1
|
Oli P, Punetha S, Punetha A, Pant K, Bhatt ID. Mainstreaming Glycine soja (Himalayan soybean) a potential underutilized climate resilient crop for nutritional security in the Himalayan region. 3 Biotech 2025; 15:131. [PMID: 40255447 PMCID: PMC12006611 DOI: 10.1007/s13205-025-04299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
Growing challenges of climate change, agricultural sustainability and malnutrition demand climate-resilient nutrient dense crops to mitigate the consequences of climate change while sustaining agricultural productivity and ensuring nutritional security in the Himalayan regions. Glycine soja also known as Himalayan soybean or wild soybean is a wild relative of cultivated soybean (Glycine max) is a valuable underutilized, less explored, and nutritionally rich climate resilient crop offers promising solution to address these challenges. The present systematic review was conducted using bibliometric analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and total 3359 published scientific documents were analyzed. G. soja is a rich source of various nutrients such as protein, carbohydrate, vitamins, micronutrients and several bioactive compounds having potential role in disease prevention. The genetic diversity within G. soja presents considerable opportunities for crop improvement through gene flow with G. max utilizing biotechnological methods or breeding programs. The aim of the present study is to not only highlight the existing knowledge on its nutraceutical, stress resilience and crop improvement potential but it also emphasizes the research gaps including its de novo domestication, in-depth understanding of nutritional and stress resilience properties and the limitations of current biotechnological techniques in addressing agronomic challenges in G. soja cultivation and consumption. Mainstreaming and harnessing the potential of G. soja might help to achieve sustainable food systems, enhancing nutritional security and supporting climate-resilient agriculture in the Himalayan regions.
Collapse
Affiliation(s)
- Pooja Oli
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Uttarakhand India
| | - Shailaja Punetha
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Uttarakhand India
| | - Arjita Punetha
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Uttarakhand India
| | - Kanchan Pant
- H.N.B. Garhwal Central University, Swami Ram Teerth Campus, Tehri, Badshahi Thaul, Uttarakhand India
| | - Indra D. Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Uttarakhand India
| |
Collapse
|
2
|
Yang S, Xu Y, Tang Z, Jin S, Yang S. The Impact of Alkaline Stress on Plant Growth and Its Alkaline Resistance Mechanisms. Int J Mol Sci 2024; 25:13719. [PMID: 39769481 PMCID: PMC11677074 DOI: 10.3390/ijms252413719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Alkaline stress can induce significant injury to plants, resulting in a range of negative effects, including ion toxicity, oxidative stress, and damage from high pH values. These stress factors can substantially affect normal plant growth and development, as well as yield and quality loss. To counteract alkaline stress, plants have developed a range of defense strategies, enabling them to adapt and thrive in challenging environments. These defense mechanisms operate at multiple levels such as morphological, physiological, biochemical, and molecular. The continuous advancement of genetic engineering has enabled significant breakthroughs in enhancing plant alkali resistance through human intervention. This research provides a scientific basis for crop production and ecological environment construction, and also promotes the effective development and utilization of saline-alkali lands, improving the sustainability of agricultural production.
Collapse
Affiliation(s)
| | | | | | | | - Shuang Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150069, China; (S.Y.); (Y.X.); (Z.T.); (S.J.)
| |
Collapse
|
3
|
Rey P, Henri P, Alric J, Blanchard L, Viola S. Participation of the stress-responsive CDSP32 thioredoxin in the modulation of chloroplast ATP-synthase activity in Solanum tuberosum. PLANT, CELL & ENVIRONMENT 2024; 47:5372-5390. [PMID: 39189948 DOI: 10.1111/pce.15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Plant thioredoxins (TRXs) are involved in numerous metabolic and signalling pathways, such as light-dependent regulation of photosynthesis. The atypical TRX CDSP32, chloroplastic drought-induced stress protein of 32 kDa, includes two TRX-fold domains and participates in responses to oxidative stress as an electron donor to other thiol reductases. Here, we further characterised potato lines modified for CDSP32 expression to clarify the physiological roles of the TRX. Upon high salt treatments, modified lines displayed changes in the abundance and redox status of CDSP32 antioxidant partners, and exhibited sensitivity to combined saline-alkaline stress. In non-stressed plants overexpressing CDSP32, a lower abundance of photosystem II subunits and ATP-synthase γ subunit was noticed. The CDSP32 co-suppressed line showed altered chlorophyll a fluorescence induction and impaired regulation of the transthylakoid membrane potential during dark/light and light/dark transitions. These data, in agreement with the previously reported interaction between CDSP32 and ATP-synthase γ subunit, suggest that CDSP32 affects the redox regulation of ATP-synthase activity. Consistently, modelling of protein complex 3-D structure indicates that CDSP32 could constitute a suitable partner of ATP-synthase γ subunit. We discuss the roles of the TRX in the regulation of both photosynthetic activity and enzymatic antioxidant network in relation with environmental conditions.
Collapse
Affiliation(s)
- Pascal Rey
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Patricia Henri
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Jean Alric
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Laurence Blanchard
- Aix Marseille University, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul, France
| | - Stefania Viola
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| |
Collapse
|
4
|
Hailemariam S, Liao CJ, Mengiste T. Receptor-like cytoplasmic kinases: orchestrating plant cellular communication. TRENDS IN PLANT SCIENCE 2024; 29:1113-1130. [PMID: 38816318 DOI: 10.1016/j.tplants.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK-RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.
Collapse
Affiliation(s)
- Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Zhang S, Wang X, Zhao T, Zhou C. Effector CLas0185 targets methionine sulphoxide reductase B1 of Citrus sinensis to promote multiplication of 'Candidatus Liberibacter asiaticus' via enhancing enzymatic activity of ascorbate peroxidase 1. MOLECULAR PLANT PATHOLOGY 2024; 25:e70002. [PMID: 39215961 PMCID: PMC11365454 DOI: 10.1111/mpp.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Citrus huanglongbing (HLB) has been causing enormous damage to the global citrus industry. As the main causal agent, 'Candidatus Liberibacter asiaticus' (CLas) delivers a set of effectors to modulate host responses, while the modes of action adopted remain largely unclear. Here, we demonstrated that CLIBASIA_00185 (CLas0185) could attenuate reactive oxygen species (ROS)-mediated cell death in Nicotiana benthamiana. Transgenic expression of CLas0185 in Citrus sinensis 'Wanjincheng' enhanced plant susceptibility to CLas. We found that methionine sulphoxide reductase B1 (CsMsrB1) was targeted by the effector, and its abundance was elevated in CLas0185-transgenic citrus plants. Their interaction promoted CLas proliferation. We then determined that CsMsrB1 sustained redox state and enzymatic activity of ascorbate peroxidase 1 (CsAPX1) under oxidative stress. The latter reduced H2O2 accumulation and was associated with host susceptibility to CLas infection. Consistently, citrus plants expressing CLas0185 and CsMsrB1 conferred enhanced APX activity and decreased H2O2 content. Taken together, these findings revealed how CLas0185 benefits CLas colonization by targeting CsMsrB1, which facilitated the antioxidant activity and depressed ROS during pathogen infection.
Collapse
Affiliation(s)
- Shushe Zhang
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsChinese Academy of Agriculture Sciences, Institute of Plant ProtectionBeijingChina
| | - Xuefeng Wang
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsChinese Academy of Agriculture Sciences, Institute of Plant ProtectionBeijingChina
| | - Changyong Zhou
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
| |
Collapse
|
6
|
Luo H, Wang X, You C, Wu X, Pan D, Lv Z, Li T, Zhang D, Shen Z, Zhang X, Liu G, He K, Ye Q, Jia Y, Zhao Q, Deng X, Cao X, Song X, Huang G. Telomere-to-telomere genome of the allotetraploid legume Sesbania cannabina reveals transposon-driven subgenome divergence and mechanisms of alkaline stress tolerance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:149-160. [PMID: 37897613 DOI: 10.1007/s11427-023-2463-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Alkaline soils pose an increasing problem for agriculture worldwide, but using stress-tolerant plants as green manure can improve marginal land. Here, we show that the legume Sesbania cannabina is very tolerant to alkaline conditions and, when used as a green manure, substantially improves alkaline soil. To understand genome evolution and the mechanisms of stress tolerance in this allotetraploid legume, we generated the first telomere-to-telomere genome assembly of S. cannabina spanning ∼2,087 Mb. The assembly included all centromeric regions, which contain centromeric satellite repeats, and complete chromosome ends with telomeric characteristics. Further genome analysis distinguished A and B subgenomes, which diverged approximately 7.9 million years ago. Comparative genomic analysis revealed that the chromosome homoeologs underwent large-scale inversion events (>10 Mb) and a significant, transposon-driven size expansion of the chromosome 5A homoeolog. We further identified four specific alkali-induced phosphate transporter genes in S. cannabina; these may function in alkali tolerance by relieving the deficiency in available phosphorus in alkaline soil. Our work highlights the significance of S. cannabina as a green tool to improve marginal lands and sheds light on subgenome evolution and adaptation to alkaline soils.
Collapse
Affiliation(s)
- Haofei Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Changqing You
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuedan Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Duofeng Pan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhiyao Lv
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Tong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongmei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaodong Zhang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257345, China
- Shandong Green Manure Ecological Technology Co., Ltd, Dongying, 257345, China
| | - Guodao Liu
- State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Qingtong Ye
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajun Jia
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Qinghua Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gai Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Zhao X, Han X, Lu X, Yang H, Wang ZY, Chai M. Genome-Wide Identification and Characterization of the Msr Gene Family in Alfalfa under Abiotic Stress. Int J Mol Sci 2023; 24:ijms24119638. [PMID: 37298589 DOI: 10.3390/ijms24119638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Alfalfa (Medicago sativa) is an important leguminous forage, known as the "The Queen of Forages". Abiotic stress seriously limits the growth and development of alfalfa, and improving the yield and quality has become an important research area. However, little is known about the Msr (methionine sulfoxide reductase) gene family in alfalfa. In this study, 15 Msr genes were identified through examining the genome of the alfalfa "Xinjiang DaYe". The MsMsr genes differ in gene structure and conserved protein motifs. Many cis-acting regulatory elements related to the stress response were found in the promoter regions of these genes. In addition, a transcriptional analysis and qRT-PCR (quantitative reverse transcription PCR) showed that MsMsr genes show expression changes in response to abiotic stress in various tissues. Overall, our results suggest that MsMsr genes play an important role in the response to abiotic stress for alfalfa.
Collapse
Affiliation(s)
- Xianglong Zhao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao Han
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuran Lu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Haoyue Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
8
|
Zhang H, Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D, Wu Y, Xia R, Li X, Lu J, Liu Y, Xie X, Ma D, Xu X, Liang Z, Feng Z, Huang X, Yu H, Liu G, Wang Y, Li J, Zhang Q, Chen C, Ouyang Y, Xie Q. A Gγ protein regulates alkaline sensitivity in crops. Science 2023; 379:eade8416. [PMID: 36952416 DOI: 10.1126/science.ade8416] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The use of alkaline salt lands for crop production is hindered by a scarcity of knowledge and breeding efforts for plant alkaline tolerance. Through genome association analysis of sorghum, a naturally high-alkaline-tolerant crop, we detected a major locus, Alkaline Tolerance 1 (AT1), specifically related to alkaline-salinity sensitivity. An at1 allele with a carboxyl-terminal truncation increased sensitivity, whereas knockout of AT1 increased tolerance to alkalinity in sorghum, millet, rice, and maize. AT1 encodes an atypical G protein γ subunit that affects the phosphorylation of aquaporins to modulate the distribution of hydrogen peroxide (H2O2). These processes appear to protect plants against oxidative stress by alkali. Designing knockouts of AT1 homologs or selecting its natural nonfunctional alleles could improve crop productivity in sodic lands.
Collapse
Affiliation(s)
- Huili Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Peng Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengyuan Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology and Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxuan Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuo Mei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Lu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxi Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowei Xie
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Dongmei Ma
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xing Xu
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zhengwei Liang
- Northeast Institute of Geography and Agroecology, Daan National Station for Agro-ecosystem Observation and Research, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhonghui Feng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Northeast Institute of Geography and Agroecology, Daan National Station for Agro-ecosystem Observation and Research, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Maize, State Key Laboratory of Maize Germplasm Innovation and Molecular Breeding, Syngenta Group China, Beijing 102206, China
| |
Collapse
|
9
|
Cai YS, Cai JL, Lee JT, Li YM, Balladona FK, Sukma D, Chan MT. Arabidopsis AtMSRB5 functions as a salt-stress protector for both Arabidopsis and rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1072173. [PMID: 37035039 PMCID: PMC10073502 DOI: 10.3389/fpls.2023.1072173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Salinity, drought and low temperature are major environmental factors that adversely affect crop productivity worldwide. In this study we adopted an activation tagging approach to identify salt tolerant mutants of Arabidopsis. Thousands of tagged Arabidopsis lines were screened to obtain several potential mutant lines resistant to 150 mM NaCl. Transcript analysis of a salt-stress tolerance 1 (sst1) mutant line indicated activation of AtMSRB5 and AtMSRB6 which encode methionine sulfoxide reductases. Overexpression of AtMSRB5 in Arabidopsis (B5OX) showed a similar salt tolerant phenotype. Furthermore, biochemical analysis indicated stability of the membrane protein, H+-ATPase 2 (AHA2) through regulation of Na+/K+ homeostasis which may be involved in a stress tolerance mechanism. Similarly, overexpression of AtMSRB5 in transgenic rice demonstrated a salt tolerant phenotype via the modulation of Na+/K+ homeostasis without a yield drag under salt and oxidative stress conditions.
Collapse
Affiliation(s)
- Yu-Si Cai
- Graduate Program of Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jung-Long Cai
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jent-Turn Lee
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Yi-Min Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Freta Kirana Balladona
- Graduate Program of Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Dewi Sukma
- Department of Agronomy & Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Ming-Tsair Chan
- Graduate Program of Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
10
|
Wang L, Yang J, Tan W, Guo Y, Li J, Duan C, Wei G, Chou M. Macrophage migration inhibitory factor MtMIF3 prevents the premature aging of Medicago truncatula nodules. PLANT, CELL & ENVIRONMENT 2023; 46:1004-1017. [PMID: 36515398 DOI: 10.1111/pce.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in immune response in animals. However, the role of MIFs in plants such as Medicago truncatula, particularly in symbiotic nitrogen fixation, remains unclear. An investigation of M. truncatula-Sinorhizobium meliloti symbiosis revealed that MtMIF3 was mainly expressed in the nitrogen-fixing zone of the nodules. Silencing MtMIF3 using RNA interference (Ri) technology resulted in increased nodule numbers but higher levels of bacteroid degradation in the infected cells of the nitrogen-fixing zone, suggesting that premature aging was induced in MtMIF3-Ri nodules. In agreement with this conclusion, the activities of nitrogenase, superoxide dismutase and catalase were lower than those in controls, but cysteine proteinase activity was increased in nodulated roots at 28 days postinoculation. In contrast, the overexpression of MtMIF3 inhibited nodule senescence. MtMIF3 is localized in the plasma membrane, nucleus, and cytoplasm, where it interacts with methionine sulfoxide reductase B (MsrB), which is also localized in the chloroplasts of tobacco leaf cells. Taken together, these results suggest that MtMIF3 prevents premature nodule aging and protects against oxidation by interacting with MtMsrB.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wenjun Tan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yile Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiaqi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chuntao Duan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
11
|
Zhu L, Chen L, Wu C, Shan W, Cai D, Lin Z, Wei W, Chen J, Lu W, Kuang J. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:150-166. [PMID: 36103229 DOI: 10.1111/jipb.13363] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.
Collapse
Affiliation(s)
- Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Feng C, Gao H, Zhou Y, Jing Y, Li S, Yan Z, Xu K, Zhou F, Zhang W, Yang X, Hussain MA, Li H. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. FRONTIERS IN PLANT SCIENCE 2023; 14:1162014. [PMID: 37152141 PMCID: PMC10154572 DOI: 10.3389/fpls.2023.1162014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhao Yan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Keheng Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fangxue Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| | - Haiyan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| |
Collapse
|
13
|
Cai X, Jia B, Sun M, Sun X. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1002302. [PMID: 36340388 PMCID: PMC9627173 DOI: 10.3389/fpls.2022.1002302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 05/24/2023]
Abstract
Soybean is an important grain and oil crop. In China, there is a great contradiction between soybean supply and demand. China has around 100 million ha of salt-alkaline soil, and at least 10 million could be potentially developed for cultivated land. Therefore, it is an effective way to improve soybean production by breeding salt-alkaline-tolerant soybean cultivars. Compared with wild soybean, cultivated soybean has lost a large number of important genes related to environmental adaptation during the long-term domestication and improvement process. Therefore, it is greatly important to identify the salt-alkaline tolerant genes in wild soybean, and investigate the molecular basis of wild soybean tolerance to salt-alkaline stress. In this review, we summarized the current research regarding the salt-alkaline stress response in wild soybean. The genes involved in the ion balance and ROS scavenging in wild soybean were summarized. Meanwhile, we also introduce key protein kinases and transcription factors that were reported to mediate the salt-alkaline stress response in wild soybean. The findings summarized here will facilitate the molecular breeding of salt-alkaline tolerant soybean cultivars.
Collapse
Affiliation(s)
| | | | | | - Xiaoli Sun
- *Correspondence: Mingzhe Sun, ; Xiaoli Sun,
| |
Collapse
|
14
|
Liang X, Zhang J. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. STRESS BIOLOGY 2022; 2:25. [PMID: 37676353 PMCID: PMC10441961 DOI: 10.1007/s44154-022-00045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases (RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes. Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Methionine Promotes the Growth and Yield of Wheat under Water Deficit Conditions by Regulating the Antioxidant Enzymes, Reactive Oxygen Species, and Ions. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070969. [PMID: 35888059 PMCID: PMC9318804 DOI: 10.3390/life12070969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
The individual application of pure and active compounds such as methionine may help to address water scarcity issues without compromising the yield of wheat. As organic plant growth stimulants, amino acids are popularly used to promote the productivity of crops. However, the influence of the exogenous application of methionine in wheat remains elusive. The present investigation was planned in order to understand the impact of methionine in wheat under drought stress. Two wheat genotypes were allowed to grow with 100% field capacity (FC) up to the three-leaf stage. Twenty-five-day-old seedlings of two wheat genotypes, Galaxy-13 and Johar-16, were subjected to 40% FC, denoted as water deficit-stress (D), along with 100% FC, called control (C), with and without L-methionine (Met; 4 mM) foliar treatment. Water deficit significantly reduced shoot length, shoot fresh and dry weights, seed yield, photosynthetic, gas exchange attributes except for transpiration rate (E), and shoot mineral ions (potassium, calcium, and phosphorus) in both genotypes. A significant increase was recorded in superoxide dismutase (SOD), catalase (CAT), hydrogen peroxide (H2O2), malondialdehyde (MDA), and sodium ions (Na+) due to water deficiency. However, foliar application of Met substantially improved the studied growth, photosynthetic, and gas exchange attributes with water deficit conditions in both genotypes. The activities of SOD, POD, and CAT were further enhanced under stress with Met application. Met improved potassium (K), calcium (Ca2+), and phosphorus (P) content. In a nutshell, the foliar application of Met effectively amended water deficit stress tolerance by reducing MDA and H2O2 content under water deficit conditions in wheat plants. Thus, we are able to deduce a positive association between Met-induced improved growth attributes and drought tolerance.
Collapse
|
16
|
Cao X, An T, Fu W, Zhang J, Zhao H, Li D, Jin X, Liu B. Genome-Wide Identification of Cellular Pathways and Key Genes That Respond to Sodium Bicarbonate Stress in Saccharomyces cerevisiae. Front Microbiol 2022; 13:831973. [PMID: 35495664 PMCID: PMC9042421 DOI: 10.3389/fmicb.2022.831973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Sodium bicarbonate (NaHCO3) is an important inorganic salt. It is not only widely used in industrial production and daily life, but is also the main stress in alkaline saline soil. NaHCO3 has a strong ability to inhibit the growth of fungi in both natural environment and daily application. However, the mechanism by which fungi respond to NaHCO3 stress is not fully understood. To further clarify the toxic mechanisms of NaHCO3 stress and identify the specific cellular genes and pathways involved in NaHCO3 resistance, we performed genome-wide screening with NaHCO3 using a Saccharomyces cerevisiae deletion mutant library. A total of 33 deletion mutants with NaHCO3 sensitivity were identified. Compared with wild-type strains, these mutants had significant growth defects in the medium containing NaHCO3. Bioinformatics analysis found that the corresponding genes of these mutants are mainly enriched in the cell cycle, mitophagy, cell wall integrity, and signaling pathways. Further study using transcriptomic analysis showed that 309 upregulated and 233 downregulated genes were only responded to NaHCO3 stress, when compared with yeast transcriptomic data under alkaline and saline stress. Upregulated genes were mainly concentrated in amino acid metabolism, steroid biosynthesis, and cell wall, while downregulated genes were enriched in various cellular metabolisms. In summary, we have identified the cellular pathways and key genes that respond to NaHCO3 stress in the whole genome, providing resource and direction for understanding NaHCO3 toxicity and cellular resistance mechanisms.
Collapse
Affiliation(s)
- Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Wang Y, Ye X, Takano T, Liu S, Bu Y. Biotinylated subunit of 3-methylcrotonyl-CoA carboxylase encoding gene (AtMCCA) participating in Arabidopsis resistance to carbonate Stress by transcriptome analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111130. [PMID: 35067300 DOI: 10.1016/j.plantsci.2021.111130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Soil salinization is a major factor impacting modern agricultural production, and alkaline soils contain large amounts of NaHCO3. Therefore, understanding plant tolerance to high levels of NaHCO3 is essential. In this study, a transcriptome analysis of shoot and root tissues of wild-type Arabidopsis thaliana was conducted at 0, 4, 12, 24 and 48 h after exposure to a 3 mM NaHCO3 stress. We focused on differentially expressed genes (DEGs) in roots identified in the early stages (4 h and 12 h) of the NaHCO3 stress response that were enriched in GO term, carboxylic acid metabolic process, and utilize HCO3-. Six genes were identified that exhibited similar expression patterns in both the RNA-seq and qRT-PCR data. We also characterized the phenotypic response of AtMCCA-overexpressing plants to carbonate stress, and found that the ability of AtMCCA-overexpressing plants to tolerate carbonate stress was enhanced by the addition of biotin to the growth medium.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoxue Ye
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Shenkui Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China.
| | - Yuanyuan Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
18
|
Jin T, Sun Y, Shan Z, He J, Wang N, Gai J, Li Y. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1155-1169. [PMID: 33368860 PMCID: PMC8196659 DOI: 10.1111/pbi.13536] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
Salt stress has detrimental effects on crop growth and yield, and the area of salt-affected land is increasing. Soybean is a major source of vegetable protein, oil and feed, but considered as a salt-sensitive crop. Cultivated soybean (Glycine max) is domesticated from wild soybean (G. soja) but lost considerable amount of genetic diversity during the artificial selection. Therefore, it is important to exploit the gene pool of wild soybean. In this study, we identified 34 salt-tolerant accessions from wild soybean germplasm and found that a 7-bp insertion/deletion (InDel) in the promoter of GsERD15B (early responsive to dehydration 15B) significantly affects the salt tolerance of soybean. GsERD15B encodes a protein with transcriptional activation function and contains a PAM2 domain to mediate its interaction with poly(A)-binding (PAB) proteins. The 7-bp deletion in GsERD15B promoter enhanced the salt tolerance of soybean, with increased up-regulation of GsERD15B, two GmPAB genes, the known stress-related genes including GmABI1, GmABI2, GmbZIP1, GmP5CS, GmCAT4, GmPIP1:6, GmMYB84 and GmSOS1 in response to salt stress. We propose that natural variation in GsERD15B promoter affects soybean salt tolerance, and overexpression of GsERD15B enhanced salt tolerance probably by increasing the expression levels of genes related to ABA-signalling, proline content, catalase peroxidase, dehydration response and cation transport.
Collapse
Affiliation(s)
- Ting Jin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yangyang Sun
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Zhong Shan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
19
|
Transcriptome analysis of upland cotton revealed novel pathways to scavenge reactive oxygen species (ROS) responding to Na 2SO 4 tolerance. Sci Rep 2021; 11:8670. [PMID: 33883626 PMCID: PMC8060397 DOI: 10.1038/s41598-021-87999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Salinity is an extensive and adverse environmental stress to crop plants across the globe, and a major abiotic constraint responsible for limited crop production threatening the crop security. Soil salinization is a widespread problem across the globe, threatening the crop production and food security. Salinity impairs plant growth and development via reduction in osmotic potential, cytotoxicity due to excessive uptake of ions such as sodium (Na+) and chloride (Cl-), and nutritional imbalance. Cotton, being the most cultivated crop on saline-alkaline soils, it is of great importance to elucidate the mechanisms involved in Na2SO4 tolerance which is still lacking in upland cotton. Zhong 9835, a Na2SO4 resistant cultivar was screened for transcriptomic studies through various levels of Na2SO4 treatments, which results into identification of 3329 differentially expressed genes (DEGs) in roots, stems and leave at 300 mM Na2SO4 stress till 12 h in compared to control. According to gene functional annotation analysis, genes involved in reactive oxygen species (ROS) scavenging system including osmotic stress and ion toxicity were significantly up-regulated, especially GST (glutathione transferase). In addition, analysis for sulfur metabolism, results in to identification of two rate limiting enzymes [APR (Gh_D05G1637) and OASTL (Gh_A13G0863)] during synthesis of GSH from SO42-. Furthermore, we also observed a crosstalk of the hormones and TFs (transcription factors) enriched in hormone signal transduction pathway. Genes related to IAA exceeds the rest of hormones followed by ubiquitin related genes which are greater than TFs. The analysis of the expression profiles of diverse tissues under Na2SO4 stress and identification of relevant key hub genes in a network crosstalk will provide a strong foundation and valuable clues for genetic improvements of cotton in response to various salt stresses.
Collapse
|
20
|
Chen J, Li X, Ye X, Guo P, Hu Z, Qi G, Cui F, Liu S. An S-ribonuclease binding protein EBS1 and brassinolide signaling are specifically required for Arabidopsis tolerance to bicarbonate. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1449-1459. [PMID: 33165537 DOI: 10.1093/jxb/eraa524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Bicarbonate (NaHCO3) present in soils is usually considered to be a mixed stress for plants, with salts and high pH. NaHCO3-specific signaling in plants has rarely been reported. In this study, transcriptome analyses were conducted in order to identify NaHCO3-specific signaling in Arabidopsis. Weighted correlation network analysis was performed to isolate NaHCO3-specific modules in comparison with acetate treatment. The genes in the NaHCO3-root-specific module, which exhibited opposite expression to that in sodium acetate treatments, were further examined with their corresponding knock-out mutants. The gene Exclusively Bicarbonate Sensitive 1 (EBS1) encoding an S-ribonuclease binding protein, was identified to be specifically involved in plant tolerance to NaHCO3, but not to the other two alkaline salts, acetate and phosphate. We also identified the genes that are commonly regulated by bicarbonate, acetate and phosphate. Multiple brassinosteroid-associated gene ontology terms were enriched in these genes. Genetic assays showed that brassinosteroid signaling positively regulated plant tolerance to NaHCO3 stress, but negatively regulated tolerance to acetate and phosphate. Overall, our data identified bicarbonate-specific genes, and confirmed that alkaline stress is mainly dependent on the specificities of the weak acid ions, rather than high pH.
Collapse
Affiliation(s)
- Jipeng Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Xiaoxiao Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Xiaoxue Ye
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Peng Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| |
Collapse
|
21
|
Sun X, Cai X, Yin K, Gu L, Shen Y, Hu B, Wang Y, Chen Y, Zhu Y, Jia B, Sun M. Wild soybean SNARE proteins BET1s mediate the subcellular localization of the cytoplasmic receptor-like kinases CRCK1s to modulate salt stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:771-785. [PMID: 33160290 DOI: 10.1111/tpj.15072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 05/27/2023]
Abstract
Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca2+ /CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a-1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liwei Gu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bingshuang Hu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
22
|
Wojciechowska N, Bagniewska-Zadworna A, Minicka J, Michalak KM, Kalemba EM. Localization and Dynamics of the Methionine Sulfoxide Reductases MsrB1 and MsrB2 in Beech Seeds. Int J Mol Sci 2021; 22:E402. [PMID: 33401671 PMCID: PMC7795007 DOI: 10.3390/ijms22010402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
Beech seeds are produced irregularly, and there is a need for long-term storage of these seeds for forest management practices. Accumulated reactive oxygen species broadly oxidize molecules, including amino acids, such as methionine, thereby contributing to decreased seed viability. Methionine oxidation can be reversed by the activity of methionine sulfoxide reductases (Msrs), which are enzymes involved in the regulation of many developmental processes and stress responses. Two types of Msrs, MsrB1 and MsrB2, were investigated in beech seeds to determine their abundance and localization. MsrB1 and MsrB2 were detected in the cortical cells and the outer area of the vascular cylinder of the embryonic axes as well as in the epidermis and parenchyma cells of cotyledons. The abundances of MsrB1 and MsrB2 decreased during long-term storage. Ultrastructural analyses have demonstrated the accumulation of these proteins in protein storage vacuoles and in the cytoplasm, especially in close proximity to the cell membrane. In silico predictions of possible Msr interactions supported our findings. In this study, we investigate the contribution of MsrB1 and MsrB2 locations in the regulation of seed viability and suggest that MsrB2 is linked with the longevity of beech seeds via association with proper utilization of storage material.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.B.-Z.); (K.M.M.)
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.B.-Z.); (K.M.M.)
| | - Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection, Władysława Węgorka 20, 60-318 Poznań, Poland;
| | - Kornel M. Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.B.-Z.); (K.M.M.)
| | - Ewa M. Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
23
|
Wang Y, Wang M, Ye X, Liu H, Takano T, Tsugama D, Liu S, Bu Y. Biotin plays an important role in Arabidopsis thaliana seedlings under carbonate stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110639. [PMID: 33180716 DOI: 10.1016/j.plantsci.2020.110639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Globally, many saline-alkali soils are rich in NaHCO3 and Na2CO3, which are characterized by a high pH Carbonate stress caused by this kind of soil severely damages plant cells and inhibits plant growth. Biotin and HCO3- participate in the first and rate-limiting reaction of the fatty acid biosynthesis pathway, but whether biotin contributes to plant responses to carbonate stress is unclear. In this study, we revealed that high carbonate and biotin concentrations inhibited Arabidopsis (Arabidopsis thaliana) seedling growth. However, specific concentrations of carbonate and biotin decreased the inhibitory effects of the other compound at the germination and seedling stages. Additionally, a carbonate treatment increased the endogenous biotin content and expression of AtBIO2, which encodes a biotin synthase. Moreover, phenotypic analyses indicated that the overexpression of AtBIO2 in Arabidopsis enhanced the tolerance to carbonate stress, whereas mutations to AtBIO2 had the opposite effect. Furthermore, the carbonate stress-induced accumulation of reactive oxygen species was lower in plants overexpressing AtBIO2 than in the wild-type and bio2 mutants. Accordingly, biotin, which is an essential vitamin for plants, can enhance the resistance to carbonate stress.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoxue Ye
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hua Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Shenkui Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China.
| | - Yuanyuan Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
24
|
Si Z, Guan N, Zhou Y, Mei L, Li Y, Li Y. A Methionine Sulfoxide Reductase B Is Required for the Establishment of Astragalus sinicus-Mesorhizobium Symbiosis. PLANT & CELL PHYSIOLOGY 2020; 61:1631-1645. [PMID: 32618998 DOI: 10.1093/pcp/pcaa085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Methionine sulfoxide reductase B (MsrB) is involved in oxidative stress or defense responses in plants. However, little is known about its role in legume-rhizobium symbiosis. In this study, an MsrB gene was identified from Astragalus sinicus and its function in symbiosis was characterized. AsMsrB was induced under phosphorus starvation and displayed different expression patterns under symbiotic and nonsymbiotic conditions. Hydrogen peroxide or methyl viologen treatment enhanced the transcript level of AsMsrB in roots and nodules. Subcellular localization showed that AsMsrB was localized in the cytoplasm of onion epidermal cells and co-localized with rhizobia in nodules. Plants with AsMsrB-RNAi hairy roots exhibited significant decreases in nodule number, nodule nitrogenase activity and fresh weight of the aerial part, as well as an abnormal nodule and symbiosome development. Statistical analysis of infection events showed that plants with AsMsrB-RNAi hairy roots had significant decreases in the number of root hair curling events, infection threads and nodule primordia compared with the control. The content of hydrogen peroxide increased in AsMsrB-RNAi roots but decreased in AsMsrB overexpression roots at the early stage of infection. The transcriptome analysis showed synergistic modulations of the expression of genes involved in reactive oxygen species generation and scavenging, defense and pathogenesis and early nodulation. In addition, a candidate protein interacting with AsMsrB was identified and confirmed by bimolecular fluorescence complementation. Taken together, our results indicate that AsMsrB plays an essential role in nodule development and symbiotic nitrogen fixation by affecting the redox homeostasis in roots and nodules.
Collapse
Affiliation(s)
- Zaiyong Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yixing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Nadarajah KK. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E5208. [PMID: 32717820 PMCID: PMC7432042 DOI: 10.3390/ijms21155208] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
Collapse
Affiliation(s)
- Kalaivani K Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM BANGI, Malaysia
| |
Collapse
|
26
|
Ding P, Fang L, Wang G, Li X, Huang S, Gao Y, Zhu J, Xiao L, Tong J, Chen F, Xia G. Wheat methionine sulfoxide reductase A4.1 interacts with heme oxygenase 1 to enhance seedling tolerance to salinity or drought stress. PLANT MOLECULAR BIOLOGY 2019; 101:203-220. [PMID: 31297725 DOI: 10.1007/s11103-019-00901-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Here, a functional characterization of a wheat MSR has been presented: this protein makes a contribution to the plant's tolerance of abiotic stress, acting through its catalytic capacity and its modulation of ROS and ABA pathways. The molecular mechanism and function of certain members of the methionine sulfoxide reductase (MSR) gene family have been defined, however, these analyses have not included the wheat equivalents. The wheat MSR gene TaMSRA4.1 is inducible by salinity and drought stress and in this study, we demonstrate that its activity is restricted to the Met-S-SO enantiomer, and its subcellular localization is in the chloroplast. Furthermore, constitutive expression of TaMSRA4.1 enhanced the salinity and drought tolerance of wheat and Arabidopsis thaliana. In these plants constitutively expressing TaMSRA4.1, the accumulation of reactive oxygen species (ROS) was found to be influenced through the modulation of genes encoding proteins involved in ROS signaling, generation and scavenging, while the level of endogenous abscisic acid (ABA), and the sensitivity of stomatal guard cells to exogenous ABA, was increased. A yeast two-hybrid screen, bimolecular fluorescence complementation and co-immunoprecipitation assays demonstrated that heme oxygenase 1 (HO1) interacted with TaMSRA4.1, and that this interaction depended on a TaHO1 C-terminal domain. In plants subjected to salinity or drought stress, TaMSRA4.1 reversed the oxidation of TaHO1, activating ROS and ABA signaling pathways, but not in the absence of HO1. The aforementioned properties advocate TaMSRA4.1 as a candidate for plant genetic enhancement.
Collapse
Affiliation(s)
- Pengcheng Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Linlin Fang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangling Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yankun Gao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiantang Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Fanguo Chen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
27
|
Sun M, Shen Y, Yin K, Guo Y, Cai X, Yang J, Zhu Y, Jia B, Sun X. A late embryogenesis abundant protein GsPM30 interacts with a receptor like cytoplasmic kinase GsCBRLK and regulates environmental stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:70-82. [PMID: 31128717 DOI: 10.1016/j.plantsci.2019.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
A Glycine soja receptor like cytoplasmic kinase GsCBRLK was previously characterized as a positive regulator of salt tolerance. However, how GsCBRLK regulates stress responses remains obscure. Here, we report the interaction between GsCBRLK and a group 3 late embryogenesis abundant protein GsPM30, and suggest its role in stress responses. GsPM30 was found to physically associate with GsCBRLK through yeast two hybrid assays, which was verified by bimolecular fluorescence complementation analysis. Deletion analyses showed that the N-terminal variable domain of GsCBRLK was sufficient for GsPM30 interaction. Besides GsPM30, GsCBRLK could associate with several group 3 LEAs, of which the N-terminus sequences show high identity with GsPM30. Lower binding affinity or even no interaction was observed between GsCBRLK and other group 3 LEAs, which are less closely related to GsPM30. Furthermore, we observed that GsPM30 could localize surrounding the internal circumference of plant cells, as well as in cytoplasm and nucleus. In addition, GUS staining and quantitative real-time PCR results suggested the ubiquitous expression in different tissues and induced expression by NaCl and mannitol treatments for GsPM30. Consistently, GsPM30 overexpression in Arabidopsis caused increased tolerance to high salinity and dehydration/water deficit at both the young and adult seedling stages. Our results demonstrated the interaction between GsCBRLK and LEAs, and revealed the positive role of GsPM30 in stress responses.
Collapse
Affiliation(s)
- Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yongxia Guo
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
28
|
Chen C, Chen R, Wu S, Zhu D, Sun X, Liu B, Li Q, Zhu Y. Genome-wide analysis of Glycine soja ubiquitin (UBQ) genes and functional analysis of GsUBQ10 in response to alkaline stress. PHYSIOLOGIA PLANTARUM 2018; 164:268-278. [PMID: 29578245 DOI: 10.1111/ppl.12719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Ubiquitin is a highly conserved protein with multiple essential regulatory functions through the ubiquitin-proteasome system. Even though its functions in the ubiquitin-mediated protein degradation pathway are very well characterized, the function of ubiquitin genes in the regulation of the alkaline stress response is not fully established. In this study, we identified 12 potential UBQ genes in the Glycine soja genome, and analyzed their evolutionary relationship, conserved domains and promoter cis-elements. We also explored the expression profiles of G. soja UBQ genes under alkaline stress, based on the transcriptome sequencing. We found that the expression of GsUBQ10 was significantly induced by alkaline stress, and the function of GsUBQ10 was characterized by overexpression in transgenic alfalfa (Medicago sativa). Our results suggested that GsUBQ10 transgenic lines significantly improved the alkaline tolerance in alfalfa. The GsUBQ10 transgenic lines showed lower relative membrane permeability, lower malon dialdehyde content and higher catalase activity than in the wild-type plants. This indicates that GsUBQ10 is involved in regulating the reactive oxygen species accumulation under alkaline stress. Taken together, we identified an ubiquitin gene GsUBQ10 from G. soja, which plays a positive role in responses to alkaline stress in alfalfa.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Ranran Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Shengyang Wu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Beidong Liu
- Department of chemistry and molecular biology, University of Gothenburg, Gothenburg, S-413 90, Sweden
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| |
Collapse
|
29
|
Wu S, Zhu P, Jia B, Yang J, Shen Y, Cai X, Sun X, Zhu Y, Sun M. A Glycine soja group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa. BMC PLANT BIOLOGY 2018; 18:234. [PMID: 30316294 PMCID: PMC6186066 DOI: 10.1186/s12870-018-1466-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/03/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Even though bicarbonate alkaline stress is a serious threat to crop growth and yields, it attracts much fewer researches than high salinity stress. The basic leucine zipper (bZIP) transcription factors have been well demonstrated to function in diverse abiotic stresses; however, their biological role in alkaline tolerance still remains elusive. In this study, we functionally characterized a bZIP gene from Glycine soja GsbZIP67 in bicarbonate alkaline stress responses. RESULTS GsbZIP67 was initially identified as a putative bicarbonate responsive gene, on the basis of previous RNA-seq data of 50 mM NaHCO3-treated Glycine soja roots. GsbZIP67 protein possessed a conserved bZIP domain, and belonged to the group S2 bZIP, which is yet less well-studied. Our studies showed that GsbZIP67 targeted to nucleus in Arabidopsis protoplasts, and displayed transcriptional activation activity in yeast cells. The quantitative real-time PCR analyses unraveled the bicarbonate stress responsive expression and tissue specific expression of GsbZIP67 in wild soybean. Further phenotypic analysis illustrated that GsbZIP67 overexpression in alfalfa promoted plant growth under bicarbonate alkaline stress, as evidenced by longer roots and shoots. Furthermore, GsbZIP67 overexpression also modified the physiological indices of transgenic alfalfa under bicarbonate alkaline stress. In addition, the expression levels of several stress responsive genes were also augmented by GsbZIP67 overexpression. CONCLUSIONS Collectively, in this study, we demonstrated that GsbZIP67 acted as a positive regulator of plant tolerance to bicarbonate alkaline stress. These results provide direct genetic evidence of group S2 bZIPs in bicarbonate alkaline stress, and will facilitate further studies concerning the cis-elements and/or downstream genes targeted by GsbZIP67 in stress responses.
Collapse
Affiliation(s)
- Shengyang Wu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Pinhui Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Yanming Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Mingzhe Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| |
Collapse
|
30
|
Duan X, Yu Y, Duanmu H, Chen C, Sun X, Cao L, Li Q, Ding X, Liu B, Zhu Y. GsSLAH3, a Glycine soja slow type anion channel homolog, positively modulates plant bicarbonate stress tolerance. PHYSIOLOGIA PLANTARUM 2018; 164:145-162. [PMID: 29243826 DOI: 10.1111/ppl.12683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Alkaline stress is a major form of abiotic stress that severely inhibits plant growth and development, thus restricting crop productivity. However, little is known about how plants respond to alkali. In this study, a slow-type anion channel homolog 3 gene, GsSLAH3, was isolated and functionally characterized. Bioinformatics analysis showed that the GsSLAH3 protein contains 10 transmembrane helices. Consistently, GsSLAH3 was found to locate on plasma membrane by transient expression in onion epidermal cells. In wild soybeans, GsSLAH3 expression was induced by NaHCO3 treatment, suggesting its involvement in plant response to alkaline stress. Ectopic expression of GsSLAH3 in yeast increased sensitivity to alkali treatment. Dramatically, overexpression of GsSLAH3 in Arabidopsis thaliana enhanced alkaline tolerance during the germination, seedling and adult stages. More interestingly, we found that transgenic lines also improved plant tolerance to KHCO3 rather than high pH treatment. A nitrate content analysis of Arabidopsis shoots showed that GsSLAH3 overexpressing lines accumulated more NO3- than wild-type. In summary, our data suggest that GsSLAH3 is a positive alkali responsive gene that increases bicarbonate resistance specifically.
Collapse
Affiliation(s)
- Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Huizi Duanmu
- College of Life Science, Heilongjiang University, Harbin 150030, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoli Sun
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-413 90, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
31
|
Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling. Antioxidants (Basel) 2018; 7:antiox7090114. [PMID: 30158486 PMCID: PMC6162775 DOI: 10.3390/antiox7090114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/09/2023] Open
Abstract
Oxidation of methionine (Met) leads to the formation of two S- and R-diastereoisomers of Met sulfoxide (MetO) that are reduced back to Met by methionine sulfoxide reductases (MSRs), A and B, respectively. Here, we review the current knowledge about the physiological functions of plant MSRs in relation with subcellular and tissue distribution, expression patterns, mutant phenotypes, and possible targets. The data gained from modified lines of plant models and crop species indicate that MSRs play protective roles upon abiotic and biotic environmental constraints. They also participate in the control of the ageing process, as shown in seeds subjected to adverse conditions. Significant advances were achieved towards understanding how MSRs could fulfil these functions via the identification of partners among Met-rich or MetO-containing proteins, notably by using redox proteomic approaches. In addition to a global protective role against oxidative damage in proteins, plant MSRs could specifically preserve the activity of stress responsive effectors such as glutathione-S-transferases and chaperones. Moreover, several lines of evidence indicate that MSRs fulfil key signaling roles via interplays with Ca2+- and phosphorylation-dependent cascades, thus transmitting ROS-related information in transduction pathways.
Collapse
|
32
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
33
|
Sun M, Qian X, Chen C, Cheng S, Jia B, Zhu Y, Sun X. Ectopic Expression of GsSRK in Medicago sativa Reveals Its Involvement in Plant Architecture and Salt Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:226. [PMID: 29520291 PMCID: PMC5827113 DOI: 10.3389/fpls.2018.00226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/07/2018] [Indexed: 05/23/2023]
Abstract
Receptor-like kinases (RLK) play fundamental roles in plant growth and stress responses. Compared with other RLKs, little information is provided concerning the S-locus LecRLK subfamily, which is characterized by an extracellular G-type lectin domain and an S-locus-glycop domain. Until now, the function of the G-type lectin domain is still unknown. In a previous research, we identified a Glycine soja S-locus LecRLK gene GsSRK, which conferred increased salt stress tolerance in transgenic Arabidopsis. In this study, to investigate the role of the G-type lectin domain and to breed transgenic alfalfa with superior salt stress tolerance, we transformed the full-length GsSRK (GsSRK-f) and a truncated version of GsSRK (GsSRK-t) deleting the G-type lectin domain into alfalfa. Our results showed that overexpression of GsSRK-t, but not GsSRK-f, resulted in changes of plant architecture, as evidenced by more branches but shorter shoots of GsSRK-t transgenic alfalfa, indicating a potential role of the extracellular G-type lectin domain in regulating plant architecture. Furthermore, we also found that transgenic alfalfa overexpressing either GsSRK-f or GsSRK-t showed increased salt stress tolerance, and GsSRK-t transgenic alfalfa displayed better growth (more branches and higher fresh weight) than GsSRK-f lines under salt stress. In addition, our results suggested that both GsSRK-f and GsSRK-t were involved in ion homeostasis, ROS scavenging, and osmotic regulation. Under salt stress, the Na+ content in the transgenic lines was significantly lower, while the K+ content was slightly higher than that in WT. Moreover, the transgenic lines displayed reduced ion leakage and MDA content, but increased SOD activity and proline content than WT. Notably, no obvious difference in these physiological indices was observed between GsSRK-f and GsSRK-t transgenic lines, implying that deletion of the GsSRK G-type lectin domain does not affect its physiological function in salt stress responses. In conclusion, results in this research reveal the dual role of GsSRK in regulating both plant architecture and salt stress responses.
Collapse
Affiliation(s)
- Mingzhe Sun
- Plant Bioengineering Laboratory, College of Life Science, Northeast Agricultural University, Harbin, China
- Crop Stress Molecular Biology Laboratory, Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xue Qian
- Plant Bioengineering Laboratory, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chao Chen
- Plant Bioengineering Laboratory, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shufei Cheng
- Plant Bioengineering Laboratory, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Bowei Jia
- Plant Bioengineering Laboratory, College of Life Science, Northeast Agricultural University, Harbin, China
- Crop Stress Molecular Biology Laboratory, Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanming Zhu
- Plant Bioengineering Laboratory, College of Life Science, Northeast Agricultural University, Harbin, China
- Crop Stress Molecular Biology Laboratory, Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoli Sun
- Plant Bioengineering Laboratory, College of Life Science, Northeast Agricultural University, Harbin, China
- Crop Stress Molecular Biology Laboratory, Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
34
|
The Brachypodium distachyon methionine sulfoxide reductase gene family. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Jia B, Sun M, DuanMu H, Ding X, Liu B, Zhu Y, Sun X. GsCHX19.3, a member of cation/H + exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. Sci Rep 2017; 7:9423. [PMID: 28842677 PMCID: PMC5573395 DOI: 10.1038/s41598-017-09772-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 01/21/2023] Open
Abstract
Cation/H+ exchangers (CHX) are characterized to be involved in plant growth, development and stress responses. Although soybean genome sequencing has been completed, the CHX family hasn't yet been systematically analyzed, especially in wild soybean. Here, through Hidden Markov Model search against Glycine soja proteome, 34 GsCHXs were identified and phylogenetically clustered into five groups. Members within each group showed high conservation in motif architecture. Interestingly, according to our previous RNA-seq data, only Group IVa members exhibited highly induced expression under carbonate alkaline stress. Among them, GsCHX19.3 displayed the greatest up-regulation in response to carbonate alkaline stress, which was further confirmed by quantitative real-time PCR analysis. We also observed the ubiquitous expression of GsCHX19.3 in different tissues and its localization on plasma membrane. Moreover, we found that GsCHX19.3 expression in AXT4K, a yeast mutant lacking four ion transporters conferred resistance to low K+ at alkali pH, as well as carbonate stress. Consistently, in Arabidopsis, GsCHX19.3 overexpression increased plant tolerance both to high salt and carbonate alkaline stresses. Furthermore, we also confirmed that GsCHX19.3 transgenic lines showed lower Na+ concentration but higher K+/Na+ values under salt-alkaline stress. Taken together, our findings indicated that GsCHX19.3 contributed to high salinity and carbonate alkaline tolerance.
Collapse
Affiliation(s)
- Bowei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Mingzhe Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Medicinaregatan, 9ES-413 90, Gothenburg, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China.
| |
Collapse
|
36
|
Taliercio E, Eickholt D, Rouf R, Carter T. Changes in gene expression between a soybean F1 hybrid and its parents are associated with agronomically valuable traits. PLoS One 2017; 12:e0177225. [PMID: 28493991 PMCID: PMC5426663 DOI: 10.1371/journal.pone.0177225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] genetic diversity is limited because domesticated soybean has undergone multiple genetic bottlenecks. Its progenitor, the wild soybean [Glycine soja Siebold & Zucc], has not undergone the same intense selection and is much more genetically diverse than domesticated soybean. However, the agronomic importance of diversity in wild soybean is unclear, and its weedy nature makes assessment difficult. To address this issue, we chose for study a highly selected, adapted F4-derived progeny of wild soybean, NMS4-44-329. This breeding line is derived from the hybridization between G. max cultivar N7103 and G. soja PI 366122. Agronomic comparisons were made among N7103, NMS4-44-329 and their F1 and F2 progeny in replicated yield trials at two North Carolina locations. Significant F1 mid-parent heterosis was observed at each location for seed yield (189 and 223 kgha-1, P<0.05 and P<0.10, respectively), seed protein content (1.1g/100g, P<0.01) and protein production per hectare (101 and 100 kgha-1, P<0.01 and P<0.06, respectively). Increased yield, seed protein content and protein production per hectare in the hybrids suggested that wild soybean has the potential to improve agronomic traits in applied breeding. Comparisons of differentially-expressed genes in the hybrid vs. parents identified genes associated with N metabolism. Non-additive changes in gene expression in the hybrids relative to the parents could reasonably explain the improved protein levels in the F1 hybrids. Changes in gene expression were influenced by environmental effects; however, allele specific bias in the hybrids were well correlated between environments. We propose that changes in gene expression, both additive and non-additive, and changes in allele specific expression bias may explain agronomic traits, and be valuable tools for plant breeders in the assessment of breeding populations.
Collapse
Affiliation(s)
- Earl Taliercio
- USDA-ARS, Raleigh, North Carolina United States of America
| | - David Eickholt
- Crop and Soil Science Department, North Carolina State University, Raleigh, NC, United States of America
| | - Rakin Rouf
- Crop and Soil Science Department, North Carolina State University, Raleigh, NC, United States of America
| | - Thomas Carter
- USDA-ARS, Raleigh, North Carolina United States of America
| |
Collapse
|