1
|
Herrera-Isidron L, Valencia-Lozano E, Uribe-Lopez B, Délano-Frier JP, Barraza A, Cabrera-Ponce JL. Molecular Insights into the Role of Sterols in Microtuber Development of Potato Solanum tuberosum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2391. [PMID: 39273873 PMCID: PMC11397162 DOI: 10.3390/plants13172391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Potato tubers are reproductive and storage organs, enabling their survival. Unraveling the molecular mechanisms that regulate tuberization is crucial for understanding how potatorespond to environmental stress situations and for potato breeding. Previously, we did a transcriptomic analysis of potato microtuberization without light. This showed that important cellular processes like ribosomal proteins, cell cycle, carbon metabolism, oxidative stress, fatty acids, and phytosterols (PS) biosynthesis were closely connected in a protein-protein interaction (PPI) network. Research on PS function during potato tuberization has been scarce. PS plays a critical role in regulating membrane permeability and fluidity, and they are biosynthetic precursors of brassinosteroids (BRs) in plants, which are critical in regulating gene expression, cell division, differentiation, and reproductive biology. Within a PPI network, we found a module of 15 genes involved in the PS biosynthetic process. Darkness, as expected, activated the mevalonate (MVA) pathway. There was a tight interaction between three coding gene products for HMGR3, MVD2, and FPS1, and the gene products that synthetize PS, including CAS1, SMO1, BETAHSD, CPI1, CYP51, FACKEL, HYDRA1, SMT2, SMO2, STE1, and SSR1. Quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the expression analysis of ten specific genes involved in the biosynthesis of PS. This manuscript discusses the potential role of genes involved in PS biosynthesis during microtuber development.
Collapse
Affiliation(s)
- Lisset Herrera-Isidron
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Braulio Uribe-Lopez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - John Paul Délano-Frier
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Aarón Barraza
- CONAHCYT-Centro de Investigaciones Biológicas del Noreste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
2
|
Shang Y, Jin Q, Li G, Yan H, Yu M, Hu Z. Functional study of two ER localized sterol C-14 reductases in Aspergillus oryzae. 3 Biotech 2024; 14:136. [PMID: 38682096 PMCID: PMC11045682 DOI: 10.1007/s13205-024-03988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 05/01/2024] Open
Abstract
Ergosterol is an important component of fungal cell membrane. Ergosterol biosynthesis involves sterol C-14 reductase, a key enzyme in ergosterol biosynthesis, which has been well studied in Saccharomyces cerevisiae. However, little studies about this important enzyme in Aspergillus oryzae. In this study, two sterol C-14 reductases named AoErg24A and AoErg24B were identified in A. oryzae using bioinformatics analysis. Through phylogenetic tree, expression pattern, subcellular localization, and yeast functional complementation analyses, we discovered that both AoErg24A and AoErg24B are conserved and localized to the endoplasmic reticulum (ER). Both enzymes can partially restore the temperature sensitivity phenotype of a S. cerevisiae erg24 weak mutant. Overexpression of AoErg24A in A. oryzae increased 1.6 times of ergosterol content, while overexpression of AoErg24B led to a slight decrease of ergosterol. Both genes affect the sporulation of A. oryzae. These results uncovered that the two genes function differently in ergosterol biosynthesis. Thus, this study further enhances our understanding of ergosterol biosynthesis in A. oryzae and lays a good foundation for A. oryzae to be used in industrial ergosterol production.
Collapse
Affiliation(s)
- Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002 China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Mingquan Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| |
Collapse
|
3
|
Jin Q, Li G, Qin K, Shang Y, Yan H, Liu H, Zeng B, Hu Z. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front Genet 2023; 14:1009746. [PMID: 36755574 PMCID: PMC9899854 DOI: 10.3389/fgene.2023.1009746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Sterol 14α-demethylase catalyzes lanosterol hydroxylation, which is one of the key reactions in the biosynthetic pathway of sterols. There is only one sterol 14α-demethylases gene named Erg11 in Saccharomyces cerevisiae genome. In this study, three sterol 14α-demethylases genes named AoErg11A, AoErg11B and AoErg11C were identified in Aspergillus oryzae genome through bioinformatics analysis. The function of these three genes were studied by yeast complementation, and the expression pattern/subcellular localization of these genes/proteins were detected. The results showed that the three AoErg11s were expressed differently at different growth times and under different abiotic stresses. All of the three proteins were located in endoplasmic reticulum. The AoErg11s could not restore the temperature-sensitive phenotype of S. cerevisiae erg11 mutant. Overexpression of the three AoErg11s affected both growth and sporulation, which may be due to the effect of AoErg11s on ergosterol content. Therefore, this study revealed the functions of three AoErg11s and their effects on the growth and ergosterol biosynthesis of A. oryzae, which may contribute to the further understanding of the ergosterol biosynthesis and regulation mechanism in this important filamentous fungus, A. oryzae.
Collapse
Affiliation(s)
- Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kunhai Qin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| |
Collapse
|
4
|
Chen L, Zhao M, Wu Z, Chen S, Rojo E, Luo J, Li P, Zhao L, Chen Y, Deng J, Cheng B, He K, Gou X, Li J, Hou S. RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 230:171-189. [PMID: 33058210 DOI: 10.1111/nph.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 05/27/2023]
Abstract
RNA polymerase II (Pol II) associated proteins (RPAPs) have been ascribed diverse functions at the cellular level; however, their roles in developmental processes in yeasts, animals and plants are very poorly understood. Through screening for interactors of NRPB3, which encodes the third largest subunit of Pol II, we identified RIMA, the orthologue of mammalian RPAP2. A combination of genetic and biochemical assays revealed the role of RIMA and other RPAPs in stomatal development in Arabidopsis thaliana. We show that RIMA is involved in nuclear import of NRPB3 and other Pol II subunits, and is essential for restraining division and for establishing cell identity in the stomatal cell lineage. Moreover, plant RPAPs IYO/RPAP1 and QQT1/RPAP4, which interact with RIMA, are also crucial for stomatal development. Importantly, RIMA and QQT1 bind physically to stomatal transcription factors SPEECHLESS, MUTE, FAMA and SCREAMs. The RIMA-QQT1-IYO complex could work together with key stomatal transcription factors and Pol II to drive cell fate transitions in the stomatal cell lineage. Direct interactions with stomatal transcription factors provide a novel mechanism by which RPAP proteins may control differentiation of cell types and tissues in eukaryotes.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingfeng Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongliang Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sicheng Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, E-28049, Spain
| | - Jiangwei Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ping Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianming Deng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Cheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoping Gou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Wang M, Li P, Ma Y, Nie X, Grebe M, Men S. Membrane Sterol Composition in Arabidopsis thaliana Affects Root Elongation via Auxin Biosynthesis. Int J Mol Sci 2021; 22:ijms22010437. [PMID: 33406774 PMCID: PMC7794993 DOI: 10.3390/ijms22010437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (β-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Panpan Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Yao Ma
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Xiang Nie
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany;
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
- Correspondence:
| |
Collapse
|
6
|
Chen IW, Grebenok RJ, Schaller H, Zhu-Salzman K, Behmer ST. Aphid growth and reproduction on plants with altered sterol profiles: Novel insights using Arabidopsis mutant and overexpression lines. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104054. [PMID: 32275907 DOI: 10.1016/j.jinsphys.2020.104054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Sterols are essential membrane components and are critical for many physiological processes in all eukaryotes. Insects and other arthropods are sterol auxotrophs that typically rely on a dietary source of sterols. Herbivorous insects generally obtain sterols from plants and then metabolize them into cholesterol, the dominant sterol in most insects. However, there is significant variation in phytosterol structure, and not all phytosterols are equally suitable for insects. In the current study, we used seven Arabidopsis thaliana lines that display altered sterol profiles due to mutations in the sterol biosynthetic pathway or to overexpression of key enzymes of the pathway, and investigated how plant sterol profiles affected green peach aphid (Myzus persicae) growth and reproduction. We also characterized the sterol profile of aphids reared on these Arabidopsis genotypes. Aphids on two mutant lines (14R/fk and ste1-1) that accumulated biosynthetic sterol intermediates (Δ8,14-sterols, and Δ7-sterols, respectively) all showed significantly reduced growth and reproduction. Aphids on SMT2COSUP plants (which have decreased β-sitosterol but increased campesterol) also displayed significantly reduced growth and reproduction. However, aphids on SMT2OE plants (which have increased β-sitosterol but decreased campesterol) performed similarly to aphids on wild-type plants. Finally, Arabidopsis plants that had an overproduction of sterols (CD-HMGROE) or decreased sterol esters (psat1-2) had no impact on aphid performance. Two noteworthy results come from the aphid sterol profile study. First, β-sitosterol, cholesterol and stigmasterol were recovered in all aphids. Second, we did not detect Δ8,14-sterols in aphids reared on 14R/fk plants. We discuss the implications of our findings, including how aphid sterol content does not appear to reflect plant leaf sterol profiles. We also discuss the potential of modifying plant sterol profiles to control insect herbivore pests, including aphids.
Collapse
Affiliation(s)
- Ivy W Chen
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, United States
| | | | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, United States.
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States; Ecology and Evolutionary Biology Doctoral Program, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
7
|
Castillo N, Pastor V, Chávez Á, Arró M, Boronat A, Flors V, Ferrer A, Altabella T. Inactivation of UDP-Glucose Sterol Glucosyltransferases Enhances Arabidopsis Resistance to Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2019; 10:1162. [PMID: 31611892 PMCID: PMC6776639 DOI: 10.3389/fpls.2019.01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/26/2019] [Indexed: 05/15/2023]
Abstract
Free and glycosylated sterols are both structural components of the plasma membrane that regulate their biophysical properties and consequently different plasma membrane-associated processes such as plant adaptation to stress or signaling. Several reports relate changes in glycosylated sterols levels with the plant response to abiotic stress, but the information about the role of these compounds in the response to biotic stress is scarce. In this work, we have studied the response to the necrotrophic fungus Botrytis cinerea in an Arabidopsis mutant that is severely impaired in steryl glycosides biosynthesis due to the inactivation of the two sterol glucosyltransferases (UGT80A2 and UGT80B1) reported in this plant. This mutant exhibits enhanced resistance against B. cinerea when compared to wild-type plants, which correlates with increased levels of jasmonic acid (JA) and up-regulation of two marker genes (PDF1.2 and PR4) of the ERF branch of the JA signaling pathway. Upon B. cinerea infection, the ugt80A2;B1 double mutant also accumulates higher levels of camalexin, the major Arabidopsis phytoalexin, than wild-type plants. Camalexin accumulation correlates with enhanced transcript levels of several cytochrome P450 camalexin biosynthetic genes, as well as of their transcriptional regulators WRKY33, ANAC042, and MYB51, suggesting that the Botrytis-induced accumulation of camalexin is coordinately regulated at the transcriptional level. After fungus infection, the expression of genes involved in the indole glucosinolate biosynthesis is also up-regulated at a higher degree in the ugt80A2;B1 mutant than in wild-type plants. Altogether, the results of this study show that glycosylated sterols play an important role in the regulation of Arabidopsis response to B. cinerea infection and suggest that this occurs through signaling pathways involving the canonical stress-hormone JA and the tryptophan-derived secondary metabolites camalexin and possibly also indole glucosinolates.
Collapse
Affiliation(s)
- Nidia Castillo
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Victoria Pastor
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
| | - Ángel Chávez
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Montserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- *Correspondence: Teresa Altabella, ; Albert Ferrer,
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- *Correspondence: Teresa Altabella, ; Albert Ferrer,
| |
Collapse
|
8
|
Chen M, Chen J, Luo N, Qu R, Guo Z, Lu S. Cholesterol accumulation by suppression of SMT1 leads to dwarfism and improved drought tolerance in herbaceous plants. PLANT, CELL & ENVIRONMENT 2018; 41:1417-1426. [PMID: 29465802 DOI: 10.1111/pce.13168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Dwarfism and drought tolerance are 2 valuable traits in breeding of many crops. In this study, we report the novel physiological roles of cholesterol in regulation of plant growth and drought tolerance. Compared with the wild type, sterol-C24-methyltransferase 1 (SMT1) gene transcript was greatly reduced in a bermudagrass mutant with dwarfism and enhanced drought tolerance, accompanied with cholesterol accumulation, elevated transcript levels of a small group of genes including SAMDC, and increased concentrations of putrescine (Put), spermidine (Spd), and spermine (Spm). Knock-down of OsSMT1 expression by RNA interference resulted in similar phenotypic changes in transgenic rice. Moreover, exogenously applied cholesterol also led to elevated transcripts of a similar set of genes, higher levels of Put, Spd, and Spm, improved drought tolerance, and reduced plant height in both bermudagrass and rice. We revealed that it is Spm, but not Spd, that is responsible for the height reduction in bermudagrass and rice. In conclusion, we suggest that cholesterol induces expression of SAMDC and leads to dwarfism and elevated drought tolerance in plants as a result of the promoted Spd and Spm synthesis.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Na Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Rongda Qu
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695-7287, USA
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
9
|
Abstract
Stomata are pores on plant epidermis that facilitate gas exchange and water evaporation between plants and the environment. Given the central role of stomata in photosynthesis and water-use efficiency, two vital events for plant growth, stomatal development is tightly controlled by a diverse range of signals. A family of peptide hormones regulates stomatal patterning and differentiation. In addition, plant hormones as well as numerous environmental cues influence the decision of whether to make stomata or not in distinct and complex manners. In this review, we summarize recent findings that reveal the mechanism of these three groups of signals in controlling stomatal formation, and discuss how these signals are integrated into the core stomatal development pathway.
Collapse
Affiliation(s)
- Xingyun Qi
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
10
|
Pook VG, Nair M, Ryu K, Arpin JC, Schiefelbein J, Schrick K, DeBolt S. Positioning of the SCRAMBLED receptor requires UDP-Glc:sterol glucosyltransferase 80B1 in Arabidopsis roots. Sci Rep 2017; 7:5714. [PMID: 28720840 PMCID: PMC5515990 DOI: 10.1038/s41598-017-05925-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/06/2017] [Indexed: 01/22/2023] Open
Abstract
The biological function of sterol glucosides (SGs), the most abundant sterol derivatives in higher plants, remains uncertain. In an effort to improve our understanding of these membrane lipids we examined phenotypes exhibited by the roots of Arabidopsis (Arabidopsis thaliana) lines carrying insertions in the UDP-Glc:sterol glucosyltransferase genes, UGT80A2 and UGT80B1. We show that although ugt80A2 mutants exhibit significantly lower levels of total SGs they are morphologically indistinguishable from wild-type plants. In contrast, the roots of ugt80B1 mutants are only deficient in stigmasteryl glucosides but exhibit a significant reduction in root hairs. Sub-cellular investigations reveal that the plasma membrane cell fate regulator, SCRAMBLED (SCM), is mislocalized in ugt80B1 mutants, underscoring the aberrant root epidermal cell patterning. Live imaging of roots indicates that SCM:GFP is localized to the cytoplasm in a non cell type dependent manner instead of the hair (H) cell plasma membrane in these mutants. In addition, we provide evidence for the localization of the UGT80B1 enzyme in the plasma membrane. These data lend further support to the notion that deficiencies in specific SGs are sufficient to disrupt normal cell function and point to a possible role for SGs in cargo transport and/or protein targeting to the plasma membrane.
Collapse
Affiliation(s)
- Victoria G Pook
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546, USA
| | - Meera Nair
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546, USA
| | - KookHui Ryu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James C Arpin
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Seth DeBolt
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
11
|
Huang B, Qian P, Gao N, Shen J, Hou S. Fackel interacts with gibberellic acid signaling and vernalization to mediate flowering in Arabidopsis. PLANTA 2017; 245:939-950. [PMID: 28108812 DOI: 10.1007/s00425-017-2652-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/16/2017] [Indexed: 05/23/2023]
Abstract
Fackel (FK) is involved in the flowering of Arabidopsis mainly via the gibberellin pathway and vernalization pathway. This new function of FK is partially dependent on the FLOWERING LOCUS C ( FLC ). A common transitional process from vegetative stage to reproductive stage exists in higher plants during their life cycle. The initiation of flower bud differentiation, which plays a key role in the reproductive phase, is affected by both external environmental and internal regulatory factors. In this study, we showed that the Arabidopsis weak mutant allele fk-J3158, impaired in the FACKEL (FK) gene, which encodes a C-14 reductase involved in sterol biosynthesis, had a long life cycle and delayed flowering time in different photoperiods. In addition, FK overexpression lines displayed an earlier flowering phenotype than that of the wild type. These processes might be independent of the downstream brassinosteroid (BR) pathway and the autonomous pathway. However, the fk-J3158 plants were more sensitive than wild type in reducing the bolting days and total leaf number under gibberellic acid (GA) treatment. Further studies suggested that FK mutation led to an absence of endogenous GAs in fk-J3158 and FK gene expression was also affected under GA and paclobutrazol (PAC) treatment. Moreover, the delayed flowering time of fk-J3158 could be rescued by a 3-week vernalization treatment, and the expression of FLOWERING LOCUS C (FLC) was accordingly down-regulated in fk-J3158. We also demonstrated that flowering time of fk-J3158 flc double mutant was significantly earlier than that of fk-J3158 under the long-day (LD) conditions. All these results indicated that FK may affect the flowering in Arabidopsis mainly via GA pathway and vernalization pathway. And these effects are partially dependent on the FLOWERING LOCUS C (FLC).
Collapse
Affiliation(s)
- Bingyao Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Pingping Qian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Biological Science, Graduate School of Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Na Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jie Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
12
|
Parra-Lobato MC, Paredes MA, Labrador J, Saucedo-García M, Gavilanes-Ruiz M, Gomez-Jimenez MC. Localization of Sphingolipid Enriched Plasma Membrane Regions and Long-Chain Base Composition during Mature-Fruit Abscission in Olive. FRONTIERS IN PLANT SCIENCE 2017; 8:1138. [PMID: 28706527 PMCID: PMC5489598 DOI: 10.3389/fpls.2017.01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/13/2017] [Indexed: 05/20/2023]
Abstract
Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive (Olea europaea L. cv. Picual). Here, a lipid-content analysis in live protoplasts of the olive abscission zone (AZ) was made with fluorescent dyes and lipid analogs, particularly plasma membrane sphingolipid-enriched domains, and their dynamics were investigated in relation to the timing of mature-fruit abscission. In olive AZ cells, the measured proportion of both polar lipids and sphingolipids increased as well as endocytosis was stimulated during mature-fruit abscission. Likewise, mature-fruit abscission resulted in quantitative and qualitative changes in sphingolipid long-chain bases (LCBs) in the olive AZ. The total LCB increase was due essentially to the increase of t18:1(8E) LCBs, suggesting that C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation were quantitatively the most important sphingolipids in olive AZ during abscission. However, our results also showed a specific association between the dihydroxylated LCB sphinganine (d18:0) and the mature-fruit abscission. These results indicate a clear correlation between the sphingolipid composition and mature-fruit abscission. Moreover, measurements of endogenous sterol levels in the olive AZ revealed that it accumulated sitosterol and campesterol with a concomitant decrease in cycloartenol during abscission. In addition, underlying the distinct sterol composition of AZ during abscission, genes for key biosynthetic enzymes for sterol synthesis, for obtusifoliol 14α-demethylase (CYP51) and C-24 sterol methyltransferase2 (SMT2), were up-regulated during mature-fruit abscission, in parallel to the increase in sitosterol content. The differences found in AZ lipid content and the relationships established between LCB and sterol composition, offer new insights about sphingolipids and sterols in abscission.
Collapse
Affiliation(s)
| | - Miguel A. Paredes
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
| | - Mariana Saucedo-García
- Institute of Agricultural Sciences, Autonomous University of the State of HidalgoTulancingo, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Maria C. Gomez-Jimenez
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
- *Correspondence: Maria C. Gomez-Jimenez,
| |
Collapse
|
13
|
Ramirez-Estrada K, Castillo N, Lara JA, Arró M, Boronat A, Ferrer A, Altabella T. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28649260 PMCID: PMC5465953 DOI: 10.3389/fpls.2017.00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate. Stress-induced SlSGT2 expression largely parallels that of SlSGT4. On the contrary, SlSGT1 and SlSGT3 expression remains almost unaltered under the tested stress conditions. Overall, this study contributes to broaden the current knowledge on plant SGTs and provides support to the view that tomato SGTs play overlapping but not completely redundant biological functions involved in mediating developmental and stress responses.
Collapse
Affiliation(s)
- Karla Ramirez-Estrada
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Nídia Castillo
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Juan A. Lara
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Monserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of BarcelonaBarcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| |
Collapse
|
14
|
Han SK, Torii KU. Lineage-specific stem cells, signals and asymmetries during stomatal development. Development 2016; 143:1259-70. [PMID: 27095491 DOI: 10.1242/dev.127712] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stomata are dispersed pores found in the epidermis of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. Stomata are formed from progenitor cells, which execute a series of differentiation events and stereotypical cell divisions. The sequential activation of master regulatory basic-helix-loop-helix (bHLH) transcription factors controls the initiation, proliferation and differentiation of stomatal cells. Cell-cell communication mediated by secreted peptides, receptor kinases, and downstream mitogen-activated kinase cascades enforces proper stomatal patterning, and an intrinsic polarity mechanism ensures asymmetric cell divisions. As we review here, recent studies have provided insights into the intrinsic and extrinsic factors that control stomatal development. These findings have also highlighted striking similarities between plants and animals with regards to their mechanisms of specialized cell differentiation.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Chen L, Guan L, Qian P, Xu F, Wu Z, Wu Y, He K, Gou X, Li J, Hou S. NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis. Development 2016; 143:1600-11. [PMID: 26989174 PMCID: PMC4909857 DOI: 10.1242/dev.129098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022]
Abstract
Stomata are highly specialized epidermal structures that control transpiration and gas exchange between plants and the environment. Signal networks underlying stomatal development have been previously uncovered but much less is known about how signals involved in stomatal development are transmitted to RNA polymerase II (Pol II or RPB), which plays a central role in the transcription of mRNA coding genes. Here, we identify a partial loss-of-function mutation of the third largest subunit of nuclear DNA-dependent Pol II (NRPB3) that exhibits an increased number of stomatal lineage cells and paired stomata. Phenotypic and genetic analyses indicated that NRPB3 is not only required for correct stomatal patterning, but is also essential for stomatal differentiation. Protein-protein interaction assays showed that NRPB3 directly interacts with two basic helix-loop-helix (bHLH) transcription factors, FAMA and INDUCER OF CBF EXPRESSION1 (ICE1), indicating that NRPB3 serves as an acceptor for signals from transcription factors involved in stomatal development. Our findings highlight the surprisingly conserved activating mechanisms mediated by the third largest subunit of Pol II in eukaryotes. Summary: RNA polymerase II subunit NRPB3 interacts with stomatal bHLH transcription factors FAMA and ICE1, connecting the stomatal development pathway to the general transcription machinery.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Liping Guan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Pingping Qian
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Fan Xu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhongliang Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yujun Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kai He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaoping Gou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jia Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
16
|
Nakamoto M, Schmit AC, Heintz D, Schaller H, Ohta D. Diversification of sterol methyltransferase enzymes in plants and a role for β-sitosterol in oriented cell plate formation and polarized growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:860-74. [PMID: 26426526 DOI: 10.1111/tpj.13043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 05/06/2023]
Abstract
Phytosterols are classified into C24-ethylsterols and C24-methylsterols according to the different C24-alkylation levels conferred by two types of sterol methyltransferases (SMTs). The first type of SMT (SMT1) is widely conserved, whereas the second type (SMT2) has diverged in charophytes and land plants. The Arabidopsis smt2 smt3 mutant is defective in the SMT2 step, leading to deficiency in C24-ethylsterols while the C24-methylsterol pathway is unchanged. smt2 smt3 plants exhibit severe dwarfism and abnormal development throughout their life cycle, with irregular cell division followed by collapsed cell files. Preprophase bands are occasionally formed in perpendicular directions in adjacent cells, and abnormal phragmoplasts with mislocalized KNOLLE syntaxin and tubulin are observed. Defects in auxin-dependent processes are exemplified by mislocalizations of the PIN2 auxin efflux carrier due to disrupted cell division and failure to distribute PIN2 asymmetrically after cytokinesis. Although endocytosis of PIN2-GFP from the plasma membrane (PM) is apparently unaffected in smt2 smt3, strong inhibition of the endocytic recycling is associated with a remarkable reduction in the level of PIN2-GFP on the PM. Aberrant localization of the cytoplasmic linker associated protein (CLASP) and microtubules is implicated in the disrupted endocytic recycling in smt2 smt3. Exogenous C24-ethylsterols partially recover lateral root development and auxin distribution in smt2 smt3 roots. These results indicate that C24-ethylsterols play a crucial role in division plane determination, directional auxin transport, and polar growth. It is proposed that the divergence of SMT2 genes together with the ability to produce C24-ethylsterols were critical events to achieve polarized growth in the plant lineage.
Collapse
Affiliation(s)
- Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 599-8531, Sakai, Japan
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR2357, Conventionné Avec l'Université de Strasbourg, 67084, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR2357, Conventionné Avec l'Université de Strasbourg, 67084, Strasbourg, France
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR2357, Conventionné Avec l'Université de Strasbourg, 67084, Strasbourg, France
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 599-8531, Sakai, Japan
| |
Collapse
|
17
|
Yang KZ, Jiang M, Wang M, Xue S, Zhu LL, Wang HZ, Zou JJ, Lee EK, Sack F, Le J. Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis. MOLECULAR PLANT 2015; 8:783-95. [PMID: 25680231 DOI: 10.1016/j.molp.2014.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 05/18/2023]
Abstract
The initiation of stomatal lineage and subsequent asymmetric divisions in Arabidopsis require the activity of the basic helix-loop-helix transcription factor SPEECHLESS (SPCH). It has been shown that SPCH controls entry into the stomatal lineage as a substrate either of the MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade or GSK3-like kinase BRASSINOSTEROID INSENSITIVE 2 (BIN2). Here we show that three serine residues of SPCH appear to be the primary phosphorylation targets of Cyclin-Dependent Kinases A;1 (CDKA;1) in vitro, and among them Serine 186 plays a crucial role in stomatal formation. Expression of an SPCH construct harboring a mutation that results in phosphorylation deficiencies on Serine 186 residue failed to rescue stomatal defects in spch null mutants. Expression of a phosphorylation-mimic mutant SPCH(S186D) complemented stomatal production defects in the transgenic lines harboring the targeted expression of dominant-negative CDKA;1.N146. Therefore, in addition to MAPK- and BIN2-mediated phosphorylation on SPCH, phosphorylation at Serine 186 is positively required for SPCH function in regulating stomatal development.
Collapse
Affiliation(s)
- Ke-Zhen Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Min Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Ming Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Ling-Ling Zhu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Hong-Zhe Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Jun-Jie Zou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Eun-Kyoung Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Fred Sack
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China.
| |
Collapse
|
18
|
Wang M, Yang K, Le J. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:247-255. [PMID: 25234048 DOI: 10.1111/jipb.12285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/17/2014] [Indexed: 06/03/2023]
Abstract
In Arabidopsis, stomatal development initiates after protodermal cells acquire stomatal lineage cell fate. Stomata or their precursors communicate with their neighbor epidermal cells to ensure the "one cell spacing" rule. The signals from EPF/EPFL peptide ligands received by Too Many Mouths (TMM) and ERECTA-family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix-loop-helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cell fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinosteroid (BR) signaling, one of the most well characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ-specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is controlled by BR levels. YODA and CYCD4 are not essential for BR stomata-promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ-specific effects on stomatal production might coordinate with the TMM organ-specific actions.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | |
Collapse
|
19
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Muir CD, Pease JB, Moyle LC. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae). Genetics 2014; 198:1629-43. [PMID: 25298519 PMCID: PMC4256776 DOI: 10.1534/genetics.114.169276] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/04/2014] [Indexed: 02/06/2023] Open
Abstract
Adaptive evolution requires both raw genetic material and an accessible path of high fitness from one fitness peak to another. In this study, we used an introgression line (IL) population to map quantitative trait loci (QTL) for leaf traits thought to be associated with adaptation to precipitation in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). A QTL sign test showed that several traits likely evolved under directional natural selection. Leaf traits correlated across species do not share a common genetic basis, consistent with a scenario in which selection maintains trait covariation unconstrained by pleiotropy or linkage disequilibrium. Two large effect QTL for stomatal distribution colocalized with key genes in the stomatal development pathway, suggesting promising candidates for the molecular bases of adaptation in these species. Furthermore, macroevolutionary transitions between vastly different stomatal distributions may not be constrained when such large-effect mutations are available. Finally, genetic correlations between stomatal traits measured in this study and data on carbon isotope discrimination from the same ILs support a functional hypothesis that the distribution of stomata affects the resistance to CO2 diffusion inside the leaf, a trait implicated in climatic adaptation in wild tomatoes. Along with evidence from previous comparative and experimental studies, this analysis indicates that leaf traits are an important component of climatic niche adaptation in wild tomatoes and demonstrates that some trait transitions between species could have involved few, large-effect genetic changes, allowing rapid responses to new environmental conditions.
Collapse
Affiliation(s)
- Christopher D Muir
- Biodiversity Research Centre and Botany Department, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - James B Pease
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
21
|
Serna L. The role of brassinosteroids and abscisic acid in stomatal development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:95-101. [PMID: 25017164 DOI: 10.1016/j.plantsci.2014.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/15/2014] [Accepted: 05/24/2014] [Indexed: 06/03/2023]
Abstract
Gas exchange with the atmosphere is regulated through the stomata. This process relies on both the degree and duration of stomatal opening, and the number and patterning of these structures in the plant surface. Recent work has revealed that brassinosteroids and abscisic acid (ABA), which control stomatal opening, also repress stomatal development in cotyledons and leaves of at least some plants. It is speculated that, in Arabidopsis, these phytohormones control the same steps of this developmental process, most probably, through the regulation of the same mitogen-activated protein (MAP) kinase module. The conservation, in seeds plants, of components downstream of this module with MAP kinase target domains, suggests that these proteins are also regulated by these cascades, which, in turn, may be regulated by brassinosteroids and/or ABA.
Collapse
Affiliation(s)
- Laura Serna
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain.
| |
Collapse
|
22
|
Le J, Zou J, Yang K, Wang M. Signaling to stomatal initiation and cell division. FRONTIERS IN PLANT SCIENCE 2014; 5:297. [PMID: 25002867 PMCID: PMC4066587 DOI: 10.3389/fpls.2014.00297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/06/2014] [Indexed: 05/06/2023]
Abstract
Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in developmental biology, such as the regulation of cell fate, division, differentiation, and patterning. Over the last 30 years, stomatal development has been found to be controlled by numerous intrinsic genetic and environmental factors. This mini review focuses on the signaling involved in stomatal initiation and in divisions in the cell lineage.
Collapse
Affiliation(s)
- Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | | | | | | |
Collapse
|
23
|
Auxin transport and activity regulate stomatal patterning and development. Nat Commun 2014; 5:3090. [DOI: 10.1038/ncomms4090] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/11/2013] [Indexed: 11/09/2022] Open
|
24
|
De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. FRONTIERS IN PLANT SCIENCE 2014; 5:138. [PMID: 24795733 PMCID: PMC4001042 DOI: 10.3389/fpls.2014.00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 05/18/2023]
Abstract
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
| | - Danny Geelen
- *Correspondence: Danny Geelen, Laboratory for In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
25
|
Takada S, Iida H. Specification of epidermal cell fate in plant shoots. FRONTIERS IN PLANT SCIENCE 2014; 5:49. [PMID: 24616724 PMCID: PMC3934432 DOI: 10.3389/fpls.2014.00049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/01/2014] [Indexed: 05/07/2023]
Abstract
Land plants have evolved a single layer of epidermal cells, which are characterized by mostly anticlinal cell division patterns, formation of a waterproof coat called cuticle, and unique cell types such as stomatal guard cells and trichomes. The shoot epidermis plays important roles not only to protect plants from dehydration and pathogens but also to ensure their proper organogenesis and growth control. Extensive molecular genetic studies in Arabidopsis and maize have identified a number of genes that are required for epidermal cell differentiation. However, the mechanism that specifies shoot epidermal cell fate during plant organogenesis remains largely unknown. Particularly, little is known regarding positional information that should restrict epidermal cell fate to the outermost cell layer of the developing organs. Recent studies suggested that certain members of the HD-ZIP class IV homeobox genes are possible master regulators of shoot epidermal cell fate. Here, we summarize the roles of the regulatory genes that are involved in epidermal cell fate specification and discuss the possible mechanisms that limit the expression and/or activity of the master transcriptional regulators to the outermost cell layer in plant shoots.
Collapse
Affiliation(s)
- Shinobu Takada
- *Correspondence: Shinobu Takada, Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan e-mail:
| | | |
Collapse
|