1
|
Sarkis S, Chamard C, Johansen B, Daien V, Michon F. Challenging glaucoma with emerging therapies: an overview of advancements against the silent thief of sight. Front Med (Lausanne) 2025; 12:1527319. [PMID: 40206485 PMCID: PMC11979169 DOI: 10.3389/fmed.2025.1527319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, represents a significant challenge in ophthalmology. This review examines recent advancements in glaucoma treatment, focusing on innovative medications and creative strategies. While new agents offer promising methods for lowering intraocular pressure (IOP), they also pose challenges related to efficacy and side effects. Alongside IOP reduction, emerging neuroprotective approaches are being explored to safeguard retinal ganglion cells (RGCs) from glaucoma-induced damage. The review also evaluates the potential of novel drug delivery systems, such as biodegradable implants and nanoparticles, to enhance treatment effectiveness and patient adherence. Additionally, it highlights the role of personalized medicine in identifying new biomarkers and customizing therapies based on individual genetic and environmental factors.
Collapse
Affiliation(s)
- Solange Sarkis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Laboratoires Théa, Clermont-Ferrand, France
| | - Chloé Chamard
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| | | | - Vincent Daien
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
2
|
Paleel F, Qin M, Tagalakis AD, Yu-Wai-Man C, Lamprou DA. Manufacturing and characterisation of 3D-printed sustained-release Timolol implants for glaucoma treatment. Drug Deliv Transl Res 2025; 15:242-252. [PMID: 38578377 PMCID: PMC11614933 DOI: 10.1007/s13346-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Timolol maleate (TML) is a beta-blocker drug that is commonly used to lower the intraocular pressure in glaucoma. This study focused on using a 3D printing (3DP) method for the manufacturing of an ocular, implantable, sustained-release drug delivery system (DDS). Polycaprolactone (PCL), and PCL with 5 or 10% TML implants were manufactured using a one-step 3DP process. Their physicochemical characteristics were analysed using light microscopy, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC) / thermal gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release was evaluated by UV-spectrophotometry. Finally, the effect of the implants on cell viability in human trabecular meshwork cells was assessed. All the implants showed a smooth surface. Thermal analysis demonstrated that the implants remained thermally stable at the temperatures used for the printing, and FTIR studies showed that there were no significant interactions between PCL and TML. Both concentrations (5 & 10%) of TML achieved sustained release from the implants over the 8-week study period. All implants were non-cytotoxic to human trabecular cells. This study shows proof of concept that 3DP can be used to print biocompatible and personalised ocular implantable sustained-release DDSs for the treatment of glaucoma.
Collapse
Affiliation(s)
- Fathima Paleel
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, UK
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK
| | - Mengqi Qin
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK
| | | | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK.
| | | |
Collapse
|
3
|
Salvetat ML, Toro MD, Pellegrini F, Scollo P, Malaguarnera R, Musa M, Mereu L, Tognetto D, Gagliano C, Zeppieri M. Advancing Glaucoma Treatment During Pregnancy and Breastfeeding: Contemporary Management Strategies and Prospective Therapeutic Developments. Biomedicines 2024; 12:2685. [PMID: 39767592 PMCID: PMC11727364 DOI: 10.3390/biomedicines12122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025] Open
Abstract
The management of glaucoma in pregnancy and breastfeeding requires a careful evaluation of treatment choices to guarantee the well-being of both the mother and the developing fetus. This review explores the intricacies of controlling glaucoma in pregnant and breastfeeding women, including a comprehensive overview of existing glaucoma treatment methods, clinical guidelines, and future therapeutic approaches. The efficacy and safety profiles of traditional treatment approaches, such as topical and systemic medicines and surgical treatments, are evaluated specifically about their use during pregnancy and breastfeeding. The significance of personalized treatment programs to achieve a balance between controlling intraocular pressure and ensuring the safety of the fetus and the newborn and the importance of a multidisciplinary approach that includes ophthalmologists, obstetricians, and other healthcare experts are underlined. Non-pharmacological therapies, lifestyle adjustments, and the importance of patient education in the management of glaucoma during pregnancy and the post-partum period are also examined. Advancing our comprehension of and strategy toward glaucoma can reduce the effects of glaucoma on maternal, fetal, and newborn well-being.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, Via Montereale 24, 33170 Pordenone, Italy;
| | - Mario Damiano Toro
- Eye Clinic, Public Health Department, Federico II University, Via Pansini 5, 80131 Naples, Italy
- Department of Special Surgery, University of Jordan, Queen Rania St, Amman 11942, Jordan
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, Via Montereale 24, 33170 Pordenone, Italy;
| | - Paolo Scollo
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Gynecology and Obstetrics Unit, Cannizzaro Hospital, 95126 Catania, Italy
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Liliana Mereu
- Gynecology and Obstetrics Unit, Policlinico G. Rodolico, Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Daniele Tognetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Fea AM, Vallino V, Cossu M, Marica V, Novarese C, Reibaldi M, Petrillo F. Drug Delivery Systems for Glaucoma: A Narrative Review. Pharmaceuticals (Basel) 2024; 17:1163. [PMID: 39338326 PMCID: PMC11435076 DOI: 10.3390/ph17091163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is one of the world's leading causes of blindness, and its management is challenging. The main objective is to lower intraocular pressure through medical, para-surgical, and surgical therapy. Medical therapy often represents the first line of treatment. Although effective in many cases, the eye drops are accompanied by significant problems. They require high patient compliance and can be associated with various side effects, limiting their efficacy. Consequently, the research for new drug delivery systems trying to overcome these limitations is ongoing: numerous devices are developing and gradually entering clinical practice. These new therapeutic options may offer better control of the intraocular pressure, with fewer side effects, and are less dependent on patients' compliance. Hence, the research in this field continues to flourish. This review summarizes the most recent findings in the scientific literature, underlines the role and possible limitations of the new glaucoma drug delivery systems in clinical practice, and recognizes their new horizons and perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Petrillo
- Department of Ophthalmology, “City of Health and Science” Hospital, 10126 Turin, Italy; (A.M.F.); (V.V.); (M.C.); (V.M.); (C.N.); (M.R.)
| |
Collapse
|
5
|
Qin M, Luo J, Patel B, Thong KX, Latefa S, Shao D, Tanner A, Yu-Wai-Man C. Developing a synergistic rate-retarding polymeric implant for controlling monoclonal antibody delivery in minimally invasive glaucoma surgery. Int J Biol Macromol 2024; 272:132655. [PMID: 38797299 PMCID: PMC11780753 DOI: 10.1016/j.ijbiomac.2024.132655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) have garnered substantial attention within the field of ophthalmology and can be used to suppress scar formation after minimally invasive glaucoma surgeries. Here, by controlling mAb passive diffusion, we developed a polymeric, rate-controlling membrane reservoir loaded with poly(lactic-co-glycolic acid) microspheres to deliver mAb for several weeks. Different parameters were tested to ensure that the microspheres achieved a good quality characteristic, and our results showed that 1 %W/V emulsifier with 5 %W/V NaCl achieved mAb-loaded microspheres with the highest stability, encapsulation efficiency and minimal burst release. Then, we fabricated and compared 10 types of microporous films based on polylactic acid (PLA), polycaprolactone (PCL), and polyethylene glycol (PEG). Our results revealed distinct pore characteristics and degradation patterns in different films due to varying polymer properties, and all the polymeric film formulations showed good biocompatibility in both human trabecular meshwork cells and human conjunctival fibroblasts. Finally, the optimized microspheres were loaded into the reservoir-type polymeric implant assembled by microporous membranes with different surface coating modifications. The implant formulation, which was fabricated by 60 PCL: 40 PEG (3 %W/V) polymer with 0.1 %W/V poly(lactic-co-glycolic acid) barrier, exerted the best drug release profile that can sustained release mAb (83.6 %) for 4 weeks.
Collapse
Affiliation(s)
- Mengqi Qin
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Jinyuan Luo
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Brihitejas Patel
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Kai Xin Thong
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Samar Latefa
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Daniel Shao
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Alexander Tanner
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK.
| |
Collapse
|
6
|
Jiang J, Kong K, Fang X, Wang D, Zhang Y, Wang P, Yang Z, Zhang Y, Liu X, Aung T, Li F, Yu-Wai-Man P, Zhang X. CRISPR-Cas9-mediated deletion of carbonic anhydrase 2 in the ciliary body to treat glaucoma. Cell Rep Med 2024; 5:101524. [PMID: 38670096 PMCID: PMC11148640 DOI: 10.1016/j.xcrm.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
The carbonic anhydrase 2 (Car2) gene encodes the primary isoenzyme responsible for aqueous humor (AH) production and plays a major role in the regulation of intraocular pressure (IOP). The CRISPR-Cas9 system, based on the ShH10 adenovirus-associated virus, can efficiently disrupt the Car2 gene in the ciliary body. With a single intravitreal injection, Car2 knockout can significantly and sustainably reduce IOP in both normal mice and glaucoma models by inhibiting AH production. Furthermore, it effectively delays and even halts glaucomatous damage induced by prolonged high IOP in a chronic ocular hypertension model, surpassing the efficacy of clinically available carbonic anhydrase inhibitors such as brinzolamide. The clinical application of CRISPR-Cas9 based disruption of Car2 is an attractive therapeutic strategy that could bring additional benefits to patients with glaucoma.
Collapse
Affiliation(s)
- Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Xiuli Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Deming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Yinhang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Zefeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Yuwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Xiaoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Tin Aung
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore, Singapore; National University of Singapore, Singapore, Singapore
| | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China.
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China.
| |
Collapse
|
7
|
Zeppieri M, Gagliano C, Spadea L, Salati C, Chukwuyem EC, Enaholo ES, D’Esposito F, Musa M. From Eye Care to Hair Growth: Bimatoprost. Pharmaceuticals (Basel) 2024; 17:561. [PMID: 38794131 PMCID: PMC11124470 DOI: 10.3390/ph17050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Bimatoprost has emerged as a significant medication in the field of medicine over the past several decades, with diverse applications in ophthalmology, dermatology, and beyond. Originally developed as an ocular hypotensive agent, it has proven highly effective in treating glaucoma and ocular hypertension. Its ability to reduce intraocular pressure has established it as a first-line treatment option, improving management and preventing vision loss. In dermatology, bimatoprost has shown promising results in the promotion of hair growth, particularly in the treatment of alopecia and hypotrichosis. Its mechanism of action, stimulating the hair cycle and prolonging the growth phase, has led to the development of bimatoprost-containing solutions for enhancing eyelash growth. AIM The aim of our review is to provide a brief description, overview, and studies in the current literature regarding the versatile clinical use of bimatoprost in recent years. This can help clinicians determine the most suitable individualized therapy to meet the needs of each patient. METHODS Our methods involve a comprehensive review of the latest advancements reported in the literature in bimatoprost formulations, which range from traditional eye drops to sustained-release implants. These innovations offer extended drug delivery, enhance patient compliance, and minimize side effects. RESULTS The vast literature published on PubMed has confirmed the clinical usefulness of bimatoprost in lowering intraocular pressure and in managing patients with glaucoma. Numerous studies have shown promising results in dermatology and esthetics in promoting hair growth, particularly in treating alopecia and hypotrichosis. Its mechanism of action involves stimulating the hair cycle and prolonging the growth phase, leading to the development of solutions that enhance eyelash growth. The global use of bimatoprost has expanded significantly, with applications growing beyond its initial indications. Ongoing research is exploring its potential in glaucoma surgery, neuroprotection, and cosmetic procedures. CONCLUSIONS Bimatoprost has shown immense potential for addressing a wide range of therapeutic needs through various formulations and advancements. Promising future perspectives include the exploration of novel delivery systems such as contact lenses and microneedles to further enhance drug efficacy and patient comfort. Ongoing research and future perspectives continue to shape its role in medicine, promising further advancements and improved patient outcomes.
Collapse
Affiliation(s)
- Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “ Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | | | | | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria;
| |
Collapse
|
8
|
Ciociola EC, Fernandez E, Kaufmann M, Klifto MR. Future directions of glaucoma treatment: emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies. Curr Opin Ophthalmol 2024; 35:89-96. [PMID: 37910173 DOI: 10.1097/icu.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW The aim of this article is to summarize current research on novel gene, stem cell, neuroprotective, nanomedicine, and vascular therapies for glaucoma. RECENT FINDINGS Gene therapy using viral vectors and siRNA have been shown to reduce intraocular pressure by altering outflow and production of aqueous humor, to reduce postsurgical fibrosis with few adverse effects, and to increase retinal ganglion cell (RGC) survival in animal studies. Stem cells may treat glaucoma by replacing or stimulating proliferation of trabecular meshwork cells, thus restoring outflow facility. Stem cells can also serve a neuroprotective effect by differentiating into RGCs or preventing RGC loss via secretion of growth factors. Other developing neuroprotective glaucoma treatments which can prevent RGC death include nicotinamide, the NT-501 implant which secretes ciliary neurotrophic factor, and a Fas-L inhibitor which are now being tested in clinical trials. Recent studies on vascular therapy for glaucoma have focused on the ability of Rho Kinase inhibitors and dronabinol to increase ocular blood flow. SUMMARY Many novel stem cell, gene, neuroprotective, nanomedicine, and vascular therapies have shown promise in preclinical studies, but further clinical trials are needed to demonstrate safety and efficacy in human glaucomatous eyes. Although likely many years off, future glaucoma therapy may take a multifaceted approach.
Collapse
Affiliation(s)
| | | | | | - Meredith R Klifto
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Dang M, Shoichet MS. Long-Acting Ocular Injectables: Are We Looking In The Right Direction? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306463. [PMID: 38018313 PMCID: PMC10885661 DOI: 10.1002/advs.202306463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
The complex anatomy and physiological barriers of the eye make delivering ocular therapeutics challenging. Generally, effective drug delivery to the eye is hindered by rapid clearance and limited drug bioavailability. Biomaterial-based approaches have emerged to enhance drug delivery to ocular tissues and overcome existing limitations. In this review, some of the most promising long-acting injectables (LAIs) in ocular drug delivery are explored, focusing on novel design strategies to improve therapeutic outcomes. LAIs are designed to enable sustained therapeutic effects, thereby extending local drug residence time and facilitating controlled and targeted drug delivery. Moreover, LAIs can be engineered to enhance drug targeting and penetration across ocular physiological barriers.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
10
|
Wang W, Wang H. Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med 2023; 94:101220. [PMID: 37856931 DOI: 10.1016/j.mam.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Currently the only effective treatment for glaucoma is to reduce the intraocular pressure, which can halt the progression of the disease. Highlighting the importance of identifying individuals at risk of developing glaucoma and those with early-stage glaucoma will help patients receive treatment before sight loss. However, some cases of glaucoma do not have raised intraocular pressure. In fact, glaucoma is caused by a variety of different mechanisms and has a wide range of different subtypes. Understanding other risk factors, the underlying mechanisms, and the pathology of glaucoma might lead to novel treatments and treatment of underlying diseases. In this review we present the latest research into glaucoma including the genetics and molecular basis of the disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital, Northwest University, Xi'an, 710004, Shaanxi Province, China.
| | - Huaizhou Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
11
|
Zembala J, Forma A, Zembala R, Januszewski J, Zembala P, Adamowicz D, Teresiński G, Buszewicz G, Flieger J, Baj J. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. J Clin Med 2023; 12:5798. [PMID: 37762739 PMCID: PMC10531576 DOI: 10.3390/jcm12185798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness and is characterized by increased intraocular pressure (IOP) and progressive optic nerve damage. The current therapeutic approaches for glaucoma management, such as eye drops and oral medications, face challenges including poor bioavailability, low patient compliance, and limited efficacy. In recent years, nanotechnology has emerged as a promising approach to overcome these limitations and revolutionize glaucoma treatment. In this narrative review, we present an overview of the novel nanotechnologies employed in the treatment of primary open-angle glaucoma. Various nanosystems, including liposomes, niosomes, nanoparticles, and other nanostructured carriers, have been developed to enhance the delivery and bioavailability of antiglaucoma drugs. They offer advantages such as a high drug loading capacity, sustained release, improved corneal permeability, and targeted drug delivery to the ocular tissues. The application of nanotechnologies in glaucoma treatment represents a transformative approach that addresses the limitations of conventional therapies. However, further research is needed to optimize the formulations, evaluate long-term safety, and implement these nanotechnologies into clinical practice. With continued advancements in nanotechnology, the future holds great potential for improving the management and outcomes of glaucoma, ultimately preserving vision and improving the lives of millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Dominik Adamowicz
- University Clinical Center, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| |
Collapse
|
12
|
Qin M, Yu-Wai-Man C. Glaucoma: Novel antifibrotic therapeutics for the trabecular meshwork. Eur J Pharmacol 2023; 954:175882. [PMID: 37391006 PMCID: PMC10804937 DOI: 10.1016/j.ejphar.2023.175882] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Glaucoma is a chronic and progressive neurodegenerative disease characterized by the loss of retinal ganglion cells and visual field defects, and currently affects around 1% of the world's population. Elevated intraocular pressure (IOP) is the best-known modifiable risk factor and a key therapeutic target in hypertensive glaucoma. The trabecular meshwork (TM) is the main site of aqueous humor outflow resistance and therefore a critical regulator of IOP. Fibrosis, a reparative process characterized by the excessive deposition of extracellular matrix components and contractile myofibroblasts, can impair TM function and contribute to the pathogenesis of primary open-angle glaucoma (POAG) as well as the failure of minimally invasive glaucoma surgery (MIGS) devices. This paper provides a detailed overview of the current anti-fibrotic therapeutics targeting the TM in glaucoma, along with their anti-fibrotic mechanisms, efficacy as well as the current research progress from pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Mengqi Qin
- King's College London, London, SE1 7EH, UK
| | | |
Collapse
|
13
|
Gao Y, Liu L, Zhang Z, Qin C, Yang B, Ke Y. TYRP1 Protects Against the Apoptosis and Oxidative Stress of Retinal Ganglion Cells by Binding to PMEL. Ocul Immunol Inflamm 2023; 31:1024-1034. [PMID: 35708352 DOI: 10.1080/09273948.2022.2081862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This research aimed to dissect the function of TYRP1 and PMEL in glaucomatous animal and cell models. METHODS A chronic ocular hypertension (COH) rat model was induced in the right eyes of rats through the electrocoagulation of superficial iris veins. In addition, an oxygen-glucose deprivation (OGD)-retinal ganglion cell (RGC) model was constructed through OGD. TYRP1 and PMEL expression was altered in the animal and cell models to explore their effects. RESULTS TYRP1 and PMEL expression was poor in glaucoma patients, COH rats, and OGD-RGCs. Mechanistically, TYRP1 interacted with PMEL to upregulate PMEL in OGD-RGCs. TYRP1 overexpression enhanced viability and diminished apoptosis and oxidative stress of OGD-RGCs, which was abolished by PMEL knockdown. TYRP1 upregulation reduced intraocular pressure, RGC apoptosis, and oxidative stress in COH rats, which was reversed by PMEL knockdown. CONCLUSIONS TYRP1 elevates PMEL expression to reduce RGC apoptosis and oxidative stress in vivo and in vitro.
Collapse
Affiliation(s)
- Yanlin Gao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China
| | - Lei Liu
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| | - Chunxiu Qin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin, P.R. China
| | - Yifeng Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| |
Collapse
|
14
|
Heritable Risk and Protective Genetic Components of Glaucoma Medication Non-Adherence. Int J Mol Sci 2023; 24:ijms24065636. [PMID: 36982708 PMCID: PMC10058353 DOI: 10.3390/ijms24065636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness, affecting 76 million globally. It is characterized by irreversible damage to the optic nerve. Pharmacotherapy manages intraocular pressure (IOP) and slows disease progression. However, non-adherence to glaucoma medications remains problematic, with 41–71% of patients being non-adherent to their prescribed medication. Despite substantial investment in research, clinical effort, and patient education protocols, non-adherence remains high. Therefore, we aimed to determine if there is a substantive genetic component behind patients’ glaucoma medication non-adherence. We assessed glaucoma medication non-adherence with prescription refill data from the Marshfield Clinic Healthcare System’s pharmacy dispensing database. Two standard measures were calculated: the medication possession ratio (MPR) and the proportion of days covered (PDC). Non-adherence on each metric was defined as less than 80% medication coverage over 12 months. Genotyping was done using the Illumina HumanCoreExome BeadChip in addition to exome sequencing on the 230 patients (1) to calculate the heritability of glaucoma medication non-adherence and (2) to identify SNPs and/or coding variants in genes associated with medication non-adherence. Ingenuity pathway analysis (IPA) was utilized to derive biological meaning from any significant genes in aggregate. Over 12 months, 59% of patients were found to be non-adherent as measured by the MPR80, and 67% were non-adherent as measured by the PDC80. Genome-wide complex trait analysis (GCTA) suggested that 57% (MPR80) and 48% (PDC80) of glaucoma medication non-adherence could be attributed to a genetic component. Missense mutations in TTC28, KIAA1731, ADAMTS5, OR2W3, OR10A6, SAXO2, KCTD18, CHCHD6, and UPK1A were all found to be significantly associated with glaucoma medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10−3) (PDC80). While missense mutations in TINAG, CHCHD6, GSTZ1, and SEMA4G were found to be significantly associated with medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10−3) (MPR80). The same coding SNP in CHCHD6 which functions in Alzheimer’s disease pathophysiology was significant by both measures and increased risk for glaucoma medication non-adherence by three-fold (95% CI, 1.62–5.8). Although our study was underpowered for genome-wide significance, SNP rs6474264 within ZMAT4 (p = 5.54 × 10–6) was found to be nominally significant, with a decreased risk for glaucoma medication non-adherence (OR, 0.22; 95% CI, 0.11–0.42)). IPA demonstrated significant overlap, utilizing, both standard measures including opioid signaling, drug metabolism, and synaptogenesis signaling. CREB signaling in neurons (which is associated with enhancing the baseline firing rate for the formation of long-term potentiation in nerve fibers) was shown to have protective associations. Our results suggest a substantial heritable genetic component to glaucoma medication non-adherence (47–58%). This finding is in line with genetic studies of other conditions with a psychiatric component (e.g., post-traumatic stress disorder (PTSD) or alcohol dependence). Our findings suggest both risk and protective statistically significant genes/pathways underlying glaucoma medication non-adherence for the first time. Further studies investigating more diverse populations with larger sample sizes are needed to validate these findings.
Collapse
|
15
|
Gautam M, Gupta R, Singh P, Verma V, Verma S, Mittal P, Karkhur S, Sampath A, Mohan RR, Sharma B. Intracameral Drug Delivery: A Review of Agents, Indications, and Outcomes. J Ocul Pharmacol Ther 2023; 39:102-116. [PMID: 36757304 DOI: 10.1089/jop.2022.0144] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
An intracameral (IC) injection directly delivers the drug into the anterior chamber of the eye. This targeted drug delivery technique overcomes the ocular barriers and offers a high therapeutic concentration of medication at the desired site and consequently better clinical outcomes. IC drug delivery is a safe and effective modality with many advantages over topical delivery. These include excellent bioavailability, reduced systemic risk, and minimal ocular toxicity. Agents delivered via IC injection have shown promising results against infection, inflammation, ocular hypertension, and neovascularization. Current literature shows that IC antibiotics, including cefuroxime, vancomycin, and moxifloxacin, are routinely used for prophylaxis of endophthalmitis. Other drugs available for IC use are steroids, anesthetics, mydriatics, miotics, antivascular endothelial growth factor, antiglaucoma, and alkylating agents. Introduction of sustained-release devices containing dexamethasone or Bimatoprost in anterior chamber via IC route has the potential in treating ocular inflammation and raised intraocular pressure. The complications such as hemorrhagic occlusive retinal vasculitis and toxic anterior segment syndrome have been documented with IC prophylaxis but are rare. In this review, we provide an overview of available IC drugs, their pharmacokinetics, the spectrum of activity, dosage and preparation, prophylactic and therapeutic usage, clinical efficacy, and safety profiles.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Rituka Gupta
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Priti Singh
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Vidhya Verma
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Sunil Verma
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Parul Mittal
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Samendra Karkhur
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Ananyan Sampath
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Rajiv R Mohan
- Department of Ophthalmology and Molecular Medicine, University of Missouri, Columbia, Missouri, USA
| | - Bhavana Sharma
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
16
|
Scelfo C, ElSheikh RH, Shamim MM, Abbasian J, Ghaffarieh A, Elhusseiny AM. Ocular Surface Disease in Glaucoma Patients. Curr Eye Res 2023; 48:219-230. [PMID: 35179417 DOI: 10.1080/02713683.2022.2041041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To review the most recent studies in the literature regarding the ocular surface in glaucoma patients and treatment options aimed to reduce ocular surface disease in this population. METHODS We performed a literature search in the electronic databases of PubMed CENT RAL, Google Scholar, EMBASE the Register of Controlled Trials, and Ovid MEDLINE using the following terms: "ocular surface", "dry eye", "glaucoma", "selective laser trabeculoplasty", "glaucoma surgery", "preservatives", "preservative free", "ocular surface disease index", "tear break up time", "MMP-9" and "conjunctival hyperemia". RESULTS Over the last several years, several studies have demonstrated the changes to the ocular surface in the setting of glaucoma, the best tests for markers of dry eye, and how management can be altered to help address ocular surface disease routinely or in preparation for glaucoma surgery. CONCLUSION Ocular surface disease in the glaucoma patient population is widely recognized. It should be addressed to maximize patient compliance and quality of life.
Collapse
Affiliation(s)
- Christina Scelfo
- Department of Ophthalmology, Boston Children's Hospital, Hawthorne, NY, USA
| | - Reem H ElSheikh
- Department of Ophthalmology, Kasr Al-Ainy Hospitals, Cairo University, Cairo, Egypt
| | - Muhammad M Shamim
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Javaneh Abbasian
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Alireza Ghaffarieh
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
17
|
Ioannou N, Luo J, Qin M, Di Luca M, Mathew E, Tagalakis AD, Lamprou DA, Yu-Wai-Man C. 3D-printed long-acting 5-fluorouracil implant to prevent conjunctival fibrosis in glaucoma. J Pharm Pharmacol 2023; 75:276-286. [PMID: 36617180 PMCID: PMC10813237 DOI: 10.1093/jpp/rgac100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To develop a sustained release 5-fluorouracil (5-FU) implant by three-dimensional (3D) printing to effectively prevent conjunctival fibrosis after glaucoma surgery. METHODS 3D-printed implants composed of polycaprolactone (PCL) and chitosan (CS) were fabricated by heat extrusion technology and loaded with 1% 5-FU. Light microscopy and scanning electron microscopy were used to study the surface morphology. The 5-FU concentration released over 8 weeks was measured by ultraviolet visible spectroscopy. The effects on cell viability, fibroblast contractility and the expression of key fibrotic genes were assessed in human conjunctival fibroblasts. KEY FINDINGS The PCL-CS-5-FU implant sustainably released 5-FU over 8 weeks and the peak concentration was over 6.1 μg/ml during weeks 1 and 2. The implant had a smooth surface and its total weight decreased by 3.5% after 8 weeks. The PCL-CS-5-FU implant did not affect cell viability in conjunctival fibroblasts and sustainably suppressed fibroblast contractility and key fibrotic genes for 8 weeks. CONCLUSIONS The PCL-CS-5-FU implant was biocompatible and degradable with a significant effect in suppressing fibroblast contractility. The PCL-CS-5-FU implant could be used as a sustained release drug implant, replacing the need for repeated 5-FU injections in clinic, to prevent conjunctival fibrosis after glaucoma surgery.
Collapse
Affiliation(s)
- Nicole Ioannou
- Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Jinyuan Luo
- Faculty of Life Sciences & Medicine, King’s College London, London, UK
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengqi Qin
- Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Matteo Di Luca
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | | | | | | | | |
Collapse
|
18
|
The Antibiotic Kitasamycin-A Potential Agent for Specific Fibrosis Preventing Therapy after Fistulating Glaucoma Surgery? Pharmaceutics 2023; 15:pharmaceutics15020329. [PMID: 36839651 PMCID: PMC9960401 DOI: 10.3390/pharmaceutics15020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
One major complication after fistulating glaucoma surgeries are fibroblast-mediated scarring processes and their specific prevention is key in the development of novel pharmaceutical concepts. Within this study a possible antifibrotic potential of kitasamycin (KM) in a transforming growth factor (TGF)-β1-mediated fibroblast model was evaluated in vitro. Primary ocular fibroblasts were isolated, cultivated and a dose-response test including determination of the half maximal effective concentration (EC50) for KM was conducted. Transformation of fibroblasts into myofibroblasts was induced by TGF-β1and immunofluorescence (IF), and Western blot (WB) analyses were performed with fibroblasts and myofibroblasts. IF analyses were carried out using antibodies against α-smooth muscle actin (α-SMA) and fibronectin, and protein detection of intracellular and extracellular proteins was performed by WB. Using the dose-response test, the viability, cytotoxicity and EC50 of KM after 24 and 48 h were determined. Fibroblasts exposed to various KM concentrations showed no increase in α-SMA and extracellular matrix expression. In TGF-ß1-stimulated myofibroblasts, KM inhibited the expression of α-SMA and fibronectin in a concentration-dependent manner. These findings demonstrate that KM could impair the transformation of fibroblasts into myofibroblasts and the expression of proteins involved in fibrotic processes, representing a potential agent for specific fibrosis prevention in future therapeutic concepts.
Collapse
|
19
|
Gilger BC. How study of naturally occurring ocular disease in animals improves ocular health globally. J Am Vet Med Assoc 2022; 260:1887-1893. [PMID: 36198052 DOI: 10.2460/javma.22.08.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this article, which is part of the Currents in One Health series, the role of naturally occurring ocular disease in animals is reviewed with emphasis on how the understanding of these ocular diseases contributes to one health initiatives, particularly the pathogenesis and treatment of ocular diseases common to animals and humans. Animals spontaneously develop ocular diseases that closely mimic those in humans, especially dry eye disease, herpes virus infection (cats), fungal keratitis (horses), bacterial keratoconjunctivitis, uveitis, and glaucoma. Both uveitis and glaucoma are common in domestic animals and humans, and many similarities exist in pathogenesis, genetics, and response to therapy. Furthermore, the study of inherited retinal disease in animals has particularly epitomized the one health concept, specifically the collaborative efforts of multiple disciplines working to attain optimal health for people and animals. Through this study of retinal disease in dogs, innovative therapies such as gene therapy have been developed. A unique opportunity exists to study ocular disease in shared environments to better understand the interplay between the environment, genetics, and ocular disease in both animals and humans. The companion Currents in One Health by Gilger, AJVR, December 2022, addresses in more detail recent studies of noninfectious immune-mediated animal ocular disease and their role in advancing ocular health globally.
Collapse
|
20
|
Akulo KA, Adali T, Moyo MTG, Bodamyali T. Intravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers (Basel) 2022; 14:polym14122359. [PMID: 35745935 PMCID: PMC9230531 DOI: 10.3390/polym14122359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is extensively treated with topical eye drops containing drugs. However, the retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the eye, such as rapid nasolacrimal drainage. Poor intraocular penetration and frequent administration may also cause ocular cytotoxicity. A novel approach to overcome these drawbacks is the use of injectable hydrogels administered intravitreously for sustained drug delivery to the target site. These injectable hydrogels are used as nanocarriers to intimately interact with specific diseased ocular tissues to increase the therapeutic efficacy and drug bioavailability of the anti-glaucomic drugs. The human eye is very delicate, and is sensitive to contact with any foreign body material. However, natural biopolymers are non-reactive, biocompatible, biodegradable, and lack immunogenic and inflammatory responses to the host whenever they are incorporated in drug delivery systems. These favorable biomaterial properties have made them widely applicable in biomedical applications, with minimal adversity. This review highlights the importance of using natural biopolymer-based intravitreal hydrogel drug delivery systems for glaucoma treatment over conventional methods.
Collapse
Affiliation(s)
- Kassahun Alula Akulo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
- Nanotechnology Research Center, Sabanci University SUNUM, Istanbul 34956, Turkey
- Correspondence:
| | - Mthabisi Talent George Moyo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Tulin Bodamyali
- Department of Pathology, Faculty of Medicine, Girne American University, Mersin 10, Girne 99428, Turkey;
| |
Collapse
|
21
|
Casson RJ. Medical therapy for glaucoma: A review. Clin Exp Ophthalmol 2022; 50:198-212. [PMID: 35037367 DOI: 10.1111/ceo.13989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
A number of pharmacological targets are exploited to modify the parameters in the Goldmann equation and reduce the intraocular pressure (IOP). This strategy constitutes the foundation for the medical management of glaucoma, the evolution of which, until only recently, has been in relative stagnation. A burst of innovation has produced new ocular hypotensive drugs and long-acting delivery methods, including intracameral delivery, which are expanding the clinician's medical armamentarium. A number of IOP-independent neuroprotection strategies have shown strong potential in animal models of glaucoma, but translational attempts have been surprisingly limited. However, while pharmacological options are expanding, the traditional role of topical medical therapy is being challenged by selective laser trabeculoplasty, micro-invasive glaucoma surgery, and sustained delivery methods. A scientifically rigorous assessment of new treatments will be critical to empower clinicians with evidence-based information to optimise vision preservation and quality of life outcomes for their patients.
Collapse
Affiliation(s)
- Robert J Casson
- Ophthalmic Research Laboratories, Adelaide Health & Medical Science Building, University of Adelaide, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
22
|
Pereira-da-Mota AF, Phan CM, Concheiro A, Jones L, Alvarez-Lorenzo C. Testing drug release from medicated contact lenses: The missing link to predict in vivo performance. J Control Release 2022; 343:672-702. [DOI: 10.1016/j.jconrel.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
|
23
|
Marchesi N, Fahmideh F, Boschi F, Pascale A, Barbieri A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells 2021; 10:2394. [PMID: 34572041 PMCID: PMC8469605 DOI: 10.3390/cells10092394] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The possible interconnection between the eye and central nervous system (CNS) has been a topic of discussion for several years just based on fact that the eye is properly considered an extension of the brain. Both organs consist of neurons and derived from a neural tube. The visual process involves photoreceptors that receive light stimulus from the external environment and send it to retinal ganglionic cells (RGC), one of the cell types of which the retina is composed. The retina, the internal visual membrane of the eye, processes the visual stimuli in electric stimuli to transfer it to the brain, through the optic nerve. Retinal chronic progressive neurodegeneration, which may occur among the elderly, can lead to different disorders of the eye such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). Mainly in the elderly population, but also among younger people, such ocular pathologies are the cause of irreversible blindness or impaired, reduced vision. Typical neurodegenerative diseases of the CSN are a group of pathologies with common characteristics and etiology not fully understood; some risk factors have been identified, but they are not enough to justify all the cases observed. Furthermore, several studies have shown that also ocular disorders present characteristics of neurodegenerative diseases and, on the other hand, CNS pathologies, i.e., Alzheimer disease (AD) and Parkinson disease (PD), which are causes of morbidity and mortality worldwide, show peculiar alterations at the ocular level. The knowledge of possible correlations could help to understand the mechanisms of onset. Moreover, the underlying mechanisms of these heterogeneous disorders are still debated. This review discusses the characteristics of the ocular illnesses, focusing on the relationship between the eye and the brain. A better comprehension could help in future new therapies, thus reducing or avoiding loss of vision and improve quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy; (N.M.); (F.F.); (F.B.); (A.P.)
| |
Collapse
|
24
|
Wróblewska KB, Jadach B, Muszalska-Kolos I. Progress in drug formulation design and delivery of medicinal substances used in ophthalmology. Int J Pharm 2021; 607:121012. [PMID: 34400274 DOI: 10.1016/j.ijpharm.2021.121012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Due to the very low bioavailability of drugs administered to the surface of the eyeball, issues related to the formulation of an ophthalmic drug pose a technological challenge. The essence of an ophthalmic drug is the selection of an appropriate active substance (API), but also auxiliary substances that determine the desired drug quality and API availability. The ophthalmic drug is not only classic eye drops. Therefore, on the basis of the literature data, the properties and application of auxiliary substances increasing the pharmaceutical availability of API, improving the penetration of API into the eye structures and modifying the viscosity of eye drops were characterized. The possibility of chemical modification of API and the use of prodrugs in ophthalmic drug forms was also noted. Taking into account the progress in the field of ophthalmic drug formulation, the use of multi-compartment systems (lipid particles, nanoparticles, microparticles, liposomes, niosomes, dendrimers) and modern ophthalmic drug delivery systems (inserts, implants, microneedles, contact lenses, ionophoretic systems) have been indicated. Examples of solutions already used by manufacturers, as well as those in the phase of laboratory or clinical trials, were indicated.
Collapse
Affiliation(s)
- Katarzyna B Wróblewska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
25
|
Analysis of the Responsiveness of Latanoprost, Travoprost, Bimatoprost, and Tafluprost in the Treatment of OAG/OHT Patients. J Ophthalmol 2021; 2021:5586719. [PMID: 34123413 PMCID: PMC8169256 DOI: 10.1155/2021/5586719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Aim Within the clinical setting, some patients have been identified as lacking in response to PGAs. This meta-analysis study aimed to evaluate the responsiveness of latanoprost, travoprost, bimatoprost, and tafluprost in OAG/OHT patients, latanoprost nonresponders (LNRs), and the IOP-reducing efficacy and safety. Methods A literature search was conducted on PubMed, Embase, and the Cochrane Controlled Trials Register. The primary clinical endpoint was the number of responders at the end of the study. The secondary clinical endpoint was the IOP reduction at the endpoint from baseline. Safety evaluation included five common adverse events: conjunctival hyperemia, hypertrichosis, ocular burning, ocular itching, and foreign-body sensation. Results Eleven articles containing ten RCTs were included in this meta-analysis study. The results highlighted that, in the OAG/OHT population, there was no statistically significant difference in the responsiveness of the four PGAs. Bimatoprost had a better IOP-reducing efficacy than latanoprost. There was no significant difference in the IOP-reducing efficacy of travoprost, latanoprost, and tafluprost. In LNRs, the responsiveness of bimatoprost, travoprost, and latanoprost did not show statistical differences. Bimatoprost reduced IOP with a greater extent than latanoprost and travoprost in LNRs, while there was no significant difference in the IOP-reducing efficacy of travoprost and latanoprost. No serious adverse events occurred with the treatment of the four PGAs. The prevalence of conjunctival hyperemia due to bimatoprost or tafluprost was significantly higher than that of latanoprost. Other adverse events had no significant difference between the four drugs. Conclusion The existing studies cannot prove that latanoprost, travoprost, bimatoprost, and tafluprost have different responsiveness in OAG/OHT patients. Switching to bimatoprost or travoprost cannot achieve a significant improvement in responsiveness in LNRs. Bimatoprost has a better IOP-reducing efficacy than latanoprost and travoprost. No serious adverse events occurred during treatment with any medication we studied.
Collapse
|
26
|
Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Vet Ophthalmol 2021; 24 Suppl 1:16-33. [PMID: 33411993 PMCID: PMC7979454 DOI: 10.1111/vop.12858] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.
Collapse
Affiliation(s)
- András M. Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristin L. Koehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Shin Ae Park
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|