1
|
Li M, Pan L, Ma C, Wu H, Xiang G, Li LF, Wang T, Luo R, Li Y, Liu D, Zhai H, Assad M, Song X, Wang Y, Gallardo F, Qiu HJ, Sun Y. Tracking of single virus: Dual fluorescent labeling of pseudorabies virus for observing entry and replication in the N2a cells. Vet Microbiol 2025; 304:110503. [PMID: 40199056 DOI: 10.1016/j.vetmic.2025.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Pseudorabies virus (PRV) is a neurotropic herpesvirus. It is not easy to be track the whole replication progress of PRV, especially the nascent viral genome in the host cells. In this study, we developed a dual-fluorescence-labeled PRV (rPRV-Anchor3-mCherry) with the viral genome and the envelope protein gM labeled by ANCHOR DNA labeling system and mCherry, respectively. Through single-virus tracking of rPRV-Anchor3-mCherry, we observed that PRV invaded mouse neuroblastoma Neuro-2a cells via both endocytosis and plasma membrane fusion pathway. During the replication stage, parental and progeny viral genome of rPRV-Anchor3-mCherry in the cell nuclei could be visible, and viral nucleocapsid appeared more specifically than traditional capsid protein labeled PRV particles (rPRV-VP26-EGFP). We found that numerous progeny viral particles were produced in the nuclear, causing the nucleus membrane to break using three-dimensional (3D) live-cell imaging and electron microscopy. Moreover, our findings confirmed that simultaneously targeting of the UL9 and UL54 genes using a CRISPR-Cas9 system led to the complete inhibition PRV replication. rPRV-Anchor3-mCherry can be used to research multiple steps of the viral cycle.
Collapse
Affiliation(s)
- Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Caoyuan Ma
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Guangtao Xiang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Di Liu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Moon Assad
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Xin Song
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China.
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China.
| |
Collapse
|
2
|
Luan H, Song Y, Hu H, Zhang W, Zhang H, Su T, Wang J, Ye G, Yin Z, Zhao X, Zhou X, Li L, Zou Y, Zhang Y, Song X. Resveratrol exerts antiviral activity against pseudorabies virus through regulation of the OPN-ERK/JNK-IL-1β signaling axis. J Proteomics 2025; 317:105444. [PMID: 40274095 DOI: 10.1016/j.jprot.2025.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Pseudorabies virus (PRV) can infect most mammals and has caused significant economic losses in global pig production. The emergence of new mutants significantly reduces the protective effect of vaccination, indicating an urgent need for the development of specific therapeutic agents against PRV infection. In this study, we analyzed the changes in the cellular proteome after PRV infection in resveratrol-treated PK-15 cells using TMT quantitative proteomics combined with LC-MS/MS. The results identified the differential proteins osteopontin (iOPN) and interleukin-1 receptor accessory protein (IL-1RAP), which have significant biological implications. The regulation of OPN-IL-1β signaling by PRV infection was further studied through the OPN-ERK/JNK-IL-1β signaling axis. The transcriptional levels of OPN, C-JUN, IL-1RAP, and IL-1β, along with the protein levels of ERK, JNK, C-Jun, and their phosphorylated forms at 8, 12, and 16 h post-infection, were determined. The results showed that PRV infection inhibited the activation of this signaling axis, which was upregulated by resveratrol treatment. Down-regulation of OPN by siRNA increased PRV proliferation and inhibited the activation of the signaling axis, which was antagonized by resveratrol treatment. In PRV-infected mice, resveratrol treatment produced the same changes observed in vitro. The present study demonstrated that resveratrol can promote innate immune responses by regulating the OPN-ERK/JNK-IL-1β signaling axis, thereby activating host antiviral defenses against PRV infection. SIGNIFICANCE: Resveratrol targets the OPN-ERK/JNK-IL-1β axis to enhance innate immunity, offering a novel antiviral strategy against PRV infection. This study identifies OPN as a key regulator of host defense, linking ERK/JNK signaling to IL-1β-mediated antiviral responses. In vivo validation demonstrates resveratrol's therapeutic potential, reducing PRV replication and mortality in mice via immune pathway activation.
Collapse
Affiliation(s)
- Hongliang Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Qilu Animal Health Products Co., Ltd, Jinan 250100, China
| | - Yizhen Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongqiao Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenrui Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianli Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinhong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingying Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. @sicau.edu.cn
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Zhuang L, Gong J, Shen J, Zhao Y, Yang J, Liu Q, Zhang Y, Shen Q. Advances in molecular epidemiology and detection methods of pseudorabies virus. DISCOVER NANO 2025; 20:45. [PMID: 39992589 PMCID: PMC11850701 DOI: 10.1186/s11671-025-04217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Pseudorabies (PR), a highly contagious disease caused by the pseudorabies virus (PRV), represents a significant threat to the global swine industry. Despite the success of developed countries in controlling the PRV epidemic through swine pseudorabies eradication programs, wild boars, as a potential source of infection, still require sustained attention and effective control measures. Concurrently, there has been considerable global attention directed towards cases of PRV infection in humans. In consideration of the aforementioned factors, this paper presents a comprehensive review of recent developments in the PRV genome, epidemiology, vaccine research, and molecular detection methods. The epidemiology section presents an analysis of the transmission routes, susceptible animal groups, and geographic distribution of PRV, as well as an examination of the trend of the epidemic in recent years. In the field of vaccine research, the current development of genetically engineered vaccines is emphasized, and the immunogenicity and safety of vaccines are discussed. Moreover, the molecular detection techniques utilized to identify PRV, including immunological methods, nucleic acid detection methods, biosensors, and so forth, are presented in a systematic manner. Finally, this paper presents a comprehensive discussion of the current status of PRV-related research and offers insights into future directions, with the aim of providing a foundation for the scientific prevention and control of PRV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
4
|
Zhang Y, Li X, Zhang J, Duan Y, Chen P, Shi L, Yuan C, Cao L, Sun M, Wang Y, Kong X, Zheng H, Wang Q. A rapid and versatile reverse genetic approach and visualization animal models for emerging zoonotic pseudorabies virus. Antiviral Res 2024; 232:106036. [PMID: 39522887 DOI: 10.1016/j.antiviral.2024.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae subfamily and a causative pathogen of Aujeszky's disease, has a broad host range including domestic and wild animals. PRV has been reported as a causative agent in patients with acute encephalitis in 2021, which suggests PRV might be a novel animal-origin virus in terms of zoonotic spillover and spread potential. To manage current PRV epidemics in pigs and prepare for future pandemics in other species including humans. Fundamental techniques essential for procuring such knowledge on prevention and therapy of PRV. Here, PRV CD22 strain was isolated and phylogenetic analysis showed that PRV CD22 belongs to the current epidemic strains in China. PRV CD22 was highly lethal to mice and piglets in vivo. Moreover, a rapid and efficient system to generate recombinant PRV was constructed based on PRV CD22 genomic DNA fosmid library. Using this system, a recombinant PRV strain expressing engineered labeling protein was rescued for visualization of viral infection in mouse model. Our study allows the generation of PRV that can be used for downstream treatment analyses. Once experimental or surveillance samples are obtained, PRV can be generated and treated efficiently based on our study.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangtong Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Juan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yueyue Duan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Peibin Chen
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Lei Shi
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Cong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liyan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Maowen Sun
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yating Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangyu Kong
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Qi Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| |
Collapse
|
5
|
Wu J, Zhang J, Zhou J, Luo Y, Wang X, Yang R, Zhu J, Jia M, Zhang L, Fu L, Yan N, Wang Y. Prevalence and Genetic Variation Investigation of the Pseudorabies Virus in Southwest China. Animals (Basel) 2024; 14:3103. [PMID: 39518826 PMCID: PMC11544765 DOI: 10.3390/ani14213103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In 2022, a significant PRV outbreak in a southwestern China pig farm led to a high incidence of sow abortion. A serological analysis using gE antigen-based ELISA revealed a high prevalence (69.30%) of PRV gE antibodies among the affected pigs, with a significant variation across different pig populations (1.11-76.12%). We collected additional 5552 pig serum samples and 580 pig cerebrospinal fluid (CSF) samples from various pig farms in Southwest China between 2022 and 2024. The seropositive rates for PRV gE antibodies ranged from 2.36% and 8.65% in the serum samples, while the positive detection rates for the PRV gE gene in the cerebrospinal fluid samples, as determined by PCR, were between 1.06% and 2.36%. The PCR analysis and sequencing of the PRV gB, gC, gE, and TK genes from eight randomly selected samples identified two distinct strains, CQ1 and CQ2. CQ1's gC gene showed similarity to the vaccine strain Bartha, while the other genes aligned with Chinese classical strains, suggesting its potential genetic recombination. CQ2 aligned with the Chinese classical strain SC. Although the overall PRV infection in Southwest China's pig farms is relatively low, occasional outbreaks with high positivity rates are observed. These findings highlight the necessity for increased surveillance and stringent control measures to safeguard the swine industry.
Collapse
Affiliation(s)
- Jiaqi Wu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Juan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Jun Zhou
- Sichuan Boce Testing Technology Co., Ltd., Chengdu 610023, China;
| | - Yi Luo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Rui Yang
- Chongqing Academy of Animal Science, Chongqing 408599, China (L.F.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Junhai Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Meiyu Jia
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Longxiang Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing 408599, China (L.F.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Nan Yan
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
6
|
Chen X, Li W. The heat shock protein DNAJB8 inhibits pseudorabies virus replication by autophagy. Vet Microbiol 2024; 295:110165. [PMID: 38936156 DOI: 10.1016/j.vetmic.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Pseudorabies virus (PRV) effectively utilizes numerous host proteins and pathways to establish a successful infection. Consequently, it becomes imperative to investigate novel host factors implicated in viral infections to gain a deeper understanding of PRV pathogenesis. In this study, we reveal that the host heat shock protein, DNAJB8, functions as a negative regulator in PRV replication. Our findings indicated that both mRNA and protein levels of DNAJB8 were downregulated in cells infected with PRV. Further analysis demonstrated that overexpressing DNAJB8 suppressed PRV replication, whereas its knockdown enhanced viral replication. From a mechanistic perspective, DNAJB8 promoted cellular autophagy, subsequently impeding viral replication. Additionally, we discovered that the transcription factor SOX30 regulated DNAJB8 expression, thereby influencing viral replication. Collectively, these findings enhance our comprehension of the roles played by DNAJB8 and SOX30 in viral replication, broadening our knowledge of virus-host interactions.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang, PR China.
| | - Wenfeng Li
- College of Animal Science, Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| |
Collapse
|
7
|
Guo H, Liu Q, Yang D, Zhang H, Kuang Y, Li Y, Chen H, Wang X. Brincidofovir Effectively Inhibits Proliferation of Pseudorabies Virus by Disrupting Viral Replication. Viruses 2024; 16:464. [PMID: 38543829 PMCID: PMC10975951 DOI: 10.3390/v16030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.
Collapse
Affiliation(s)
- Huihui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyun Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Kuang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafei Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| |
Collapse
|
8
|
Pan L, Li M, Zhang X, Xia Y, Mian AM, Wu H, Sun Y, Qiu HJ. Establishment of an In Vitro Model of Pseudorabies Virus Latency and Reactivation and Identification of Key Viral Latency-Associated Genes. Viruses 2023; 15:v15030808. [PMID: 36992518 PMCID: PMC10056777 DOI: 10.3390/v15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Alphaherpesviruses infect humans and most animals. They can cause severe morbidity and mortality. The pseudorabies virus (PRV) is a neurotropic alphaherpesvirus that can infect most mammals. The PRV persists in the host by establishing a latent infection, and stressful stimuli can induce the latent viruses to reactivate and cause recurrent diseases. The current strategies of antiviral drug therapy and vaccine immunization are ineffective in eliminating these viruses from the infected host. Moreover, overspecialized and complex models are also a major obstacle to the elucidation of the mechanisms involved in the latency and reactivation of the PRV. Here, we present a streamlined model of the latent infection and reactivation of the PRV. A latent infection established in N2a cells infected with the PRV at a low multiplicity of infection (MOI) and maintained at 42 °C. The latent PRV was reactivated when the infected cells were transferred to 37 °C for 12 to 72 h. When the above process was repeated with a UL54-deleted PRV mutant, it was observed that the UL54 deletion did not affect viral latency. However, viral reactivation was limited and delayed. This study establishes a powerful and streamlined model to simulate PRV latency and reveals the potential role of temperature in PRV reactivation and disease. Meanwhile, the key role of the early gene UL54 in the latency and reactivation of PRV was initially elucidated.
Collapse
Affiliation(s)
- Li Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Mingzhi Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xinyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yu Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Assad Moon Mian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Hongxia Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
9
|
Microscopic lesions and modulation of gene expression in cervical medulla during BoAHV-1and BoAHV-5 infection: A mini-review. Res Vet Sci 2023; 156:81-87. [PMID: 36791580 DOI: 10.1016/j.rvsc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Bovine herpesvirus (BoAHV) types 1 and 5 are closely-related neurotropic alpha-herpesviruses. BoAHV-1 generally causes respiratory and genital disease but can occasionally cause encephalitis. BoAHV-5 is the causative agent of non suppurative meningoencephalitis in calves. During neuroinvasion, both viruses reach the central and peripheral nervous system. While brain alterations are well-described, the changes that occur in the medulla have not been fully detailed. In this work, we integrated and analyzed the virological findings, the microscopic lesions and the changes that occur in the expression of genes related to the innate immunity, cell cycle and apoptosis in the cervical medulla of calves experimentally-infected with BoAHV-1 and BoAHV-5. This will contribute to the understanding of the differential neuropathogenesis of these alpha-herpesviruses of cattle.
Collapse
|
10
|
Dihydromyricetin Inhibits Pseudorabies Virus Multiplication In Vitro by Regulating NF-κB Signaling Pathway and Apoptosis. Vet Sci 2023; 10:vetsci10020111. [PMID: 36851415 PMCID: PMC9961748 DOI: 10.3390/vetsci10020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pseudorabies virus (PRV) infections have caused huge economic losses to the breeding industry worldwide, especially pig husbandry. PRV could threaten human health as an easily ignored zoonotic pathogen. The emergence of new mutants significantly reduced the protective effect of vaccination, indicating an urgent need to develop specific therapeutic drugs for PRV infection. In this study, we found that dihydromyricetin (DMY) could dose-dependently restrain PRV infection in vitro with an IC50 of 161.34 μM; the inhibition rate of DMY at a concentration of 500 μM was 92.16 %. Moreover, the mode of action showed that DMY directly inactivated PRV virion and inhibited viral adsorption and cellular replication. DMY treatment could improve PRV-induced abnormal changes of the NF-κB signaling pathway and excessive inflammatory response through regulation of the contents of IκBα and p-P65/P65 and the transcriptional levels of cytokines (TNF-α, IL-1β and IL-6). Furthermore, DMY promoted the apoptosis of PRV-infected cells through the regulation of the expressions of Bax and Bcl-xl and the transcriptional levels of Caspase-3, Bax, Bcl-2 and Bcl-xl, thereby limiting the production of progeny virus. These findings indicated that DMY could be a candidate drug for the treatment of PRV infection.
Collapse
|
11
|
Nie Z, Zhu S, Wu L, Sun R, Shu J, He Y, Feng H. Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Front Microbiol 2023; 14:1138016. [PMID: 36937252 PMCID: PMC10020201 DOI: 10.3389/fmicb.2023.1138016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudorabies virus (PRV) is a highly infectious disease that can infect most mammals, with pigs as the only natural host, has caused considerable economic losses to the pig husbandry of the world. Innate immunity is the first defense line of the host against the attack of pathogens and is essential for the proper establishment of adaptive immunity. The host uses the innate immune response to against the invasion of PRV; however PRV makes use of various strategies to inhibit the innate immunity to promote the virus replication. Currently, live attenuated vaccine is used to prevent pig from infection with the PRV worldwide, such as Bartha K61. However, a growing number of data indicates that these vaccines do not provide complete protection against new PRV variants that have emerged since late 2011. Here we summarized the interactions between PRV and host innate immunity and the current status of live attenuated PRV vaccines to promote the development of novel and more effective PRV vaccines.
Collapse
Affiliation(s)
- Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Huapeng Feng,
| |
Collapse
|
12
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Li X, Chen S, Zhang L, Zheng J, Niu G, Yang L, Zhang X, Ren L. Mutation and Interaction Analysis of the Glycoprotein D and L and Thymidine Kinase of Pseudorabies Virus. Int J Mol Sci 2022; 23:ijms231911597. [PMID: 36232898 PMCID: PMC9570442 DOI: 10.3390/ijms231911597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudorabies (also called Aujeszky's disease) is a highly infectious viral disease caused by the pseudorabies virus (PRV, or Suid herpesvirus 1). Although the disease has been controlled by immunization with the PRV-attenuated vaccine, the emerging PRV variants can escape the immune surveillance in the vaccinated pig, resulting in recent outbreaks. Furthermore, the virus has been detected in other animals and humans, indicating cross-transmission of PRV. However, the mechanism of PRV cross-species transmission needs further study. In this study, we compared the amino acid sequences of glycoproteins (gD), gL, and thymidine kinase (TK) of PRV strains, human PRV hSD-1 2019 strain, and the attenuated strain Bartha-K61, followed by predication of their spatial conformation. In addition, the interactions between the viral gD protein and host nectin-1, nectin-2, and HS were also evaluated via molecular docking. The results showed that the amino acid sequence homology of the gD, gL, and TK proteins of hSD-1 2019 and JL-CC was 97.5%, 94.4%, and 99.1%, respectively. Moreover, there were mutations in the amino acid sequences of gD, gL, and TK proteins of hSD-1 2019 and JL-CC compared with the corresponding reference sequences of the Bartha strain. The mutations of gD, gL, and TK might not affect the spatial conformation of the protein domain but may affect the recognition of antibodies and antigen epitopes. Moreover, the gD protein of JL-CC, isolated previously, can bind to human nectin-1, nectin-2, and HS, suggesting the virus may be highly infectious and pathogenic to human beings.
Collapse
|
14
|
Jin YL, Yin D, Xing G, Huang YM, Fan CM, Fan CF, Qiu XH, Dong WR, Yan Y, Gu JY, Zhou JY. The Inactivated gE/TK Gene-Deleted Vaccine Against Pseudorabies Virus Type II Confers Effective Protection in Mice and Pigs. Front Microbiol 2022; 13:943707. [PMID: 35992698 PMCID: PMC9389536 DOI: 10.3389/fmicb.2022.943707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The highly virulent and antigenic variant of Pseudorabies virus (PRV) that emerged from classical Bartha-K61-vaccinated pig herds has caused substantial economic losses to the swine industry in China since 2011. A safe and more effective vaccine is most desirable. In this study, a gE/TK gene-deficient PRV, namely, HD/c, was constructed based on a PRV type II DX strain isolated from a commercial vaccine-immunized farm and the HD/c-based inactivated vaccine was formulated and evaluated for its safety, immunogenicity, and protective efficacy in mice and piglets. The resulting PRV HD/c strain has a similar growth curve to the parental DX strain. After vaccination, the inactivated HD/c vaccine did not cause any visible gross pathological or histopathological changes in the tissues of mice and piglets and provided rapid and potent protection against the challenge of the classical and variant PRVs at day 21 post-vaccination in mice. A single immunization of 108.5TCID50 inactivated PRV HD/c strain-elicited robust immunity with high titer of neutralizing antibody and provided complete protection from the lethal challenge of PRV DX strain in piglets. These results indicated that the inactivated PRV HD/c vaccine with the deletion of gE/TK genes was a safe and effective PRV vaccine candidate for the control of PRV.
Collapse
Affiliation(s)
- Yu-Lan Jin
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- The Experimental Teaching Center, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Di Yin
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Gang Xing
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Ming Huang
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Chun-Mei Fan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Fei Fan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Huo Qiu
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Ren Dong
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yan Yan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Yan Gu
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Ji-Yong Zhou
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Ji-Yong Zhou
| |
Collapse
|
15
|
Liu Q, Kuang Y, Li Y, Guo H, Zhou C, Guo S, Tan C, Wu B, Chen H, Wang X. The Epidemiology and Variation in Pseudorabies Virus: A Continuing Challenge to Pigs and Humans. Viruses 2022; 14:v14071463. [PMID: 35891443 PMCID: PMC9325097 DOI: 10.3390/v14071463] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Pseudorabies virus (PRV) can infect most mammals and is well known for causing substantial economic losses in the pig industry. In addition to pigs, PRV infection usually leads to severe itching, central nervous system dysfunction, and 100% mortality in its non-natural hosts. It should be noted that increasing human cases of PRV infection have been reported in China since 2017, and these patients have generally suffered from nervous system damage and even death. Here, we reviewed the current prevalence and variation in PRV worldwide as well as the PRV-caused infections in animals and humans, and briefly summarized the vaccines and diagnostic methods used for pseudorabies control. Most countries, including China, have control programs in place for pseudorabies in domestic pigs, and thus, the disease is on the decline; however, PRV is still globally epizootic and an important pathogen for pigs. In countries where pseudorabies in domestic pigs have already been eliminated, the risk of PRV transmission by infected wild animals should be estimated and prevented. As a member of the alphaherpesviruses, PRV showed protein-coding variation that was relatively higher than that of herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV), and its evolution was mainly contributed to by the frequent recombination observed between different genotypes or within the clade. Recombination events have promoted the generation of new variants, such as the variant strains resulting in the outbreak of pseudorabies in pigs in China, 2011. There have been 25 cases of PRV infections in humans reported in China since 2017, and they were considered to be infected by PRV variant strains. Although PRV infections have been sporadically reported in humans, their causal association remains to be determined. This review provided the latest epidemiological information on PRV for the better understanding, prevention, and treatment of pseudorabies.
Collapse
Affiliation(s)
- Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yan Kuang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yafei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huihui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chuyue Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| |
Collapse
|
16
|
Deng J, Wu Z, Liu J, Ji Q, Ju C. The Role of Latency-Associated Transcripts in the Latent Infection of Pseudorabies Virus. Viruses 2022; 14:v14071379. [PMID: 35891360 PMCID: PMC9320458 DOI: 10.3390/v14071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies virus (PRV) can cause neurological, respiratory, and reproductive diseases in pigs and establish lifelong latent infection in the peripheral nervous system (PNS). Latent infection is a typical feature of PRV, which brings great difficulties to the prevention, control, and eradication of pseudorabies. The integral mechanism of latent infection is still unclear. Latency-associated transcripts (LAT) gene is the only transcriptional region during latent infection of PRV which plays the key role in regulating viral latent infection and inhibiting apoptosis. Here, we review the characteristics of PRV latent infection and the transcriptional characteristics of the LAT gene. We also analyzed the function of non-coding RNA (ncRNA) produced by the LAT gene and its importance in latent infection. Furthermore, we provided possible strategies to solve the problem of latent infection of virulent PRV strains in the host. In short, the detailed mechanism of PRV latent infection needs to be further studied and elucidated.
Collapse
|
17
|
Ukhovskyi VV, Korniienko LY, Pyskun AV, Chechet OM, Drozhzhe ZM, Polupan IM, Aliekseieva GB, Moroz OA, Romanov OM. Spread of Aujeszky’s disease among wild boars and domestic pigs in Ukraine. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aujeszky’s disease, also known as pseudorabies is an acute infectious viral disease in a variety of mammals caused by Suid herpesvirus 1, a member of the subfamily Alphaherpesvirinae and the family Herpesviridae. This virus causes significant economic losses in agriculture of numerous countries. In particular, in pig farming, the main losses are currently associated with restrictions of international trade, as well as the cost of vaccination or slaughter of infected animals. The main reservoirs species of this disease are considered to be wild boars and domestic pigs. So, in this article the authors performed a comparative retrospective analysis of the prevalence of Aujeszky’s disease among these species in Ukraine over 2009–2020 by systematizing and analyzing the epizootic data and results of serological studies. As a result of the conducted research, there is a clear trend that shows the reduction in the number of locations in Ukraine (farms, households, etc.) with domestic pigs affected by Aujeszky’s disease. Thus, in 2009 four such farms were found, and in 2018 – only one. During 2014–2016 and 2019–2020, affected farms and locations were not registered for this disease. In total, 21 such points with infected pigs were registered during the analyzed period. As for wild boars, during the analyzed 12 years, locations with animals affected by Aujeszky’s disease were registered only in 2013 and 2014 (two and one, respectively). It should be noted that all of those with infected wild boars were found in the AR Crimea. For the twelve years, the number of tested sera samples from domestic pigs amounted to 378,678 (7.4% were positive) and from wild boars – 9,052 (19.8% were positive). As a result of comparative geographical analysis of the obtained data on the detection of specific humoral antibodies to the Aujeszky’s disease virus among both species for 12 years in the regions of Ukraine, there is no established clear correlation between the spread of the disease among wild boars and domestic pigs. Thus, the highest seroprevalence rates among wild boars were observed in the northern and northeastern parts of Ukraine, and in domestic pigs, on the contrary, in the southern and central parts of this country. It should be noted, that since 2014 the number of serological tests among both species for carriers of Aujeszky’s disease has significantly decreased.
Collapse
|
18
|
Xing Y, Wang L, Xu G, Guo S, Zhang M, Cheng G, Liu Y, Liu J. Platycodon grandiflorus polysaccharides inhibit Pseudorabies virus replication via downregulating virus-induced autophagy. Res Vet Sci 2021; 140:18-25. [PMID: 34391058 DOI: 10.1016/j.rvsc.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Pseudorabies virus (PRV) is one of the common pathogens in farms. Platycodon grandiflorus polysaccharide (PGPS) has been reported with a variety of biological activities. Autophagy is one of the vital mechanisms for cells to cope with virus infection, and it may also inhibit or promote virus replication. This study was conducted to investigate the antiviral activity of total PGPS(PGPSt) against PRV and the role of virus-induced autophagy in the anti-PRV effect of PGPSt in PK-15 cells. First, we established an infection model and detected the autophagy induced by PRV in PK-15 cells. Then, the protective effect of PGPSt against PRV was evaluated, and the effect of PGPSt on PRV replication and virus-induced autophagy were analysed by quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Western blot and confocal immunofluorescence. Results showed that PGPSt can reduce the PRV replication. PRV infection resulted in the accumulation of autophagosomes, which were inhibited by PGPSt. Moreover, PGPSt upregulated the Akt/mammalian target of rapamycin (mTOR) signalling pathway repressed by PRV infection, whereas rapamycin attenuated the anti-PRV effect of PGPSt. These findings suggest that PGPSt possess a protective effect against PRV infection and can inhibit PRV replication through relieving PRV-induced autophagy. This article can provide ideas for the development of antiviral drugs.
Collapse
Affiliation(s)
- Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Meihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
19
|
Jiang Z, Zhu L, Cai Y, Yan J, Fan Y, Lv W, Gong S, Yin X, Yang X, Sun X, Xu Z. Immunogenicity and protective efficacy induced by an mRNA vaccine encoding gD antigen against pseudorabies virus infection. Vet Microbiol 2020; 251:108886. [PMID: 33129042 DOI: 10.1016/j.vetmic.2020.108886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/04/2020] [Indexed: 11/25/2022]
Abstract
Messenger RNA-based vaccines represent new tools with prophylactic and therapeutic potential characterized by high flexibility of application for infectious diseases. Pseudorabies virus (PRV) is one of the major viruses affecting the pig industry. PRV has serious effects in piglets, sows, and growing-fattening pigs and can lead to huge economic losses. In this study, an envelope glycoprotein D (gD) gene-based specific mRNA vaccine was generated, and a mouse model was used to investigate the protective efficacy of the vaccine. The gD mRNA vaccine and the recombinant plasmid pVAX-gD were transfected into BHK21 cells, and the antigenicity of the expressed proteins was detected by Western blot analysis. Groups of mice were vaccinated with the gD mRNA vaccine, pVAX-gD, and PBS. T cell immune responses were measured by flow cytometry or ELISA and serum neutralization tests every two weeks. The challenge with the PRV-XJ strain was performed eight weeks after the primary immunization, and the response was monitored for 15 days. The levels of specific and neutralizing antibodies in the gD mRNA vaccine group were significantly increased in 8 weeks compared to those in the control group, and cytokine levels, including that of IFN-γ/IL-2, were considerably higher than those in the control animal. Additionally, the proportion of CD4+/CD8+ cells in peripheral lymphocytes was remarkably increased. Our data demonstrate that mRNA is a promising and effective tool for the development of vaccines. The PRV-gD-based mRNA vaccine can elicit an efficient neutralizing antibody response and induce effective protection in mice in defense against PRV infection.
Collapse
Affiliation(s)
- Ziyi Jiang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Yao Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiuqi Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenting Lv
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuangyan Gong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinhuan Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|