1
|
Forman TE, Sajek MP, Larson ED, Mukherjee N, Fantauzzo KA. PDGFRα signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking. eLife 2024; 13:RP98531. [PMID: 39630148 PMCID: PMC11616996 DOI: 10.7554/elife.98531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during mouse skeletal development. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting and widespread alternative RNA splicing (AS) changes. Here, we demonstrated via enhanced UV-crosslinking and immunoprecipitation of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. We found that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.
Collapse
Affiliation(s)
- Thomas E Forman
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Marcin P Sajek
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
- Institute of Human Genetics, Polish Academy of SciencesPoznanPoland
| | - Eric D Larson
- Department of Otolaryngology – Head and Neck Surgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Basic and Translational Sciences, Penn Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Katherine A Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
2
|
Forman TE, Sajek MP, Larson ED, Mukherjee N, Fantauzzo KA. PDGFRα signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587975. [PMID: 38617350 PMCID: PMC11014628 DOI: 10.1101/2024.04.03.587975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development, as mutations in PDGFRA are associated with cleft lip/palate in humans and Pdgfra mutant mouse models display varying degrees of facial clefting. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during skeletal development in the mouse. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting, due to defects in proliferation and survival of cranial neural crest cells, and widespread alternative RNA splicing (AS) changes. Here, we sought to determine the molecular mechanisms by which Srsf3 activity is regulated downstream of PDGFRα signaling to control AS of transcripts necessary for craniofacial development. We demonstrated via enhanced UV-crosslinking and immunoprecipitation (eCLIP) of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. Moreover, we found that the subset of transcripts that are bound by Srsf3 and undergo AS upon PDGFRα signaling commonly encode regulators of PI3K signaling and early endosomal trafficking. Functional validation studies further confirmed that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.
Collapse
Affiliation(s)
- Thomas E. Forman
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marcin P. Sajek
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Eric D. Larson
- Department of Otolaryngology – Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Ahmad S, Xu J, Feng JA, Hutchinson A, Zeng H, Ghiabi P, Dong A, Centrella PA, Clark MA, Guié MA, Guilinger JP, Keefe AD, Zhang Y, Cerruti T, Cuozzo JW, von Rechenberg M, Bolotokova A, Li Y, Loppnau P, Seitova A, Li YY, Santhakumar V, Brown PJ, Ackloo S, Halabelian L. Discovery of a First-in-Class Small-Molecule Ligand for WDR91 Using DNA-Encoded Chemical Library Selection Followed by Machine Learning. J Med Chem 2023; 66:16051-16061. [PMID: 37996079 DOI: 10.1021/acs.jmedchem.3c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 μM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Jin Xu
- Google Research, Mountain View, California 94043, United States
| | - Jianwen A Feng
- Google Research, Mountain View, California 94043, United States
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Paolo A Centrella
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02435, United States
| | - Matthew A Clark
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02435, United States
| | - Marie-Aude Guié
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02435, United States
| | - John P Guilinger
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02435, United States
| | - Anthony D Keefe
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02435, United States
| | - Ying Zhang
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02435, United States
| | - Thomas Cerruti
- Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| | - John W Cuozzo
- Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| | - Moritz von Rechenberg
- Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Yen-Yen Li
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | | | - Peter J Brown
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| |
Collapse
|
4
|
Liu N, Liu K, Yang C. WDR91 specifies the endosomal retrieval subdomain for retromer-dependent recycling. J Cell Biol 2022; 221:213515. [PMID: 36190447 PMCID: PMC9531996 DOI: 10.1083/jcb.202203013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022] Open
Abstract
Retromer-dependent endosomal recycling of membrane receptors requires Rab7, sorting nexin (SNX)-retromer, and factors that regulate endosomal actin organization. It is not fully understood how these factors cooperate to form endosomal subdomains for cargo retrieval and recycling. Here, we report that WDR91, a Rab7 effector, is the key factor that specifies the endosomal retrieval subdomain. Loss of WDR91 causes defective recycling of both intracellular and cell surface receptors. WDR91 interacts with SNXs through their PX domain, and with VPS35, thus promoting their interaction with Rab7. WDR91 also interacts with the WASH subunit FAM21. In WDR91-deficient cells, Rab7, SNX-retromer, and FAM21 fail to localize to endosomal subdomains, and endosomal actin organization is impaired. Re-expression of WDR91 enables Rab7, SNX-retromer, and FAM21 to concentrate at WDR91-specific endosomal subdomains, where retromer-mediated membrane tubulation and release occur. Thus, WDR91 coordinates Rab7 with SNX-retromer and WASH to establish the endosomal retrieval subdomains required for retromer-mediated endosomal recycling.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Kai Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China,Correspondence to Chonglin Yang:
| |
Collapse
|
5
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
6
|
A CRISPR-Cas9 screen reveals a role for WD repeat-containing protein 81 (WDR81) in the entry of late penetrating viruses. PLoS Pathog 2022; 18:e1010398. [PMID: 35320319 PMCID: PMC8942271 DOI: 10.1371/journal.ppat.1010398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Successful initiation of infection by many different viruses requires their uptake into the endosomal compartment. While some viruses exit this compartment early, others must reach the degradative, acidic environment of the late endosome. Mammalian orthoreovirus (reovirus) is one such late penetrating virus. To identify host factors that are important for reovirus infection, we performed a CRISPR-Cas9 knockout (KO) screen that targets over 20,000 genes in fibroblasts derived from the embryos of C57/BL6 mice. We identified seven genes (WDR81, WDR91, RAB7, CCZ1, CTSL, GNPTAB, and SLC35A1) that were required for the induction of cell death by reovirus. Notably, CRISPR-mediated KO of WD repeat-containing protein 81 (WDR81) rendered cells resistant to reovirus infection. Susceptibility to reovirus infection was restored by complementing KO cells with human WDR81. Although the absence of WDR81 did not affect viral attachment efficiency or uptake into the endosomal compartments for initial disassembly, it reduced viral gene expression and diminished infectious virus production. Consistent with the role of WDR81 in impacting the maturation of endosomes, WDR81-deficiency led to the accumulation of reovirus particles in dead-end compartments. Though WDR81 was dispensable for infection by VSV (vesicular stomatitis virus), which exits the endosomal system at an early stage, it was required for VSV-EBO GP (VSV that expresses the Ebolavirus glycoprotein), which must reach the late endosome to initiate infection. These results reveal a previously unappreciated role for WDR81 in promoting the replication of viruses that transit through late endosomes. Viruses are obligate intracellular parasites that require the contributions of numerous host factors to complete the viral life cycle. Thus, the host-pathogen interaction can regulate cell death signaling and virus entry, replication, assembly, and egress. Functional genetic screens are useful tools to identify host factors that are important for establishing infection. Such information can also be used to understand cell biology. Notably, genome-scale CRISPR-Cas9 knockout screens are robust due to their specificity and the loss of host gene expression. Mammalian orthoreovirus (reovirus) is a tractable model system to investigate the pathogenesis of neurotropic and cardiotropic viruses. Using a CRISPR-Cas9 screen, we identified WD repeat-containing protein 81 (WDR81) as a host factor required for efficient reovirus infection of murine cells. Ablation of WDR81 blocked a late step in the viral entry pathway. Further, our work indicates that WDR81 is required for the entry of vesicular stomatitis virus that expresses the Ebolavirus glycoprotein.
Collapse
|
7
|
Yang C, Wang X. Lysosome biogenesis: Regulation and functions. J Cell Biol 2021; 220:212053. [PMID: 33950241 PMCID: PMC8105738 DOI: 10.1083/jcb.202102001] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are degradation centers and signaling hubs in cells and play important roles in cellular homeostasis, development, and aging. Changes in lysosome function are essential to support cellular adaptation to multiple signals and stimuli. Therefore, lysosome biogenesis and activity are regulated by a wide variety of intra- and extracellular cues. Here, we summarize current knowledge of the regulatory mechanisms of lysosome biogenesis, including synthesis of lysosomal proteins and their delivery via the endosome-lysosome pathway, reformation of lysosomes from degradative vesicles, and transcriptional regulation of lysosomal genes. We survey the regulation of lysosome biogenesis in response to nutrient and nonnutrient signals, the cell cycle, stem cell quiescence, and cell fate determination. Finally, we discuss lysosome biogenesis and functions in the context of organismal development and aging.
Collapse
Affiliation(s)
- Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Liu X, Yin L, Li T, Lin L, Zhang J, Li Y. Reduction of WDR81 impairs autophagic clearance of aggregated proteins and cell viability in neurodegenerative phenotypes. PLoS Genet 2021; 17:e1009415. [PMID: 33730050 PMCID: PMC7968681 DOI: 10.1371/journal.pgen.1009415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/11/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by neuron loss and accumulation of undegraded protein aggregates. These phenotypes are partially due to defective protein degradation in neuronal cells. Autophagic clearance of aggregated proteins is critical to protein quality control, but the underlying mechanisms are still poorly understood. Here we report the essential role of WDR81 in autophagic clearance of protein aggregates in models of Huntington’s disease (HD), Parkinson’s disease (PD) and Alzheimer’s disease (AD). In hippocampus and cortex of patients with HD, PD and AD, protein level of endogenous WDR81 is decreased but autophagic receptor p62 accumulates significantly. WDR81 facilitates the recruitment of autophagic proteins onto Htt polyQ aggregates and promotes autophagic clearance of Htt polyQ subsequently. The BEACH and MFS domains of WDR81 are sufficient for its recruitment onto Htt polyQ aggregates, and its WD40 repeats are essential for WDR81 interaction with covalent bound ATG5-ATG12. Reduction of WDR81 impairs the viability of mouse primary neurons, while overexpression of WDR81 restores the viability of fibroblasts from HD patients. Notably, in Caenorhabditis elegans, deletion of the WDR81 homolog (SORF-2) causes accumulation of p62 bodies and exacerbates neuron loss induced by overexpressed α-synuclein. As expected, overexpression of SORF-2 or human WDR81 restores neuron viability in worms. These results demonstrate that WDR81 has crucial evolutionarily conserved roles in autophagic clearance of protein aggregates and maintenance of cell viability under pathological conditions, and its reduction provides mechanistic insights into the pathogenesis of HD, PD, AD and brain disorders related to WDR81 mutations. In recent years, a group of clinical studies reported that mutations of WDR81 are related to pathogenesis of human brain disorders. However, the underlying mechanisms of pathogenesis are still unknown. In this study, WDR81 promotes the autophagic clearance of protein aggregates via facilitating the recruitment of autophagic proteins onto protein aggregates. The BEACH and MFS domains of WDR81 are sufficient for its recruitment onto Htt polyQ aggregates, and its WD40 repeats are essential for WDR81 interaction with covalent bound ATG5-ATG12. In hippocampus and cortex of patients with HD, PD and AD, protein level of WDR81 is decreased significantly. Reduction of WDR81 impairs the viability of mouse primary neurons, while overexpression of WDR81 restores the viability of fibroblasts from HD patients.
Collapse
Affiliation(s)
- Xuezhao Liu
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States of America
| | - Limin Yin
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Tianyou Li
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Lingxi Lin
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Jie Zhang
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Yang Li
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
9
|
Su J, Lu W, Li M, Zhang Q, Chen F, Yi S, Yang Q, Yi S, Zhou X, Huang L, Shen Y, Luo J, Qin Z. Novel compound heterozygous frameshift variants in WDR81 associated with congenital hydrocephalus 3 with brain anomalies: First Chinese prenatal case confirms WDR81 involvement. Mol Genet Genomic Med 2021; 9:e1624. [PMID: 33724704 PMCID: PMC8123740 DOI: 10.1002/mgg3.1624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
Background Congenital hydrocephalus‐3 with brain anomalies (HYC3, MIM 617967) is a rare form of congenital hydrocephalus characterized by severe hydrocephalus and cerebellar abnormalities, the onset of the disease occurs in utero even resulting in fetal death. A very limited spectrum of WDR81 pathogenic variants had been reported in three unrelated families with HYC3. This study aims at presenting novel compound heterozygous frameshift variants in WDR81 in a Chinese fetus. Methods Whole‐exome sequencing (WES) was performed for a fetus with multiple congenital anomalies including sever hydrocephalus, cleft lip and palate, hydrops fetalis, hepatomegaly, and cerebellar hypoplasia. Sanger sequencing was performed to confirm the origin of the variants subsequently. Variants classification was based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. Results Two novel heterozygous variants c.146_147insG (p.Thr52fs) and c.673delC (p.Leu225fs) in WDR81 were identified. Sanger sequencing revealed that the c.146_147insG mutation was maternal origin and the c.673delC mutation was paternal origin. Both variants were pathogenic according to the ACMG/AMP guidelines. Conclusion The present study expands the mutation spectrum of WDR81 and help further define the genotype–phenotype correlations of HYC3. WDR81‐related HYC3 were highly clinical heterogeneity. We suggested that fetal hydrocephalus with extracerebral manifestations may be suggestive of WDR81 deficiency and WES is effective for achieving a conclusive diagnosis for disorder.
Collapse
Affiliation(s)
- Jiasun Su
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Weiliang Lu
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Mengting Li
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Qiang Zhang
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Fei Chen
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Shang Yi
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Qi Yang
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Sheng Yi
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Xunzhao Zhou
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Limei Huang
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Yiping Shen
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jingsi Luo
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Zailong Qin
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| |
Collapse
|
10
|
Zhu Y, Feng F, Hu G, Wang Y, Yu Y, Zhu Y, Xu W, Cai X, Sun Z, Han W, Ye R, Qu D, Ding Q, Huang X, Chen H, Xu W, Xie Y, Cai Q, Yuan Z, Zhang R. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat Commun 2021; 12:961. [PMID: 33574281 PMCID: PMC7878750 DOI: 10.1038/s41467-021-21213-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of SARS-CoV-2 is posing major public health challenges. One feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site. Here, we find that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site utilizes an endosomal entry pathway. Using Sdel as model, we perform a genome-wide CRISPR screen and identify several endosomal entry-specific regulators. Experimental validation of hits from the CRISPR screen shows that host factors regulating the surface expression of angiotensin-converting enzyme 2 (ACE2) affect entry of Sfull virus. Animal-to-animal transmission with the Sdel virus is reduced compared to Sfull in the hamster model. These findings highlight the critical role of the S1/S2 boundary of SARS-CoV-2 spike protein in modulating virus entry and transmission and provide insights into entry of coronaviruses.
Collapse
Affiliation(s)
- Yunkai Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Fei Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhiping Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Wendong Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Rong Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Xinxin Huang
- Technical Center For Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell 2021; 184:106-119.e14. [PMID: 33333024 PMCID: PMC7723770 DOI: 10.1016/j.cell.2020.12.004] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.
Collapse
|
12
|
WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry 2021; 26:694-709. [PMID: 30531936 PMCID: PMC7850971 DOI: 10.1038/s41380-018-0307-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 01/05/2023]
Abstract
Adult hippocampal neurogenesis, a process considered important for hippocampal function, is regulated at multiple molecular levels. Mutations in the gene encoding the WD40 repeat-containing protein WDR81 are associated with neurological disorders, including cerebellar ataxia, mental retardation, quadrupedal locomotion syndrome (CAMRQ2), and microcephaly. In this study, we show that ablation of WDR81 in adult neural progenitor cells (aNPCs) markedly reduced adult hippocampal neurogenesis and impaired hippocampus-dependent learning. WDR81 suppresses endosomal PtdIns3P synthesis, likely by inhibiting the assembly of the PI3K-III complex. In the absence of WDR81, endosomal PtdIns3P levels are greatly elevated, leading to endosomal persistence of the PtdIns3P-binding protein SARA and consequently hyperactivation of SARA-dependent TGFβ signaling. Inhibition of PI3K-III activity or suppression of SARA-dependent TGFβ signaling markedly ameliorated the defective adult neurogenesis in WDR81-deficient mice. Taken together, these findings not only uncover the requirement for the WDR81-SARA-TGFβ axis in adult hippocampal neurogenesis, but also suggest that defective adult hippocampal neurogenesis contributes to the etiology of WDR81-related neurological diseases.
Collapse
|
13
|
Wang R, Simoneau CR, Kulsuptrakul J, Bouhaddou M, Travisano K, Hayashi JM, Carlson-Stevermer J, Oki J, Holden K, Krogan NJ, Ott M, Puschnik AS. Functional genomic screens identify human host factors for SARS-CoV-2 and common cold coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.24.312298. [PMID: 32995787 PMCID: PMC7523113 DOI: 10.1101/2020.09.24.312298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Coronaviridae are a family of viruses that causes disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors that are common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted parallel genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E) and glycosaminoglycans (for OC43). Additionally, we discovered phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle as well as the potential development of host-directed therapies.
Collapse
Affiliation(s)
- Ruofan Wang
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | | | | | - Mehdi Bouhaddou
- Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | | | | | | | | | | | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | |
Collapse
|
14
|
Kalmár T, Szakszon K, Maróti Z, Zimmermann A, Máté A, Zombor M, Bereczki C, Sztriha L. A Novel Homozygous Frameshift WDR81 Mutation associated with Microlissencephaly, Corpus Callosum Agenesis, and Pontocerebellar Hypoplasia. J Pediatr Genet 2020; 10:159-163. [PMID: 33996189 DOI: 10.1055/s-0040-1712916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Microlissencephaly is a brain malformation characterized by microcephaly and extremely simplified gyral pattern. It may be associated with corpus callosum agenesis and pontocerebellar hypoplasia. In this case report, we described two siblings, a boy and a girl, with this complex brain malformation and lack of any development. In the girl, exome sequencing of a gene set representing 4,813 genes revealed a homozygous AG deletion in exon 7 of the WDR81 gene, leading to a frameshift (c.4668_4669delAG, p.Gly1557AspfsTer16). The parents were heterozygous for this mutation. The boy died without proper genetic testing. Our findings expand the phenotypic and genotypic spectrum of WDR81 gene mutations.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Katalin Szakszon
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Adrienn Máté
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Melinda Zombor
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
CRISPR-Cas9 screens identify regulators of antibody-drug conjugate toxicity. Nat Chem Biol 2019; 15:949-958. [PMID: 31451760 DOI: 10.1038/s41589-019-0342-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023]
Abstract
Antibody-drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine-citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.
Collapse
|
16
|
Best JT, Xu P, Graham TR. Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Curr Opin Cell Biol 2019; 59:8-15. [PMID: 30897446 DOI: 10.1016/j.ceb.2019.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
Abstract
Molecular mechanisms underlying the formation of multiple classes of transport carriers or vesicles from Golgi and endosomal membranes remain poorly understood. However, one theme that has emerged over three decades is the dramatic influence of membrane lipid remodeling on transport mechanisms. A large cohort of lipid transfer proteins, lipid transporters, and lipid modifying enzymes are linked to protein sorting, carrier formation and SNARE-mediated fusion events. Here, we focus on one type of lipid transporter, phospholipid flippases in the type IV P-type ATPase (P4-ATPase) family, and discuss recent advances in defining P4-ATPase influences on membrane remodeling and vesicular transport.
Collapse
Affiliation(s)
- Jordan T Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
17
|
A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe 2018; 24:285-295.e8. [PMID: 30057173 DOI: 10.1016/j.chom.2018.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/11/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
Many pathogenic intracellular bacteria manipulate the host phago-endosomal system to establish and maintain a permissive niche. The fate and identity of these intracellular compartments is controlled by phosphoinositide lipids. By mechanisms that have remained undefined, a Francisella pathogenicity island-encoded secretion system allows phagosomal escape and replication of bacteria within host cell cytoplasm. Here we report the discovery that a substrate of this system, outside pathogenicity island A (OpiA), represents a family of wortmannin-resistant bacterial phosphatidylinositol (PI) 3-kinase enzymes with members found in a wide range of intracellular pathogens, including Rickettsia and Legionella spp. We show that OpiA acts on the Francisella-containing phagosome and promotes bacterial escape into the cytoplasm. Furthermore, we demonstrate that the phenotypic consequences of OpiA inactivation are mitigated by endosomal maturation arrest. Our findings suggest that Francisella, and likely other intracellular bacteria, override the finely tuned dynamics of phagosomal PI(3)P in order to promote intracellular survival and pathogenesis.
Collapse
|
18
|
Cavallin M, Rujano MA, Bednarek N, Medina-Cano D, Bernabe Gelot A, Drunat S, Maillard C, Garfa-Traore M, Bole C, Nitschké P, Beneteau C, Besnard T, Cogné B, Eveillard M, Kuster A, Poirier K, Verloes A, Martinovic J, Bidat L, Rio M, Lyonnet S, Reilly ML, Boddaert N, Jenneson-Liver M, Motte J, Doco-Fenzy M, Chelly J, Attie-Bitach T, Simons M, Cantagrel V, Passemard S, Baffet A, Thomas S, Bahi-Buisson N. WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells. Brain 2017; 140:2597-2609. [PMID: 28969387 DOI: 10.1093/brain/awx218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
Microlissencephaly is a rare brain malformation characterized by congenital microcephaly and lissencephaly. Microlissencephaly is suspected to result from abnormalities in the proliferation or survival of neural progenitors. Despite the recent identification of six genes involved in microlissencephaly, the pathophysiological basis of this condition remains poorly understood. We performed trio-based whole exome sequencing in seven subjects from five non-consanguineous families who presented with either microcephaly or microlissencephaly. This led to the identification of compound heterozygous mutations in WDR81, a gene previously associated with cerebellar ataxia, intellectual disability and quadrupedal locomotion. Patient phenotypes ranged from severe microcephaly with extremely reduced gyration with pontocerebellar hypoplasia to moderate microcephaly with cerebellar atrophy. In patient fibroblast cells, WDR81 mutations were associated with increased mitotic index and delayed prometaphase/metaphase transition. Similarly, in vivo, we showed that knockdown of the WDR81 orthologue in Drosophila led to increased mitotic index of neural stem cells with delayed mitotic progression. In summary, we highlight the broad phenotypic spectrum of WDR81-related brain malformations, which include microcephaly with moderate to extremely reduced gyration and cerebellar anomalies. Our results suggest that WDR81 might have a role in mitosis that is conserved between Drosophila and humans.
Collapse
Affiliation(s)
- Mara Cavallin
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Pediatric Neurology APHP- Necker Enfants Malades University Hospital, Paris, France
| | - Maria A Rujano
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Epithelial biology and disease, INSERM UMR 1163, Imagine Institute, Paris, France
| | | | - Daniel Medina-Cano
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Antoinette Bernabe Gelot
- AP-HP, Hôpital Armand Trousseau, Laboratoire d'Anatomie Pathologique, Neuropathologie, Paris, France.,INMED, INSERM U 901 Campus de Luminy, Marseille, France
| | - Severine Drunat
- Department of Medical Genetics and INSERM UMR1141, APHP-Robert DEBRE Universitary Hospital, Paris, France
| | - Camille Maillard
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Christine Bole
- Genomic Core Facility, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Patrick Nitschké
- Bioinformatics Core Facility, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Claire Beneteau
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Thomas Besnard
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Benjamin Cogné
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Marion Eveillard
- CHU Nantes, Service d'Hématologie Biologique, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Alice Kuster
- CHU Nantes, Service de réanimation Pédiatrique, Centre de compétence des maladies héréditaires du métabolisme, 38 boulevard Jean Monet, 44093 Nantes, France
| | - Karine Poirier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | - Alain Verloes
- Department of Medical Genetics and INSERM UMR1141, APHP-Robert DEBRE Universitary Hospital, Paris, France.,Sorbonne-Paris Cité University, Denis Diderot School of Medicine, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology Hospital Antoine Béclère, AP-HP, Clamart, France
| | - Laurent Bidat
- Department of Prenatal Diagnosis, Department of Obstetrics and Gynecology, René Dubos Hospital, Pontoise, France
| | - Marlene Rio
- Service de Génétique, Necker Enfants Malades University Hospital, AP-HP, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - M Louise Reilly
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Inherited Kidney Disease, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Diderot University, 75013 Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology, Necker Enfants Malades University Hospital, APHP, Paris, France.,Image - Institut Imagine, INSERM UMR1163, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, France
| | | | - Jacques Motte
- University of Reims Champagne Ardennes, UFR médecine, Reims, France
| | | | - Jamel Chelly
- IGBMC, INSERM U964, CNRS UMR 7104, Université de Strasbourg. 67404 Illkirch Cedex, France.,Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Tania Attie-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Service de Génétique, Necker Enfants Malades University Hospital, AP-HP, Paris, France
| | - Matias Simons
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Epithelial biology and disease, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Vincent Cantagrel
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Sandrine Passemard
- Department of Medical Genetics and INSERM UMR1141, APHP-Robert DEBRE Universitary Hospital, Paris, France.,Sorbonne-Paris Cité University, Denis Diderot School of Medicine, Paris, France
| | - Alexandre Baffet
- Institut Curie. CNRS UMR144, PSL Research University, Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Nadia Bahi-Buisson
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Pediatric Neurology APHP- Necker Enfants Malades University Hospital, Paris, France
| |
Collapse
|
19
|
Liu X, Li Y, Wang X, Xing R, Liu K, Gan Q, Tang C, Gao Z, Jian Y, Luo S, Guo W, Yang C. The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy. J Cell Biol 2017; 216:1301-1320. [PMID: 28404643 PMCID: PMC5412561 DOI: 10.1083/jcb.201608039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/23/2016] [Accepted: 03/02/2017] [Indexed: 01/21/2023] Open
Abstract
Mutations in WDR81, a regulator of the endosomal–lysosomal pathway, are implicated in CAMRQ2 syndrome, which manifests as cerebellar ataxia, mental retardation, and quadrupedal locomotion in patients. In this study, Liu et al. uncover a distinct function of WDR81 in the clearance of ubiquitinated and aggregated proteins by autophagy. Autophagy-dependent clearance of ubiquitinated and aggregated proteins is critical to protein quality control, but the underlying mechanisms are not well understood. Here, we report the essential role of the BEACH (beige and Chediak–Higashi) and WD40 repeat-containing protein WDR81 in eliminating ubiquitinated proteins through autophagy. WDR81 associates with ubiquitin (Ub)-positive protein foci, and its loss causes accumulation of Ub proteins and the autophagy cargo receptor p62. WDR81 interacts with p62, facilitating recognition of Ub proteins by p62. Furthermore, WDR81 interacts with LC3C through canonical LC3-interacting regions in the BEACH domain, promoting LC3C recruitment to ubiquitinated proteins. Inactivation of LC3C or defective autophagy results in accumulation of Ub protein aggregates enriched for WDR81. In mice, WDR81 inactivation causes accumulation of p62 bodies in cortical and striatal neurons in the brain. These data suggest that WDR81 coordinates p62 and LC3C to facilitate autophagic removal of Ub proteins, and provide important insights into CAMRQ2 syndrome, a WDR81-related developmental disorder.
Collapse
Affiliation(s)
- Xuezhao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ruxiao Xing
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Kai Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiwen Gan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Changyong Tang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiyang Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Youli Jian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, Plymouth University, Plymouth PL6 8BU, England, UK
| | - Weixiang Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|