1
|
Chen Q, Wang M, Gao L, Lou Q, Gan Y, Li X, Li Y, Xin T, Xu W, Song J. A pivotal switch in β-domain determines the substrate selectivity of terpene synthases involved in Gardenia jasminoides floral scent synthesis. Int J Biol Macromol 2025; 288:138333. [PMID: 39653212 DOI: 10.1016/j.ijbiomac.2024.138333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Plants have evolved a diverse array of secondary metabolites to enhance their adaptability to environmental stresses, with volatile terpenoids being a notable example. Gardenia (Gardenia jasminoides), celebrated for its unique fragrance, is a key natural source of volatile terpenoids. Using our chromosome-level genome and transcriptome data of G. jasminoides, we previously identified six terpene synthases (TPSs) involved in the production of its floral scent. Here, we functionally characterized these six key TPS enzymes, aligning their product profiles with volatile organic compound (VOC) analysis. Notably, we identified two highly similar TPSs, GjTPS1 and GjTPS2, which share high sequence homology but differ in substrate selectivity. Through AI-based predictions and site-directed mutagenesis, we pinpointed a single amino acid in the β-domain that acts as a "switch," modulating substrate selectivity-an unusual finding, as this residue is outside the active site region. Comparative genomic analyses with Coffea canephora and other eudicots revealed that G. jasminoides TPS genes primarily expanded through dispersed duplications (DSD) and tandem duplications (TD). Our study is the first to reveal a "switch" in a previously deemed "non-functional" region, regulating substrate selectivity in TPS proteins. These insights could facilitate breeding elite Gardenia varieties and support the rational engineering of terpene synthases.
Collapse
Affiliation(s)
- Qizhen Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Menglan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Longlong Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Qian Lou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yutong Gan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinyao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yanfei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjie Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China; Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
2
|
Zhao W, Liu J, Chen Y. Advances in the biosynthesis of naturally occurring benzylisoquinoline alkaloids. FRONTIERS IN PLANT SCIENCE 2025; 16:1548471. [PMID: 39949415 PMCID: PMC11821938 DOI: 10.3389/fpls.2025.1548471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a prominent class of plant metabolites with significant pharmaceutical and industrial significance that have garnered substantial attention from researchers worldwide. BIAs exhibit several pharmacological activities and have been used extensively. Examples include analgesics such as morphine, tetrahydropalmatine, antimicrobials such as berberine, and antineoplastic agents including cepharanthine. Most BIAs are derived and isolated from medicinal plants; however, these plants are predominantly wild resources that are scarce. Their high environmental impact, slow growth rate, scarcity of resources, and expensive direct extraction costs pose a significant challenge. Certain BIAs are present in trace amounts in medicinal plants; moreover, they have complex chemical structures and unstable properties. Designing chemical synthesis routes and processes is challenging. Thus, a major obstacle in developing and utilizing these natural products in the pharmaceutical industry lies in their low abundance in nature. Consequently, the limited supply of these molecules fails to meet high research and market demands. In recent years, biosynthesis approaches have emerged as a novel and efficient method to obtain BIAs. In this review, recent progress in the field of enzymes related to the elucidation of biosynthetic pathways and the biosynthesis of BIAs are discussed, and future perspectives for designing viable strategies for their targeted manipulation are presented.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jihua Liu
- Jiangsu Key Laboratory of Traditional Chinese Medicine. (TCM) Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
3
|
Xu Z, Tian Y, Wang J, Ma Y, Li Q, Zhou Y, Zhang W, Liu T, Kong L, Wang Y, Xie Z, An Z, Zheng B, Zhang Y, Cao C, Liu C, Tian L, Fan C, Liu J, Yao H, Song J, Duan B, Liu H, Gao R, Sun W, Chen S. Convergent evolution of berberine biosynthesis. SCIENCE ADVANCES 2024; 10:eads3596. [PMID: 39612339 PMCID: PMC11606445 DOI: 10.1126/sciadv.ads3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Berberine is an effective antimicrobial and antidiabetic alkaloid, primarily extracted from divergent botanical lineages, specifically Coptis (Ranunculales, early-diverging eudicot) and Phellodendron (Sapindales, core eudicot). In comparison with its known pathway in Coptis species, its biosynthesis in Phellodendron species remains elusive. Using chromosome-level genome assembly, coexpression matrix, and biochemical assays, we identified six key steps in berberine biosynthesis from Phellodendron amurense, including methylation, hydroxylation, and berberine bridge formation. Notably, we discovered a specific class of O-methyltransferases (NOMT) responsible for N-methylation. Structural analysis and mutagenesis of PaNOMT9 revealed its unique substrate-binding conformation. In addition, unlike the classical FAD-dependent berberine bridge formation in Ranunculales, Phellodendron uses a NAD(P)H-dependent monooxygenase (PaCYP71BG29) for berberine bridge formation, originating from the neofunctionalization of tryptamine 5-hydroxylase. Together, these findings reveal the convergence of berberine biosynthesis between Coptis and Phellodendron and signify the role of the convergent evolution in plant specialized metabolisms.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuanze Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wanran Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yifan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Baojiang Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhong Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chang Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chengwei Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jiushi Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Haitao Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Tian Y, Kong L, Li Q, Wang Y, Wang Y, An Z, Ma Y, Tian L, Duan B, Sun W, Gao R, Chen S, Xu Z. Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids. Nat Prod Rep 2024; 41:1787-1810. [PMID: 39360417 DOI: 10.1039/d4np00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Covering: up to June 2024Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites derived from L-tyrosine, exhibiting significant pharmacological properties such as anti-microbial, anti-spasmodic, anti-cancer, cardiovascular protection, and analgesic effects. The industrial production of valuable BIAs relies on extraction from plants; however, challenges concerning their low concentration and efficiency hinder drug development. Hence, alternative approaches, including biosynthesis and chemoenzymatic synthesis, have been explored. Model species like Papaver somniferum and Coptis japonica have played a key role in unraveling the biosynthetic pathways of BIAs; however, many aspects, particularly modified steps like oxidation and methylation, remain unclear. Critical enzymes, e.g., CYP450s and methyltransferases, play a substantial role in BIA backbone formation and modification, which is essential for understanding the origin and adaptive evolution of these plant specialized metabolites. This review comprehensively analyzes the structural diversity of reported BIAs and their distribution in plant lineages. In addition, the progress in understanding biosynthesis, evolution, and catalytic mechanisms underlying BIA biosynthesis is summarized. Finally, we discuss the progress and challenges in metabolic engineering, providing valuable insights into BIA drug development and the sustainable utilization of BIA-producing plants.
Collapse
Affiliation(s)
- Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yifan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yongmiao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
5
|
Wang XX, Huang CH, Morales-Briones DF, Wang XY, Hu Y, Zhang N, Zhao PG, Wei XM, Wei KH, Hemu X, Tan NH, Wang QF, Chen LY. Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis. Nat Commun 2024; 15:9663. [PMID: 39511218 PMCID: PMC11543798 DOI: 10.1038/s41467-024-53943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Asparagales, the largest monocot order, is renowned for its ecological, economic, and medicinal significance. Here, we leverage transcriptome data from 455 Asparagales species to explore the phylogeny of Asparagales. Moreover, we investigate the evolutionary patterns of the genes involved in allium flavor formation. We not only establish a robust bifurcating phylogeny of Asparagales but also explore their reticulate relationships. Notably, we find that eight genes involved in the biosynthesis of allium flavor compounds underwent expansion in Allium species. Furthermore, we observe Allium-specific mutations in one amino acid within alliinase and three within lachrymatory factor synthase. Overall, our findings highlight the role of gene expansion, increased expression, and amino acid mutations in driving the evolution of Allium-specific compounds. These insights not only deepen our understanding of the phylogeny of Asparagales but also illuminate the genetic mechanisms underpinning specialized compounds.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China
| | - Chien-Hsun Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010021, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Diego F Morales-Briones
- Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, 80638, Munich, Germany
| | - Xiang-Yu Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Ying Hu
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China
| | - Na Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Pu-Guang Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiao-Mei Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China
| | - Kun-Hua Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, School of Chinese Materia Medica, Guangdong Pharmaceutical University, 510006, Guangzhou, China.
| | - Xinya Hemu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Ning-Hua Tan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, 430074, Wuhan, China.
| | - Ling-Yun Chen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| |
Collapse
|
6
|
Wei Y, Wen H, Yang L, Zhang B, Li X, Li S, Dong J, Liang Z, Zhang Y. Hypecotumines A-D, new isoquinoline alkaloids with potential PCSK9 inhibition activity from Hypecoum erectum L. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:57. [PMID: 39404968 PMCID: PMC11480295 DOI: 10.1007/s13659-024-00479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Four new isoquinoline alkaloids, hypecotumines A-D (1-4), were isolated and identified from the whole herbs of Hypecoum erectum L. Their structures were determined by a combination of HRESIMS, NMR, and X-ray diffraction analysis methods. Compounds 1-4 were characterized by a terminal double bond at C-9 and their plausible biosynthetic pathway was hypothesized. Since PCSK9 plays a key role in the development of cardiovascular disease (CVD), exploration of PCSK inhibitors from natural products are beneficial for drug discovery of CVD treatment. SPR and Western blot assays showed compound 4 had PCSK9 inhibition activity with KD value of 59.9 µM and thus elevated the LDLR level. Further molecular docking studies demonstrated that 4 and PCSK9 could form stable interactions via key hydrogen bonds.
Collapse
Affiliation(s)
- Yinling Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bodou Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhenzhen Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
7
|
Kielich N, Mazur O, Musidlak O, Gracz-Bernaciak J, Nawrot R. Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. Brief Funct Genomics 2024; 23:579-594. [PMID: 37952099 PMCID: PMC11812042 DOI: 10.1093/bfgp/elad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.
Collapse
Affiliation(s)
- Natalia Kielich
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Gracz-Bernaciak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
8
|
Gao S, Jia Y, Guo H, Xu T, Wang B, Bush SJ, Wan S, Zhang Y, Yang X, Ye K. The centromere landscapes of four karyotypically diverse Papaver species provide insights into chromosome evolution and speciation. CELL GENOMICS 2024; 4:100626. [PMID: 39084227 PMCID: PMC11406182 DOI: 10.1016/j.xgen.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Understanding the roles played by centromeres in chromosome evolution and speciation is complicated by the fact that centromeres comprise large arrays of tandemly repeated satellite DNA, which hinders high-quality assembly. Here, we used long-read sequencing to generate nearly complete genome assemblies for four karyotypically diverse Papaver species, P. setigerum (2n = 44), P. somniferum (2n = 22), P. rhoeas (2n = 14), and P. bracteatum (2n = 14), collectively representing 45 gapless centromeres. We identified four centromere satellite (cenSat) families and experimentally validated two representatives. For the two allopolyploid genomes (P. somniferum and P. setigerum), we characterized the subgenomic distribution of each satellite and identified a "homogenizing" phase of centromere evolution in the aftermath of hybridization. An interspecies comparison of the peri-centromeric regions further revealed extensive centromere-mediated chromosome rearrangements. Taking these results together, we propose a model for studying cenSat competition after hybridization and shed further light on the complex role of the centromere in speciation.
Collapse
Affiliation(s)
- Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tun Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shijie Wan
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yimeng Zhang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Center for Mathematical Medical, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Genome Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Faculty of Science, Leiden University, Leiden 2311EZ, the Netherlands.
| |
Collapse
|
9
|
Pokorny L, Pellicer J, Woudstra Y, Christenhusz MJM, Garnatje T, Palazzesi L, Johnson MG, Maurin O, Françoso E, Roy S, Leitch IJ, Forest F, Baker WJ, Hidalgo O. Genomic incongruence accompanies the evolution of flower symmetry in Eudicots: a case study in the poppy family (Papaveraceae, Ranunculales). FRONTIERS IN PLANT SCIENCE 2024; 15:1340056. [PMID: 38947944 PMCID: PMC11212465 DOI: 10.3389/fpls.2024.1340056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
Abstract
Reconstructing evolutionary trajectories and transitions that have shaped floral diversity relies heavily on the phylogenetic framework on which traits are modelled. In this study, we focus on the angiosperm order Ranunculales, sister to all other eudicots, to unravel higher-level relationships, especially those tied to evolutionary transitions in flower symmetry within the family Papaveraceae. This family presents an astonishing array of floral diversity, with actinomorphic, disymmetric (two perpendicular symmetry axes), and zygomorphic flowers. We generated nuclear and plastid datasets using the Angiosperms353 universal probe set for target capture sequencing (of 353 single-copy nuclear ortholog genes), together with publicly available transcriptome and plastome data mined from open-access online repositories. We relied on the fossil record of the order Ranunculales to date our phylogenies and to establish a timeline of events. Our phylogenomic workflow shows that nuclear-plastid incongruence accompanies topological uncertainties in Ranunculales. A cocktail of incomplete lineage sorting, post-hybridization introgression, and extinction following rapid speciation most likely explain the observed knots in the topology. These knots coincide with major floral symmetry transitions and thus obscure the order of evolutionary events.
Collapse
Affiliation(s)
- Lisa Pokorny
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| | - Yannick Woudstra
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maarten J. M. Christenhusz
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
- Jardí Botànic Marimurtra, Fundació Carl Faust, Blanes, Spain
| | - Luis Palazzesi
- División Paleobotánica, Museo Argentino de Ciencias Naturales, CONICET, Buenos Aires, Argentina
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | | | | | - Shyamali Roy
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| |
Collapse
|
10
|
Singh D, Mittal N, Mittal P, Siddiqui MH. Transcriptome sequencing of medical herb Salvia Rosmarinus (Rosemary) revealed the phenylpropanoid biosynthesis pathway genes and their phylogenetic relationships. Mol Biol Rep 2024; 51:757. [PMID: 38874856 DOI: 10.1007/s11033-024-09685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
11
|
Wu X, Ibrahim N, Liang Y, Liu X. Screening and Genomic Analysis of Alkaloid-Producing Endophytic Fungus Fusarium solani Strain MC503 from Macleaya cordata. Microorganisms 2024; 12:1088. [PMID: 38930470 PMCID: PMC11206080 DOI: 10.3390/microorganisms12061088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The extensive harvesting of Macleaya cordata, as a biomedicinal plant and a wild source of quaternary benzo[c]phenanthridine alkaloids, has led to a rapid decline in its population. An alternative approach to the production of these bioactive compounds, which are known for their diverse pharmacological effects, is needed. Production of these compounds using alkaloid-producing endophytic fungi is a promising potential approach. In this research, we isolated an alkaloid-producing endophytic fungus, strain MC503, from the roots of Macleaya cordata. Genomic analysis was conducted to elucidate its metabolic pathways and identify the potential genes responsible for alkaloid biosynthesis. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses revealed the presence and quantified the content of sanguinarine (536.87 μg/L) and chelerythrine (393.31 μg/L) in the fungal fermentation extract. Based on our analysis of the morphological and micromorphological characteristics and the ITS region of the nuclear ribosomal DNA of the alkaloid-producing endophyte, it was identified as Fusarium solani strain MC503. To the best of our knowledge, there is no existing report on Fusarium solani from Macleaya cordata or other medicinal plants that produce sanguinarine and chelerythrine simultaneously. These findings provide valuable insights into the capability of Fusarium solani to carry out isoquinoline alkaloid biosynthesis and lay the foundation for further exploration of its potential applications in pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Yili Liang
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (N.I.)
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (N.I.)
| |
Collapse
|
12
|
Wu Q, Mao S, Huang H, Liu J, Chen X, Hou L, Tian Y, Zhang J, Wang J, Wang Y, Huang K. Chromosome-scale reference genome of broccoli ( Brassica oleracea var. italica Plenck) provides insights into glucosinolate biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae063. [PMID: 38720933 PMCID: PMC11077082 DOI: 10.1093/hr/uhae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/19/2024] [Indexed: 05/12/2024]
Abstract
Broccoli (Brassica oleracea var. italica Plenck) is an important vegetable crop, as it is rich in health-beneficial glucosinolates (GSLs). However, the genetic basis of the GSL diversity in Brassicaceae remains unclear. Here we report a chromosome-level genome assembly of broccoli generated using PacBio HiFi reads and Hi-C technology. The final genome assembly is 613.79 Mb in size, with a contig N50 of 14.70 Mb. The GSL profile and content analysis of different B. oleracea varieties, combined with a phylogenetic tree analysis, sequence alignment, and the construction of a 3D model of the methylthioalkylmalate synthase 1 (MAM1) protein, revealed that the gene copy number and amino acid sequence variation both contributed to the diversity of GSL biosynthesis in B. oleracea. The overexpression of BoMAM1 (BolI0108790) in broccoli resulted in high accumulation and a high ratio of C4-GSLs, demonstrating that BoMAM1 is the key enzyme in C4-GSL biosynthesis. These results provide valuable insights for future genetic studies and nutritive component applications of Brassica crops.
Collapse
Affiliation(s)
- Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Huiping Huang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Juan Liu
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Xuan Chen
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Linghui Hou
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Yuxiao Tian
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Jiahui Zhang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Disease and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Disease and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| |
Collapse
|
13
|
An Z, Gao R, Chen S, Tian Y, Li Q, Tian L, Zhang W, Kong L, Zheng B, Hao L, Xin T, Yao H, Wang Y, Song W, Hua X, Liu C, Song J, Fan H, Sun W, Chen S, Xu Z. Lineage-Specific CYP80 Expansion and Benzylisoquinoline Alkaloid Diversity in Early-Diverging Eudicots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309990. [PMID: 38477432 PMCID: PMC11109638 DOI: 10.1002/advs.202309990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.
Collapse
Affiliation(s)
- Zhoujie An
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Ya Tian
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Qi Li
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lixia Tian
- School of Pharmaceutical SciencesGuizhou UniversityGuiyang550025China
| | - Wanran Zhang
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lingzhe Kong
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Baojiang Zheng
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Wei Song
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Xin Hua
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Chengwei Liu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- Institute of HerbgenomicsChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Zhichao Xu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
14
|
Liu YY, Cao JL, Kan SL, Wang PH, Wang JL, Cao YN, Wang HW, Li JM. Phylogenomic analyses sheds new light on the phylogeny and diversification of Corydalis DC. in Himalaya-Hengduan Mountains and adjacent regions. Mol Phylogenet Evol 2024; 193:108023. [PMID: 38342159 DOI: 10.1016/j.ympev.2024.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
The Himalaya-Hengduan Mountains (HHM), a renowned biodiversity hotspot of the world, harbors the most extensive habitats for alpine plants with extraordinary high levels of endemism. Although the general evolution pattern has been elucidated, the underlying processes driving spectacular radiations in many species-rich groups remain elusive. Corydalis DC. is widely distributed throughout the Northern Hemisphere containing more than 500 species, with high diversity in HHM and adjacent regions. Using 95 plastid genes, 3,258,640 nuclear single nucleotide polymorphisms (SNPs) and eight single-copy nuclear genes (SCNs) generated from genome skimming data, we reconstructed a robust time-calibrated phylogeny of Corydalis comprising more than 100 species that represented all subgenera and most sections. Molecular dating indicated that all main clades of Corydalis began to diverge in the Eocene, with the majority of extant species in HHM emerged from a diversification burst after the middle Miocene. Global pattern of mean divergence times indicated that species distributed in HHM were considerably younger than those in other regions, particularly for the two most species-rich clades (V and VI) of Corydalis. The early divergence and the recent diversification of Corydalis were most likely promoted by the continuous orogenesis and climate change associated with the uplift of the Qinghai-Tibetan Plateau (QTP). Our study demonstrates the effectivity of phylogenomic analyses with genome skimming data on the phylogeny of species-rich taxa, and sheds lights on how the uplift of QTP has triggered the evolutionary radiations of large plant genera in HHM and adjacent regions.
Collapse
Affiliation(s)
- Yan-Yan Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jia-Liang Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Sheng-Long Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; Marine College, Shandong University, Weihai 264209, China
| | - Peng-Hang Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Jun-Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Ya-Nan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong-Wei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jia-Mei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
15
|
The RanOmics group, Becker A, Bachelier JB, Carrive L, Conde e Silva N, Damerval C, Del Rio C, Deveaux Y, Di Stilio VS, Gong Y, Jabbour F, Kramer EM, Nadot S, Pabón-Mora N, Wang W. A cornucopia of diversity-Ranunculales as a model lineage. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1800-1822. [PMID: 38109712 PMCID: PMC10967251 DOI: 10.1093/jxb/erad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.
Collapse
Affiliation(s)
| | - Annette Becker
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Giessen, Germany
| | - Julien B Bachelier
- Institute of Biology/Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Laetitia Carrive
- Université de Rennes, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Natalia Conde e Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Cédric Del Rio
- CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - Sorbonne Université - CNRS, 43 Rue Buffon, 75005 Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | | | - Yan Gong
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie, Systématique et Evolution, Gif-sur-Yvette, France
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China and University of Chinese Academy of Sciences, Beijing, 100049China
| |
Collapse
|
16
|
Liu Z, Shen S, Wang Y, Sun S, Yu T, Fu Y, Zhou R, Li C, Cao R, Zhang Y, Li N, Sun L, Song X. The genome of Stephania japonica provides insights into the biosynthesis of cepharanthine. Cell Rep 2024; 43:113832. [PMID: 38381605 DOI: 10.1016/j.celrep.2024.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Stephania japonica is an early-diverging eudicotyledon plant with high levels of cepharanthine, proven to be effective in curing coronavirus infections. Here, we report a high-quality S. japonica genome. The genome size is 688.52 Mb, and 97.37% sequences anchor to 11 chromosomes. The genome comprises 67.46% repetitive sequences and 21,036 genes. It is closely related to two Ranunculaceae species, which diverged from their common ancestor 55.90-71.02 million years ago (Mya) with a whole-genome duplication 85.59-96.75 Mya. We further reconstruct ancestral karyotype of Ranunculales. Several cepharanthine biosynthesis genes are identified and verified by western blot. Two genes (Sja03G0243 and Sja03G0241) exhibit catalytic activity as shown by liquid chromatography-mass spectrometry. Then, cepharanthine biosynthesis genes, transcription factors, and CYP450 family genes are used to construct a comprehensive network. Finally, we construct an early-diverging eudicotyledonous genome resources (EEGR) database. As the first genome of the Menispermaceae family to be released, this study provides rich resources for genomic studies.
Collapse
Affiliation(s)
- Zhuo Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yujie Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuqi Sun
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Tong Yu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rui Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanshu Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Nan Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Liangdan Sun
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Health Science Center, North China University of Science and Technology, Tangshan 063210, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
17
|
Leng L, Xu Z, Hong B, Zhao B, Tian Y, Wang C, Yang L, Zou Z, Li L, Liu K, Peng W, Liu J, An Z, Wang Y, Duan B, Hu Z, Zheng C, Zhang S, Li X, Li M, Liu Z, Bi Z, He T, Liu B, Fan H, Song C, Tong Y, Chen S. Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery. Nat Commun 2024; 15:1537. [PMID: 38378731 PMCID: PMC10879537 DOI: 10.1038/s41467-024-45690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.
Collapse
Affiliation(s)
- Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Ya Tian
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lulu Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Zhoujie An
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yalin Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Sanyin Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaodong Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zenghao Bi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianxing He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baimei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Li C, Liu H, Qin M, Tan YJ, Ou XL, Chen XY, Wei Y, Zhang ZJ, Lei M. RNA editing events and expression profiles of mitochondrial protein-coding genes in the endemic and endangered medicinal plant, Corydalis saxicola. FRONTIERS IN PLANT SCIENCE 2024; 15:1332460. [PMID: 38379941 PMCID: PMC10876856 DOI: 10.3389/fpls.2024.1332460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Corydalis saxicola, an endangered medicinal plant endemic to karst habitats, is widely used in Traditional Chinese Medicine to treat hepatitis, abdominal pain, bleeding hemorrhoids and other conditions. However, to date, the mitochondrial (mt) genome of C. saxicola has not been reported, which limits our understanding of the genetic and biological mechanisms of C. saxicola. Here, the mt genome of C. saxicola was assembled by combining the Nanopore and Illumina reads. The mt genome of C. saxicola is represented by a circular chromosome which is 587,939 bp in length, with an overall GC content of 46.50%. 40 unique protein-coding genes (PCGs), 22 tRNA genes and three rRNA genes were identified. Codon usage of the PCGs was investigated and 167 simple sequence repeats were identified. Twelve homologous fragments were identified between the mt and ct genomes of C. saxicola, accounting for 1.04% of the entire mt genome. Phylogenetic examination of the mt genomes of C. saxicola and 30 other taxa provided an understanding of their evolutionary relationships. We also predicted 779 RNA editing sites in 40 C. saxicola mt PCGs and successfully validated 506 (65%) of these using PCR amplification and Sanger sequencing. In addition, we transcriptionally profiled 24 core mt PCGs in C. saxicola roots treated with different concentrations of CaCl2, as well as in other organs. These investigations will be useful for effective utilization and molecular breeding, and will also provide a reference for further studies of the genus Corydalis.
Collapse
Affiliation(s)
- Cui Li
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Han Liu
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Mei Qin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yao-jing Tan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xia-lian Ou
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiao-ying Chen
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhan-jiang Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
19
|
Mahajan S, Chakraborty A, Bisht MS, Sil T, Sharma VK. Genome sequencing and functional analysis of a multipurpose medicinal herb Tinospora cordifolia (Giloy). Sci Rep 2024; 14:2799. [PMID: 38307917 PMCID: PMC10837142 DOI: 10.1038/s41598-024-53176-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.
Collapse
Affiliation(s)
- Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Manohar S Bisht
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Titas Sil
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
20
|
Xu D, Ye Z, Huang Y, Zhu K, Xu H, Yu J, Feng Y, Zhao X, Wang L, Xu H, Li Q, Qin M, Tang Y, Zhang X, Zhao Y. Haplotype-resolved genome assembly of Corydalis yanhusuo, a traditional Chinese medicine with unusual telomere motif. HORTICULTURE RESEARCH 2024; 11:uhad296. [PMID: 38404592 PMCID: PMC10894459 DOI: 10.1093/hr/uhad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Affiliation(s)
- Dingqiao Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an 712046, China
| | - Ziqi Ye
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yongji Huang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Kejin Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbo Xu
- Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xi’an 712046, China
| | - Jingao Yu
- Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xi’an 712046, China
| | - Yimeng Feng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyue Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Long Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Xu
- School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Qien Li
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College of Qinghai University, Xining 810016,China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuping Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an 712046, China
| | - Xingtan Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Lei W, Zhu H, Cao M, Zhang F, Lai Q, Lu S, Dong W, Sun J, Ru D. From genomics to metabolomics: Deciphering sanguinarine biosynthesis in Dicranostigma leptopodum. Int J Biol Macromol 2024; 257:128727. [PMID: 38092109 DOI: 10.1016/j.ijbiomac.2023.128727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Dicranostigma leptopodum (Maxim) Fedde (DLF) is a renowned medicinal plant in China, known to be rich in alkaloids. However, the unavailability of a reference genome has impeded investigation into its plant metabolism and genetic breeding potential. Here we present a high-quality chromosomal-level genome assembly for DLF, derived using a combination of Nanopore long-read sequencing, Illumina short-read sequencing and Hi-C technologies. Our assembly genome spans a size of 621.81 Mb with an impressive contig N50 of 93.04 Mb. We show that the species-specific whole-genome duplication (WGD) of DLF and Papaver somniferum corresponded to two rounds of WGDs of Papaver setigerum. Furthermore, we integrated comprehensive homology searching, gene family analyses and construction of a gene-to-metabolite network. These efforts led to the discovery of co-expressed transcription factors, including NAC and bZIP, alongside sanguinarine (SAN) pathway genes CYP719 (CFS and SPS). Notably, we identified P6H as a promising gene for enhancing SAN production. By providing the first reference genome for Dicranostigma, our study confirms the genomic underpinning of SAN biosynthesis and establishes a foundation for advancing functional genomic research on Papaveraceae species. Our findings underscore the pivotal role of high-quality genome assemblies in elucidating genetic variations underlying the evolutionary origin of secondary metabolites.
Collapse
Affiliation(s)
- Weixiao Lei
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Man Cao
- Gansu Pharmacovigilance Center, Lanzhou 730070, China
| | - Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qing Lai
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shengming Lu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
22
|
Wang LY, Xia GY, Xia H, Wei XH, Lin S. (±)-Yanhusuomide A, a pair of ornithine-fused benzylisoquinoline enantiomers from Corydalis yanhusuo. Bioorg Chem 2023; 133:106407. [PMID: 36758275 DOI: 10.1016/j.bioorg.2023.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
(±)-Yanhusuomide A (1), a novel enantiomeric pair of ornithine-fused benzylisoquinoline, were characterized from the dried tubers of Corydalis yanhusuo, along with a biogenetically related intermediate oblongine (2). Yanhusuomide A features an unprecedented skeleton based on a benzylisoquinoline coupled with an ornithine derivative to form a rare 5,6-dihydro-4H-pyrido[3,4,5-de]quinazoline motif. Plausible biosynthetic pathway of 1 was proposed, and (±)-yanhusuomide A (1) presented potential inhibitory bioactivity against acetylcholinesterase (AChE) with IC50 = 14.07 ± 2.38 μM. The simulation of molecular docking displayed that 1 generated strong interaction with Asp-74 and Trp-86 residues of AChE through attractive charge of the quaternary nitrogen.
Collapse
Affiliation(s)
- Ling-Yan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao-Hong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
23
|
Becker A, Yamada Y, Sato F. California poppy ( Eschscholzia californica), the Papaveraceae golden girl model organism for evodevo and specialized metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1084358. [PMID: 36938015 PMCID: PMC10017456 DOI: 10.3389/fpls.2023.1084358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
California poppy or golden poppy (Eschscholzia californica) is the iconic state flower of California, with native ranges from Northern California to Southwestern Mexico. It grows well as an ornamental plant in Mediterranean climates, but it might be invasive in many parts of the world. California poppy was also highly prized by Native Americans for its medicinal value, mainly due to its various specialized metabolites, especially benzylisoquinoline alkaloids (BIAs). As a member of the Ranunculales, the sister lineage of core eudicots it occupies an interesting phylogenetic position. California poppy has a short-lived life cycle but can be maintained as a perennial. It has a comparatively simple floral and vegetative morphology. Several genetic resources, including options for genetic manipulation and a draft genome sequence have been established already with many more to come. Efficient cell and tissue culture protocols are established to study secondary metabolite biosynthesis and its regulation. Here, we review the use of California poppy as a model organism for plant genetics, with particular emphasis on the evolution of development and BIA biosynthesis. In the future, California poppy may serve as a model organism to combine two formerly separated lines of research: the regulation of morphogenesis and the regulation of secondary metabolism. This can provide insights into how these two integral aspects of plant biology interact with each other.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Lab, Institute of Botany, Hustus-Liebig-University, Giessen, Germany
| | - Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Science, Kyoto, Japan
- Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
24
|
Zhang W, Zeng Y, Jiao M, Ye C, Li Y, Liu C, Wang J. Integration of high-throughput omics technologies in medicinal plant research: The new era of natural drug discovery. FRONTIERS IN PLANT SCIENCE 2023; 14:1073848. [PMID: 36743502 PMCID: PMC9891177 DOI: 10.3389/fpls.2023.1073848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Medicinal plants are natural sources to unravel novel bioactive compounds to satisfy human pharmacological potentials. The world's demand for herbal medicines is increasing year by year; however, large-scale production of medicinal plants and their derivatives is still limited. The rapid development of modern technology has stimulated multi-omics research in medicinal plants, leading to a series of breakthroughs on key genes, metabolites, enzymes involved in biosynthesis and regulation of active compounds. Here, we summarize the latest research progress on the molecular intricacy of medicinal plants, including the comparison of genomics to demonstrate variation and evolution among species, the application of transcriptomics, proteomics and metabolomics to explore dynamic changes of molecular compounds, and the utilization of potential resources for natural drug discovery. These multi-omics research provide the theoretical basis for environmental adaptation of medicinal plants and allow us to understand the chemical diversity and composition of bioactive compounds. Many medicinal herbs' phytochemical constituents and their potential health benefits are not fully explored. Given their large diversity and global distribution as well as the impacts of growth duration and environmental factors on bioactive phytochemicals in medicinal plants, it is crucial to emphasize the research needs of using multi-omics technologies to address basic and applied problems in medicinal plants to aid in developing new and improved medicinal plant resources and discovering novel medicinal ingredients.
Collapse
Affiliation(s)
- Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| | - Yuan Zeng
- School of Plant and Environmental Sciences, Virginia Tech, VA, Blacksburg, United States
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, VA, Blackstone, United States
| | - Meng Jiao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chanjuan Ye
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanrong Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| |
Collapse
|
25
|
Xia G, Xiao B, Wang L, Xia H, Wu Y, Wang Y, Shang H, Lin S. (+)/(−)-Yanhusuosines A and B, two dimeric benzylisoquinoline-protoberberine alkaloid atropo-enantiomers featuring polycyclic skeletons from Corydalis yanhusuo. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2022.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Chang J, Duong TA, Schoeman C, Ma X, Roodt D, Barker N, Li Z, Van de Peer Y, Mizrachi E. The genome of the king protea, Protea cynaroides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:262-276. [PMID: 36424853 PMCID: PMC10107735 DOI: 10.1111/tpj.16044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 05/07/2023]
Abstract
The king protea (Protea cynaroides), an early-diverging eudicot, is the most iconic species from the Megadiverse Cape Floristic Region, and the national flower of South Africa. Perhaps best known for its iconic flower head, Protea is a key genus for the South African horticulture industry and cut-flower market. Ecologically, the genus and the family Proteaceae are important models for radiation and adaptation, particularly to soils with limited phosphorus bio-availability. Here, we present a high-quality chromosome-scale assembly of the P. cynaroides genome as the first representative of the fynbos biome. We reveal an ancestral whole-genome duplication event that occurred in the Proteaceae around the late Cretaceous that preceded the divergence of all crown groups within the family and its extant diversity in all Southern continents. The relatively stable genome structure of P. cynaroides is invaluable for comparative studies and for unveiling paleopolyploidy in other groups, such as the distantly related sister group Ranunculales. Comparative genomics in sequenced genomes of the Proteales shows loss of key arbuscular mycorrhizal symbiosis genes likely ancestral to the family, and possibly the order. The P. cynaroides genome empowers new research in plant diversification, horticulture and adaptation, particularly to nutrient-poor soils.
Collapse
Affiliation(s)
- Jiyang Chang
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Cassandra Schoeman
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Xiao Ma
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Danielle Roodt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Nigel Barker
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Zhen Li
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
- Department of Biochemistry, Genetics and MicrobiologyCentre for Microbial Ecology and Genomics, University of PretoriaPretoriaSouth Africa
- College of Horticulture, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
27
|
Xu X, Li X, Wang D. New Insights Into the Backbone Phylogeny and Character Evolution of Corydalis (Papaveraceae) Based on Plastome Data. FRONTIERS IN PLANT SCIENCE 2022; 13:926574. [PMID: 35991421 PMCID: PMC9389321 DOI: 10.3389/fpls.2022.926574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 05/27/2023]
Abstract
A robust backbone phylogeny is fundamental for developing a stable classification and is instructive for further research. However, it was still not available for Corydalis DC., a species-rich (> 500 species), ecologically and medically important, but taxonomically notoriously difficult genus. Here, we constructed backbone phylogeny and estimated the divergence of Corydalis based on the plastome data from 39 Corydalis species (32 newly sequenced), which represent ca. 80% of sections and series across this genus. Our phylogenetic analyses recovered six fully supported main clades (I-VI) and provided full support for the majority of lineages within Corydalis. Section Archaeocapnos was unexpectedly turned out to be sister to the rest of the subg. Corydalis s. l. (clades IV-VI), thus treating as a distinct clade (clade III) to render all the main clades monophyletic. Additionally, some unusual plastome structural rearrangements were constantly detected within Corydalis and were proven to be lineage-specific in this study, which, in turn, provided further support to our phylogeny. A segment containing five genes (trnV-UAC-rbcL) in the plastome's LSC region was either normally located downstream of the ndhC gene in clade I species or translocated downstream of the atpH gene in clade II species or translocated to downstream of the trnK-UUU gene in clade III-VI species. The unique large inversion (ca. 50 kb) in the plastome LSC region of clade III species, representing an intermediate stage of the above translocation in clades IV-VI, firmly supported clade III as a distinct and early diverged clade within this large lineage (clades III-VI). Our phylogeny contradicted substantially with the morphology-based taxonomy, rejected the treatment of tuberous species as an independent evolutionary group, and proved that some commonly used diagnostic characters (e.g., root and rhizome) were results of convergent evolution, suggestive of unreliability in Corydalis. We dated the origin of crown Corydalis to the early Eocene (crown age 49.08 Ma) and revealed possible explosive radiation around 25 Ma, coinciding with the drastic uplift of the Qinghai-Tibetan Plateau in Oligocene and Miocene. This study provided the most reliable and robust backbone phylogeny of Corydalis to date and shed some new insights on the evolution of Corydalis.
Collapse
Affiliation(s)
- Xiaodong Xu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xuexiu Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Wuhan, China
- Bio-Resources key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|