1
|
Namata MJ, Xu J, Habyarimana E, Palakolanu SR, Wang L, Li J. Genome editing in maize and sorghum: A comprehensive review of CRISPR/Cas9 and emerging technologies. THE PLANT GENOME 2025; 18:e70038. [PMID: 40324959 DOI: 10.1002/tpg2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 05/07/2025]
Abstract
The increasing changes in the climate patterns across the globe have deeply affected food systems where unparalleled and unmatched challenges are created. This jeopardizes food security due to an ever-increasing population. The extreme efficiency of C4 crops as compared to C3 crops makes them incredibly significant in securing food safety. C4 crops, maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) in particular, have the ability to withstand osmotic stress induced by oxidative stress. Osmotic stress causes a series of physical changes in a plant thus facilitating reduced water uptake and photosynthesis inhibition, such as membrane tension, cell wall stiffness, and turgor changes. There has been a great advancement in plant breeding brought by introduction of clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology. This technology offers precise alterations to an organism's DNA through targeting specific genes for desired traits in a wide number of crop species. Despite its immense opportunities in plant breeding, it faces limitations such as effective delivery systems, editing efficiency, regulatory concerns, and off-target effects. Future prospects lie in optimizing next-generation techniques, such as prime editing, and developing novel genotype-independent delivery methods. Overall, the transformative role of CRISPR/Cas9 in sorghum and maize breeding underscores the need for responsible and sustainable utilization to address global food security challenges.
Collapse
Affiliation(s)
- Mercy Jocyline Namata
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Jingyi Xu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| |
Collapse
|
2
|
Patra N, Barker GC, Maiti MK. Knockout of fatty acid elongase1 homeoalleles in amphidiploid Brassica juncea leads to undetectable erucic acid in seed oil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109679. [PMID: 40020602 DOI: 10.1016/j.plaphy.2025.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Indian mustard (Brassica juncea L.) is a major oilseed crop with considerable economic and nutritional importance globally. While its seed oil offers valuable dietary benefits due to a balanced ratio of human essential fatty acids, the traditional high oil-yielding varieties contain an elevated level of erucic acid (EA, C22:1) associated with adverse health effects. Therefore, developing low erucic acid (LEA) mustard cultivars is crucial for broader utilization and consumer safety. In this study, CRISPR/Cas9 genome editing tool was employed to disrupt the fatty acid elongase1 (FAE1) gene that encodes a key enzyme in EA biosynthesis in two high erucic acid (HEA) B. juncea cultivars, PCR7 (∼39% EA) and JD6 (∼45% EA). Targeted knockout (KO) of BjFAE1 homeoalleles (BjFAE1.1 and BjFAE1.2) in this amphidiploid plant species using CRISPR/Cas9 constructs, each carrying two guide RNAs led to generation of single (either fae1.1 or fae1.2) and double (fae1.1fae1.2) mutants. Best performing homozygous fae1.1fae1.2 KO lines showed a near-complete elimination of EA in both the cultivars (<0.5% in PCR7, undetectable in JD6) with a marked increase in nutritionally beneficial oleic acid (from ∼18% to ∼32% in PCR7, from ∼9% to ∼38% in JD6). Moreover, the content of essential fatty acids also increased substantially [linoleic acid (C18:2) 1.9-fold in PCR7 and 2.1-fold in JD6; linolenic acid (C18:3) 2.5-fold in PCR7 and 1.4-fold in JD6], suggesting rerouting of carbon flux from EA biosynthesis. Importantly, these LEA lines retained key agronomic traits like plant seed yield and oil content, matching the productivity of the unedited control elite cultivars. Our findings underscore the effectiveness of CRISPR/Cas9 technology for editing B. juncea genome, developing plant lines producing LEA seed oil with improved nutritional quality and broadening the utility of this important oilseed crop for food and non-food applications.
Collapse
Affiliation(s)
- Neelesh Patra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Guy C Barker
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mrinal K Maiti
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
3
|
Jaiswal YS, Williams LL. The Rising Incidence of Food Allergies and Infant Food Allergies. Annu Rev Food Sci Technol 2025; 16:269-287. [PMID: 39971351 DOI: 10.1146/annurev-food-111523-121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Infant food allergies have become a continually rising global health issue. There is a lack of global standardized recommendations on measures for prevention and treatment of infant food allergies because of the variations in ethnic, social, educational, and healthcare practices that affect the outcomes of research studies. Food allergies can cause mild to severe reactions and can affect social and emotional aspects of life up to the adolescent stage and are sometimes never outgrown. Maternal factors such as in utero supply of antibodies, dietary diversity, genetics, food allergen consumption during pregnancy, gut microbiota, and breastfeeding characteristics are the cornerstones of the development of an infant's immune system. In this review, we discuss how prenatal and postnatal factors affect the gut microbiota and development of an infant's immune system, and the current therapies available. The importance of food processing and education of stakeholders in the care of infants with food allergies is also discussed.
Collapse
Affiliation(s)
- Yogini S Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, North Carolina, USA; ,
| | - Leonard L Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, North Carolina, USA; ,
| |
Collapse
|
4
|
Jawanda SK, Ramaswamy HS. Yellow Mustard Protein a Immunoreactivity Reduction Through Seed Germination, Lactic Acid Fermentation, and Cooking. Foods 2024; 13:3498. [PMID: 39517281 PMCID: PMC11545414 DOI: 10.3390/foods13213498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Food allergens are becoming increasingly threatening and are disrupting the health and social structure of a significantly large population worldwide. Proteins from mustard are among the well-recognized food allergens which affect many sensitive individuals. Many processing methods are continually being explored to reduce allergen immunoreactivity and for developing hypoallergenic foods. Cooking, germination, and fermentation have been evaluated to attenuate the immunoreactivity of food allergens. The objective of this study is to evaluate the effect of seed germination, lactic acid fermentation, and/or cooking on yellow mustard seed protein immunoreactivity (IR) (protein A) using ELISA techniques. Samples from five-day germination at 35-40 °C and three-day fermentation between 25 °C and 35 °C were evaluated. The germination and fermentation processes yielded varying reductions in the IRs of mustard proteins, with a combined yield of about 90% reduction. When complemented with further stovetop cooking, protein IR reduction was extended up to 98%, while cooking alone resulted only in about a 70% reduction. FTIR results confirmed that changes in mustard protein conformation maybe due to the unfolding and/or denaturation of mustard proteins. These processing methods are beneficial as they not only help reduce the native mustard protein IR, but also increased inherent antioxidant activities in germinated and fermented mustard seeds.
Collapse
Affiliation(s)
| | - Hosahalli S. Ramaswamy
- Department of Food Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste Anne de Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
5
|
Wang M, Schedel M, Gelfand EW. Gene editing in allergic diseases: Identification of novel pathways and impact of deleting allergen genes. J Allergy Clin Immunol 2024; 154:51-58. [PMID: 38555980 PMCID: PMC11227406 DOI: 10.1016/j.jaci.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Gene editing technology has emerged as a powerful tool in all aspects of health research and continues to advance our understanding of critical and essential elements in disease pathophysiology. The clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology has been used with precision to generate gene knockouts, alter genes, and identify genes that cause disease. The full spectrum of allergic/atopic diseases, in part because of shared pathophysiology, is ripe for studies with this technology. In this way, novel culprit genes are being identified and allow for manipulation of triggering allergens to reduce allergenicity and disease. Notwithstanding current limitations on precision and potential off-target effects, newer approaches are rapidly being introduced to more fully understand specific gene functions as well as the consequences of genetic manipulation. In this review, we examine the impact of editing technologies of novel genes relevant to peanut allergy and asthma as well as how gene modification of common allergens may lead to the deletion of allergenic proteins.
Collapse
Affiliation(s)
- Meiqin Wang
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo
| | - Michaela Schedel
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo; Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany; Department of Pulmonary Medicine, University Hospital, Essen, Germany
| | - Erwin W Gelfand
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo.
| |
Collapse
|
6
|
Rauf S, Fatima S, Ortiz R. Modification of Fatty Acid Profile and Oil Contents Using Gene Editing in Oilseed Crops for a Changing Climate. GM CROPS & FOOD 2023; 14:1-12. [PMID: 37551783 PMCID: PMC10761075 DOI: 10.1080/21645698.2023.2243041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Mutation breeding based on various chemical and physical mutagens induces and disrupts non-target loci. Hence, large populations were required for visual screening, but desired plants were rare and it was a further laborious task to identify desirable mutants. Generated mutant had high defect due to non-targeted mutation, with poor agronomic performance. Mutation techniques were augmented by targeted induced local lesions in genome (TILLING) facilitating the selection of desirable germplasm. On the other hand, gene editing through CRISPR/Cas9 allows knocking down genes for site-directed mutation. This handy technique has been exploited for the modification of fatty acid profile. High oleic acid genetic stocks were obtained in a broad range of crops. Moreover, genes involved in the accumulation of undesirable seed components such as starch, polysaccharide, and flavors were knocked down to enhance seed quality, which helps to improve oil contents and reduces the anti-nutritional component.
Collapse
Affiliation(s)
- Saeed Rauf
- Department of Plant Breeding & Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Seerat Fatima
- Department of Plant Breeding & Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
7
|
Lokya V, Parmar S, Pandey AK, Sudini HK, Huai D, Ozias-Akins P, Foyer CH, Nwosu CV, Karpinska B, Baker A, Xu P, Liao B, Mir RR, Chen X, Guo B, Nguyen HT, Kumar R, Bera SK, Singam P, Kumar A, Varshney RK, Pandey MK. Prospects for developing allergen-depleted food crops. THE PLANT GENOME 2023; 16:e20375. [PMID: 37641460 DOI: 10.1002/tpg2.20375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
In addition to the challenge of meeting global demand for food production, there are increasing concerns about food safety and the need to protect consumer health from the negative effects of foodborne allergies. Certain bio-molecules (usually proteins) present in food can act as allergens that trigger unusual immunological reactions, with potentially life-threatening consequences. The relentless working lifestyles of the modern era often incorporate poor eating habits that include readymade prepackaged and processed foods, which contain additives such as peanuts, tree nuts, wheat, and soy-based products, rather than traditional home cooking. Of the predominant allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk), peanuts (Arachis hypogaea) are the best characterized source of allergens, followed by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinensis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The prevalence of food allergies has risen significantly in recent years including chance of accidental exposure to such foods. In contrast, the standards of detection, diagnosis, and cure have not kept pace and unfortunately are often suboptimal. In this review, we mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat, soybean, and kidney bean, highlighting their physiological properties and functions as well as considering research directions for tailoring allergen gene expression. In particular, we discuss how recent advances in molecular breeding, genetic engineering, and genome editing can be used to develop potential low allergen food crops that protect consumer health.
Collapse
Affiliation(s)
- Vadthya Lokya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Arun K Pandey
- College of Life Science of China Jiliang University (CJLU), Hangzhou, China
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Peggy Ozias-Akins
- Horticulture Department, The University of Georgia Tifton Campus, Tifton, GA, USA
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | | | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Pei Xu
- College of Life Science of China Jiliang University (CJLU), Hangzhou, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory for Crops Genetic Improvement, Crops Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Baozhu Guo
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
| | - Rakesh Kumar
- Department of Life Sciences, Central University of Karnataka, Gulbarga, India
| | | | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Anirudh Kumar
- Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
8
|
Banerjee S, Mukherjee A, Kundu A. The current scenario and future perspectives of transgenic oilseed mustard by CRISPR-Cas9. Mol Biol Rep 2023; 50:7705-7728. [PMID: 37432544 DOI: 10.1007/s11033-023-08660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Production of a designer crop having added attributes is the primary goal of all plant biotechnologists. Specifically, development of a crop with a simple biotechnological approach and at a rapid pace is most desirable. Genetic engineering enables us to displace genes among species. The newly incorporated foreign gene(s) in the host genome can create a new trait(s) by regulating the genotypes and/or phenotypes. The advent of the CRISPR-Cas9 tools has enabled the modification of a plant genome easily by introducing mutation or replacing genomic fragment. Oilseed mustard varieties (e.g., Brassica juncea, Brassica nigra, Brassica napus, and Brassica carinata) are one such plants, which have been transformed with different genes isolated from the wide range of species. Current reports proved that the yield and value of oilseed mustard has been tremendously improved by the introduction of stably inherited new traits such as insect and herbicide resistance. However, the genetic transformation of oilseed mustard remains incompetent due to lack of potential plant transformation systems. To solve numerous complications involved in genetically modified oilseed mustard crop varieties regeneration procedures, scientific research is being conducted to rectify the unwanted complications. Thus, this study provides a broader overview of the present status of new traits introduced in each mentioned varieties of oilseed mustard plant by different genetical engineering tools, especially CRISPR-Cas9, which will be useful to improve the transformation system of oilseed mustard crop plants. METHODS This review presents recent improvements made in oilseed mustard genetic engineering methodologies by using CRISPR-Cas9 tools, present status of new traits introduced in oilseed mustard plant varieties. RESULTS The review highlighted that the transgenic oilseed mustard production is a challenging process and the transgenic varieties of oilseed mustard provide a powerful tool for enhanced mustard yield. Over expression studies and silencing of desired genes provide functional importance of genes involved in mustard growth and development under different biotic and abiotic stress conditions. Thus, it can be expected that in near future CRISPR can contribute enormously in improving the mustard plant's architecture and develop stress resilient oilseed mustard plant species.
Collapse
Affiliation(s)
- Sangeeta Banerjee
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Ananya Mukherjee
- Division of Plant Biology, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
9
|
Qureshi A, Connolly JB. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Malar J 2023; 22:234. [PMID: 37580703 PMCID: PMC10426224 DOI: 10.1186/s12936-023-04665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | - John B Connolly
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK.
| |
Collapse
|
10
|
Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, Zhou W, Rahman MU, Gill RA. Targeted genome editing in polyploids: lessons from Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1152468. [PMID: 37409308 PMCID: PMC10318174 DOI: 10.3389/fpls.2023.1152468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.
Collapse
Affiliation(s)
- Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qamar U. Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rana Muhammad Atif
- National Center of Genome Editing, Center of Advanced Studies, Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Weijun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Spectroscopy Sensing, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehboob-ur Rahman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Rafaqat Ali Gill
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
11
|
Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. PLANTA 2023; 257:78. [PMID: 36913066 DOI: 10.1007/s00425-023-04110-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of CRISPR-Cas gene editing with robust nuclease activity promotes genetic modification of desirable agronomic traits, such as resistance to pathogens, drought tolerance, nutritional value, and yield-related traits in crops. The genetic diversity of food crops has reduced tremendously over the past twelve millennia due to plant domestication. This reduction presents significant challenges for the future especially considering the risks posed by global climate change to food production. While crops with improved phenotypes have been generated through crossbreeding, mutation breeding, and transgenic breeding over the years, improving phenotypic traits through precise genetic diversification has been challenging. The challenges are broadly associated with the randomness of genetic recombination and conventional mutagenesis. This review highlights how emerging gene-editing technologies reduce the burden and time necessary for developing desired traits in plants. Our focus is to provide readers with an overview of the advances in CRISPR-Cas-based genome editing for crop improvement. The use of CRISPR-Cas systems in generating genetic diversity to enhance the quality and nutritional value of staple food crops is discussed. We also outlined recent applications of CRISPR-Cas in developing pest-resistant crops and removing unwanted traits, such as allergenicity from crops. Genome editing tools continue to evolve and present unprecedented opportunities to enhance crop germplasm via precise mutations at the desired loci of the plant genome.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA.
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
12
|
AHMAD M. Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security. FRONTIERS IN PLANT SCIENCE 2023; 14:1133036. [PMID: 36993865 PMCID: PMC10040607 DOI: 10.3389/fpls.2023.1133036] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Genome editing techniques are being used to modify plant breeding, which might increase food production sustainably by 2050. A product made feasible by genome editing is becoming better known, because of looser regulation and widespread acceptance. The world's population and food supply would never have increased proportionally under current farming practices. The development of plants and food production has been greatly impacted by global warming and climate change. Therefore, minimizing these effects is crucial for agricultural production that is sustainable. Crops are becoming more resilient to abiotic stress because of sophisticated agricultural practices and a better understanding of the abiotic stress response mechanism. Both conventional and molecular breeding techniques have been used to create viable crop types both processes are time-consuming. Recently, plant breeders have shown an interest in genome editing approaches for genetic manipulation that use clustered regularly interspaced short palindromic repeats (CRISPR/Cas9). To ensure the security of the food supply in the future, plant kinds with desired traits must be developed. A completely new era in plant breeding has begun because of the revolution in genome editing techniques based on the CRISPR/CRISPR-associated nuclease (Cas9) systems. All plants may effectively target a particular gene or group of loci using Cas9 and single-guide RNA (sgRNA). CRISPR/Cas9 can thereby save time and labor compared to conventional breeding methods. An easy, quick, and efficient method for directly altering the genetic sequences in cells is with the CRISPR and Cas9 systems. The CRISPR-Cas9 system, which was developed from components of the earliest known bacterial immune system, allows for targeted gene breakage and gene editing in a variety of cells/RNA sequences to guide endonuclease cleavage specificity in the CRISPR-Cas9 system. Editing can be directed to practically any genomic site by altering the guide RNA (gRNA) sequence and delivering it to a target cell along with the Cas9 endonuclease. We summarize recent CRISPR/Cas9 plant research findings, investigate potential applications in plant breeding, and make predictions about likely future breakthroughs and approaches to food security through 2050.
Collapse
Affiliation(s)
- M. AHMAD
- Department of Plant Sciences, University of Nebraska, Lincoln, NE, United States
- Department of Genetics and Plant Breeding, Sheri-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, India
| |
Collapse
|
13
|
Hoffie RE, Perovic D, Habekuß A, Ordon F, Kumlehn J. Novel resistance to the Bymovirus BaMMV established by targeted mutagenesis of the PDIL5-1 susceptibility gene in barley. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:331-341. [PMID: 36221782 PMCID: PMC9884012 DOI: 10.1111/pbi.13948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The Potyviridae are the largest family of plant-pathogenic viruses. Members of this family are the soil-borne bymoviruses barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV), which, upon infection of young winter barley seedlings in autumn, can cause yield losses as high as 50%. Resistance breeding plays a major role in coping with these pathogens. However, some viral strains have overcome the most widely used resistance. Thus, there is a need for novel sources of resistance. In ancient landraces and wild relatives of cultivated barley, alleles of the susceptibility factor PROTEIN DISULFIDE ISOMERASE LIKE 5-1 (PDIL5-1) were identified to confer resistance to all known strains of BaYMV and BaMMV. Although the gene is highly conserved throughout all eukaryotes, barley is thus far the only species for which PDIL5-1-based virus resistance has been reported. Whereas introgression by crossing to the European winter barley breeding pool is tedious, time-consuming and additionally associated with unwanted linkage drag, the present study exemplifies an approach to targeted mutagenesis of two barley cultivars employing CRISPR-associated endonuclease technology to induce site-directed mutations similar to those described for PDIL5-1 alleles that render certain landraces resistant. Homozygous primary mutants were produced in winter barley, and transgene-free homozygous M2 mutants were produced in spring barley. A variety of mutants carrying novel PDIL5-1 alleles were mechanically inoculated with BaMMV, by which all frameshift mutations and certain in-frame mutations were demonstrated to confer resistance to this virus. Under greenhouse conditions, virus-resistant mutants showed no adverse effects in terms of growth and yield.
Collapse
Affiliation(s)
- Robert Eric Hoffie
- Plant Reproductive BiologyLeibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Dragan Perovic
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Antje Habekuß
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Frank Ordon
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Jochen Kumlehn
- Plant Reproductive BiologyLeibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| |
Collapse
|
14
|
Jia Z, Zhang B, Sharma A, Kim NS, Purohit SM, Green MM, Roche MR, Holliday E, Chen H. Revelation of the sciences of traditional foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Van Vu T, Das S, Hensel G, Kim JY. Genome editing and beyond: what does it mean for the future of plant breeding? PLANTA 2022; 255:130. [PMID: 35587292 PMCID: PMC9120101 DOI: 10.1007/s00425-022-03906-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
16
|
Shin J, Miller M, Wang YC. Recent advances in CRISPR-based systems for the detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2022; 21:3010-3029. [PMID: 35483732 DOI: 10.1111/1541-4337.12956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
There has long been a need for more advanced forms of pathogen detection in the food industry. Though in its infancy, biosensing based on clustered regularly interspaced short palindromic repeats (CRISPR) has the potential to solve many problems that cannot be addressed using conventional methods. In this review, we briefly introduce and classify the various CRISPR/Cas protein effectors that have thus far been used in biosensors. We then assess the current state of CRISPR technology in food-safety contexts; describe how each Cas effector is utilized in foodborne-pathogen detection; and discuss the limitations of the current technology, as well as how it might usefully be applied in other areas of the food industry. We conclude that, if the limitations of existing CRISPR/Cas-based detection methods are overcome, they can be deployed on a wide scale and produce a range of positive food-safety outcomes.
Collapse
Affiliation(s)
- Jiyong Shin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Lai Z, Huang Z, Sun J, Jing X, Xiang L, Zhao H, Mo C, Hou X. CRISPR/Cas基因组编辑技术及其在农作物品种改良中的应用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|