1
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
2
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Li Y, Liu Z, Tamia GM, He X, Sun J, Chen P, Lee SH, Wang TTY, Gao B, Xie Z, Yu LL. Soluble Free, Soluble Conjugated, and Insoluble Bound Phenolics in Tomato Seeds and Their Radical Scavenging and Antiproliferative Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9039-9047. [PMID: 35820155 DOI: 10.1021/acs.jafc.2c03418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The soluble free, soluble conjugated, and insoluble bound phenolic compounds in tomato seeds were extracted and analyzed using ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Total phenolic content (TPC) and free radical scavenging activities along with the antiproliferative effects against the human colorectal cancer cell line (HCT-116) were also examined for the soluble free, soluble conjugated, and insoluble bound phenolic fractions. 13, 7, and 10 compounds were tentatively identified in the soluble free, soluble conjugated, and insoluble bound phenolic fractions, respectively, including indole-3-acetic acid derivatives, flavonoids, phenolic acid, and tyramine-derived hydroxycinnamic acid amines. The insoluble bound phenolic fraction was observed to have a greater TPC value and stronger free radical scavenging activities against ABTS•+, DPPH•, and peroxyl radicals and a stronger inhibitory effect against HCT-116 cells compared with the soluble free and the soluble conjugated fractions. Soluble free and insoluble bound fractions significantly inhibited the proliferation of the HCT-116 cell line, and no antiproliferative effects were observed with the soluble conjugated fraction under the experimental conditions. The results may provide a foundation for future application of tomato seeds as nutraceuticals in dietary supplements and functional foods.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihao Liu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Gillian Manka Tamia
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaohua He
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, California 94710, United States
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuohong Xie
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Bhandari S, Bisht KS, Merkler DJ. The Biosynthesis and Metabolism of the N-Acylated Aromatic Amino Acids: N-Acylphenylalanine, N-Acyltyrosine, N-Acyltryptophan, and N-Acylhistidine. Front Mol Biosci 2022; 8:801749. [PMID: 35047560 PMCID: PMC8762209 DOI: 10.3389/fmolb.2021.801749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
The fatty acid amides are a family of lipids composed of two chemical moieties, a fatty acid and a biogenic amine linked together in an amide bond. This lipid family is structurally related to the endocannabinoid anandamide (N-arachidonoylethanolamine) and, thus, is frequently referred to as a family of endocannabinoid-related lipids. The fatty acid amide family is divided into different classes based on the conjugate amine; anandamide being a member of the N-acylethanolamine class (NAE). Another class within the fatty acid amide family is the N-acyl amino acids (NA-AAs). The focus of this review is a sub-class of the NA-AAs, the N-acyl aromatic amino acids (NA-ArAAs). The NA-ArAAs are not broadly recognized, even by those interested in the endocannabinoids and endocannabinoid-related lipids. Herein, the NA-ArAAs that have been identified from a biological source will be highlighted and pathways for their biosynthesis, degradation, enzymatic modification, and transport will be presented. Also, information about the cellular functions of the NA-ArAAs will be placed in context with the data regarding the identification and metabolism of these N-acylated amino acids. A review of the current state-of-knowledge about the NA-ArAAs is to stimulate future research about this underappreciated sub-class of the fatty acid amide family.
Collapse
Affiliation(s)
- Suzeeta Bhandari
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Kirpal S Bisht
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
5
|
Using targeted metabolomics to elucidate the indole auxin network in plants. Methods Enzymol 2022; 676:239-278. [DOI: 10.1016/bs.mie.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Kolodziejczyk-Czepas J, Kozachok S, Pecio Ł, Marchyshyn S, Oleszek W. Determination of phenolic profiles of Herniaria polygama and Herniaria incana fractions and their in vitro antioxidant and anti-inflammatory effects. PHYTOCHEMISTRY 2021; 190:112861. [PMID: 34325241 DOI: 10.1016/j.phytochem.2021.112861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The study is based on phytochemical profiling and in vitro evaluation of biological effects of phenolic acid derivatives-rich Herniaria fractions, isolated from two rupturewort (Herniaria L.) species, i.e. Herniaria incana Lam. (syn. H. besseri Fisch. ex Hornem) and H. polygama J. Gay (syn. H. odorata). For the first time, the composition of phenolic compounds of these species was extensively evaluated by both LC-HR-QTOF-ESI-MS and Nuclear Magnetic Resonance spectroscopy (NMR). LC-MS analyses of H. polygama revealed 72 tentatively identified compounds, while H. incana - 63. Only 8% of the metabolites reported in this work have been previously described for Herniaria spp. Most of the identified specialized metabolites were cinnamic and benzoic acid derivatives. Phenolic fraction of H. incana herb contained flavonoids as well. A multi-step chromatographic separation of phenolic fractions from H. polygama yielded three known cinnamic and one benzoic acid derivates, and from H. incana - 4 known flavonoids and one previously undescribed, i.e. rhamnocitrin-3-O-[3-hydroxy-3-methylglutaryl-(1 → 6'')]-[α-rhamnopyranosyl-(1 → 2'')]-β-glucopyranoside. Antioxidant properties of the examined fractions (1-50 μg/ml) were assessed in human blood plasma under the conditions of peroxynitrite-induced oxidative stress. Measurements of well-known biomarkers such as 3-nitrotyrosine, protein thiol groups, thiobarbituric acid-reactive substances and the ferric reducing ability of blood plasma revealed the protective effect of Herniaria fractions against oxidative damage to blood plasma components. Furthermore, the examined fractions effectively ameliorated the inflammatory response of the concanavalin A-stimulated human peripheral blood mononuclear cells (PBMCs). Additionally, cellular safety of the fractions was confirmed in PBMCs.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland; Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Svitlana Marchyshyn
- Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
7
|
Tillmann M, Tang Q, Cohen JD. Protocol: analytical methods for visualizing the indolic precursor network leading to auxin biosynthesis. PLANT METHODS 2021; 17:63. [PMID: 34158074 PMCID: PMC8220744 DOI: 10.1186/s13007-021-00763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND The plant hormone auxin plays a central role in regulation of plant growth and response to environmental stimuli. Multiple pathways have been proposed for biosynthesis of indole-3-acetic acid (IAA), the primary auxin in a number of plant species. However, utilization of these different pathways under various environmental conditions and developmental time points remains largely unknown. RESULTS Monitoring incorporation of stable isotopes from labeled precursors into proposed intermediates provides a method to trace pathway utilization and characterize new biosynthetic routes to auxin. These techniques can be aided by addition of chemical inhibitors to target specific steps or entire pathways of auxin synthesis. CONCLUSIONS Here we describe techniques for pathway analysis in Arabidopsis thaliana seedlings using multiple stable isotope-labeled precursors and chemical inhibitors coupled with highly sensitive liquid chromatography-mass spectrometry (LC-MS) methods. These methods should prove to be useful to researchers studying routes of IAA biosynthesis in vivo in a variety of plant tissues.
Collapse
Affiliation(s)
- Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA.
| | - Qian Tang
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
8
|
Kuźniar A, Włodarczyk K, Sadok I, Staniszewska M, Woźniak M, Furtak K, Grządziel J, Gałązka A, Skórzyńska-Polit E, Wolińska A. A Comprehensive Analysis Using Colorimetry, Liquid Chromatography-Tandem Mass Spectrometry and Bioassays for the Assessment of Indole Related Compounds Produced by Endophytes of Selected Wheat Cultivars. Molecules 2021; 26:molecules26051394. [PMID: 33807585 PMCID: PMC7961968 DOI: 10.3390/molecules26051394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
Liquid chromatography–tandem mass spectrometry (LC–MS/MS), colorimetry, and bioassays were employed for the evaluation of the ability of endophytic bacterial strains to synthesize indole-related compounds (IRCs) and in particular indole-3-acetic acid (IAA). A total of 54 endophytic strains belonging to seven bacterial genera isolated from tissues of common and spelt wheat cultivars were studied. The endophytic bacteria isolated from different tissues of the tested wheat types were capable of IRCs production, including IAA, which constituted from 1.75% to 52.68% of all IRCs, in in vitro conditions via the tryptophan dependent pathway. The selected post-culture medium was also examined using a plant bioassay. Substantial growth of wheat coleoptile segments treated with the bacterial post-culture medium was observed in several cases. Our data suggest that the studied endophytic bacteria produce auxin-type compounds to support plant development. Summarizing, our approach to use three complementary methods for estimation of IRCs in different endophytic strains provides a comprehensive picture of their effect on wheat growth.
Collapse
Affiliation(s)
- Agnieszka Kuźniar
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland; (K.W.); (A.W.)
- Correspondence: ; Tel.: +48-81-454-5461
| | - Kinga Włodarczyk
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland; (K.W.); (A.W.)
| | - Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 1J Konstantynów Str., 20-708 Lublin, Poland; (I.S.); (M.S.)
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 1J Konstantynów Str., 20-708 Lublin, Poland; (I.S.); (M.S.)
| | - Małgorzata Woźniak
- Institute of Soil Science and Plant Cultivation State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland; (M.W.); (K.F.); (J.G.); (A.G.)
| | - Karolina Furtak
- Institute of Soil Science and Plant Cultivation State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland; (M.W.); (K.F.); (J.G.); (A.G.)
| | - Jarosław Grządziel
- Institute of Soil Science and Plant Cultivation State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland; (M.W.); (K.F.); (J.G.); (A.G.)
| | - Anna Gałązka
- Institute of Soil Science and Plant Cultivation State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland; (M.W.); (K.F.); (J.G.); (A.G.)
| | - Ewa Skórzyńska-Polit
- Department of Plant Physiology and Biotechnology, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland;
| | - Agnieszka Wolińska
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland; (K.W.); (A.W.)
| |
Collapse
|
9
|
Keswani C, Singh SP, Cueto L, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Singh SP, Blázquez MA, Sansinenea E. Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol 2020; 104:8549-8565. [PMID: 32918584 DOI: 10.1007/s00253-020-10890-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
To maintain the world population demand, a sustainable agriculture is needed. Since current global vision is more friendly with the environment, eco-friendly alternatives are desirable. In this sense, plant growth-promoting rhizobacteria could be the choice for the management of soil-borne diseases of crop plants. These rhizobacteria secrete chemical compounds which act as phytohormones. Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class which regulates various processes of plant growth. IAA compound, in which structure can be found a carboxylic acid attached through a methylene group to the C-3 position of an indole ring, is produced both by plants and microorganisms. Plant growth-promoting rhizobacteria and fungi secrete IAA to promote the plant growth. In this review, IAA production and mechanisms of action by bacteria and fungi along with the metabolic pathways evolved in the IAA secretion and commercial prospects are revised.Key points• Many microorganisms produce auxins which help the plant growth promotion.• These auxins improve the plant growth by several mechanisms.• The auxins are produced through different mechanisms.
Collapse
Affiliation(s)
- Chetan Keswani
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Satyendra Pratap Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Laura Cueto
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av, Real, 1, 24006, León, Spain
| | - Carlos García-Estrada
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av, Real, 1, 24006, León, Spain.,Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | | | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln, 7647, New Zealand
| | - Rainer Borriss
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany.,Nord Reet UG, Marienstr. 27a, 17489, Greifswald, Germany
| | - Surya Pratap Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Miguel Angel Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México.
| |
Collapse
|
10
|
Vitalini S, Dei Cas M, Rubino FM, Vigentini I, Foschino R, Iriti M, Paroni R. LC-MS/MS-Based Profiling of Tryptophan-Related Metabolites in Healthy Plant Foods. Molecules 2020; 25:E311. [PMID: 31940983 PMCID: PMC7024187 DOI: 10.3390/molecules25020311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Food plants contain hundreds of bioactive phytochemicals arising from different secondary metabolic pathways. Among these, the metabolic route of the amino acid Tryptophan yields a large number of plant natural products with chemically and pharmacologically diverse properties. We propose the identifier "indolome" to collect all metabolites in the Tryptophan pathway. In addition, Tryptophan-rich plant sources can be used as substrates for the fermentation by yeast strains to produce pharmacologically active metabolites, such as Melatonin. To pursue this technological development, we have developed a UHPLC-MS/MS method to monitor 14 Tryptophan, Tryptamine, amino-benzoic, and pyridine metabolites. In addition, different extraction procedures to improve the recovery of Tryptophan and its derivatives from the vegetal matrix were tested. We investigated soybeans, pumpkin seeds, sesame seeds, and spirulina because of their botanical diversity and documented healthy effects. Four different extractions with different solvents and temperatures were tested, and water extraction at room temperature was chosen as the most suitable procedure to extract the whole Tryptophan metabolites pattern (called by us "indolome") in terms of ease, high efficiency, short time, low cost, and sustainability. In all plant matrices, Tryptophan was the most abundant indole compound, while the pattern of its metabolites was different in the diverse plants extracts. Overall, 5-OH Tryptamine and Kynurenine were the most abundant compounds, despite being 100-1000-fold lower than Tryptophan. Melatonin was undetected in all extracts, but sesame showed the presence of a Melatonin isomer. The results of this study highlight the variability in the occurrence of indole compounds among diverse food plants. The knowledge of Tryptophan metabolism in plants represents a relevant issue for human health and nutrition.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| | - Federico Maria Rubino
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.V.); (R.F.)
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.V.); (R.F.)
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| |
Collapse
|
11
|
Revelou PK, Kokotou MG, Constantinou-Kokotou V. Identification of Auxin Metabolites in Brassicaceae by Ultra-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24142615. [PMID: 31323791 PMCID: PMC6680779 DOI: 10.3390/molecules24142615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/30/2023]
Abstract
Auxins are signaling molecules involved in multiple stages of plant growth and development. The levels of the most important auxin, indole-3-acetic acid (IAA), are regulated by the formation of amide and ester conjugates with amino acids and sugars. In this work, IAA and IAA amide conjugates with amino acids bearing a free carboxylic group or a methyl ester group, along with some selected IAA metabolites, were studied in positive and negative electrospray ionization (ESI) modes, utilizing high-resolution mass spectrometry (HRMS) as a tool for their structural analysis. HRMS/MS spectra revealed the fragmentation patterns that enable us to identify IAA metabolites in plant extracts from eight vegetables of the Brassicaceae family using a fast and reliable ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) method. The accurate m/z (mass to charge) ratio and abundance of the molecular and fragment ions of the studied compounds in plant extracts matched those obtained from commercially available or synthesized compounds and confirmed the presence of IAA metabolites.
Collapse
Affiliation(s)
- Panagiota-Kyriaki Revelou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Maroula G Kokotou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Violetta Constantinou-Kokotou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece.
| |
Collapse
|
12
|
Revelou PK, Constantinou-Kokotou V. Preparation of synthetic auxin-amino acid conjugates. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1605446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Panagiota-Kyriaki Revelou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Violetta Constantinou-Kokotou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
13
|
Grishin DV, Zhdanov DD, Pokrovskaya MV, Sokolov NN. D-amino acids in nature, agriculture and biomedicine. ALL LIFE 2019. [DOI: 10.1080/21553769.2019.1622596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - D. D. Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
- Peoples Friendship University of Russia, Moscow, Russia
| | | | | |
Collapse
|
14
|
Tang Q, Yu P, Tillmann M, Cohen JD, Slovin JP. Indole-3-acetylaspartate and indole-3-acetylglutamate, the IAA-amide conjugates in the diploid strawberry achene, are hydrolyzed in growing seedlings. PLANTA 2019; 249:1073-1085. [PMID: 30535588 DOI: 10.1007/s00425-018-3061-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/24/2018] [Indexed: 05/26/2023]
Abstract
Indole-3-acetylaspartate and indole-3-acetylglutamate are the stored auxin amino acid conjugates of the achene of the diploid strawberry and serve as sources of auxin during seedling growth. The edible part of the strawberry, a pseudocarp, has long been known to enlarge in response to auxin produced by the developing achenes, the botanical true fruit. Auxin homeostasis involves a complex interaction between biosynthesis, conjugate formation and hydrolysis, catabolism and transport. Strawberry tissues are capable of synthesizing auxin conjugates, and transcriptome data support the expression of genes involved in IAA conjugate formation and hydrolysis throughout embryo development and subsequent seedling growth. Using a highly sensitive and selective mass spectrometric method, we identified all the low molecular weight indole-auxin amino acid conjugates in achenes of F. vesca as consisting of indole-3-acetylaspartate (IAasp) and indole-3-acetylglutamate (IAglu). In contrast to what has been proposed to occur in Arabidopsis, we determined that IAasp and IAglu are hydrolyzed by seedlings to provide a source of free IAA for growth.
Collapse
Affiliation(s)
- Qian Tang
- Department of Horticultural Science and Microbial and Plant Genome Institute, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Peng Yu
- Department of Horticultural Science and Microbial and Plant Genome Institute, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genome Institute, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genome Institute, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA.
| | - Janet P Slovin
- USDA/ARS Genetic Improvement of Fruit and Vegetables Laboratory, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| |
Collapse
|
15
|
The Potential of Phytomelatonin as a Nutraceutical. Molecules 2018; 23:molecules23010238. [PMID: 29361780 PMCID: PMC6017233 DOI: 10.3390/molecules23010238] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/25/2022] Open
Abstract
Phytomelatonin (plant melatonin) is chemically related to the amino acid tryptophan and has many diverse properties. Phytomelatonin is an interesting compound due to its outstanding actions at the cellular and physiological level, especially its protective effect in plants exposed to diverse stress situations, while its vegetable origin offers many opportunities because it is a natural compound. We present an overview of its origin, its action in plants in general (particularly in plant species with high levels of phytomelatonin), and its possibilities for use as a nutraceutical with particular attention paid to the beneficial effects that it may have in human health. The differences between synthetic melatonin and phytomelatonin, according to its origin and purity, are presented. Finally, the current market for phytomelatonin and its limits and potentials are discussed.
Collapse
|
16
|
Christ B, Hochstrasser R, Guyer L, Francisco R, Aubry S, Hörtensteiner S, Weng JK. Non-specific activities of the major herbicide-resistance gene BAR. NATURE PLANTS 2017; 3:937-945. [PMID: 29180815 PMCID: PMC6342461 DOI: 10.1038/s41477-017-0061-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/23/2017] [Indexed: 05/20/2023]
Abstract
Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.
Collapse
Affiliation(s)
- Bastien Christ
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Ramon Hochstrasser
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006, Zurich, Switzerland
| | - Luzia Guyer
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Rita Francisco
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Sylvain Aubry
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Stefan Hörtensteiner
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
17
|
Ye T, Hao YH, Yu L, Shi H, Reiter RJ, Feng YQ. A Simple, Rapid Method for Determination of Melatonin in Plant Tissues by UPLC Coupled with High Resolution Orbitrap Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2017; 8:64. [PMID: 28179912 PMCID: PMC5263157 DOI: 10.3389/fpls.2017.00064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/12/2017] [Indexed: 05/06/2023]
Abstract
Melatonin (MLT) was involved in regulating various stages of plant growth and development. However, due to the low concentration and complex matrixes of plant, the analysis of MLT is a challenging task. In this study, we developed a rapid and efficient method with simplified sample preparation by employing UPLC coupled with a high resolution Orbitrap mass spectrometry, and stable isotope-labeled MLT (MLT-d4) was first used as internal standard in the developed analytical method. In the developed method, we used one-step liquid-liquid extraction to purify the crude extracts both from shoot and root of rice for the analysis, which remarkably simplify the sample preparation process. The method exhibits high specificity and recovery yield (>96.4%). Good linearities were obtained for MLT ranging from 0.01 to 20 ng/ mL with determination coefficient (R2) of 0.9991. The limit of detection for MLT was 0.03 pg. Reproducibility of the method was evaluated by intra-day and inter-day measurements and the results showed that relative standard deviations were less than 7.2%. Moreover, MLT quantification was accomplished by using only 100 mg fresh plant tissues. Additionally, the established method was successfully applied to investigate the spatiotemporal distributions of MLT in rice under cadmium (Cd) stress condition. We found that the content of MLT in shoot and root of rice increased under Cd stress, suggesting that MLT would play a crucial role in modulating the responses to Cd stress in different plant tissues.
Collapse
Affiliation(s)
- Tiantian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Ministry of Education, Wuhan UniversityWuhan, China
| | - Yan-Hong Hao
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Ministry of Education, Wuhan UniversityWuhan, China
| | - Lei Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Ministry of Education, Wuhan UniversityWuhan, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San AntonioTX, USA
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Ministry of Education, Wuhan UniversityWuhan, China
- *Correspondence: Yu-Qi Feng,
| |
Collapse
|
18
|
Porfírio S, Gomes da Silva MD, Peixe A, Cabrita MJ, Azadi P. Current analytical methods for plant auxin quantification – A review. Anal Chim Acta 2016; 902:8-21. [DOI: 10.1016/j.aca.2015.10.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
|
19
|
Yu P, Lor P, Ludwig-Müller J, Hegeman AD, Cohen JD. Quantitative evaluation of IAA conjugate pools in Arabidopsis thaliana. PLANTA 2015; 241:539-548. [PMID: 25420555 DOI: 10.1007/s00425-014-2206-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
This work has demonstrated that the major method of estimating the amount of unknown IAA conjugates-base hydrolysis-can be significantly complicated by chemical artifacts such as glucobrassicin or protein degradation. The concept of 'bound auxin' traces its origin back to more than 80 years ago and has driven research on the sources and forms of these plant hormones since. Indeed, analytical studies have demonstrated that the majority of cellular auxin is conjugated to simple sugars, cyclitols, glycans, amino acids, and other biomolecules. A number of studies have confirmed the enzymatic systems responsible for the synthesis and hydrolysis of a number of such conjugates in Arabidopsis thaliana and some of these compounds have been identified in situ. However, the amount of indole-3-acetic acid (IAA) released upon treating Arabidopsis tissue extracts with base, a commonly employed technique for estimating the amount of IAA conjugates, greatly exceeded the summation of all the IAA conjugates known individually to be present in Arabidopsis. This discrepancy has remained as an unsolved question. In this study, however, we found that a significant portion of the IAA found after base treatment could be attributed to chemical conversions other than conjugate hydrolysis. Specifically, we showed that glucobrassicin conversion, previously thought to occur at insignificant levels, actually accounted for the majority of solvent soluble IAA released and that proteinaceous tryptophan degradation accounted for a large portion of solvent insoluble IAA. These studies clearly demonstrated the limits associated with using a harsh technique like base hydrolysis in determining IAA conjugates and support using more direct approaches such as mass spectrometry-based strategies for unambiguous characterizations of the total complement of IAA conjugates in new plant materials under study.
Collapse
Affiliation(s)
- Peng Yu
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA,
| | | | | | | | | |
Collapse
|