1
|
Yamaoka Y, Petroutsos D, Je S, Yamano T, Li-Beisson Y. Light, CO 2, and carbon storage in microalgae. CURRENT OPINION IN PLANT BIOLOGY 2025; 84:102696. [PMID: 39983365 DOI: 10.1016/j.pbi.2025.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/23/2025]
Abstract
Microalgae exhibit remarkable adaptability to environmental changes by integrating light and CO2 signals into regulatory networks that govern energy conversion, carbon fixation, and storage. Light serves not only as an energy source for photosynthesis but also as a regulatory signal mediated by photoreceptors. Specific light spectra distinctly influence carbon allocation, driving lipid or starch biosynthesis by altering transcriptional and metabolic pathways. The ratio of ATP to NADPH imbalances significantly impact carbon allocation toward lipid or starch production. To maintain this balance, alternative electron flow pathways play critical roles, while inter-organelle redox exchanges regulate cellular energy states to support efficient carbon storage. The CO2-concentrating mechanism (CCM) enhances photosynthetic efficiency by concentrating CO2 at Rubisco, energized by ATP from photosynthetic electron transport. This review examines how light receptors, energy-producing pathways, and the CCM interact to regulate carbon metabolism in microalgae, emphasizing their collective roles in balancing energy supply and carbon storage.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Dimitris Petroutsos
- Department of Organismal Biology, Uppsala University, 75236, Uppsala, Sweden
| | - Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Yonghua Li-Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance, 13108, France
| |
Collapse
|
2
|
Pizzanelli S, Pitzalis E, Botticelli S, Machetti F, Faraloni C, La Penna G. Electron spin resonance in microalgae whole-cells to monitor hydrogen production. J Biol Inorg Chem 2025; 30:229-240. [PMID: 40126622 PMCID: PMC11965266 DOI: 10.1007/s00775-025-02113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Unicellular algae can produce pure hydrogen gas from water and sun-light. We observed Chlorella vulgaris whole cells when they produce hydrogen using X-band continuous-wave electron spin resonance (ESR). Whole-cell spectroscopy is particularly useful in those cases where purified enzymes are sensitive to oxidant air conditions. By tuning cell preparation, the microwave power, the temperature, the time of air exposure, we could isolate from the background signal candidate markers of hydrogen production. Our observations indicate the presence of a species consistent mainly with an intermediateFe 3 S 4 + cluster when hydrogen production is high, but not maximal, and when FeS cluster oxidation has just begun. The optimal conditions to detect the above marker by ESR have been identified. Our investigation paves the way to extensive statistical analysis of cellular conditions in future studies using whole-cell ESR.
Collapse
Affiliation(s)
- Silvia Pizzanelli
- Institute of Chemistry of Organometallic Compounds, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| | - Emanuela Pitzalis
- Institute of Chemistry of Organometallic Compounds, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| | - Simone Botticelli
- Department of Physics, University of Roma Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
- Section of Roma Tor Vergata, National Institute for Nuclear Physics, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Fabrizio Machetti
- Institute of Chemistry of Organometallic Compounds c/o University of Florence, Department of Chemistry "Ugo Schiff", National Research Council, via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Cecilia Faraloni
- Institute of Bioeconomy, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Giovanni La Penna
- Section of Roma Tor Vergata, National Institute for Nuclear Physics, via della Ricerca Scientifica 1, 00133, Rome, Italy.
- Institute of Chemistry of Organometallic Compounds, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
3
|
Xue Y, Wang W, Sheng X, Zheng Z, Wang Z, Ding F, Li J, Sun Z, Cai Y, Wang X, Xue J. Peroxisomal biogenesis factor 11 as a novel target to trigger lipid biosynthesis and salt stress resistance in oleaginous Tetradesmus obliquus. BIORESOURCE TECHNOLOGY 2025; 421:132209. [PMID: 39938603 DOI: 10.1016/j.biortech.2025.132209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
To overcome economic challenges in microalgal biofuel production, this study investigates the overexpression of peroxisome-localized peroxisomal biogenesis factor 11 (PEX11) to enhance lipid biosynthesis and improve salt stress resistance in Tetradesmus obliquus, aiming to advance microalgal biofuel production. Transgenic strains PEX11-2-1 and PEX11-2-2 exhibited a 2.13- and 2.51-fold increase in neutral lipid content and more cellular lipid droplets compared to WT, along with lipid yield and biomass escalating to 255.45 and 815.15 mg/L, respectively. This enhancement resulted from the redistribution of carbon precursors, increased intracellular reactive oxygen species, enhanced NADPH synthesis, and upregulation of lipid synthesis genes. Additionally, PEX11 improved salt stress tolerance by upregulating the expression of stress-responsive genes, including SnRK2 and PYRC. Fatty acid profile alterations, with increases in saturated fatty acids C16:0 and monounsaturated fatty acids C18:1, and decreases in polyunsaturated fatty acids, facilitated high-quality biofuel production. These findings highlight novel insights for advancing microalgae-based biorefinery.
Collapse
Affiliation(s)
- Yunzhuan Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Wei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Xiajule Sheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Zexu Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Zihan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Fangling Ding
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Jinjin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Zhiwei Sun
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Yu'ang Cai
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Xianhua Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiao Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China.
| |
Collapse
|
4
|
Esteves AF, Gonçalves AL, Vilar VJP, Pires JCM. Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation? Biotechnol Adv 2025; 79:108493. [PMID: 39645210 DOI: 10.1016/j.biotechadv.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J P Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
5
|
Suzuki H, Cuiné S, Légeret B, Wijffels RH, Hulatt CJ, Li‐Beisson Y, Kiron V. Phosphorus starvation induces the synthesis of novel lipid class diacylglyceryl glucuronide and diacylglyceryl-N,N,N-trimethylhomoserine in two species of cold-adapted microalgae Raphidonema (Chlorophyta). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17227. [PMID: 39868466 PMCID: PMC11771548 DOI: 10.1111/tpj.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Microalgae possess diverse lipid classes as components of structural membranes and have adopted various lipid remodeling strategies involving phospholipids to cope with a phosphorus (P)-limited environment. Here, we report a unique adaptative strategy to P deficient conditions in two cold-adapted microalgae, Raphidonema monicae and Raphidonema nivale, involving the lipid class diacylglyceryl glucuronide (DGGA) and the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Lipidomic analyses showed that these two lipid classes were present only in trace amounts in nutrient replete conditions, whereas they significantly increased under P-starvation concomitant with a reduction in phospholipids, suggesting a physiological significance of these lipid classes to combat P-starvation. Additionally, we found two putative sulfoquinovosyldiacylglycerol (SQDG) synthases, known to be involved in DGGA synthesis in higher plants, in the draft genome of R. monicae, and compared it with SQDG synthases found in other organisms such as higher plants, Streptophyta, and Chlorophyta. DGGA has not been previously recognized in Chlorophyta, and our findings suggest that the lipid class may be present in other closely related green algae too. Thus, this study expands our knowledge on diverse lipid remodeling responses of Chlorophycean algae to adapt to low P environments.
Collapse
Affiliation(s)
- Hirono Suzuki
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Stéphan Cuiné
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - Bertrand Légeret
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - René H. Wijffels
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
- Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenthe Netherlands
| | - Chris J. Hulatt
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Yonghua Li‐Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - Viswanath Kiron
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| |
Collapse
|
6
|
Mendes AR, Spínola MP, Lordelo M, Prates JAM. Advances in Bioprocess Engineering for Optimising Chlorella vulgaris Fermentation: Biotechnological Innovations and Applications. Foods 2024; 13:4154. [PMID: 39767096 PMCID: PMC11675943 DOI: 10.3390/foods13244154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Chlorella vulgaris, a unicellular green microalga, has obtained significant attention due to its high protein content, abundance of bioactive compounds, and broad biotechnological potential. Used in nutraceuticals, pharmaceuticals, and functional foods, it is now gaining traction in cosmetics, biopharmaceuticals, and environmental applications. Recent advancements in fermentation technology, such as the development of high-density fermentation strategies, adaptive evolution of strains, and real-time monitoring systems, have greatly improved the efficiency, scalability, and sustainability of C. vulgaris production, enhancing bioavailability and product quality. This review explores developments in C. vulgaris fermentation, highlighting advancements in strain improvement through genetic engineering, metabolic optimization, mutagenesis, and adaptive evolution, alongside bioprocess engineering and the optimization of fermentation parameters. Key considerations include bioreactor design, downstream processing, and innovative monitoring technologies aimed at maximizing biomass yield and bioactive compound production. Emerging applications of fermented C. vulgaris across industries are also highlighted, along with future perspectives on scaling up production, addressing regulatory challenges, and ensuring biosafety. These insights provide a comprehensive outlook on the future of C. vulgaris fermentation in biotechnological applications.
Collapse
Affiliation(s)
- Ana R. Mendes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.R.M.); (M.P.S.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.R.M.); (M.P.S.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Madalena Lordelo
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.R.M.); (M.P.S.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
7
|
Song W, Li C, Lu Y, Shen D, Jia Y, Huo Y, Piao W, Jin H. Chlomito: a novel tool for precise elimination of organelle genome contamination from nuclear genome assembly. FRONTIERS IN PLANT SCIENCE 2024; 15:1430443. [PMID: 39258299 PMCID: PMC11385003 DOI: 10.3389/fpls.2024.1430443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Introduction Accurate reference genomes are fundamental to understanding biological evolution, biodiversity, hereditary phenomena and diseases. However, many assembled nuclear chromosomes are often contaminated by organelle genomes, which will mislead bioinformatic analysis, and genomic and transcriptomic data interpretation. Methods To address this issue, we developed a tool named Chlomito, aiming at precise identification and elimination of organelle genome contamination from nuclear genome assembly. Compared to conventional approaches, Chlomito utilized new metrics, alignment length coverage ratio (ALCR) and sequencing depth ratio (SDR), thereby effectively distinguishing true organelle genome sequences from those transferred into nuclear genomes via horizontal gene transfer (HGT). Results The accuracy of Chlomito was tested using sequencing data from Plum, Mango and Arabidopsis. The results confirmed that Chlomito can accurately detect contigs originating from the organelle genomes, and the identified contigs covered most regions of the organelle reference genomes, demonstrating efficiency and precision of Chlomito. Considering user convenience, we further packaged this method into a Docker image, simplified the data processing workflow. Discussion Overall, Chlomito provides an efficient, accurate and convenient method for identifying and removing contigs derived from organelle genomes in genomic assembly data, contributing to the improvement of genome assembly quality.
Collapse
Affiliation(s)
- Wei Song
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanming Lu
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dawei Shen
- Research Institute for Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yixin Huo
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| | - Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
- Department of Pathology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
8
|
Ochiai KK, Hanawa D, Ogawa HA, Tanaka H, Uesaka K, Edzuka T, Shirae-Kurabayashi M, Toyoda A, Itoh T, Goshima G. Genome sequence and cell biological toolbox of the highly regenerative, coenocytic green feather alga Bryopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1091-1111. [PMID: 38642374 DOI: 10.1111/tpj.16764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/10/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Green feather algae (Bryopsidales) undergo a unique life cycle in which a single cell repeatedly executes nuclear division without cytokinesis, resulting in the development of a thallus (>100 mm) with characteristic morphology called coenocyte. Bryopsis is a representative coenocytic alga that has exceptionally high regeneration ability: extruded cytoplasm aggregates rapidly in seawater, leading to the formation of protoplasts. However, the genetic basis of the unique cell biology of Bryopsis remains poorly understood. Here, we present a high-quality assembly and annotation of the nuclear genome of Bryopsis sp. (90.7 Mbp, 27 contigs, N50 = 6.7 Mbp, 14 034 protein-coding genes). Comparative genomic analyses indicate that the genes encoding BPL-1/Bryohealin, the aggregation-promoting lectin, are heavily duplicated in Bryopsis, whereas homologous genes are absent in other ulvophyceans, suggesting the basis of regeneration capability of Bryopsis. Bryopsis sp. possesses >30 kinesins but only a single myosin, which differs from other green algae that have multiple types of myosin genes. Consistent with this biased motor toolkit, we observed that the bidirectional motility of chloroplasts in the cytoplasm was dependent on microtubules but not actin in Bryopsis sp. Most genes required for cytokinesis in plants are present in Bryopsis, including those in the SNARE or kinesin superfamily. Nevertheless, a kinesin crucial for cytokinesis initiation in plants (NACK/Kinesin-7II) is hardly expressed in the coenocytic part of the thallus, possibly underlying the lack of cytokinesis in this portion. The present genome sequence lays the foundation for experimental biology in coenocytic macroalgae.
Collapse
Affiliation(s)
- Kanta K Ochiai
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, 517-0004, Japan
| | - Daiki Hanawa
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Harumi A Ogawa
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, 517-0004, Japan
| | - Hiroyuki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kazuma Uesaka
- Centre for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Tomoya Edzuka
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, 517-0004, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, 517-0004, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, 517-0004, Japan
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
9
|
Zhou Z, Chen Y, Yan M, Zhao S, Li F, Yu S, Feng Z, Li L. Genome-wide identification and mining elite allele variation of the Monoacylglycerol lipase (MAGL) gene family in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2024; 24:587. [PMID: 38902638 PMCID: PMC11191281 DOI: 10.1186/s12870-024-05297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Monoacylglycerol lipase (MAGL) genes belong to the alpha/beta hydrolase superfamily, catalyze the terminal step of triglyceride (TAG) hydrolysis, converting monoacylglycerol (MAG) into free fatty acids and glycerol. RESULTS In this study, 30 MAGL genes in upland cotton have been identified, which have been classified into eight subgroups. The duplication of GhMAGL genes in upland cotton was predominantly influenced by segmental duplication events, as revealed through synteny analysis. Furthermore, all GhMAGL genes were found to contain light-responsive elements. Through comprehensive association and haplotype analyses using resequencing data from 355 cotton accessions, GhMAGL3 and GhMAGL6 were detected as key genes related to lipid hydrolysis processes, suggesting a negative regulatory effect. CONCLUSIONS In summary, MAGL has never been studied in upland cotton previously. This study provides the genetic mechanism foundation for the discover of new genes involved in lipid metabolism to improve cottonseed oil content, which will provide a strategic avenue for marker-assisted breeding aimed at incorporating desirable traits into cultivated cotton varieties.
Collapse
Affiliation(s)
- Zhibin Zhou
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Yao Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Mengyuan Yan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Shuqi Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
- Cotton and Wheat Research Institute, Huanggang Academy of Agricultural Sciences, Huanggang 438000, Hubei, China
| | - Feifei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an 311300, Hangzhou, China.
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an 311300, Hangzhou, China.
| | - Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an 311300, Hangzhou, China.
| |
Collapse
|
10
|
Kriechbaum R, Spadiut O, Kopp J. Bioconversion of Furanic Compounds by Chlorella vulgaris-Unveiling Biotechnological Potentials. Microorganisms 2024; 12:1222. [PMID: 38930604 PMCID: PMC11205514 DOI: 10.3390/microorganisms12061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Lignocellulosic biomass is abundant on Earth, and there are multiple acidic pretreatment options to separate the cellulose, hemicellulose, and lignin fraction. By doing so, the fermentation inhibitors 5-Hydroxymethylfurfural (HMF) and furfural (FF) are produced in varying concentrations depending on the hydrolyzed substrate. In this study, the impact of these furanic compounds on Chlorella vulgaris growth and photosynthetic activity was analyzed. Both compounds led to a prolonged lag phase in Chlorella vulgaris growth. While the photosynthetic yield Y(II) was not significantly influenced in cultivations containing HMF, FF significantly reduced Y(II). The conversion of 5-Hydroxymethylfurfural and furfural to 5-Hydroxymethyl-2-Furoic Acid and 2-Furoic Acid was observed. In total, 100% of HMF and FF was converted in photoautotrophic and mixotrophic Chlorella vulgaris cultivations. The results demonstrate that Chlorella vulgaris is, as of now, the first known microalgal species converting furanic compounds.
Collapse
Affiliation(s)
| | | | - Julian Kopp
- Research Division: Biochemical Engineering, Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060 Wien, Austria; (R.K.); (O.S.)
| |
Collapse
|
11
|
Marcolungo L, Bellamoli F, Cecchin M, Lopatriello G, Rossato M, Cosentino E, Rombauts S, Delledonne M, Ballottari M. Haematococcus lacustris genome assembly and annotation reveal diploid genetic traits and stress-induced gene expression patterns. ALGAL RES 2024; 80:103567. [PMID: 39717182 PMCID: PMC7617258 DOI: 10.1016/j.algal.2024.103567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The green alga Haematococcus lacustris (formerly Haematococcus pluvialis) is a primary source of astaxanthin, a ketocarotenoid with high antioxidant activity and several industrial applications. Here, the Haematococcus lacustris highly repetitive genome was reconstructed by exploiting next-generation sequencing integrated with Hi-C scaffolding, obtaining a 151 Mb genome assembly in 32 scaffolds at a near-chromosome level with high continuity. Surprisingly, the distribution of the single-nucleotide-polymorphisms identified demonstrates a diploid configuration for the Haematococcus genome, further validated by Sanger sequencing of heterozygous regions. Functional annotation and RNA-seq data enabled the identification of 13,946 nuclear genes, with >5000 genes not previously identified in this species, providing insights into the molecular basis for metabolic rear-rangement in stressing conditions such as high light and/or nitrogen starvation, where astaxanthin biosynthesis is triggered. These data constitute a rich genetic resource for biotechnological manipulation of Haematococcus lacustris highlighting potential targets to improve astaxanthin and carotenoid productivity.
Collapse
Affiliation(s)
- Luca Marcolungo
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Francesco Bellamoli
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Michela Cecchin
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Giulia Lopatriello
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Marzia Rossato
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Emanuela Cosentino
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Stephane Rombauts
- Bioinformatics and Evolutionary Genomics, University of Ghent, Technologiepark 927, B-9052Gent, Belgium
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| |
Collapse
|
12
|
Wang B, Jia Y, Dang N, Yu J, Bush SJ, Gao S, He W, Wang S, Guo H, Yang X, Ma W, Ye K. Near telomere-to-telomere genome assemblies of two Chlorella species unveil the composition and evolution of centromeres in green algae. BMC Genomics 2024; 25:356. [PMID: 38600443 PMCID: PMC11005252 DOI: 10.1186/s12864-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.
Collapse
Affiliation(s)
- Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ningxin Dang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenxi He
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sirui Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
13
|
Botticelli S, La Penna G, Minicozzi V, Stellato F, Morante S, Rossi G, Faraloni C. Predicting the Structure of Enzymes with Metal Cofactors: The Example of [FeFe] Hydrogenases. Int J Mol Sci 2024; 25:3663. [PMID: 38612474 PMCID: PMC11011570 DOI: 10.3390/ijms25073663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory. We use the example of [FeFe] hydrogenases, enzymes of unicellular algae promising for biotechnology applications to illustrate this situation. [FeFe] hydrogenase is an iron-sulfur protein that catalyzes the chemical reduction of protons dissolved in liquid water into molecular hydrogen as a gas. Hydrogen production efficiency and cell sensitivity to dioxygen are important parameters to optimize the industrial applications of biological hydrogen production. Both parameters are related to the organization of iron-sulfur clusters within protein domains. In this work, we propose possible three-dimensional structures of Chlorella vulgaris 211/11P [FeFe] hydrogenase, the sequence of which was extracted from the recently published genome of the given strain. Initial structural models are built using: (i) the deep learning algorithm AlphaFold; (ii) the homology modeling server SwissModel; (iii) a manual construction based on the best known bacterial crystal structure. Missing iron-sulfur clusters are included and microsecond-long molecular dynamics of initial structures embedded into the water solution environment were performed. Multiple-walkers metadynamics was also used to enhance the sampling of structures encompassing both functional and non-functional organizations of iron-sulfur clusters. The resulting structural model provided by deep learning is consistent with functional [FeFe] hydrogenase characterized by peculiar interactions between cofactors and the protein matrix.
Collapse
Affiliation(s)
- Simone Botticelli
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Giovanni La Penna
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
- Institute of Chemistry of Organometallic Compounds, National Research Council, 50019 Florence, Italy
| | - Velia Minicozzi
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Francesco Stellato
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Silvia Morante
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Giancarlo Rossi
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, 00184 Rome, Italy
| | - Cecilia Faraloni
- Institute of Bioeconomy, National Research Council, 50019 Florence, Italy
| |
Collapse
|
14
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
15
|
Bierenbroodspot MJ, Darienko T, de Vries S, Fürst-Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J. Phylogenomic insights into the first multicellular streptophyte. Curr Biol 2024; 34:670-681.e7. [PMID: 38244543 PMCID: PMC10849092 DOI: 10.1016/j.cub.2023.12.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Thomas Pröschold
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Innsbruck, Research Department for Limnology, 5310 Mondsee, Austria
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
16
|
Murik O, Geffen O, Shotland Y, Fernandez-Pozo N, Ullrich KK, Walther D, Rensing SA, Treves H. Genomic imprints of unparalleled growth. THE NEW PHYTOLOGIST 2024; 241:1144-1160. [PMID: 38072860 DOI: 10.1111/nph.19444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Chlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination. This included the genome of its close relative, but slower growing and photodamage sensitive, C. sorokiniana UTEX 1663. A larger number of ribosome-encoding genes, high intron abundance, increased codon bias and unique genes potentially involved in metabolic flexibility and resistance to photodamage are all consistent with the faster growth of C. ohadii. Some of these characteristics highlight general trends in Chlorophyta and Chlorella spp. evolution, and others open new broad avenues for mechanistic exploration of their relationship with growth. This work entails a unique case study for the genomic adaptations and costs of exceptionally fast growth and sheds light on the genomic signatures of fast growth in photosynthetic cells. It also provides an important resource for future studies leveraging the unique properties of C. ohadii for photosynthesis and stress response research alongside their utilization for synthetic biology and biotechnology aims.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Medical Genetics Institute, Shaare Zedek Medical Center, 93722, Jerusalem, Israel
| | - Or Geffen
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
| | - Yoram Shotland
- Chemical Engineering, Shamoon College of Engineering, 84100, Beer-Sheva, Israel
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
| | - Kristian Karsten Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Dirk Walther
- Max-Planck Institute for Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Stefan Andreas Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, 79098, Freiburg, Germany
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
17
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
18
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
19
|
Pan M, Wang Y, Krömer JO, Zhu X, Lin MKTH, Angelidaki I. A Coculture of Photoautotrophs and Hydrolytic Heterotrophs Enables Efficient Upcycling of Starch from Wastewater toward Biomass-Derived Products: Synergistic Interactions Impacting Metabolism of the Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15523-15532. [PMID: 37792456 DOI: 10.1021/acs.est.3c05321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Even with particular interest in sustainable development, due to the limited types of bioavailable carbon sources that could support heterotrophic/mixotrophic growth, microalgae-derived products still suffer from inconsistent yield and high costs. This study demonstrates a successful cocultivation of the photoautotroph Chlorella vulgaris with a hydrolytic-enzyme-abundant heterotroph, Saccharomycopsis fibuligera, enabling efficient starch upcycling from water/wastewater toward enhancing microalgae-dominant biomass and lipid production. The enzymatic activities of S. fibuligera contributed to the hydrolysis of starch into glucose, generating a 7-fold higher biomass through mixotrophic/heterotrophic growth of C. vulgaris. Further, scanning transmission electron microscopy (STEM) and quantitative analysis suggested a significantly induced accumulation of lipids in C. vulgaris. Results of meta-transcriptomics revealed the critical regulatory role of illumination in interaction shifting. Gene expression for glycolysis and lipid biosynthesis of C. vulgaris were highly activated during dark periods. Meanwhile, during illumination periods, genes coding for glucoamylase and the sulfur-related activities in S. fibuligera were significantly upregulated, leading to induced starch hydrolysis and potential increased competition for sulfur utilization, respectively. This study indicates that hydrolytic organisms could collaborate to make starch bioavailable for nonhydrolytic microalgae, thus broadening the substrate spectrum and making starch a novel biotechnological feedstock for microalgae-derived products, e.g., biofuels or single-cell protein.
Collapse
Affiliation(s)
- Minmin Pan
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
| | - Yiru Wang
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Jens O Krömer
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, Lyngby DK-2899, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
| |
Collapse
|
20
|
Cecchin M, Simicevic J, Chaput L, Hernandez Gil M, Girolomoni L, Cazzaniga S, Remacle C, Hoeng J, Ivanov NV, Titz B, Ballottari M. Acclimation strategies of the green alga Chlorella vulgaris to different light regimes revealed by physiological and comparative proteomic analyses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4540-4558. [PMID: 37155956 DOI: 10.1093/jxb/erad170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Acclimation to different light regimes is at the basis of survival for photosynthetic organisms, regardless of their evolutionary origin. Previous research efforts largely focused on acclimation events occurring at the level of the photosynthetic apparatus and often highlighted species-specific mechanisms. Here, we investigated the consequences of acclimation to different irradiances in Chlorella vulgaris, a green alga that is one of the most promising species for industrial application, focusing on both photosynthetic and mitochondrial activities. Moreover, proteomic analysis of cells acclimated to high light (HL) or low light (LL) allowed identification of the main targets of acclimation in terms of differentially expressed proteins. The results obtained demonstrate photosynthetic adaptation to HL versus LL that was only partially consistent with previous findings in Chlamydomonas reinhardtii, a model organism for green algae, but in many cases similar to vascular plant acclimation events. Increased mitochondrial respiration measured in HL-acclimated cells mainly relied on alternative oxidative pathway dissipating the excessive reducing power produced due to enhanced carbon flow. Finally, proteins involved in cell metabolism, intracellular transport, gene expression, and signaling-including a heliorhodopsin homolog-were identified as strongly differentially expressed in HL versus LL, suggesting their key roles in acclimation to different light regimes.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Jovan Simicevic
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Louise Chaput
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel Hernandez Gil
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Laura Girolomoni
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
21
|
Zhong Y, Wang Y, Li P, Gong W, Wang X, Yan H, Ge Q, Liu A, Shi Y, Shang H, Zhang Y, Gong J, Yuan Y. Genome-Wide Analysis and Functional Characterization of LACS Gene Family Associated with Lipid Synthesis in Cotton ( Gossypium spp.). Int J Mol Sci 2023; 24:ijms24108530. [PMID: 37239883 DOI: 10.3390/ijms24108530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Cotton (Gossypium spp.) is the fifth largest oil crop in the world, and cottonseed provides abundant vegetable oil resources and industrial bioenergy fuels for people; therefore, it is of practical significance to increase the oil content of cotton seeds for improving the oil yield and economic benefits of planting cotton. Long-chain acyl-coenzyme A (CoA) synthetase (LACS) capable of catalyzing the formation of acyl-CoAs from free fatty acids has been proven to significantly participate in lipid metabolism, of which whole-genome identification and functional characterization of the gene family have not yet been comprehensively analyzed in cotton. In this study, a total of sixty-five LACS genes were confirmed in two diploid and two tetraploid Gossypium species, which were divided into six subgroups based on phylogenetic relationships with twenty-one other plants. An analysis of protein motif and genomic organizations displayed structural and functional conservation within the same group but diverged among the different group. Gene duplication relationship analysis illustrates the LACS gene family in large scale expansion through WGDs/segmental duplications. The overall Ka/Ks ratio indicated the intense purifying selection of LACS genes in four cotton species during evolution. The LACS genes promoter elements contain numerous light response cis-elements associated with fatty acids synthesis and catabolism. In addition, the expression of almost all GhLACS genes in high seed oil were higher compared to those in low seed oil. We proposed LACS gene models and shed light on their functional roles in lipid metabolism, demonstrating their engineering potential for modulating TAG synthesis in cotton, and the genetic engineering of cottonseed oil provides a theoretical basis.
Collapse
Affiliation(s)
- Yike Zhong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yongbo Wang
- Cotton Sciences Research Institute of Hunan, National Hybrid Cotton Research Promotion Center, Changde 415101, China
| | - Pengtao Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haoliang Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuanming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youlu Yuan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
22
|
Cazzaniga S, Perozeni F, Baier T, Ballottari M. Engineering astaxanthin accumulation reduces photoinhibition and increases biomass productivity under high light in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:77. [PMID: 35820961 PMCID: PMC9277849 DOI: 10.1186/s13068-022-02173-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022]
Abstract
Background Astaxanthin is a highly valuable ketocarotenoid with strong antioxidative activity and is natively accumulated upon environmental stress exposure in selected microorganisms. Green microalgae are photosynthetic, unicellular organisms cultivated in artificial systems to produce biomass and industrially relevant bioproducts. While light is required for photosynthesis, fueling carbon fixation processes, application of high irradiance causes photoinhibition and limits biomass productivity. Results Here, we demonstrate that engineered astaxanthin accumulation in the green alga Chlamydomonas reinhardtii conferred high light tolerance, reduced photoinhibition and improved biomass productivity at high irradiances, likely due to strong antioxidant properties of constitutively accumulating astaxanthin. In competitive co-cultivation experiments, astaxanthin-rich Chlamydomonas reinhardtii outcompeted its corresponding parental background strain and even the fast-growing green alga Chlorella vulgaris. Conclusions Metabolic engineering inducing astaxanthin and ketocarotenoids accumulation caused improved high light tolerance and increased biomass productivity in the model species for microalgae Chlamydomonas reinhardtii. Thus, engineering microalgal pigment composition represents a powerful strategy to improve biomass productivities in customized photobioreactors setups. Moreover, engineered astaxanthin accumulation in selected strains could be proposed as a novel strategy to outperform growth of other competing microalgal strains. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02173-3.
Collapse
|
23
|
Durdakova M, Kolackova M, Janova A, Krystofova O, Adam V, Huska D. Microalgae/cyanobacteria: the potential green future of vitamin B 12 production. Crit Rev Food Sci Nutr 2022; 64:3091-3102. [PMID: 36222060 DOI: 10.1080/10408398.2022.2130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review summarizes the available information about potential sources of vitamin B12, especially for people who follow a vegan or vegetarian diet and inhabitants of poor countries in the developing world. Cyanobacteria and microalgae approved for food purposes can play a critical role as promising and innovative sources of this vitamin. This work involves a discussion of whether the form of vitamin B12 extracted from microalgae/cyanobacteria is biologically available to humans, specifically focusing on the genera Arthrospira and Chlorella. It describes analyses of their biomass composition, cultivation requirements, and genetic properties in B12 production. Furthermore, this review discusses the function of cobalamin in microalgae and cyanobacteria themselves and the possibility of modification and cocultivation to increase the content of B12 in their biomass.
Collapse
Affiliation(s)
- Michaela Durdakova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| |
Collapse
|
24
|
Maestri S, Gambino G, Lopatriello G, Minio A, Perrone I, Cosentino E, Giovannone B, Marcolungo L, Alfano M, Rombauts S, Cantu D, Rossato M, Delledonne M, Calderón L. 'Nebbiolo' genome assembly allows surveying the occurrence and functional implications of genomic structural variations in grapevines (Vitis vinifera L.). BMC Genomics 2022; 23:159. [PMID: 35209840 PMCID: PMC8867635 DOI: 10.1186/s12864-022-08389-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Background ‘Nebbiolo’ is a grapevine cultivar typical of north-western Italy, appreciated for producing high-quality red wines. Grapevine cultivars are characterized by possessing highly heterozygous genomes, including a great incidence of genomic rearrangements larger than 50 bp, so called structural variations (SVs). Even though abundant, SVs are an under-explored source of genetic variation mainly due to methodological limitations at their detection. Results We employed a multiple platform approach to produce long-range genomic data for two different ‘Nebbiolo’ clones, namely: optical mapping, long-reads and linked-reads. We performed a haplotype-resolved de novo assembly for cultivar ‘Nebbiolo’ (clone CVT 71) and used an ab-initio strategy to annotate it. The annotated assembly enhanced our ability to detect SVs, enabling the study of genomic regions not present in the grapevines’ reference genome and accounting for their functional implications. We performed variant calling analyses at three different organizational levels: i) between haplotypes of clone CVT 71 (primary assembly vs haplotigs), ii) between ‘Nebbiolo’ and ‘Cabernet Sauvignon’ assemblies and iii) between clones CVT 71 and CVT 185, representing different ‘Nebbiolo’ biotypes. The cumulative size of non-redundant merged SVs indicated a total of 79.6 Mbp for the first comparison and 136.1 Mbp for the second one, while no SVs were detected for the third comparison. Interestingly, SVs differentiating cultivars and haplotypes affected similar numbers of coding genes. Conclusions Our results suggest that SVs accumulation rate and their functional implications in ‘Nebbiolo’ genome are highly-dependent on the organizational level under study. SVs are abundant when comparing ‘Nebbiolo’ to a different cultivar or the two haplotypes of the same individual, while they turned absent between the two analysed clones. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08389-9.
Collapse
Affiliation(s)
- Simone Maestri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Giulia Lopatriello
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Andrea Minio
- Department of Viticulture & Enology, University of California Davis, 595 Hilgard Lane, Davis, CA, 95616, USA
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Emanuela Cosentino
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Barbara Giovannone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luca Marcolungo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Massimiliano Alfano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Stephane Rombauts
- Department of Bioinformatics and Systems Biology, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, 9052, Gent, Belgium
| | - Dario Cantu
- Department of Viticulture & Enology, University of California Davis, 595 Hilgard Lane, Davis, CA, 95616, USA
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Luciano Calderón
- Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
25
|
Gann ER, Truchon AR, Papoulis SE, Dyhrman ST, Gobler CJ, Wilhelm SW. Aureococcus anophagefferens (Pelagophyceae) genomes improve evaluation of nutrient acquisition strategies involved in brown tide dynamics. JOURNAL OF PHYCOLOGY 2022; 58:146-160. [PMID: 34773248 DOI: 10.1111/jpy.13221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The pelagophyte Aureococcus anophagefferens causes harmful brown tide blooms in marine embayments on three continents. Aureococcus anophagefferens was the first harmful algal bloom species to have its genome sequenced, an advance that evidenced genes important for adaptation to environmental conditions that prevail during brown tides. To expand the genomic tools available for this species, genomes for four strains were assembled, including three newly sequenced strains and one assembled from publicly available data. These genomes ranged from 57.11 to 73.62 Mb, encoding 13,191-17,404 potential proteins. All strains shared ~90% of their encoded proteins as determined by homology searches and shared most functional orthologs as determined by KEGG, although each strain also possessed coding sequences with unique functions. Like the original reference genome, the genomes assembled in this study possessed genes hypothesized to be important in bloom proliferation, including genes involved in organic compound metabolism and growth at low light. Cross-strain informatics and culture experiments suggest that the utilization of purines is a potentially important source of organic nitrogen for brown tides. Analyses of metatranscriptomes from a brown tide event demonstrated that use of a single genome yielded a lower read mapping percentage (~30% of library reads) as compared to a database generated from all available genomes (~43%), suggesting novel information about bloom ecology can be gained from expanding genomic space. This work demonstrates the continued need to sequence ecologically relevant algae to understand the genomic potential and their ecology in the environment.
Collapse
Affiliation(s)
- Eric R Gann
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Spiridon E Papoulis
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Sonya T Dyhrman
- Biology and Paleo Environment Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, 10964, USA
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, 10964, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11790, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
26
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
27
|
Zhang L, Wu P, Li W, Feng T, Shockey J, Chen L, Zhang L, Lü S. Triacylglycerol biosynthesis in shaded seeds of tung tree (Vernicia fordii) is regulated in part by Homeodomain Leucine Zipper 21. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1735-1753. [PMID: 34643970 DOI: 10.1111/tpj.15540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Light quantity and quality affect many aspects of plant growth and development. However, few reports have addressed the molecular connections between seed oil accumulation and light conditions, especially dense shade. Shade-avoiding plants can redirect plant resources into extension growth at the expense of leaf and root expansion in an attempt to reach areas containing richer light. Here, we report that tung tree seed oil accumulation is suppressed by dense shade during the rapid oil accumulation phase. Transcriptome analysis confirmed that oil accumulation suppression due to dense shade was attributed to reduced expression of fatty acid and triacylglycerol biosynthesis-related genes. Through weighted gene co-expression network analysis, we identified 32 core transcription factors (TFs) specifically upregulated in densely shaded seeds during the rapid oil accumulation period. Among these, VfHB21, a class I homeodomain leucine zipper TF, was shown to suppress expression of FAD2 and FADX, two key genes related to α-eleostearic acid, by directly binding to HD-ZIP I/II motifs in their respective promoter regions. VfHB21 also binds to similar motifs in the promoters of VfWRI1 and VfDGAT2, two additional key seed lipid regulatory/biosynthetic genes. Functional conservation of HB21 during plant evolution was demonstrated by the fact that AtWRI1, AtSAD1, and AtFAD2 were downregulated in VfHB21-overexpressor lines of transgenic Arabidopsis, with concomitant seed oil reduction, and the fact that AtHB21 expression also was induced by shade. This study reveals some of the regulatory mechanisms that specifically control tung tree seed oil biosynthesis and more broadly regulate plant storage carbon partitioning in response to dense shade conditions.
Collapse
Affiliation(s)
- Lingling Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Pan Wu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
28
|
Giovannoni M, Larini I, Scafati V, Scortica A, Compri M, Pontiggia D, Zapparoli G, Vitulo N, Benedetti M, Mattei B. A novel Penicillium sumatraense isolate reveals an arsenal of degrading enzymes exploitable in algal bio-refinery processes. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:180. [PMID: 34517884 PMCID: PMC8438893 DOI: 10.1186/s13068-021-02030-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/30/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microalgae are coming to the spotlight due to their potential applications in a wide number of fields ranging from the biofuel to the pharmaceutical sector. However, several factors such as low productivity, expensive harvesting procedures and difficult metabolite extractability limit their full utilization at industrial scale. Similarly to the successful employment of enzymatic arsenals from lignocellulolytic fungi to convert lignocellulose into fermentable sugars for bioethanol production, specific algalytic formulations could be used to improve the extractability of lipids from microalgae to produce biodiesel. Currently, the research areas related to algivorous organisms, algal saprophytes and the enzymes responsible for the hydrolysis of algal cell wall are still little explored. RESULTS Here, an algal trap method for capturing actively growing microorganisms was successfully used to isolate a filamentous fungus, that was identified by whole-genome sequencing, assembly and annotation as a novel Penicillium sumatraense isolate. The fungus, classified as P. sumatraense AQ67100, was able to assimilate heat-killed Chlorella vulgaris cells by an enzymatic arsenal composed of proteases such as dipeptidyl- and amino-peptidases, β-1,3-glucanases and glycosidases including α- and β-glucosidases, β-glucuronidase, α-mannosidases and β-galactosidases. The treatment of C. vulgaris with the filtrate from P. sumatraense AQ67100 increased the release of chlorophylls and lipids from the algal cells by 42.6 and 48.9%, respectively. CONCLUSIONS The improved lipid extractability from C. vulgaris biomass treated with the fungal filtrate highlighted the potential of algal saprophytes in the bioprocessing of microalgae, posing the basis for the sustainable transformation of algal metabolites into biofuel-related compounds.
Collapse
Affiliation(s)
- M Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - I Larini
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - V Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - A Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - M Compri
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - D Pontiggia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - G Zapparoli
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - N Vitulo
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - M Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - B Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
29
|
Cecchin M, Paloschi M, Busnardo G, Cazzaniga S, Cuine S, Li‐Beisson Y, Wobbe L, Ballottari M. CO 2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species. PLANT, CELL & ENVIRONMENT 2021; 44:2987-3001. [PMID: 33931891 PMCID: PMC8453743 DOI: 10.1111/pce.14074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 05/28/2023]
Abstract
Microalgae represent a potential solution to reduce CO2 emission exploiting their photosynthetic activity. Here, the physiologic and metabolic responses at the base of CO2 assimilation were investigated in conditions of high or low CO2 availability in two of the most promising algae species for industrial cultivation, Chlorella sorokiniana and Chlorella vulgaris. In both species, high CO2 availability increased biomass accumulation with specific increase of triacylglycerols in C. vulgaris and polar lipids and proteins in C. sorokiniana. Moreover, high CO2 availability caused only in C. vulgaris a reduced NAD(P)H/NADP+ ratio and reduced mitochondrial respiration, suggesting a CO2 dependent increase of reducing power consumption in the chloroplast, which in turn influences the redox state of the mitochondria. Several rearrangements of the photosynthetic machinery were observed in both species, differing from those described for the model organism Chlamydomonas reinhardtii, where adaptation to carbon availability is mainly controlled by the translational repressor NAB1. NAB1 homologous protein could be identified only in C. vulgaris but lacked the regulation mechanisms previously described in C. reinhardtii. Acclimation strategies to cope with a fluctuating inorganic carbon supply are thus diverse among green microalgae, and these results suggest new biotechnological strategies to boost CO2 fixation.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Matteo Paloschi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Stephan Cuine
- Aix‐Marseille Univ., CEA, CNRSInstitute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265, CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Yonghua Li‐Beisson
- Aix‐Marseille Univ., CEA, CNRSInstitute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265, CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Lutz Wobbe
- Bielefeld UniversityCenter for Biotechnology (CeBiTec), Faculty of BiologyBielefeldGermany
| | | |
Collapse
|
30
|
Levin G, Kulikovsky S, Liveanu V, Eichenbaum B, Meir A, Isaacson T, Tadmor Y, Adir N, Schuster G. The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1260-1277. [PMID: 33725388 DOI: 10.1111/tpj.15232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Although light is the driving force of photosynthesis, excessive light can be harmful. One of the main processes that limits photosynthesis is photoinhibition, the process of light-induced photodamage. When the absorbed light exceeds the amount that is dissipated by photosynthetic electron flow and other processes, damaging radicals are formed that mostly inactivate photosystem II (PSII). Damaged PSII must be replaced by a newly repaired complex in order to preserve full photosynthetic activity. Chlorella ohadii is a green microalga, isolated from biological desert soil crusts, that thrives under extreme high light and is highly resistant to photoinhibition. Therefore, C. ohadii is an ideal model for studying the molecular mechanisms underlying protection against photoinhibition. Comparison of the thylakoids of C. ohadii cells that were grown under low light versus extreme high light intensities found that the alga employs all three known photoinhibition protection mechanisms: (i) massive reduction of the PSII antenna size; (ii) accumulation of protective carotenoids; and (iii) very rapid repair of photodamaged reaction center proteins. This work elucidated the molecular mechanisms of photoinhibition resistance in one of the most light-tolerant photosynthetic organisms, and shows how photoinhibition protection mechanisms evolved to marginal conditions, enabling photosynthesis-dependent life in severe habitats.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa, 32000, Israel
| | | | | | | | - Ayala Meir
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Tal Isaacson
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Noam Adir
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
- Schulich Faculty of Chemistry, Technion, Haifa, 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa, 32000, Israel
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
| |
Collapse
|
31
|
Molecular cloning and functional characterization of CvLCYE, a key enzyme in lutein synthesis pathway in Chlorella vulgaris. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Guardini Z, Dall’Osto L, Barera S, Jaberi M, Cazzaniga S, Vitulo N, Bassi R. High Carotenoid Mutants of Chlorella vulgaris Show Enhanced Biomass Yield under High Irradiance. PLANTS 2021; 10:plants10050911. [PMID: 34062906 PMCID: PMC8147269 DOI: 10.3390/plants10050911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022]
Abstract
Microalgae represent a carbon-neutral source of bulk biomass, for extraction of high-value compounds and production of renewable fuels. Due to their high metabolic activity and reproduction rates, species of the genus Chlorella are highly productive when cultivated in photobioreactors. However, wild-type strains show biological limitations making algal bioproducts expensive compared to those extracted from other feedstocks. Such constraints include inhomogeneous light distribution due to high optical density of the culture, and photoinhibition of the surface-exposed cells. Thus, the domestication of algal strains for industry makes it increasingly important to select traits aimed at enhancing light-use efficiency while withstanding excess light stress. Carotenoids have a crucial role in protecting against photooxidative damage and, thus, represent a promising target for algal domestication. We applied chemical mutagenesis to Chlorella vulgaris and selected for enhanced tolerance to the carotenoid biosynthesis inhibitor norflurazon. The NFR (norflurazon-resistant) strains showed an increased carotenoid pool size and enhanced tolerance towards photooxidative stress. Growth under excess light revealed an improved carbon assimilation rate of NFR strains with respect to WT. We conclude that domestication of Chlorella vulgaris, by optimizing both carotenoid/chlorophyll ratio and resistance to photooxidative stress, boosted light-to-biomass conversion efficiency under high light conditions typical of photobioreactors. Comparison with strains previously reported for enhanced tolerance to singlet oxygen, reveals that ROS resistance in Chlorella is promoted by at least two independent mechanisms, only one of which is carotenoid-dependent.
Collapse
|
33
|
Ben Hlima H, Dammak M, Karray A, Drira M, Michaud P, Fendri I, Abdelkafi S. Molecular and Structural Characterizations of Lipases from Chlorella by Functional Genomics. Mar Drugs 2021; 19:70. [PMID: 33525674 PMCID: PMC7910983 DOI: 10.3390/md19020070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Microalgae have been poorly investigated for new-lipolytic enzymes of biotechnological interest. In silico study combining analysis of sequences homologies and bioinformatic tools allowed the identification and preliminary characterization of 14 putative lipases expressed by Chlorella vulagaris. These proteins have different molecular weights, subcellular localizations, low instability index range and at least 40% of sequence identity with other microalgal lipases. Sequence comparison indicated that the catalytic triad corresponded to residues Ser, Asp and His, with the nucleophilic residue Ser positioned within the consensus GXSXG pentapeptide. 3D models were generated using different approaches and templates and demonstrated that these putative enzymes share a similar core with common α/β hydrolases fold belonging to family 3 lipases and class GX. Six lipases were predicted to have a transmembrane domain and a lysosomal acid lipase was identified. A similar mammalian enzyme plays an important role in breaking down cholesteryl esters and triglycerides and its deficiency causes serious digestive problems in human. More structural insight would provide important information on the enzyme characteristics.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (H.B.H.); (M.D.)
| | - Mouna Dammak
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (H.B.H.); (M.D.)
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Maroua Drira
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (H.B.H.); (M.D.)
| |
Collapse
|
34
|
Perozeni F, Beghini G, Cazzaniga S, Ballottari M. Chlamydomonas reinhardtii LHCSR1 and LHCSR3 proteins involved in photoprotective non-photochemical quenching have different quenching efficiency and different carotenoid affinity. Sci Rep 2020; 10:21957. [PMID: 33319824 PMCID: PMC7738518 DOI: 10.1038/s41598-020-78985-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, their limited biomass productivity represents a bottleneck that needs to be overcome to meet the applicative potential of these organisms. One of the domestication targets for improving their productivity is the proper balance between photoprotection and light conversion for carbon fixation. In the model organism for green algae, Chlamydomonas reinhardtii, a photoprotective mechanism inducing thermal dissipation of absorbed light energy, called Non-photochemical quenching (NPQ), is activated even at relatively low irradiances, resulting in reduced photosynthetic efficiency. Two pigment binding proteins, LHCSR1 and LHCSR3, were previously reported as the main actors during NPQ induction in C. reinhardtii. While previous work characterized in detail the functional properties of LHCSR3, few information is available for the LHCSR1 subunit. Here, we investigated in vitro the functional properties of LHCSR1 and LHCSR3 subunits: despite high sequence identity, the latter resulted as a stronger quencher compared to the former, explaining its predominant role observed in vivo. Pigment analysis, deconvolution of absorption spectra and structural models of LHCSR1 and LHCR3 suggest that different quenching efficiency is related to a different occupancy of L2 carotenoid binding site.
Collapse
Affiliation(s)
- Federico Perozeni
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Giorgia Beghini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
35
|
Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A cold-tolerant unicellular green alga was isolated from a meltwater stream on King George Island, Antarctica. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to the species Chlorella vulgaris. We tentatively named this algal strain C.vulgaris KNUA007 and investigated its growth and lipid composition. We found that the strain was able to thrive in a wide range of temperatures, from 5 to 30 °C; however, it did not survive at 35 °C. Ultimate analysis confirmed high gross calorific values only at low temperatures (10 °C), with comparable values to land plants for biomass fuel. Gas chromatography/mass spectrometry analysis revealed that the isolate was rich in nutritionally important polyunsaturated fatty acids (PUFAs). The major fatty acid components were hexadecatrienoic acid (C16:3 ω3, 17.31%), linoleic acid (C18:2 ω6, 8.52%), and α-linolenic acid (C18:3 ω3, 43.35%) at 10 °C. The microalga was tolerant to low temperatures, making it an attractive candidate for the production of biochemicals under cold weather conditions. Therefore, this Antarctic microalga may have potential as an alternative to fish and/or plant oils as a source of omega-3 PUFA. The temperature tolerance and composition of C.vulgaris KNUA007 also make the isolate desirable for commercial applications in the pharmaceutical industry.
Collapse
|
36
|
Girolomoni L, Bellamoli F, de la Cruz Valbuena G, Perozeni F, D'Andrea C, Cerullo G, Cazzaniga S, Ballottari M. Evolutionary divergence of photoprotection in the green algal lineage: a plant-like violaxanthin de-epoxidase enzyme activates the xanthophyll cycle in the green alga Chlorella vulgaris modulating photoprotection. THE NEW PHYTOLOGIST 2020; 228:136-150. [PMID: 32442330 PMCID: PMC7539987 DOI: 10.1111/nph.16674] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/13/2020] [Indexed: 05/05/2023]
Abstract
The xanthophyll cycle is the metabolic process by which the carotenoid violaxanthin is de-epoxidated to zeaxanthin, a xanthophyll with a crucial photoprotective role in higher plants and mosses. The role of zeaxanthin is still unclear in green algae, and a peculiar violaxanthin de-epoxidating enzyme was found in the model organism Chlamydomonas reinhardtii. Here, we investigated the molecular details and functions of the xanthophyll cycle in the case of Chlorella vulgaris, one of the green algae most considered for industrial cultivation, where resistance to high light stress is a prerequisite for sustainable biomass production. Identification of the violaxanthin de-epoxidase enzyme in C. vulgaris was performed by genome mining and in vitro analysis of the catalytic activity of the gene product identified. The photoprotective role of zeaxanthin was then investigated in vivo and in isolated pigment-binding complexes. The results obtained demonstrate the functioning, even though with a different pH sensitivity, of a plant-like violaxanthin de-epoxidase enzyme in C. vulgaris. Differently from C. reinhardtii, zeaxanthin accumulation in C. vulgaris was found to be crucial for photoprotective quenching of excitation energy harvested by both photosystem I and II. These findings demonstrate an evolutionary divergence of photoprotective mechanisms among Chlorophyta.
Collapse
Affiliation(s)
- Laura Girolomoni
- Department of BiotechnologyUniversity of VeronaStrada le Grazie 15Verona37134Italy
| | - Francesco Bellamoli
- Department of BiotechnologyUniversity of VeronaStrada le Grazie 15Verona37134Italy
| | | | - Federico Perozeni
- Department of BiotechnologyUniversity of VeronaStrada le Grazie 15Verona37134Italy
| | - Cosimo D'Andrea
- IFN‐CNRDepartment of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
- Center for NanoScience and Technology @PoliMiIstituto Italiano di Tecnologiavia Pascoli 70/3Milan20133Italy
| | - Giulio Cerullo
- IFN‐CNRDepartment of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Stefano Cazzaniga
- Department of BiotechnologyUniversity of VeronaStrada le Grazie 15Verona37134Italy
| | - Matteo Ballottari
- Department of BiotechnologyUniversity of VeronaStrada le Grazie 15Verona37134Italy
| |
Collapse
|
37
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|