TBD) pose a huge threat to the health of both humans and animals worldwide. Tick vaccines constitute an attractive alternative for tick control, due to their cost-efficiency and environmental-friendliness. Subolesin, a protective antigen against ticks, is reported to be a promising candidate for the development of broad-spectrum vaccines. However, the entire length of its gene, subA, and its gene expression pattern in different tissues and blood-feeding status (or different levels of engorgement) have not been studied extensively. In our study, the full-length of subA in Haemaphysalis flava, Rhipicephalus haemaphysaloides, Rhipicephalus microplus, and Dermacentor sinicus was cloned by RACE-PCR. The subA expression pattern was analyzed further in H. flava in different tissues and blood-feeding status by RT-PCR. We found that the full-length of subA in H. flava, R. haemaphysaloides, R. microplus, and D. sinicus was 1318, 1498, 1316, and 1769 bp, respectively, with encoded proteins at 180, 162, 162, and 166 aa in length, respectively. The primary structure of subolesin in H. flava included three conserved regions and two hypervariable regions, with no signal peptide. SubA expression in female H. flava of different blood-feeding status was in the order of the fasted < the 1/4-engorged < the half-engorged < the fully-engorged (p < 0.01). Tissue expression of subA was in the order of salivary gland > midgut > integument (p < 0.01), but its expression in salivary glands was not statistically different from that in ovaries. We concluded that subolesin was a conserved antigen and that subA was expressed differentially in H. flava in different tissues and blood-feeding status. Those features made subolesin feasible as a potential target antigen for development of a universal vaccine for the control of tick infestations and a reduction in TBD.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Fen Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
34
|
Meyers JI, Gray M, Foy BD. Mosquitocidal properties of IgG targeting the glutamate-gated chloride channel in three mosquito disease vectors (Diptera: Culicidae). ACTA ACUST UNITED AC 2016; 218:1487-95. [PMID: 25994632 DOI: 10.1242/jeb.118596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The glutamate-gated chloride channel (GluCl) is a highly sensitive insecticide target of the avermectin class of insecticides. As an alternative to using chemical insecticides to kill mosquitoes, we tested the effects of purified immunoglobulin G (IgG) targeting the extracellular domain of GluCl from Anopheles gambiae (AgGluCl) on the survivorship of three key mosquito disease vectors: Anopheles gambiae s.s., Aedes aegypti and Culex tarsalis. When administered through a single blood meal, anti-AgGluCl IgG reduced the survivorship of A. gambiae in a dose-dependent manner (LC50: 2.82 mg ml(-1), range 2.68-2.96 mg ml(-1)) but not A. aegypti or C. tarsalis. We previously demonstrated that AgGluCl is only located in tissues of the head and thorax of A. gambiae. To verify that AgGluCl IgG is affecting target antigens found outside the midgut, we injected it directly into the hemocoel via intrathoracic injection. A single, physiologically relevant concentration of anti-AgGluCl IgG injected into the hemocoel equally reduced mosquito survivorship of all three species. To test whether anti-AgGluCl IgG was entering the hemocoel of each of these mosquitoes, we fed mosquitoes a blood meal containing anti-AgGluCl IgG and subsequently extracted their hemolymph. We only detected IgG in the hemolymph of A. gambiae, suggesting that resistance of A. aegypti and C. tarsalis to anti-AgGluCl IgG found in blood meals is due to deficient IgG translocation across the midgut. We predicted that anti-AgGluCl IgG's mode of action is by antagonizing GluCl activity. To test this hypothesis, we fed A. gambiae blood meals containing anti-AgGluCl IgG and the GluCl agonist ivermectin (IVM). Anti-AgGluCl IgG attenuated the mosquitocidal effects of IVM, suggesting that anti-AgGluCl IgG antagonizes IVM-induced activation of GluCl. Lastly, we stained adult, female A. aegypti and C. tarsalis for GluCl expression. Neuronal GluCl expression in these mosquitoes was similar to previously reported A. gambiae GluCl expression; however, we also discovered GluCl staining on the basolateral surface of their midgut epithelial cells, suggesting important physiological differences in Culicine and Anopheline mosquitoes.
Collapse
Affiliation(s)
- Jacob I Meyers
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523-1617, USA
| | - Meg Gray
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| | - Brian D Foy
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| |
Collapse
|
35
|
Kamau LM, Skilton RA, Githaka N, Kiara H, Kabiru E, Shah T, Musoke AJ, Bishop RP. Extensive polymorphism of Ra86 genes in field populations of Rhipicephalus appendiculatus from Kenya. Ticks Tick Borne Dis 2016; 7:772-781. [PMID: 27051976 DOI: 10.1016/j.ttbdis.2016.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Commercial vaccines based on recombinant forms of the Bm86 tick gut antigen are used to control the southern cattle tick, Rhipicephalus microplus, a 1-host species, in Australia and Latin America. We describe herein sequence polymorphism in genes encoding Ra86 homologues of Bm86 in the brown ear tick, Rhipicephalus appendiculatus, isolated from four Kenyan field populations and one laboratory colony. Sequencing of 19 Ra86 sequences defined two alleles differentiated by indels, encoding 693 amino acids (aa) and 654 aa respectively, from the Muguga laboratory reference strain. Ra86 sequences were also determined from gut cDNA from four field populations of R. appendiculatus collected in different livestock production systems in Kenya. Analysis of approximately 20 Ra86 sequences from each of the four field sites in central and Western Kenya; Makuyu, Kiambu, Kakamega and Uasin Gishu, revealed three additional size types differentiated by 39-49 amino acid indels resulting in a total of 5 indel-defined genotypes. The 693 aa type 5 was isolated only from the laboratory tick stock; genotypes 1, 2 and 3 were identified in ticks from the four Kenyan field sites and appeared to be derivatives of the shorter RA86 genotype found in Muguga laboratory stock genotype 4. By contrast no large indels have yet been observed between R. microplus sequences from Australia, South America or Africa. Evidence that selection contributes to the observed sequence variation was provided by analysis of ratio of synonymous and non-synonymous substitutions and application of the selective neutrality and neutral evolution tests to the primary data. Phylogenetic analysis clustered sequences from all Ra86 size types and Bm86, into four major clades based on amino acid substitutions, but there was no evidence that these groupings correlated with geographical separation of R. appendiculatus populations.
Collapse
Affiliation(s)
- L M Kamau
- Department of Zoological Sciences, Kenyatta University, P.O. Box 43844, Nairobi, Kenya; International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya
| | - R A Skilton
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya
| | - N Githaka
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya.
| | - H Kiara
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya
| | - E Kabiru
- Department of Zoological Sciences, Kenyatta University, P.O. Box 43844, Nairobi, Kenya
| | - T Shah
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya
| | - A J Musoke
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya
| | - R P Bishop
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya
| |
Collapse
|
36
|
Alpha proteobacteria of genusAnaplasma(Rickettsiales: Anaplasmataceae): Epidemiology and characteristics ofAnaplasmaspecies related to veterinary and public health importance. Parasitology 2016; 143:659-85. [DOI: 10.1017/s0031182016000238] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SUMMARYTheAnaplasmaspecies are important globally distributed tick-transmitted bacteria of veterinary and public health importance. These pathogens, cause anaplasmosis in domestic and wild animal species including humans.Rhipicephalus, Ixodes, DermacentorandAmblyommagenera of ticks are the important vectors ofAnaplasma.Acute anaplasmosis is usually diagnosed upon blood smear examination followed by antibodies and nucleic acid detection. All age groups are susceptible but prevalence increases with age. Serological cross-reactivity is one of the important issues amongAnaplasmaspecies. They co-exist and concurrent infections occur in animals and ticks in same geographic area. These are closely related bacteria and share various common attributes which should be considered while developing vaccines and diagnostic assays. Movement of susceptible animals from non-endemic to endemic regions is the major risk factor of bovine/ovine anaplasmosis and tick-borne fever. Tetracyclines are currently available drugs for clearance of infection and treatment in humans and animals. Worldwide vaccine is not yet available. Identification, elimination of reservoirs, vector control (chemical and biological), endemic stability, habitat modification, rearing of tick resistant breeds, chemotherapy and tick vaccination are major control measures of animal anaplasmosis. Identification of reservoirs and minimizing the high-risk tick exposure activities are important control strategies for human granulocytic anaplasmosis.
Collapse
|
37
|
Lu P, Zhou Y, Yu Y, Cao J, Zhang H, Gong H, Li G, Zhou J. RNA interference and the vaccine effect of a subolesin homolog from the tick Rhipicephalus haemaphysaloides. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:113-26. [PMID: 26608275 DOI: 10.1007/s10493-015-9987-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/31/2015] [Indexed: 05/25/2023]
Abstract
Subolesin is a well-characterized protective antigen in many ticks and, thus, it is potentially useful in the development of a broad-spectrum vaccine or an autocidal gene silencing strategy to control tick infestations. A subolesin homolog was cloned from the tick Rhipicephalus haemaphysaloides, which is widespread in China, by rapid amplification of complementary DNA (cDNA) ends. Its full-length cDNA was 1386 base pairs (bp), containing a 483 bp open reading frame with a predicted molecular mass of 18.7 kilodaltons and an isoelectric point of 9.26. The subolesin protein had a typical nuclear localization signal in its amino-terminus. The full-length cDNA of R. haemaphysaloides showed 52 and 80% identities to those from Ixodes scapularis and R. microplus, respectively, whereas amino acid sequence alignments showed 80 and 97% identities, respectively. Native subolesin was recognized in the unfed tick midgut by an antibody against recombinant subolesin. Transcriptional analysis showed that subolesin was expressed in the tick's four developmental stages and in all of the tissues examined, except for the synganglion. The pathogen Babesia microti induced the subolesin transcript by fourfold. Subolesin gene silencing by RNA interference significantly decreased the larval engorgement rate, the attachment rate and body weight of engorged nymphs, and the body weight and attachment and engorgement rates of adults, as well as the egg weight per female tick. Vaccinating mice and rabbits with recombinant subolesin induced a significant protective effect, resulting in a reduction of blood feeding and oviposition. These results encourage further studies of using subolesin to control tick infestations in China.
Collapse
Affiliation(s)
- Pengyun Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yingfang Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
38
|
Atif FA. Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol Res 2015; 114:3941-57. [PMID: 26346451 DOI: 10.1007/s00436-015-4698-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
Anaplasma marginale and Anaplasma phagocytophilum are the most important tick-borne bacteria of veterinary and public health significance in the family Anaplasmataceae. The objective of current review is to provide knowledge on ecology and epidemiology of A. phagocytophilum and compare major similarities and differences of A. marginale and A. phagocytophilum. Bovine anaplasmosis is globally distributed tick-borne disease of livestock with great economic importance in cattle industry. A. phagocytophilum, a cosmopolitan zoonotic tick transmitted pathogen of wide mammalian hosts. The infection in domestic animals is generally referred as tick-borne fever. Concurrent infections exist in ticks, domestic and wild animals in same geographic area. All age groups are susceptible, but the prevalence increases with age. Movement of susceptible domestic animals from tick free non-endemic regions to disease endemic regions is the major risk factor of bovine anaplasmosis and tick-borne fever. Recreational activities or any other high-risk tick exposure habits as well as blood transfusion are important risk factors of human granulocytic anaplasmosis. After infection, individuals remain life-long carriers. Clinical anaplasmosis is usually diagnosed upon examination of stained blood smears. Generally, detection of serum antibodies followed by molecular diagnosis is usually recommended. There are problems of sensitivity and cross-reactivity with both the Anaplasma species during serological tests. Tetracyclines are the drugs of choice for treatment and elimination of anaplasmosis in animals and humans. Universal vaccine is not available for either A. marginale or A. phagocytophilum, effective against geographically diverse strains. Major control measures for bovine anaplasmosis and tick-borne fever include rearing of tick-resistant breeds, endemic stability, breeding Anaplasma-free herds, identification of regional vectors, domestic/wild reservoirs and control, habitat modification, biological control, chemotherapy, and vaccinations (anaplasmosis and/or tick vaccination). Minimizing the tick exposure activities, identification and control of reservoirs are important control measures for human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Farhan Ahmad Atif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan.
| |
Collapse
|
39
|
Pinheiro-Silva R, Borges L, Coelho LP, Cabezas-Cruz A, Valdés JJ, do Rosário V, de la Fuente J, Domingos A. Gene expression changes in the salivary glands of Anopheles coluzzii elicited by Plasmodium berghei infection. Parasit Vectors 2015; 8:485. [PMID: 26395987 PMCID: PMC4580310 DOI: 10.1186/s13071-015-1079-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a devastating infectious disease caused by Plasmodium parasites transmitted through the bites of infected Anopheles mosquitoes. Salivary glands are the only mosquito tissue invaded by Plasmodium sporozoites, being a key stage for the effective parasite transmission, making the study of Anopheles sialome highly relevant. Methods RNA-sequencing was used to compare differential gene expression in salivary glands of uninfected and Plasmodium berghei-infected Anopheles coluzzii mosquitoes. RNA-seq results were validated by quantitative RT-PCR. The transmembrane glucose transporter gene AGAP007752 was selected for functional analysis by RNA interference. The effect of gene silencing on infection level was evaluated. The putative function and tertiary structure of the protein was assessed. Results RNA-seq data showed that 2588 genes were differentially expressed in mosquitoes salivary glands in response to P. berghei infection, being 1578 upregulated and 1010 downregulated. Metabolism, Immunity, Replication/Transcription/Translation, Proteolysis and Transport were the mosquito gene functional classes more affected by parasite infection. Endopeptidase coding genes were the most abundant within the differentially expressed genes in infected salivary glands (P < 0.001). Based on its putative function and expression level, the transmembrane glucose transporter gene, AGAP007752, was selected for functional analysis by RNA interference. The results demonstrated that the number of sporozoites was 44.3 % lower in mosquitoes fed on infected mice after AGAPP007752 gene knockdown when compared to control (P < 0.01). Conclusions Our hypothesis is that the protein encoded by the gene AGAPP007752 may play a role on An. coluzzii salivary glands infection by Plasmodium parasite, working as a sporozoite receptor and/or promoting a favorable environment for the capacity of sporozoites. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1079-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lara Borges
- Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal. .,Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal.
| | - Luís Pedro Coelho
- Unidade de Biofísica e Expressão Genética, Instituto de Medicina Molecular (IMM), Lisbon, Portugal.
| | - Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Lille, France. .,SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | | | - José de la Fuente
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain. .,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, USA.
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal. .,Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal.
| |
Collapse
|
40
|
de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines 2015; 14:1367-76. [DOI: 10.1586/14760584.2015.1076339] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Contreras M, Moreno-Cid JA, Domingos A, Canales M, Díez-Delgado I, Pérez de la Lastra JM, Sánchez E, Merino O, Zavala RL, Ayllón N, Boadella M, Villar M, Gortázar C, de la Fuente J. Bacterial membranes enhance the immunogenicity and protective capacity of the surface exposed tick Subolesin-Anaplasma marginale MSP1a chimeric antigen. Ticks Tick Borne Dis 2015. [PMID: 26219233 DOI: 10.1016/j.ttbdis.2015.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ticks are vectors of diseases that affect humans and animals worldwide. Tick vaccines have been proposed as a cost-effective and environmentally sound alternative for tick control. Recently, the Rhipicephalus microplus Subolesin (SUB)-Anaplasma marginale MSP1a chimeric antigen was produced in Escherichia coli as membrane-bound and exposed protein and used to protect vaccinated cattle against tick infestations. In this research, lipidomics and proteomics characterization of the E. coli membrane-bound SUB-MSP1a antigen showed the presence of components with potential adjuvant effect. Furthermore, vaccination with membrane-free SUB-MSP1a and bacterial membranes containing SUB-MSP1a showed that bacterial membranes enhance the immunogenicity of the SUB-MSP1a antigen in animal models. R. microplus female ticks were capillary-fed with sera from pigs orally immunized with membrane-free SUB, membrane bound SUB-MSP1a and saline control. Ticks ingested antibodies added to the blood meal and the effect of these antibodies on reduction of tick weight was shown for membrane bound SUB-MSP1a but not SUB when compared to control. Using the simple and cost-effective process developed for the purification of membrane-bound SUB-MSP1a, endotoxin levels were within limits accepted for recombinant vaccines. These results provide further support for the development of tick vaccines using E. coli membranes exposing chimeric antigens such as SUB-MSP1a.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Juan A Moreno-Cid
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Ana Domingos
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Mario Canales
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Iratxe Díez-Delgado
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - José M Pérez de la Lastra
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Emilio Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Octávio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 carretera Victoria-Mante, CP 87000 Ciudad Victoria, Tamaulipas, Mexico.
| | - Rigoberto López Zavala
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 carretera Victoria-Mante, CP 87000 Ciudad Victoria, Tamaulipas, Mexico.
| | - Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Mariana Boadella
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
42
|
Díaz-Martín V, Manzano-Román R, Obolo-Mvoulouga P, Oleaga A, Pérez-Sánchez R. Development of vaccines against Ornithodoros soft ticks: An update. Ticks Tick Borne Dis 2015; 6:211-20. [PMID: 25802033 DOI: 10.1016/j.ttbdis.2015.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 11/19/2022]
Abstract
Ticks are parasites of great medical and veterinary importance since they are vectors of numerous pathogens that affect humans, livestock and pets. Among the argasids, several species of the genus Ornithodoros transmit serious diseases such as tick-borne human relapsing fever (TBRF) and African Swine Fever (ASF). In particular, Ornithodoros erraticus is the main vector of these two diseases in the Mediterranean while O. moubata is the main vector in Africa. The presence of these Ornithodoros ticks in domestic and peridomestic environments may greatly hinder the eradication of TBRF and ASF from endemic areas. In addition, there is a constant threat of reintroduction and spreading of ASF into countries from where it has been eradicated (Spain and Portugal) or where it was never present (the Caucasus, Russia and Eastern Europe). In these countries, the presence of Ornithodoros vectors could have a tremendous impact on ASF transmission and long-term maintenance. Therefore, elimination of these ticks from at least synanthropic environments would contribute heavily to the prevention and control of the diseases they transmit. Tick control is a difficult task and although several methods for such control have been used, none of them has been fully effective against all ticks and the problems they cause. Nevertheless, immunological control using anti-tick vaccines offers an attractive alternative to the traditional use of acaricides. The aim of the present paper is to offer a brief overview of the current status in control measure development for Ornithodoros soft ticks, paying special attention to the development of vaccines against O. erraticus and O. moubata. Thus, our contribution includes an analysis of the chief attributes that the ideal antigens for an anti-tick vaccine should have, an exhaustive compilation and analysis of the scant anti-soft tick vaccine trials carried out to date using both concealed and salivary antigens and, finally, a brief description of the new reverse vaccinology approaches currently used to identify new and more effective protective tick antigens.
Collapse
Affiliation(s)
- Verónica Díaz-Martín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Raúl Manzano-Román
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
43
|
Sultana H, Patel U, Sonenshine DE, Neelakanta G. Identification and comparative analysis of subolesin/akirin ortholog from Ornithodoros turicata ticks. Parasit Vectors 2015; 8:132. [PMID: 25889484 PMCID: PMC4359563 DOI: 10.1186/s13071-015-0749-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subolesin is an evolutionary conserved molecule in diverse arthropod species that play an important role in the regulation of genes involved in immune responses, blood digestion, reproduction and development. In this study, we have identified a subolesin ortholog from soft ticks Ornithodoros turicata, the vector of the relapsing fever spirochete in the United States. METHODS Uninfected fed or unfed O. turicata ticks were used throughout this study. The subolesin mRNA was amplified by reverse transcription polymerase chain reaction (RT-PCR) and sequenced. Quantitative-real time PCR (QRT-PCR) was performed to evaluate subolesin mRNA levels at different O. turicata developmental stages and from salivary glands and gut tissues. Bioinformatics and comparative analysis was performed to predict potential post-translational modifications in O. turicata subolesin amino-acid sequences. RESULTS Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks. Expression of subolesin was evident in both unfed and fed ticks and in the salivary glands and midgut tissues. The expression of subolesin transcripts varied in fed ticks with peak levels at day 14 post-feeding. Phylogenetic analysis revealed that O. turicata subolesin showed a high degree of sequence conservation with subolesin's from other soft and hard ticks. Bioinformatics and comparative analysis predicted that O. turicata subolesin carry three Protein kinase C and one Casein kinase II phosphorylation sites. However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence. CONCLUSION Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.
Collapse
Affiliation(s)
- Hameeda Sultana
- Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, 23529, VA, USA. .,Department of Biological Sciences, Old Dominion University, Norfolk, 23529, VA, USA.
| | - Unnati Patel
- Department of Biological Sciences, Old Dominion University, Norfolk, 23529, VA, USA.
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, 23529, VA, USA.
| | - Girish Neelakanta
- Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, 23529, VA, USA. .,Department of Biological Sciences, Old Dominion University, Norfolk, 23529, VA, USA.
| |
Collapse
|
44
|
de la Fuente J, Villar M, Contreras M, Moreno-Cid JA, Merino O, Pérez de la Lastra JM, de la Fuente G, Galindo RC. Prospects for vaccination against the ticks of pets and the potential impact on pathogen transmission. Vet Parasitol 2015; 208:26-9. [DOI: 10.1016/j.vetpar.2014.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Manzano-Román R, Díaz-Martín V, Oleaga A, Pérez-Sánchez R. Identification of protective linear B-cell epitopes on the subolesin/akirin orthologues of Ornithodoros spp. soft ticks. Vaccine 2015; 33:1046-55. [PMID: 25597941 DOI: 10.1016/j.vaccine.2015.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/02/2015] [Indexed: 01/19/2023]
Abstract
Subolesin/akirin is a protective antigen that is highly conserved across hematophagous vector species and is therefore potentially useful for the development of a universal vaccine for vector control, including soft ticks. Recent results have shown that in Ornithodoros erraticus and O. moubata soft ticks, RNAi-mediated subolesin gene knockdown inhibits tick oviposition and fertility by more than 90%; however, vaccination with recombinant subolesins resulted in remarkably low protective efficacies (5-24.5% reduction in oviposition). Here we report that vaccination with subolesin recombinants induces non-protective antibodies mainly directed against immunodominant linear B-cell epitopes located on highly structured regions of the subolesin protein, probably unrelated to its biological activity, while leaving the unstructured/disordered regions unrecognized. Accordingly, for a new vaccine trial we designed four synthetic peptides (OE1, OE2, OM1 and OM2) from the unrecognized/disordered regions of the Ornithodoros subolesin sequences and coupled them to keyhole limpet haemocyanin (KLH). These KLH-peptide conjugates induced the synthesis of antibodies that recognized linear B-cell epitopes located on the unstructured loops of the subolesin protein and provided up to 70.1% and 83.1% vaccine efficacies in O. erraticus and O. moubata, respectively. These results show that the protective effect of subolesin-based vaccines is highly dependent on the particular epitope recognized by antibodies on the subolesin sequence and strongly suggest that the biological activity of subolesin is exerted through its unstructured regions. The results reported here contribute to our understanding of the mechanism of protection of subolesin-based vaccines and reveal novel protective peptides that could be included among the array of candidate antigens useful for developing anti-vector vaccines based on subolesin/akirin.
Collapse
Affiliation(s)
- Raúl Manzano-Román
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Verónica Díaz-Martín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
46
|
da Costa M, Pinheiro-Silva R, Antunes S, Moreno-Cid JA, Custódio A, Villar M, Silveira H, de la Fuente J, Domingos A. Mosquito Akirin as a potential antigen for malaria control. Malar J 2014; 13:470. [PMID: 25472895 PMCID: PMC4265507 DOI: 10.1186/1475-2875-13-470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background The control of vector-borne diseases is important to improve human and animal health worldwide. Malaria is one of the world’s deadliest diseases and is caused by protozoan parasites of the genus Plasmodium, which are transmitted by Anopheles spp. mosquitoes. Recent evidences using Subolesin (SUB) and Akirin (AKR) vaccines showed a reduction in the survival and/or fertility of blood-sucking ectoparasite vectors and the infection with vector-borne pathogens. These experiments suggested the possibility of using AKR for malaria control. Methods The role of AKR on Plasmodium berghei infection and on the fitness and reproduction of the main malaria vector, Anopheles gambiae was characterized by evaluating the effect of akr gene knockdown or vaccination with recombinant mosquito AKR on parasite infection levels, fertility and mortality of female mosquitoes. Results Gene knockdown by RNA interference in mosquitoes suggested a role for akr in mosquito survival and fertility. Vaccination with recombinant Aedes albopictus AKR reduced parasite infection in mosquitoes fed on immunized mice when compared to controls. Conclusions These results showed that recombinant AKR could be used to develop vaccines for malaria control. If effective, AKR-based vaccines could be used to immunize wildlife reservoir hosts and/or humans to reduce the risk of pathogen transmission. However, these vaccines need to be evaluated under field conditions to characterize their effect on vector populations and pathogen infection and transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ana Domingos
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal.
| |
Collapse
|
47
|
Subolesin: a candidate vaccine antigen for the control of cattle tick infestations in Indian situation. Vaccine 2014; 32:3488-94. [PMID: 24795229 DOI: 10.1016/j.vaccine.2014.04.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022]
Abstract
Identification of cross-protective tick vaccine antigens is a challenging area of veterinary research. To address this challenge, a recently identified candidate tick protective antigen, Subolesin (SUB), was targeted in this research. The conservation of subolesin ortholog of Hyalomma anatolicum and Rhipicephalus (Boophilus) microplus across different Indian strains was 98.1-99.4% (within species), while at the amino acid level SUB sequence homology was ≥53.2% (between tick species). Recombinant R. (B.) microplus SUB (rBmSu) was produced in Escherichia coli and characterized. Cross-bred cattle male calves (N=10) were immunized with three doses of 100 μg each of the rBmSu emulsified in 10% Montanide 888 at monthly intervals on days 0, 30 and 60. The control group was injected with PBS in 10% Montanide 888. For the first tick challenge, calves were infested with larvae of R. (B.) microplus generated from 100mg eggs 2 weeks after last immunization (day 75). The immunization resulted in 16.3%, 8.0%, 9.4%, and 26.1% reduction in female tick numbers (DT), weight (DW), oviposition (DO) and egg fertility (DF), respectively, when compared to controls. In the subsequent challenge on day 105, DT, DW, DO and DF were reduced by 9.0%, 4.1%, 8.6%, and 24.2%, respectively, when compared to controls. The vaccine efficacy (E) was equal to 44.0% and 37.2% after the first and second challenges, respectively. The results showed a positive correlation between antibody titers for both total IgG and IgG1 and E in the second but not in the first tick challenge. These results suggested the possibility of developing a SUB-based vaccine for control of cattle tick infestations under Indian conditions.
Collapse
|
48
|
Torina A, Moreno-Cid JA, Blanda V, Fernández de Mera IG, de la Lastra JMP, Scimeca S, Blanda M, Scariano ME, Briganò S, Disclafani R, Piazza A, Vicente J, Gortázar C, Caracappa S, Lelli RC, de la Fuente J. Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. Parasit Vectors 2014; 7:10. [PMID: 24398155 PMCID: PMC3896746 DOI: 10.1186/1756-3305-7-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the use of chemical acaricides, tick infestations continue to affect animal health and production worldwide. Tick vaccines have been proposed as a cost-effective and environmentally friendly alternative for tick control. Vaccination with the candidate tick protective antigen, Subolesin (SUB), has been shown experimentally to be effective in controlling vector infestations and pathogen infection. Furthermore, Escherichia coli membranes containing the chimeric antigen composed of SUB fused to Anaplasma marginale Major Surface Protein 1a (MSP1a) (SUB-MSP1a) were produced using a simple low-cost process and proved to be effective for the control of cattle tick, Rhipicephalus (Boophilus) microplus and R. annulatus infestations in pen trials. In this research, field trials were conducted to characterize the effect of vaccination with SUB-MSP1a on tick infestations and the prevalence of tick-borne pathogens in a randomized controlled prospective study. METHODS Two cattle and two sheep farms with similar geographical locations and production characteristics were randomly assigned to control and vaccinated groups. Ticks were collected, counted, weighed and classified and the prevalence of tick-borne pathogens at the DNA and serological levels were followed for one year prior to and 9 months after vaccination. RESULTS Both cattle and sheep developed antibodies against SUB in response to vaccination. The main effect of the vaccine in cattle was the 8-fold reduction in the percent of infested animals while vaccination in sheep reduced tick infestations by 63%. Female tick weight was 32-55% lower in ticks collected from both vaccinated cattle and sheep when compared to controls. The seroprevalence of Babesia bigemina was lower by 30% in vaccinated cattle, suggesting a possible role for the vaccine in decreasing the prevalence of this tick-borne pathogen. The effect of the vaccine in reducing the frequency of one A. marginale msp4 genotype probably reflected the reduction in the prevalence of a tick-transmitted strain as a result of the reduction in the percent of tick-infested cattle. CONCLUSIONS These data provide evidence of the dual effect of a SUB-based vaccine for controlling tick infestations and pathogen infection/transmission and provide additional support for the use of the SUB-MSP1a vaccine for tick control in cattle and sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
| |
Collapse
|
49
|
|