1
|
Faghani E, Hashemi A, Kazemian M, Razzaghi MH. Evaluation of memory drought stress effects on storage compounds seedlings of cotton (Gossypium hirsutum) and in-silico analysis of glutathione reductase. BMC PLANT BIOLOGY 2024; 24:825. [PMID: 39227761 PMCID: PMC11370064 DOI: 10.1186/s12870-024-05522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
In breeding programs, stress memory in plants can develop drought stress tolerance. Memory stress, as an approach, can keep stress data by activating tolerance mechanisms. This research was conducted to evaluate some physiologically effective mechanisms in inducing memory drought stress in the seeds that were exposed to water stress three times in four treatments including rainfed, 33%, 66%, and 100% of field capacity (FC). After the production of the seeds, the third-generation seeds were placed under different irrigation treatments, seed and seedling traits, starch to carbohydrate ratio in seed, protein concentration and glutathione reductase were investigatied in a factorial format based on a randomized complete block design with three replications. Results showed that percentage of changes from the lowest to the highest value for traits including seed vigor, seed endosperm weight, seed coat weight, accelerated aging, cold test, seedling biomass and seedling length were 25, 37, 65, 65, 55, 77, 55, 65 and 79, respectively and germination uniformity was 3.9 times higher than the lowest amount. According to the deterioration percentage, seed vigor and the percentage of seed germination in cold test data, it can be reported that seed production by 100% FC was not appropriate for rainfed plots. However, considering the the appropriate results in the percentage of germination for a cold test, germination uniformity percentage, and the lowest accelerated aging seeds, seed production under the rainfed conditions with 33% FC watering can be recommended. In-silico analysis was coducted on Glutathione reductase (GR) enzymes in Gossypium hirsutum. It is clear that GR has a Redox-active site and NADPH binding, and it interacts with Glutathione S transferase (GST). So, memory drought stress through inducing physiological drought tolerance mechanisms such as starch-to-carbohydrate ratio and GR can determine the suitable pattern for seed production for rainfed and low rainfall regions in a breeding program. Our study thus illustrated that seed reprduction under 33% FC equipped cotton with the tolerance against under draught stress from the seedling stage. This process is done through activating glutathione reductase and balancing the ratio of starch to carbohydrates concentration.
Collapse
Affiliation(s)
- Elham Faghani
- Cotton Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Amenehsadat Hashemi
- Agricultural Department, University of Applied Science and Technology, Sari, Mazandaran, Iran
| | - Mina Kazemian
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Hossein Razzaghi
- Agricultural Engineering Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| |
Collapse
|
2
|
Wang D, Deng D, Zhan J, Wu W, Duan C, Sun S, Zhu Z. An Emerging Disease of Chickpea, Basal Stem Rot Caused by Diaporthe aspalathi in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1950. [PMID: 39065477 PMCID: PMC11280406 DOI: 10.3390/plants13141950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Chickpea (Cicer arietinum L.) is an important legume crop worldwide. An emerging disease, basal stem rot with obvious wilt symptoms, was observed in the upper part of chickpea plants during the disease survey in Qiubei County of Yunnan Province. Three fungal isolates (ZD36-1, ZD36-2, and ZD36-3) were obtained from the diseased tissue of chickpea plants collected from the field. Those isolates were morphologically found to be similar to Diaporthe aspalathi. Molecular sequence analyses of multiple gene regions (ITS, tef1, tub2, cal, and his3) indicated that the three isolates showed a high identity with D. aspalathi. Pathogenicity and host range tests of the isolates were performed on the original host chickpea and eight other legume crops. The isolates were strongly pathogenic to chickpea and appeared highly pathogenic to soybean, cowpea, and mung bean; moderated or mild pathogenic to adzuki bean and common bean; however, the isolates did not cause symptoms on grass pea (Lathyrus sativus). Diaporthe aspalathi was previously reported as a main pathogen causing the southern stem canker in soybean. To our knowledge, this is the first report of D. aspalathi inducing basal stem rot on chickpea worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Suli Sun
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| | - Zhendong Zhu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| |
Collapse
|
3
|
Sulieman S, Sheteiwy MS, Abdelrahman M, Tran LSP. γ-Aminobutyric acid (GABA) in N 2-fixing-legume symbiosis: Metabolic flux and carbon/nitrogen homeostasis in responses to abiotic constraints. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108362. [PMID: 38266561 DOI: 10.1016/j.plaphy.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Nodule symbiosis is an energetic process that demands a tremendous carbon (C) cost, which massively increases in responses to environmental stresses. Notably, most common respiratory pathways (e.g., glycolysis and Krebs cycle) that sustain nitrogenase activity and subsequent nitrogen (N) assimilation (amino acid formation) display a noncyclic mode of C flux. In such circumstances, the nodule's energy charge could markedly decrease, leading to a lower symbiotic activity under stresses. The host plant then attempts to induce alternative robust metabolic pathways to minimize the C expenditure and compensate for the loss in respiratory substrates. GABA (γ-aminobutyric acid) shunt appears to be among the highly conserved metabolic bypass induced in responses to stresses. Thus, it can be suggested that GABA, via its primary biosynthetic pathway (GABA shunt), is simultaneously induced to circumvent stress-susceptible decarboxylating portion of the Krebs cycle and to replenish symbiosome with energy and C skeletons for enhancing nitrogenase activity and N assimilation besides the additional C costs expended in the metabolic stress acclimations (e.g., biosynthesis of secondary metabolites and excretion of anions). The GABA-mediated C/N balance is strongly associated with interrelated processes, including pH regulation, oxygen (O2) protection, osmoregulation, cellular redox control, and N storage. Furthermore, it has been anticipated that GABA could be implicated in other functions beyond its metabolic role (i.e., signaling and transport). GABA helps plants possess remarkable metabolic plasticity, which might thus assist nodules in attenuating stressful events.
Collapse
Affiliation(s)
- Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314, Shambat, Khartoum North, Sudan.
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates; Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX, 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX, 79409, USA.
| |
Collapse
|
4
|
He K, Liu Q, Zhang J, Zhang G, Li G. Biochar Enhances the Resistance of Legumes and Soil Microbes to Extreme Short-Term Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:4155. [PMID: 38140481 PMCID: PMC10748378 DOI: 10.3390/plants12244155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Short-term drought events occur more frequently and more intensively under global climate change. Biochar amendment has been documented to ameliorate the negative effects of water deficits on plant performance. Moreover, biochar can alter the soil microbial community, soil properties and soil metabolome, resulting in changes in soil functioning. We aim to reveal the extent of biochar addition on soil nutrients and the soil microbial community structure and how this improves the tolerance of legume crops (peanuts) to short-term extreme drought. We measured plant performances under different contents of biochar, set as a gradient of 2%, 3% and 4%, after an extreme experimental drought. In addition, we investigated how soil bacteria and fungi respond to biochar additions and how the soil metabolome changes in response to biochar amendments, with combined growth experiments, high-throughput sequencing and soil omics. The results indicated that biochar increased nitrites and available phosphorus. Biochar was found to influence the soil bacterial community structure more intensively than the soil fungal community. Additionally, the fungal community showed a higher randomness under biochar addition when experiencing short-term extreme drought compared to the bacterial community. Soil bacteria may be more strongly related to soil nutrient cycling in peanut agricultural systems. Although the soil metabolome has been documented to be influenced by biochar addition independent of soil moisture, we found more differential metabolites with a higher biochar content. We suggest that biochar enhances the resistance of plants and soil microbes to short-term extreme drought by indirectly modifying soil functioning probably due to direct changes in soil moisture and soil pH.
Collapse
Affiliation(s)
- Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China;
| | - Qiangbo Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Jialei Zhang
- Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Guanchu Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China;
| | - Guolin Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Lauterberg M, Tschiersch H, Papa R, Bitocchi E, Neumann K. Engaging Precision Phenotyping to Scrutinize Vegetative Drought Tolerance and Recovery in Chickpea Plant Genetic Resources. PLANTS (BASEL, SWITZERLAND) 2023; 12:2866. [PMID: 37571019 PMCID: PMC10421427 DOI: 10.3390/plants12152866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Precise and high-throughput phenotyping (HTP) of vegetative drought tolerance in chickpea plant genetic resources (PGR) would enable improved screening for genotypes with low relative loss of biomass formation and reliable physiological performance. It could also provide a basis to further decipher the quantitative trait drought tolerance and recovery and gain a better understanding of the underlying mechanisms. In the context of climate change and novel nutritional trends, legumes and chickpea in particular are becoming increasingly important because of their high protein content and adaptation to low-input conditions. The PGR of legumes represent a valuable source of genetic diversity that can be used for breeding. However, the limited use of germplasm is partly due to a lack of available characterization data. The development of HTP systems offers a perspective for the analysis of dynamic plant traits such as abiotic stress tolerance and can support the identification of suitable genetic resources with a potential breeding value. Sixty chickpea accessions were evaluated on an HTP system under contrasting water regimes to precisely evaluate growth, physiological traits, and recovery under optimal conditions in comparison to drought stress at the vegetative stage. In addition to traits such as Estimated Biovolume (EB), Plant Height (PH), and several color-related traits over more than forty days, photosynthesis was examined by chlorophyll fluorescence measurements on relevant days prior to, during, and after drought stress. With high data quality, a wide phenotypic diversity for adaptation, tolerance, and recovery to drought was recorded in the chickpea PGR panel. In addition to a loss of EB between 72% and 82% after 21 days of drought, photosynthetic capacity decreased by 16-28%. Color-related traits can be used as indicators of different drought stress stages, as they show the progression of stress.
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| |
Collapse
|
6
|
Impact of Two Strains of Rhizobium leguminosarum on the Adaptation to Terminal Water Deficit of Two Cultivars Vicia faba. PLANTS 2022; 11:plants11040515. [PMID: 35214847 PMCID: PMC8879231 DOI: 10.3390/plants11040515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/03/2023]
Abstract
Drought stress has become one of the most uncontrolled and unpredictable constraints on crop production. The purpose of this study was to evaluate the impacts of two different Rhizobium leguminosarum strains on terminal drought tolerance induction in two faba bean genotypes cultivated in Algeria, Aquadulce and Maltais. To this end, we measured physiological parameters—osmoprotectants accumulation, oxidative stress markers and enzyme activities—to assess the effect of R. leguminosarum inoculation on V. faba under terminal water deficiency conditions in greenhouse trials. Upregulation of anti-oxidative mechanisms and production of compatible solutes were found differentially activated according to Rhizobium strain. Drought stress resilience of the Maltais variety was improved using the local Rhizobium strain OL13 compared to the common strain 3841. Symbiosis with OL13 strain leads in particular to a much better production of proline and soluble sugar in nodules but also in roots and leaves of Maltais plant. Even if additional work is still necessary to decipher the mechanism by which a Rhizobium strain can affect the accumulation of osmoprotectants or cellular redox status in all the plants, inoculation with selected Rhizobium could be a promising strategy for improving water stress management in the forthcoming era of climate change.
Collapse
|
7
|
Matamoros MA, Becana M. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5876-5892. [PMID: 33453107 PMCID: PMC8355754 DOI: 10.1093/jxb/erab008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Legumes include several major crops that can fix atmospheric nitrogen in symbiotic root nodules, thus reducing the demand for nitrogen fertilizers and contributing to sustainable agriculture. Global change models predict increases in temperature and extreme weather conditions. This scenario might increase plant exposure to abiotic stresses and negatively affect crop production. Regulation of whole plant physiology and nitrogen fixation in legumes during abiotic stress is complex, and only a few mechanisms have been elucidated. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are key players in the acclimation and stress tolerance mechanisms of plants. However, the specific redox-dependent signaling pathways are far from understood. One mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification (PTM) of proteins. Redox-based PTMs occur in the cysteine thiol group (oxidation, S-nitrosylation, S-glutathionylation, persulfidation), and also in methionine (oxidation), tyrosine (nitration), and lysine and arginine (carbonylation/glycation) residues. Unraveling PTM patterns under different types of stress and establishing the functional implications may give insight into the underlying mechanisms by which the plant and nodule respond to adverse conditions. Here, we review current knowledge on redox-based PTMs and their possible consequences in legume and nodule biology.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
8
|
Couchoud M, Salon C, Girodet S, Jeudy C, Vernoud V, Prudent M. Pea Efficiency of Post-drought Recovery Relies on the Strategy to Fine-Tune Nitrogen Nutrition. FRONTIERS IN PLANT SCIENCE 2020; 11:204. [PMID: 32174946 PMCID: PMC7056749 DOI: 10.3389/fpls.2020.00204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 05/03/2023]
Abstract
As drought is increasingly frequent in the context of climate change it is a major constraint for crop growth and yield. The ability of plants to maintain their yield in response to drought depends not only on their ability to tolerate drought, but also on their capacity to subsequently recover. Post-stress recovery can indeed be decisive for drought resilience and yield stability. Pea (Pisum sativum), as a legume, has the capacity to fix atmospheric nitrogen through its symbiotic interaction with soil bacteria within root nodules. Biological nitrogen fixation is highly sensitive to drought which can impact plant nitrogen nutrition and growth. Our study aimed at dynamically evaluating whether the control of plant N status after drought could affect nodulated pea plant's ability to recover. Two pea genotypes, Puget and Kayanne, displaying different drought resilience abilities were compared for their capacity to tolerate to, and to recover from, a 2-weeks water-deficit period applied before flowering. Physiological processes were studied in this time-series experiment using a conceptual structure-function analysis framework focusing on whole plant carbon, nitrogen, and water fluxes combined to two 13CO2 and 15N2 labeling experiments. While Puget showed a yield decrease compared to well-watered plants, Kayanne was able to maintain its yield. During the recovery period, genotype-dependent strategies were observed. The analysis of the synchronization of carbon, nitrogen, and water related traits dynamics during the recovery period and at the whole plant level, revealed that plant growth recovery was tightly linked to N nutrition. In Puget, the initiation of new nodules after water deficit was delayed compared to control plants, and additional nodules developed, while in Kayanne the formation of nodules was both rapidly and strictly re-adjusted to plant growth needs, allowing a full recovery. Our study suggested that a rapid re-launch of N acquisition, associated with a fine-tuning of nodule formation during the post-stress period is essential for efficient drought resilience in pea leading to yield stability.
Collapse
|
9
|
Chu Q, Sha Z, Maruyama H, Yang L, Pan G, Xue L, Watanabe T. Metabolic reprogramming in nodules, roots, and leaves of symbiotic soybean in response to iron deficiency. PLANT, CELL & ENVIRONMENT 2019; 42:3027-3043. [PMID: 31283836 DOI: 10.1111/pce.13608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 05/28/2023]
Abstract
To elucidate the mechanism of adaptation of leguminous plants to iron (Fe)-deficient environment, comprehensive analyses of soybean (Glycine max) plants (sampled at anthesis) were conducted under Fe-sufficient control and Fe-deficient treatment using metabolomic and physiological approach. Our results show that soybeans grown under Fe-deficient conditions showed lower nitrogen (N) fixation efficiency; however, ureides increased in different tissues, indicating potential N-feedback inhibition. N assimilation was inhibited as observed in the repressed amino acids biosynthesis and reduced proteins in roots and nodules. In Fe-deficient leaves, many amino acids increased, accompanied by the reduction of malate, fumarate, succinate, and α-ketoglutarate, which implies the N reprogramming was stimulated by the anaplerotic pathway. Accordingly, many organic acids increased in roots and nodules; however, enzymes involved in the related metabolic pathway (e.g., Krebs cycle) showed opposite activity between roots and nodules, indicative of different mechanisms. Sugars increased or maintained at constant level in different tissues under Fe deficiency, which probably relates to oxidative stress, cell wall damage, and feedback regulation. Increased ascorbate, nicotinate, raffinose, galactinol, and proline in different tissues possibly helped resist the oxidative stress induced by Fe deficiency. Overall, Fe deficiency induced the coordinated metabolic reprogramming in different tissues of symbiotic soybean plants.
Collapse
Affiliation(s)
- Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire, NG25 0QF, UK
| | - Zhimin Sha
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hayato Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire, NG25 0QF, UK
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
10
|
Chu HD, Nguyen KH, Watanabe Y, Le DT, Pham TLT, Mochida K, Tran LSP. Identification, Structural Characterization and Gene Expression Analysis of Members of the Nuclear Factor-Y Family in Chickpea ( Cicer arietinum L.) under Dehydration and Abscisic Acid Treatments. Int J Mol Sci 2018; 19:ijms19113290. [PMID: 30360493 PMCID: PMC6275023 DOI: 10.3390/ijms19113290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/25/2023] Open
Abstract
In plants, the Nuclear Factor-Y (NF-Y) transcription factors (TFs), which include three distinct types of NF-YA, NF-YB, and NF-YC TFs, have been identified to play key roles in the regulation of various plant growth and developmental processes under both normal and environmental stress conditions. In this work, a total of 40 CaNF-Y-encoding genes, including eight CaNF-YAs, 21 CaNF-YBs, and 11 CaNF-YCs, were identified in chickpea, and their major gene and protein characteristics were subsequently obtained using various web-based tools. Of our interest, a phylogenetically-based analysis predicted 18 CaNF-Ys (eight CaNF-YAs, seven CaNF-YBs, and three CaNF-YCs) that potentially play roles in chickpea responses to dehydration according to their close relationship with the well-characterized GmNF-Ys in soybean. These results were in good agreement with the enrichment of drought-responsive cis-regulatory motifs and expression patterns obtained from in silico analyses using publically available transcriptome data. Most of the phylogenetically predicted drought-responsive CaNF-Y genes (15 of 18) were quantitatively validated to significantly respond to dehydration treatment in leaves and/or roots, further supporting the results of in silico analyses. Among these CaNF-Y genes, the transcript levels of CaNF-YA01 and CaNF-YC10 were the most highly accumulated in leaves (by approximately eight-fold) and roots (by approximately 18-fold), respectively, by dehydration. Furthermore, 12 of the 18 CaNF-Y genes were found to be responsive to the most well-known stress hormone, namely abscisic acid (ABA), in leaves and/or roots, suggesting that these genes may act in chickpea response to dehydration in ABA-dependent manner. Taken together, our study has provided a comprehensive and fundamental information for further functional analyses of selected CaNF-Y candidate genes, ultimately leading to the improvement of chickpea growth under water-limited conditions.
Collapse
Affiliation(s)
- Ha Duc Chu
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Dung Tien Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Thu Ly Thi Pham
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
11
|
Dhanushkodi R, Matthew C, McManus MT, Dijkwel PP. Drought-induced senescence of Medicago truncatula nodules involves serpin and ferritin to control proteolytic activity and iron levels. THE NEW PHYTOLOGIST 2018; 220:196-208. [PMID: 29974467 DOI: 10.1111/nph.15298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/20/2018] [Indexed: 05/09/2023]
Abstract
Drought is a major constraint for legume growth and yield. Senescence of nitrogen-fixing nodules is one of the early drought responses and may cause nutrient stress in addition to water stress in legumes. For nodule senescence to function as part of a drought-survival strategy, we propose that the intrinsically destructive senescence process must be tightly regulated. Medicago truncatula protease inhibitor and iron scavenger-encoding genes, possibly involved in controlling nodule senescence, were identified. RNA interference (RNAi) lines were constructed in which expression of a serpin or ferritins was knocked down. Both wild-type and RNAi lines were subjected to drought stress and nodule activity and plant physiological responses were measured. Drought caused M. truncatula to initiate nodule senescence before plant growth was affected and before an increase in papain-like proteolytic activity and free iron levels was apparent. Knock-down expression of serpin6 and ferritins caused increased protease activity, free iron levels, early nodule senescence and reduced plant growth. The results suggest that M. truncatula nodule-expressed serpin6 and ferritins mediate ordered drought-induced senescence by regulating papain-like cysteine protease activity and free iron levels. This strategy may allow the drought-stressed plants to benefit maximally from residual nitrogen fixation and nutrient recovery resulting from break down of macromolecules.
Collapse
Affiliation(s)
- Ramadoss Dhanushkodi
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Cory Matthew
- Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
12
|
Adams MA, Buchmann N, Sprent J, Buckley TN, Turnbull TL. Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally? TRENDS IN PLANT SCIENCE 2018; 23:539-550. [PMID: 29559299 DOI: 10.1016/j.tplants.2018.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF.
Collapse
Affiliation(s)
- Mark A Adams
- Swinburne University, PO Box 218, Hawthorn, VIC 3122, Australia; Centre for Carbon Water and Food, The University of Sydney, 380 Werombi Road, Camden, NSW 2480, Australia.
| | - Nina Buchmann
- ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Janet Sprent
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tarryn L Turnbull
- Centre for Carbon Water and Food, The University of Sydney, 380 Werombi Road, Camden, NSW 2480, Australia
| |
Collapse
|
13
|
Jemo M, Sulieman S, Bekkaoui F, Olomide OAK, Hashem A, Abd_Allah EF, Alqarawi AA, Tran LSP. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:2111. [PMID: 29312379 PMCID: PMC5742256 DOI: 10.3389/fpls.2017.02111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led to significant reductions of water-deficit damage on dry biomass, plant-N and -P contents, and BNF potential of cowpea varieties. This finding suggests that integrated nutrient management strategies that allow farmers to access to Pi-based fertilizers may help reduce the damage of adverse water deficit and Pi deficiency caused to cowpea crop in the regions, where soils are predominantly Pi-deficient and drought-prone.
Collapse
Affiliation(s)
- Martin Jemo
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Office Chérifien des Phosphates (OCP)-Africa, Casablanca, Morocco
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Sudan
| | - Faouzi Bekkaoui
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Signalling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
14
|
Furlan AL, Bianucci E, Castro S, Dietz KJ. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:12-22. [PMID: 28818367 DOI: 10.1016/j.plantsci.2017.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/04/2023]
Abstract
Legumes belong to the most important crops worldwide. They increase soil fertility due their ability to establish symbiotic associations with soil microorganisms, known as rhizobia, capable of fixing nitrogen from the atmosphere. However, they are frequently exposed to abiotic stress conditions in particular drought. Such adverse conditions impair the biological nitrogen fixation (BNF) and depend largely on the legume. Therefore, two peanut cultivars with contrasting tolerance to drought, namely the more tolerant EC-98 and the sensitive Granoleico, were investigated to elucidate the relative contribution of BNF to the tolerance to drought. The tolerant cultivar EC-98 sustained growth and BNF similar to the control condition despite the reduced water potential and photosynthesis, suggesting the functioning of distinct metabolic pathways that contributed to enhance the tolerance. The biochemical and metabolomics approaches revealed that nodules from the tolerant cultivar accumulated trehalose, proline and gamma-aminobutyric acid (GABA), metabolites with known function in protecting against drought stress. The amide metabolism was severely affected in nodules from the sensitive cultivar Granoleico as revealed by the low content of asparagine and glutamine in the drought stressed plants. The sensitive cultivar upon rehydration was unable to re-establish a metabolism similar to well-watered plants. This was evidenced by the low level of metabolites and, transcripts and specific activities of enzymes from the carbon (sucrose synthase) and nitrogen (glutamine synthetase) metabolism which decreased below the values of control plants. Therefore, the increased content of metabolites with protective functions under drought stress likely is crucial for the full restoration upon rehydration. Smaller changes of drought stress-related metabolites in nodule are another trait that contributes to the effective control of BNF in the tolerant peanut cultivar (EC-98).
Collapse
Affiliation(s)
- Ana Laura Furlan
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina; Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany.
| | - Eliana Bianucci
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany
| |
Collapse
|
15
|
Kaur D, Grewal SK, Kaur J, Singh S, Singh I. Water deficit stress tolerance in chickpea is mediated by the contribution of integrative defence systems in different tissues of the plant. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:903-918. [PMID: 32480514 DOI: 10.1071/fp16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/20/2016] [Indexed: 06/11/2023]
Abstract
Drought induces heavy yield losses in chickpea (Cicer arietinum L.). Besides understanding the physiological and biochemical parameters contributing to drought tolerance, we need to understand the importance of one tissue in combatting drought stress-induced oxidative stress and influencing the antioxidative defence system in other tissues. The study was conducted to examine the influence of drought stress conditions on the antioxidative defence system and physiology in different tissues such as roots, leaves, nodules, pod walls and seeds at various vegetative and reproductive growth stages in two chickpea cultivars differing in rooting behaviour: ICC4958 (deep rooted) and ILC3279 (shallow rooted). The traits contributing to drought tolerance in ICC4958 were increased root area, decreased leaf area index or increase in root area, decreased leaf area; ILC3279 displayed a decrease in root area and an increase in LAI. The adaptation of ICC4958 was also accompanied by biochemical adjustments, like increases in antioxidative enzymes (superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione reductase and catalase) and nonenzymatic antioxidants (ascorbic acid, proline and stress-induced proteins). However, increases in antioxidant enzymes, nonenzymatic antioxidants and proteins in ILC3279 were lower than in ICC4958. The lower malondialdehyde content and membrane permeability index in ICC4958 might be responsible for reduced damage under drought stress. Increased H2O2 content in ICC4958 was related to enhanced antioxidative defence, emphasising its role as a signalling molecule under stress. This is the first study conducted on drought stress-induced enzymatic and nonenzymatic antioxidative defence systems in underground, aboveground vegetative and reproductive tissues in chickpea cultivars differing in rooting behaviour.
Collapse
Affiliation(s)
- Davinder Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Satvir K Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Jagmeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141004, India
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141004, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141004, India
| |
Collapse
|
16
|
Nasr Esfahani M, Kusano M, Nguyen KH, Watanabe Y, Ha CV, Saito K, Sulieman S, Herrera-Estrella L, Tran LS. Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism. Proc Natl Acad Sci U S A 2016; 113:E4610-9. [PMID: 27450089 PMCID: PMC4987776 DOI: 10.1073/pnas.1609440113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops.
Collapse
Affiliation(s)
| | - Miyako Kusano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Kien Huu Nguyen
- Plant Abiotic Stress Research Group and Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Chien Van Ha
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Khartoum North 13314, Sudan
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - L S Tran
- Plant Abiotic Stress Research Group and Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan;
| |
Collapse
|
17
|
Carter AM, Tegeder M. Increasing Nitrogen Fixation and Seed Development in Soybean Requires Complex Adjustments of Nodule Nitrogen Metabolism and Partitioning Processes. Curr Biol 2016; 26:2044-2051. [PMID: 27451897 DOI: 10.1016/j.cub.2016.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/19/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Legumes are able to access atmospheric di-nitrogen (N2) through a symbiotic relationship with rhizobia that reside within root nodules. In soybean, following N2 fixation by the bacteroids, ammonia is finally reduced in uninfected cells to allantoin and allantoic acid [1]. These ureides present the primary long-distance transport forms of nitrogen (N), and are exported from nodules via the xylem for shoot N supply. Transport of allantoin and allantoic acid out of nodules requires the function of ureide permeases (UPS1) located in cells adjacent to the vasculature [2, 3]. We expressed a common bean UPS1 transporter in cortex and endodermis cells of soybean nodules and found that delivery of N from nodules to shoot, as well as seed set, was significantly increased. In addition, the number of transgenic nodules was increased and symbiotic N2 fixation per nodule was elevated, indicating that transporter function in nodule N export is a limiting step in bacterial N acquisition. Further, the transgenic nodules showed considerable increases in nodule N assimilation, ureide synthesis, and metabolite levels. This suggests complex adjustments of nodule N metabolism and partitioning processes in support of symbiotic N2 fixation. We propose that the transgenic UPS1 plants display metabolic and allocation plasticity to overcome N2 fixation and seed yield limitations. Overall, it is demonstrated that transporter function in N export from nodules is a key step for enhancing atmospheric N2 fixation and nodule function and for improving shoot N nutrition and seed development in legumes.
Collapse
Affiliation(s)
- Amanda M Carter
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
18
|
Sadras VO, Lake L, Li Y, Farquharson EA, Sutton T. Phenotypic plasticity and its genetic regulation for yield, nitrogen fixation and δ13C in chickpea crops under varying water regimes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4339-51. [PMID: 27296246 DOI: 10.1093/jxb/erw221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We measured yield components, nitrogen fixation, soil nitrogen uptake and carbon isotope composition (δ(13)C) in a collection of chickpea genotypes grown in environments where water availability was the main source of yield variation. We aimed to quantify the phenotypic plasticity of these traits using variance ratios, and to explore their genetic basis using FST genome scan. Fifty-five genes in three genomic regions were found to be under selection for plasticity of yield; 54 genes in four genomic regions for the plasticity of seeds per m(2); 48 genes in four genomic regions for the plasticity of δ(13)C; 54 genes in two genomic regions for plasticity of flowering time; 48 genes in five genomic regions for plasticity of nitrogen fixation and 49 genes in three genomic regions for plasticity of nitrogen uptake from soil. Plasticity of yield was related to plasticity of nitrogen uptake from soil, and unrelated to plasticity of nitrogen fixation, highlighting the need for closer attention to nitrogen uptake in legumes. Whereas the theoretical link between δ(13)C and transpiration efficiency is strong, the actual link with yield is erratic due to trade-offs and scaling issues. Genes associated with plasticity of δ(13)C were identified that may help to untangle the δ(13)C-yield relationship. Combining a plasticity perspective to deal with complex G×E interactions with FST genome scan may help understand and improve both crop adaptation to stress and yield potential.
Collapse
Affiliation(s)
- Victor O Sadras
- South Australian Research and Development Institute, Waite Campus, Australia
| | - Lachlan Lake
- South Australian Research and Development Institute, Waite Campus, Australia
| | - Yongle Li
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Waite Campus, Australia
| | | | - Tim Sutton
- South Australian Research and Development Institute, Waite Campus, Australia
| |
Collapse
|
19
|
Hewitt DKL, Mills G, Hayes F, Norris D, Coyle M, Wilkinson S, Davies W. N-fixation in legumes--An assessment of the potential threat posed by ozone pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:909-18. [PMID: 26385644 DOI: 10.1016/j.envpol.2015.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a "high" (2006) and "average" ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation.
Collapse
Affiliation(s)
- D K L Hewitt
- Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire, LA1 4YQ, UK.
| | - G Mills
- Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - F Hayes
- Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - D Norris
- Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - M Coyle
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - S Wilkinson
- Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire, LA1 4YQ, UK
| | - W Davies
- Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire, LA1 4YQ, UK
| |
Collapse
|
20
|
Ryalls JMW, Moore BD, Riegler M, Johnson SN. Above-Belowground Herbivore Interactions in Mixed Plant Communities Are Influenced by Altered Precipitation Patterns. FRONTIERS IN PLANT SCIENCE 2016; 7:345. [PMID: 27047522 PMCID: PMC4804199 DOI: 10.3389/fpls.2016.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 05/11/2023]
Abstract
Root- and shoot-feeding herbivores have the capacity to influence one another by modifying the chemistry of the shared host plant. This can alter rates of nutrient mineralization and uptake by neighboring plants and influence plant-plant competition, particularly in mixtures combining grasses and legumes. Root herbivory-induced exudation of nitrogen (N) from legume roots, for example, may increase N acquisition by co-occurring grasses, with knock-on effects on grassland community composition. Little is known about how climate change may affect these interactions, but an important and timely question is how will grass-legume mixtures respond in a future with an increasing reliance on legume N mineralization in terrestrial ecosystems. Using a model grass-legume mixture, this study investigated how simultaneous attack on lucerne (Medicago sativa) by belowground weevils (Sitona discoideus) and aboveground aphids (Acyrthosiphon pisum) affected a neighboring grass (Phalaris aquatica) when subjected to drought, ambient, and elevated precipitation. Feeding on rhizobial nodules by weevil larvae enhanced soil water retention under ambient and elevated precipitation, but only when aphids were absent. While drought decreased nodulation and root N content in lucerne, grass root and shoot chemistry were unaffected by changes in precipitation. However, plant communities containing weevils but not aphids showed increased grass height and N concentrations, most likely associated with the transfer of N from weevil-attacked lucerne plants containing more nodules and higher root N concentrations compared with insect-free plants. Drought decreased aphid abundance by 54% but increased total and some specific amino acid concentrations (glycine, lysine, methionine, tyrosine, cysteine, histidine, arginine, aspartate, and glutamate), suggesting that aphid declines were being driven by other facets of drought (e.g., reduced phloem hydraulics). The presence of weevil larvae belowground decreased aphid numbers by 30%, likely associated with a significant reduction in proline in weevil-treated lucerne plants. This study demonstrates how predicted changes to precipitation patterns and indirect interactions between herbivores can alter the outcome of competition between N-fixing legumes and non-N-fixing grasses, with important implications for plant community structure and productivity.
Collapse
|
21
|
Influence of Rhizobia Inoculation on Biomass Gain and Tissue Nitrogen Content of Leucaena leucocephala Seedlings under Drought. FORESTS 2015. [DOI: 10.3390/f6103686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Sulieman S, Tran LSP. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:36-43. [PMID: 26398789 DOI: 10.1016/j.plantsci.2015.06.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 05/04/2023]
Abstract
Legumes have a significant role in effective management of fertilizers and improving soil health in sustainable agriculture. Because of the high phosphorus (P) requirements of N2-fixing nodule, P deficiency represents an important constraint for legume crop production, especially in tropical marginal countries. P deficiency is an important constraint for legume crop production, especially in poor soils present in many tropical degraded areas. Unlike nitrogen, mineral P sources are nonrenewable, and high-grade rock phosphates are expected to be depleted in the near future. Accordingly, developing legume cultivars with effective N2 fixation under P-limited conditions could have a profound significance for improving agricultural sustainability. Legumes have evolved strategies at both morphological and physiological levels to adapt to P deficiency. Molecular mechanisms underlying the adaptive strategies to P deficiency have been elucidated in legumes. These include maintenance of the P-homeostasis in nodules as a main adaptive strategy for rhizobia-legume symbiosis under P deficiency. The stabilization of P levels in the symbiotic tissues can be achieved through several mechanisms, including elevated P allocation to nodules, formation of a strong P sink in nodules, direct P acquisition via nodule surface and P remobilization from organic-P containing substances. The detailed biochemical, physiological and molecular understanding will be essential to the advancement of genetic and molecular approaches for enhancement of legume adaptation to P deficiency. In this review, we evaluate recent progress made to gain further and deeper insights into the physiological, biochemical and molecular reprogramming that legumes use to maintain P-homeostasis in nodules during P scarcity.
Collapse
Affiliation(s)
- Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan.
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
23
|
Adnane B, Mainassara ZA, Mohamed F, Mohamed L, Jean-Jacques D, Rim MT, Georg C. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes. Int J Mol Sci 2015; 16:18976-9008. [PMID: 26287163 PMCID: PMC4581282 DOI: 10.3390/ijms160818976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.
Collapse
Affiliation(s)
- Bargaz Adnane
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| | - Zaman-Allah Mainassara
- International Maize and Wheat Improvement Center (CIMMYT), Southern Africa Regional Office, MP163 Harare, Zimbabwe.
| | - Farissi Mohamed
- Polyvalent Laboratory for Research & Development, Polydisciplinary Faculty, Sultan Moulay Sliman University, 23000 Beni-Mellal, Morocco.
| | - Lazali Mohamed
- Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Université de Khemis Miliana, 44225 Ain Defla, Algeria.
| | - Drevon Jean-Jacques
- Unité mixte de recherche, Écologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, Institut National de la Recherche Agronomique, 34060 Montpellier, France.
| | - Maougal T Rim
- Laboratoire de génétique Biochimie et biotechnologies végétales Faculté des Sciences de la Nature et de la Vie, Université des frères Mentouri, 25017 Constantine, Algeria.
| | - Carlsson Georg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| |
Collapse
|
24
|
Cabeza RA, Liese R, Fischinger SA, Sulieman S, Avenhaus U, Lingner A, Hein H, Koester B, Baumgarten V, Dittert K, Schulze J. Long-term non-invasive and continuous measurements of legume nodule activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:637-48. [PMID: 25640854 DOI: 10.1111/tpj.12751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 05/03/2023]
Abstract
Symbiotic nitrogen fixation is a process of considerable economic, ecological and scientific interest. The central enzyme nitrogenase reduces H(+) alongside N2 , and the evolving H2 allows a continuous and non-invasive in vivo measurement of nitrogenase activity. The objective of this study was to show that an elaborated set-up providing such measurements for periods as long as several weeks will produce specific insight into the nodule activity's dependence on environmental conditions and genotype features. A system was developed that allows the air-proof separation of a root/nodule and a shoot compartment. H2 evolution in the root/nodule compartment can be monitored continuously. Nutrient solution composition, temperature, CO2 concentration and humidity around the shoots can concomitantly be maintained and manipulated. Medicago truncatula plants showed vigorous growth in the system when relying on nitrogen fixation. The set-up was able to provide specific insights into nitrogen fixation. For example, nodule activity depended on the temperature in their surroundings, but not on temperature or light around shoots. Increased temperature around the nodules was able to induce higher nodule activity in darkness versus light around shoots for a period of as long as 8 h. Conditions that affected the N demand of the shoots (ammonium application, Mg or P depletion, super numeric nodules) induced consistent and complex daily rhythms in nodule activity. It was shown that long-term continuous measurements of nodule activity could be useful for revealing special features in mutants and could be of importance when synchronizing nodule harvests for complex analysis of their metabolic status.
Collapse
Affiliation(s)
- Ricardo A Cabeza
- Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, Department of Crop Science, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen, 37075, Germany; Facultad de Ciencias Agronómicas, Departamento de Ingeniería y Suelos, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nguyen KH, Ha CV, Watanabe Y, Tran UT, Nasr Esfahani M, Nguyen DV, Tran LSP. Correlation between differential drought tolerability of two contrasting drought-responsive chickpea cultivars and differential expression of a subset of CaNAC genes under normal and dehydration conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:449. [PMID: 26150822 PMCID: PMC4472984 DOI: 10.3389/fpls.2015.00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 05/04/2023]
Abstract
Drought causes detrimental effect to growth and productivity of many plants, including crops. NAC transcription factors have been reported to play important role in drought tolerance. In this study, we assessed the expression profiles of 19 dehydration-responsive CaNAC genes in roots and leaves of two contrasting drought-responsive chickpea varieties treated with water (control) and dehydration to examine the correlation between the differential expression levels of the CaNAC genes and the differential drought tolerability of these two cultivars. Results of real-time quantitative PCR indicated a positive relationship between the number of dehydration-inducible and -repressible CaNAC genes and drought tolerability. The higher drought-tolerant capacity of ILC482 cultivar vs. Hashem cultivar might be, at least partly, attributed to the higher number of dehydration-inducible and lower number of dehydration-repressible CaNAC genes identified in both root and leaf tissues of ILC482 than in those of Hashem. In addition, our comparative expression analysis of the selected CaNAC genes in roots and leaves of ILC482 and Hashem cultivars revealed different dehydration-responsive expression patterns, indicating that CaNAC gene expression is tissue- and genotype-specific. Furthermore, the analysis suggested that the enhanced drought tolerance of ILC482 vs. Hashem might be associated with five genes, namely CaNAC02, 04, 05, 16, and 24. CaNAC16 could be a potential candidate gene, contributing to the better drought tolerance of ILC482 vs. Hashem as a positive regulator. Conversely, CaNAC02 could be a potential negative regulator, contributing to the differential drought tolerability of these two cultivars. Thus, our results have also provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.
Collapse
Affiliation(s)
- Kien Huu Nguyen
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute, Vietnam Academy of Agricultural SciencesHanoi, Vietnam
| | - Chien Van Ha
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute, Vietnam Academy of Agricultural SciencesHanoi, Vietnam
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Uyen Thi Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | | | - Dong Van Nguyen
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute, Vietnam Academy of Agricultural SciencesHanoi, Vietnam
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Lam-Son Phan Tran, Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan,
| |
Collapse
|
26
|
Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. PLoS One 2014; 9:e114107. [PMID: 25479253 PMCID: PMC4257607 DOI: 10.1371/journal.pone.0114107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/02/2014] [Indexed: 02/07/2023] Open
Abstract
The plant-specific NAC transcription factors (TFs) play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum) and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA) treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control), dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR). Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.
Collapse
|
27
|
Sulieman S, Tran LSP. Symbiotic nitrogen fixation in legume nodules: metabolism and regulatory mechanisms. Int J Mol Sci 2014; 15:19389-93. [PMID: 25347276 PMCID: PMC4264117 DOI: 10.3390/ijms151119389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 11/16/2022] Open
Abstract
The special issue “Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms” aims to investigate the physiological and biochemical advances in the symbiotic process with an emphasis on nodule establishment, development and functioning. The original research articles included in this issue provide important information regarding novel aspects of nodule metabolism and various regulatory pathways, which could have important future implications. This issue also included one review article that highlights the importance of using legume trees in the production of renewable biofuels.
Collapse
Affiliation(s)
- Saad Sulieman
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|