1
|
Sheng M, Zheng Y, Li K, Ye C, Cao G. Optimized electroporation buffer improves transfection and prime editing efficiency in adult bovine fibroblasts. Gene 2025; 946:149315. [PMID: 39922551 DOI: 10.1016/j.gene.2025.149315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
For livestock breeding, using somatic cells from adult animals for gene editing and subsequent cloning allows the preservation and enhancement of superior traits from the parent directly in the offspring, while avoiding the loss of genetic gain that can occur through crossbreeding. However, primary cells generally more difficult to transfect and perform gene editing. To date, most related studies have used more vigorous fetal fibroblasts as donor cells, while using somatic cells from adult animals requires more post-editing screening efforts due to the low yield of edited cells. Here, we performed electroporation on adult bovine ear fibroblasts (BEFs) under various conditions such as electrical pulse settings, plasmid dosage, cell density, and concentration of electroporation buffer, and evaluated the transfect efficiency using flow cytometry analysis. We confirmed that the 270 V-10-10 program (270 V, 10 ms, 10 cycles) using 1.5 million cells and 5 µg of EGFP plasmid yielded the highest number of EGFP positive cells. Additionally, we used prime editor (PE) to edit the MSTN locus in BEFs. More importantly, we discovered that lowering the osmolarity of the electroporation buffer improves both electroporation and gene editing efficiency, which relate to the repression of cGAS-STING pathway. Our finding provides valuable references for using electroporation methods in adult bovine primary cell gene editing.
Collapse
Affiliation(s)
- Mingxuan Sheng
- Henan University Kaifeng China; Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng 475004 China.
| | - Yuequan Zheng
- Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng 475004 China.
| | - Kunlong Li
- Henan University Kaifeng China; Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng 475004 China.
| | - Chongyuan Ye
- Henan University Kaifeng China; Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng 475004 China.
| | - Gengsheng Cao
- Henan University Kaifeng China; Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng 475004 China.
| |
Collapse
|
2
|
Xu C, Fang X, Xu X, Wei X. Genetic engineering drives the breakthrough of pig models in liver disease research. LIVER RESEARCH 2024; 8:131-140. [PMID: 39957748 PMCID: PMC11771255 DOI: 10.1016/j.livres.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025]
Abstract
Compared with the widely used rodents, pigs are anatomically, physiologically, and genetically more similar to humans, making them high-quality models for the study of liver diseases. Here, we review the latest research progress on pigs as a model of human liver disease, including methods for establishing them and their advantages in studying cystic fibrosis liver disease, acute liver failure, liver regeneration, non-alcoholic fatty liver disease, liver tumors, and xenotransplantation. We also emphasize the importance of genetic engineering techniques, mainly the CRISPR/Cas9 system, which has greatly enhanced the utility of porcine models as a tool for substantially advancing liver disease research. Genetic engineering is expected to propel the pig as one of the irreplaceable animal models for future biomedical research.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Navarro-Serna S, Piñeiro-Silva C, Fernández-Martín I, Dehesa-Etxebeste M, López de Munain A, Gadea J. Oocyte electroporation prior to in vitro fertilization is an efficient method to generate single, double, and multiple knockout porcine embryos of interest in biomedicine and animal production. Theriogenology 2024; 218:111-118. [PMID: 38320372 DOI: 10.1016/j.theriogenology.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Genetically modified pigs play a critical role in mimicking human diseases, xenotransplantation, and the development of pigs resistant to viral diseases. The use of programmable endonucleases, including the CRISPR/Cas9 system, has revolutionized the generation of genetically modified pigs. This study evaluates the efficiency of electroporation of oocytes prior to fertilization in generating edited gene embryos for different models. For single gene editing, phospholipase C zeta (PLC ζ) and fused in sarcoma (FUS) genes were used, and the concentration of sgRNA and Cas9 complexes was optimized. The results showed that increasing the concentration resulted in higher mutation rates without affecting the blastocyst rate. Electroporation produced double knockouts for the TPC1/TPC2 genes with high efficiency (79 %). In addition, resistance to viral diseases such as PRRS and swine influenza was achieved by electroporation, allowing the generation of double knockout embryo pigs (63 %). The study also demonstrated the potential for multiple gene editing in a single step using electroporation, which is relevant for xenotransplantation. The technique resulted in the simultaneous mutation of 5 genes (GGTA1, B4GALNT2, pseudo B4GALNT2, CMAH and GHR). Overall, electroporation proved to be an efficient and versatile method to generate genetically modified embryonic pigs, offering significant advances in biomedical and agricultural research, xenotransplantation, and disease resistance. Electroporation led to the processing of numerous oocytes in a single session using less expensive equipment. We confirmed the generation of gene-edited porcine embryos for single, double, or quintuple genes simultaneously without altering embryo development to the blastocyst stage. The results provide valuable insights into the optimization of gene editing protocols for different models, opening new avenues for research and applications in this field.
Collapse
Affiliation(s)
- Sergio Navarro-Serna
- Department Physiology, University of Murcia, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30100, Murcia, Spain
| | - Celia Piñeiro-Silva
- Department Physiology, University of Murcia, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30100, Murcia, Spain
| | - Irene Fernández-Martín
- Department Physiology, University of Murcia, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30100, Murcia, Spain
| | | | - Adolfo López de Munain
- IIS Biodonostia, Neuroscience, San Sebastián, Spain; Department of Neurology. Hospital Universitario Donostia-OSAKIDETZA, San Sebastián, Spain; Department of Neurosciences. University of the Basque Country (UPV-EHU), San Sebastián, Spain; CIBERNED (CIBER), Institute Carlos III, Madrid, Spain
| | - Joaquín Gadea
- Department Physiology, University of Murcia, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30100, Murcia, Spain.
| |
Collapse
|
4
|
Lopez KJ, Spence JP, Li W, Zhang W, Wei B, Cross-Najafi AA, Butler JR, Cooper DKC, Ekser B, Li P. Porcine UL-16 Binding Protein 1 Is Not a Functional Ligand for the Human Natural Killer Cell Activating Receptor NKG2D. Cells 2023; 12:2587. [PMID: 37998322 PMCID: PMC10670462 DOI: 10.3390/cells12222587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Natural killer (NK) cells play a vital role in xenotransplantation rejection. One approach to induce NK cell immune tolerance is to prevent the NK cell-mediated direct killing of porcine cells by targeting the interaction of the activating receptor NKG2D and its ligands. However, the identity of porcine ligands for the human NKG2D receptor has remained elusive. Previous studies on porcine UL-16 binding protein 1 (pULBP-1) as a ligand for human NKG2D have yielded contradictory results. The goal of the present study was to clarify the role of pULBP-1 in the immune response and its interaction with human NKG2D receptor. To accomplish this, the CRISPR/Cas9 gene editing tool was employed to disrupt the porcine ULBP-1 gene in a 5-gene knockout porcine endothelial cell line (GGTA1, CMAH, β4galNT2, SLA-I α chain, and β-2 microglobulin, 5GKO). A colony with two allele mutations in pULBP-1 was established as a 6-gene knockout pig cell line (6GKO). We found that pULBP-1-deficient pig cells exhibited a reduced binding capacity to human NKG2D-Fc, a recombinant chimera protein. However, the removal of ULBP-1 from porcine endothelial cells did not significantly impact human NK cell degranulation or cytotoxicity upon stimulation with the pig cells. These findings conclusively demonstrate that pULBP-1 is not a crucial ligand for initiating xenogeneic human NK cell activation.
Collapse
Affiliation(s)
- Kevin J. Lopez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - John Paul Spence
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Wenjun Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - Barry Wei
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - Arthur A. Cross-Najafi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - James R. Butler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - David K. C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| |
Collapse
|
5
|
Burlak C, Wang ZY, Martens G, Estrada J, Reyes L, Novara Gennuso VM, Vianna R, Tector M, Tector AJ. Xenoreactive antibodies in α-granules of human platelets bind pig liver endothelial cells. Xenotransplantation 2023; 30:e12834. [PMID: 37971870 DOI: 10.1111/xen.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Pig liver xenotransplantation is limited by a thrombocytopenic coagulopathy that occurs immediately following graft reperfusion. In vitro and ex vivo studies from our lab suggested that the thrombocytopenia may be the result of a species incompatibility in platelet glycosylation. Realization that platelet α-granules contain antibodies caused us to reevaluate whether the thrombocytopenia in liver xenotransplantation could occur because IgM and IgG from inside platelet α-granules bound to pig liver sinusoidal endothelial cells (LSECs). Our in vitro analysis of IgM and IgG from inside α-granules showed that platelets do carry xenoreactive antibodies that can bind to known xenoantigens. This study suggests that thrombocytopenia occurring following liver xenotransplantation could occur because of xenoreactive antibodies tethering human platelets to the pig LSEC enabling the platelet to be phagocytosed. These results suggest genetic engineering strategies aimed at reducing xenoantigens on the surface of pig LSEC will be effective in eliminating the thrombocytopenia that limits survival in liver xenotransplantation.
Collapse
Affiliation(s)
- Christopher Burlak
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Zheng Yu Wang
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Greg Martens
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose Estrada
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Luz Reyes
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | | | - Rodrigo Vianna
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | | | - Alfred Joseph Tector
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Cooper DKC, Pierson RN. Milestones on the path to clinical pig organ xenotransplantation. Am J Transplant 2023; 23:326-335. [PMID: 36775767 PMCID: PMC10127379 DOI: 10.1016/j.ajt.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Progress in pig organ xenotransplantation has been made largely through (1) genetic engineering of the organ-source pig to protect its tissues from the human innate immune response, and (2) development of an immunosuppressive regimen based on blockade of the CD40/CD154 costimulation pathway to prevent the adaptive immune response. In the 1980s, after transplantation into nonhuman primates (NHPs), wild-type (genetically unmodified) pig organs were rejected within minutes or hours. In the 1990s, organs from pigs expressing a human complement-regulatory protein (CD55) transplanted into NHPs receiving intensive conventional immunosuppressive therapy functioned for days or weeks. When costimulation blockade was introduced in 2000, the adaptive immune response was suppressed more readily. The identification of galactose-α1,3-galactose as the major antigen target for human and NHP anti-pig antibodies in 1991 allowed for deletion of expression of galactose-α1,3-galactose in 2003, extending pig graft survival for up to 6 months. Subsequent gene editing to overcome molecular incompatibilities between the pig and primate coagulation systems proved additionally beneficial. The identification of 2 further pig carbohydrate xenoantigens allowed the production of 'triple-knockout' pigs that are preferred for clinical organ transplantation. These combined advances enabled the first clinical pig heart transplant to be performed and opened the door to formal clinical trials.
Collapse
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Xi J, Zheng W, Chen M, Zou Q, Tang C, Zhou X. Genetically engineered pigs for xenotransplantation: Hopes and challenges. Front Cell Dev Biol 2023; 10:1093534. [PMID: 36712969 PMCID: PMC9878146 DOI: 10.3389/fcell.2022.1093534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/14/2023] Open
Abstract
The shortage of donor resources has greatly limited the application of clinical xenotransplantation. As such, genetically engineered pigs are expected to be an ideal organ source for xenotransplantation. Most current studies mainly focus on genetically modifying organs or tissues from donor pigs to reduce or prevent attack by the human immune system. Another potential organ source is interspecies chimeras. In this paper, we reviewed the progress of the genetically engineered pigs from the view of immunologic barriers and strategies, and discussed the possibility and challenges of the interspecies chimeras.
Collapse
|
8
|
Lu TY, Xu XL, Du XG, Wei JH, Yu JN, Deng SL, Qin C. Advances in Innate Immunity to Overcome Immune Rejection during Xenotransplantation. Cells 2022; 11:cells11233865. [PMID: 36497122 PMCID: PMC9735653 DOI: 10.3390/cells11233865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transplantation is an effective approach for treating end-stage organ failure. There has been a long-standing interest in xenotransplantation as a means of increasing the number of available organs. In the past decade, there has been tremendous progress in xenotransplantation accelerated by the development of rapid gene-editing tools and immunosuppressive therapy. Recently, the heart and kidney from pigs were transplanted into the recipients, which suggests that xenotransplantation has entered a new era. The genetic discrepancy and molecular incompatibility between pigs and primates results in barriers to xenotransplantation. An increasing body of evidence suggests that innate immune responses play an important role in all aspects of the xenogeneic rejection. Simultaneously, the role of important cellular components like macrophages, natural killer (NK) cells, and neutrophils, suggests that the innate immune response in the xenogeneic rejection should not be underestimated. Here, we summarize the current knowledge about the innate immune system in xenotransplantation and highlight the key issues for future investigations. A better understanding of the innate immune responses in xenotransplantation may help to control the xenograft rejection and design optimal combination therapies.
Collapse
Affiliation(s)
- Tian-Yu Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Xue-Ling Xu
- National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu-Guang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin-Hua Wei
- Cardiovascular Surgery Department, Center of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jia-Nan Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Correspondence: (S.-L.D.); (C.Q.)
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Changping National Laboratory (CPNL), Beijing 102206, China
- Correspondence: (S.-L.D.); (C.Q.)
| |
Collapse
|
9
|
Ruan J, Zhang X, Zhao S, Xie S. Advances in CRISPR-Based Functional Genomics and Nucleic Acid Detection in Pigs. Front Genet 2022; 13:891098. [PMID: 35711930 PMCID: PMC9195075 DOI: 10.3389/fgene.2022.891098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xuying Zhang
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Ogun OJ, Thaller G, Becker D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. BIOLOGY 2022; 11:biology11060903. [PMID: 35741423 PMCID: PMC9219854 DOI: 10.3390/biology11060903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Humans frequently interact with pigs and porcine meat is the most consumed red meat in the world. In addition, due to the many physiological and anatomical similarities shared between pigs and humans, in contrast to most mammalian species, pigs are a suitable model organism and pig organs can be used for xenotransplantation. However, one major challenge of porcine meat consumption and xenotransplantation is the xenoreactivity between red meat Neu5Gc sialic acid and human anti-Neu5Gc antibodies, which are associated with certain diseases and disorders. Furthermore, pigs express both α2-3 and α2-6 Sia linkages that could serve as viable receptors for viral infections, reassortments, and cross-species transmission of viruses. Therefore, pigs play a significant role in sialic acid research and, in general, in human health. Abstract Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
- Correspondence: (O.J.O.); (D.B.)
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Correspondence: (O.J.O.); (D.B.)
| |
Collapse
|
11
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
12
|
Navarro-Serna S, Dehesa-Etxebeste M, Piñeiro-Silva C, Romar R, Lopes JS, López de Munaín A, Gadea J. Generation of Calpain-3 knock-out porcine embryos by CRISPR-Cas9 electroporation and intracytoplasmic microinjection of oocytes before insemination. Theriogenology 2022; 186:175-184. [DOI: 10.1016/j.theriogenology.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/31/2023]
|
13
|
Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med 2022; 5:141-152. [PMID: 35343091 PMCID: PMC9043727 DOI: 10.1002/ame2.12223] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
Animal models of human diseases play a critical role in medical research. Pigs are anatomically and physiologically more like humans than are small rodents such as mice, making pigs an attractive option for modeling human diseases. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, and various genetic diseases. We also discuss areas that need to be improved. Animal models of human diseases play a critical role in medical research. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and xenotransplantation.
Collapse
Affiliation(s)
- Naipeng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Singh AK, Goerlich CE, Shah AM, Zhang T, Tatarov I, Ayares D, Horvath KA, Mohiuddin MM. Cardiac Xenotransplantation: Progress in Preclinical Models and Prospects for Clinical Translation. Transpl Int 2022; 35:10171. [PMID: 35401039 PMCID: PMC8985160 DOI: 10.3389/ti.2022.10171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022]
Abstract
Survival of pig cardiac xenografts in a non-human primate (NHP) model has improved significantly over the last 4 years with the introduction of costimulation blockade based immunosuppression (IS) and genetically engineered (GE) pig donors. The longest survival of a cardiac xenograft in the heterotopic (HHTx) position was almost 3 years and only rejected when IS was stopped. Recent reports of cardiac xenograft survival in a life-sustaining orthotopic (OHTx) position for 6 months is a significant step forward. Despite these achievements, there are still several barriers to the clinical success of xenotransplantation (XTx). This includes the possible transmission of porcine pathogens with pig donors and continued xenograft growth after XTx. Both these concerns, and issues with additional incompatibilities, have been addressed recently with the genetic modification of pigs. This review discusses the spectrum of issues related to cardiac xenotransplantation, recent progress in preclinical models, and its feasibility for clinical translation.
Collapse
Affiliation(s)
- Avneesh K. Singh
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Corbin E. Goerlich
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Aakash M. Shah
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Tianshu Zhang
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Ivan Tatarov
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | | | - Keith A. Horvath
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, United States
| | - Muhammad M. Mohiuddin
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
- *Correspondence: Muhammad M. Mohiuddin,
| |
Collapse
|
15
|
Oh HJ, Chung E, Kim J, Kim MJ, Kim GA, Lee SH, Ra K, Eom K, Park S, Chae JH, Kim JS, Lee BC. Generation of a Dystrophin Mutant in Dog by Nuclear Transfer Using CRISPR/Cas9-Mediated Somatic Cells: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23052898. [PMID: 35270040 PMCID: PMC8911381 DOI: 10.3390/ijms23052898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Dystrophinopathy is caused by mutations in the dystrophin gene, which lead to progressive muscle degeneration, necrosis, and finally, death. Recently, golden retrievers have been suggested as a useful animal model for studying human dystrophinopathy, but the model has limitations due to difficulty in maintaining the genetic background using conventional breeding. In this study, we successfully generated a dystrophin mutant dog using the CRISPR/Cas9 system and somatic cell nuclear transfer. The dystrophin mutant dog displayed phenotypes such as elevated serum creatine kinase, dystrophin deficiency, skeletal muscle defects, an abnormal electrocardiogram, and avoidance of ambulation. These results indicate that donor cells with CRISPR/Cas9 for a specific gene combined with the somatic cell nuclear transfer technique can efficiently produce a dystrophin mutant dog, which will help in the successful development of gene therapy drugs for dogs and humans.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Eugene Chung
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Korea;
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 5029, Korea; (J.K.); (K.E.)
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Geon A. Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
- Department of Clinical Pathology, College of Health Science, Eulji University, Uijeongbu 11759, Korea
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 5029, Korea; (J.K.); (K.E.)
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (S.P.); (J.-H.C.)
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (S.P.); (J.-H.C.)
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Korea;
- Correspondence: (J.-S.K.); (B.C.L.); Tel.: +82-2-880-9327 (J.-S.K.); +82-2-880-1269 (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
- Correspondence: (J.-S.K.); (B.C.L.); Tel.: +82-2-880-9327 (J.-S.K.); +82-2-880-1269 (B.C.L.)
| |
Collapse
|
16
|
Dimitrakakis N, Waterhouse A, Lightbown S, Leslie DC, Jiang A, Bolgen DE, Lightbown K, Cascio K, Aviles G, Pollack E, Jurek S, Donovan K, Hicks-Berthet JB, Imaizumi K, Super M, Ingber DE, Nedder A. Biochemical and Hematologic Reference Intervals for Anesthetized, Female, Juvenile Yorkshire Swine. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:21-30. [PMID: 34903312 PMCID: PMC8786382 DOI: 10.30802/aalas-jaalas-21-000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Swine are widely used in biomedical research, translational research, xenotransplantation, and agriculture. For these uses, physiologic reference intervals are extremely important for assessing the health status of the swine and diagnosing disease. However, few biochemical and hematologic reference intervals that comply with guidelines from the Clinical and Laboratory Standards Institute and the American Society for Veterinary Clinical Pathology are available for swine. These guidelines state that reference intervals should be determined by using 120 subjects or more. The aim of this study was to generate hematologic and biochemical reference intervals for female, juvenile Yorkshire swine (Sus scrofa domesticus) and to compare these values with those for humans and baboons (Papio hamadryas). Blood samples were collected from the femoral artery or vein of female, juvenile Yorkshire swine, and standard hematologic and biochemical parameters were analyzed in multiple studies. Hematologic and biochemical reference intervals were calculated for arterial blood samples from Yorkshire swine (n = 121 to 124); human and baboon reference intervals were obtained from the literature. Arterial reference intervals for Yorkshire swine differed significantly from those for humans and baboons in all commonly measured parameters except platelet count, which did not differ significantly from the human value, and glucose, which was not significantly different from the baboon value. These data provide valuable information for investigators using female, juvenile Yorkshire swine for biomedical re- search, as disease models, and in xenotransplantation studies as well as useful physiologic information for veterinarians and livestock producers. Our findings highlight the need for caution when comparing data and study outcomes between species.
Collapse
Affiliation(s)
- Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Anna Waterhouse
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Shanda Lightbown
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Daniel C Leslie
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dana E Bolgen
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kayla Lightbown
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kelly Cascio
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Gabriela Aviles
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Pollack
- Animal Research, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Sam Jurek
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kathryn Donovan
- Animal Research, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Julia B Hicks-Berthet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kazuo Imaizumi
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Arthur Nedder
- Animal Research, Boston Children’s Hospital, Boston, Massachusetts; and
| |
Collapse
|
17
|
Kano M, Mizutani E, Homma S, Masaki H, Nakauchi H. Xenotransplantation and interspecies organogenesis: current status and issues. Front Endocrinol (Lausanne) 2022; 13:963282. [PMID: 35992127 PMCID: PMC9388829 DOI: 10.3389/fendo.2022.963282] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreas (and islet) transplantation is the only curative treatment for type 1 diabetes patients whose β-cell functions have been abolished. However, the lack of donor organs has been the major hurdle to save a large number of patients. Therefore, transplantation of animal organs is expected to be an alternative method to solve the serious shortage of donor organs. More recently, a method to generate organs from pluripotent stem cells inside the body of other species has been developed. This interspecies organ generation using blastocyst complementation (BC) is expected to be the next-generation regenerative medicine. Here, we describe the recent advances and future prospects for these two approaches.
Collapse
Affiliation(s)
- Mayuko Kano
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eiji Mizutani
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shota Homma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Hideki Masaki
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Hiromitsu Nakauchi, ; Hideki Masaki,
| | - Hiromitsu Nakauchi
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Hiromitsu Nakauchi, ; Hideki Masaki,
| |
Collapse
|
18
|
Adams AB, Lovasik BP, Faber DA, Burlak C, Breeden C, Estrada JL, Reyes LM, Vianna RM, Tector MF, Tector AJ. Anti-C5 Antibody Tesidolumab Reduces Early Antibody-mediated Rejection and Prolongs Survival in Renal Xenotransplantation. Ann Surg 2021; 274:473-480. [PMID: 34238812 PMCID: PMC8915445 DOI: 10.1097/sla.0000000000004996] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Pig-to-primate renal xenotransplantation is plagued by early antibody-mediated graft loss which precludes clinical application of renal xenotransplantation. We evaluated whether temporary complement inhibition with anti-C5 antibody Tesidolumab could minimize the impact of early antibody-mediated rejection in rhesus monkeys receiving pig kidneys receiving costimulatory blockade-based immunosuppression. METHODS Double (Gal and Sda) and triple xenoantigen (Gal, Sda, and SLA I) pigs were created using CRISPR/Cas. Kidneys from DKO and TKO pigs were transplanted into rhesus monkeys that had the least reactive crossmatches. Recipients received anti-C5 antibody weekly for 70 days, and T cell depletion, anti-CD154, mycophenolic acid, and steroids as baseline immunosuppression (n = 7). Control recipients did not receive anti-C5 therapy (n = 10). RESULTS Temporary anti-C5 therapy reduced early graft loss secondary to antibody-mediated rejection and improved graft survival (P < 0.01). Deleting class I MHC (SLA I) in donor pigs did not ameliorate early antibody-mediated rejection (table). Anti-C5 therapy did not allow for the use of tacrolimus instead of anti-CD154 (table), prolonging survival to a maximum of 62 days. CONCLUSION Inhibition of the C5 complement subunit prolongs renal xenotransplant survival in a pig to non-human primate model.
Collapse
Affiliation(s)
- Andrew B Adams
- University of Minnesota School of Medicine, Minneapolis MN
| | | | | | | | | | | | - Luz M Reyes
- University of Miami School of Medicine, Miami, FL
| | | | | | | |
Collapse
|
19
|
Choe HM, Luo ZB, Kang JD, Oh MJ, An HJ, Yin XJ. Pathological features in 'humanized' neonatal pig. Anim Biotechnol 2021; 34:301-309. [PMID: 34392816 DOI: 10.1080/10495398.2021.1962896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytidine monophosphate-Nacetylneuraminic acid (Neu5Ac) hydroxylase (CMAH) and glycoprotein, alpha1, 3-galactosyltransferase (GGTA1) double knockout (DKO) pig models were produced to reduce immune reaction for xenotransplantation. However, the role of Neu5Gc and α-Gal in pigs has not been fully elucidated and it is necessary to consider the after-effect of inactivation of GGTA1 and CMAH in pigs. Hematological profiles of DKO pigs were analyzed through complete blood count (CBC). Histology of liver and spleen of DKO were investigated, and lectin blotting and mass spectrometry (MS) were performed to explore glycosylation changes in red blood cell (RBC) membranes of DKO pigs. DKO pigs showed common clinical signs such as weakness (100%), dyspnea (90%) and constipation (65%). DKO pigs revealed a significant decrease in RBC, hemoglobin (HGB) and hematocrit (HGB), and an increase in white blood cell (WBC), lymphocyte (LYM), monocyte (MON), and erythrocyte mean corpuscular volume (MCV). DKO piglets showed swollen liver and spleen, and exhibited raised deposition of hemosiderin and severe bleeding. Lectin assay and MS proved variations in glycosylation on RBC membranes. GGTA1/CMAH DKO pigs developed pathological features which are similar to anemic symptoms, and the variations in glycosylation on RBC membranes of DKO pigs may be attributed to the pathologies observed.
Collapse
Affiliation(s)
- Hak Myong Choe
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| |
Collapse
|
20
|
Shim J, Ko N, Kim HJ, Lee Y, Lee JW, Jin DI, Kim H, Choi K. Human immune reactivity of GGTA1/CMAH/A3GALT2 triple knockout Yucatan miniature pigs. Transgenic Res 2021; 30:619-634. [PMID: 34232440 PMCID: PMC8478729 DOI: 10.1007/s11248-021-00271-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the effect of a triple knockout of the genes alpha-1,3-galactosyltransferase (GGTA1), cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and alpha 1,3-galactosyltransferase 2 (A3GALT2) in Yucatan miniature pigs on human immune reactivity. We used the CRISPR/Cas9 system to create pigs lacking GGTA1 (GTKO) and GGTA1/CMAH/A3GALT2 triple gene knockout (TKO). The expression of all three xenoantigens was absent in TKO pigs, but there was no additional reduction in the level of Galα1,3Gal (αGal) epitopes expression in the A3GALT2 gene KO. Peripheral blood mononuclear cells (PBMCs), aorta endothelial cells (AECs), and cornea endothelial cells (CECs) were isolated from these pigs, and their ability to bind human IgM/IgG and their cytotoxicity in human sera were evaluated. Compared to wild type (WT) pigs, the level of human antibody binding of the PBMCs, AECs, and CECs of the transgenic pigs (GTKO and TKO) was significantly reduced. However, there were significant differences in human antibody binding between GTKO and TKO depending on the cell type. Human antibody binding of TKO pigs was less than that of GTKO on PBMCs but was similar between GTKO and TKO pigs for AECs and CECs. Cytotoxicity of transgenic pig (GTKO and TKO) PBMCs and AECs was significantly reduced compared to that of WT pigs. However, TKO pigs showed a reduction in cytotoxicity compared to GTKO pigs on PBMCs, whereas in AECs from both TKO and GTKO pigs, there was no difference. The cytotoxicity of transgenic pig CECs was significantly decreased from that of WT at 300 min, but there was no significant reduction in TKO pigs from GTKO. Our results indicate that genetic modification of donor pigs for xenotransplantation should be tailored to the target organ and silencing of additional genes such as CMAH or A3GALT2 based on GTKO might not be essential in Yucatan miniature pigs.
Collapse
Affiliation(s)
- Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
21
|
Singh P, Ali SA. Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals. Vet Sci 2021; 8:122. [PMID: 34209174 PMCID: PMC8309983 DOI: 10.3390/vetsci8070122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.
Collapse
Affiliation(s)
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India;
| |
Collapse
|
22
|
Li P, Walsh JR, Lopez K, Isidan A, Zhang W, Chen AM, Goggins WC, Higgins NG, Liu J, Brutkiewicz RR, Smith LJ, Hara H, Cooper DKC, Ekser B. Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses. Sci Rep 2021; 11:13131. [PMID: 34162938 PMCID: PMC8222275 DOI: 10.1038/s41598-021-92543-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
Xenotransplantation (cross-species transplantation) using genetically-engineered pig organs offers a potential solution to address persistent organ shortage. Current evaluation of porcine genetic modifications is to monitor the nonhuman primate immune response and survival after pig organ xenotransplantation. This measure is an essential step before clinical xenotransplantation trials, but it is time-consuming, costly, and inefficient with many variables. We developed an efficient approach to quickly examine human-to-pig xeno-immune responses in vitro. A porcine endothelial cell was characterized and immortalized for genetic modification. Five genes including GGTA1, CMAH, β4galNT2, SLA-I α chain, and β2-microglobulin that are responsible for the production of major xenoantigens (αGal, Neu5Gc, Sda, and SLA-I) were sequentially disrupted in immortalized porcine endothelial cells using CRISPR/Cas9 technology. The elimination of αGal, Neu5Gc, Sda, and SLA-I dramatically reduced the antigenicity of the porcine cells, though the cells still retained their ability to provoke human natural killer cell activation. In summary, evaluation of human immune responses to genetically modified porcine cells in vitro provides an efficient method to identify ideal combinations of genetic modifications for improving pig-to-human compatibility, which should accelerate the application of xenotransplantation to humans.
Collapse
Affiliation(s)
- Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Julia R Walsh
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, West Lafayette, IN, USA
| | - Kevin Lopez
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abdulkadir Isidan
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela M Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William C Goggins
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J Smith
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Birmingham at Alabama, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Birmingham at Alabama, Birmingham, AL, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Battellino T, Bacala R, Gigolyk B, Ong G, Teraiya MV, Perreault H. Liquid chromatography-tandem mass spectrometry glycoproteomic study of porcine IgG and detection of subtypes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9063. [PMID: 33538041 DOI: 10.1002/rcm.9063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE While high-throughput proteomic methods have been widely applied to monoclonal antibodies and human immunoglobulin gamma (IgG) samples, less information is available on porcine IgG. As pigs are considered one of the most suitable species for xenotransplantation, it is important to characterize IgG amino acid sequences and glycosylation profiles, which is the focus of this study. METHODS Three different purified porcine IgG samples, including wild-type and knockout species, were digested with trypsin and enriched for glycopeptides. Digestion mixtures were spiked with a mixture of six standard peptides. Analysis was performed using electrospray ionization liquid chromatography-tandem mass spectrometry (MS/MS) in standard MS/MS data-dependent acquisition mode on a hybrid triple quadrupole time-of-flight mass spectrometer. RESULTS To facilitate the classification of subtypes detected experimentally, UniprotKB database entries were organized using comparative alignment scores. Sequences were grouped based on 11 different subtypes as translated from GenBank entries. Proteomic searches were accomplished automatically using specialized software, whereas glycoprotein searches were performed manually by monitoring the extracted chromatograms of diagnostic MS/MS glycan fragments and studying their corresponding mass spectra; 40-50 non-glycosylated peptides and 4-5 glycosylated peptides were detected in each sample, with several glycoforms per sequence. CONCLUSIONS Proteomic analysis of porcine IgG is complicated by factors such as the presence of several subtypes, redundant heavy chain (HC) sequences in protein databases, and the lack of consistent cross-referencing between databases. Aligning and comparing HC sequences were necessary to eliminate redundancy. This study highlights the complexity of pig IgG and shows the importance of MS in proteomics and glycoproteomics.
Collapse
Affiliation(s)
- Taylor Battellino
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Raymond Bacala
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Baylie Gigolyk
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gideon Ong
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Milan V Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
25
|
CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. Int J Mol Sci 2021; 22:ijms22063196. [PMID: 33801123 PMCID: PMC8004187 DOI: 10.3390/ijms22063196] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR/Cas (clustered regularly interspaced short palindromic repeats linked to Cas nuclease) technology has revolutionized many aspects of genetic engineering research. Thanks to it, it became possible to study the functions and mechanisms of biology with greater precision, as well as to obtain genetically modified organisms, both prokaryotic and eukaryotic. The changes introduced by the CRISPR/Cas system are based on the repair paths of the single or double strand DNA breaks that cause insertions, deletions, or precise integrations of donor DNA. These changes are crucial for many fields of science, one of which is the use of animals (pigs) as a reservoir of tissues and organs for xenotransplantation into humans. Non-genetically modified animals cannot be used to save human life and health due to acute immunological reactions resulting from the phylogenetic distance of these two species. This review is intended to collect and summarize the advantages as well as achievements of the CRISPR/Cas system in pig-to-human xenotransplantation research. In addition, it demonstrates barriers and limitations that require careful evaluation before attempting to experiment with this technology.
Collapse
|
26
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
27
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
28
|
Yilmaz S, Sahin T, Saglam K. What Are the Immune Obstacles to Liver Xenotransplantation Which Is Promising for Patients with Hepatocellular Carcinoma? J Gastrointest Cancer 2020; 51:1209-1214. [PMID: 32833222 DOI: 10.1007/s12029-020-00495-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Liver transplantation is the most important achievement in the twentieth and twenty-first century. It is the gold standard treatment for hepatocellular carcinoma. However, it provides the best results when performed under strict selection criteria. Nevertheless, organ supply is overwhelmed by the number of patients on the waiting list. There are certain strategies to expand the donor pool such as split liver transplantation, use of extended criteria donors, and living donor liver transplantation. Xenotransplantation can also be a strategy in decreasing the organ shortage. We reviewed the current status of xenotransplantation. METHODS We evaluated the historical attempts of xenotransplantation to humans and also made a summary of the preclinical studies in the field. RESULTS Molecular biology and genetic engineering are developing with an incredible speed. There are great achievements made in cell therapy, 3D bioprinting of the organs, and ultimately xenotransplantation. There is a vast amount of problems to be handled before evaluating the efficacy of xenotransplantation in the treatment of hepatocellular carcinoma. Major problems include antibody-mediated rejection to antigens such as galactose ⍺1-3 galactose, N- glycolylneuraminic acid, β1,4-N-acetylgalactosaminyltransferase, lethal thrombocytopenia, and erythrocyte sequestration. Antibody mediated rejection to these specific antigens are addressed using gene editing technology including CRISPR Cas9, TALEN and other recombination methods. Although hyperacute rejection is reduced, long-term survival could not be achieved in experimental models. CONCLUSION The future is yet to come, there are developments made in the field of genetic editing, immunosuppressive medication, and pretransplant desensitization techniques. Therefore, we believe that xenotransplantation will be in clinical practice, at least for treatment of critically ill patients.
Collapse
Affiliation(s)
- Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 244280, Malatya, Turkey.
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Elazig Yolu 10. Km, 44280, Malatya, Turkey.
| | - Tolga Sahin
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 244280, Malatya, Turkey
| | - Kutay Saglam
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 244280, Malatya, Turkey
| |
Collapse
|
29
|
Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Comput Struct Biotechnol J 2020; 18:3649-3665. [PMID: 33304462 PMCID: PMC7710510 DOI: 10.1016/j.csbj.2020.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases and have enabled tremendous progress in the field of regenerative medicine. We here outline the structural and molecular frameworks of the well-characterized type II CRISPR system and several computational tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease models has advanced research into the molecular aspects of disease conditions, including unraveling the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials, we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic approach to tackling a multitude of disease conditions.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
- CHA Stem Cell Institute, CHA University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
30
|
Klapholz B, Levy H, Kumbha R, Hosny N, D'Angelo ME, Hering BJ, Burlak C. Highly efficient multiplex genetic engineering of porcine primary fetal fibroblasts. Surg Open Sci 2020; 4:26-31. [PMID: 33937740 PMCID: PMC8074785 DOI: 10.1016/j.sopen.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 10/30/2022] Open
Abstract
Background Genetically engineered porcine donors are a potential solution for the shortage of human organs for transplantation. Incompatibilities between humans and porcine donors are largely due to carbohydrate xenoantigens on the surface of porcine cells, provoking an immune response which leads to xenograft rejection. Materials and Methods Multiplex genetic knockout of GGTA1, β4GalNT2, and CMAH is predicted to increase the rate of xenograft survival, as described previously for GGTA1. In this study, the clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 system was used to target genes relevant to xenotransplantation, and a method for highly efficient editing of multiple genes in primary porcine fibroblasts was described. Results Editing efficiencies greater than 85% were achieved for knockout of GGTA1, β4GalNT2, and CMAH. Conclusion The high-efficiency protocol presented here reduces scale and cost while accelerating the production of genetically engineered primary porcine fibroblast cells for in vitro studies and the production of animal models.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Horizon Discovery, 8100 Cambridge Research Park, Waterbeach, Cambridge CB25 9TL, UK
| | - Heather Levy
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ramesh Kumbha
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael E D'Angelo
- Horizon Discovery, 8100 Cambridge Research Park, Waterbeach, Cambridge CB25 9TL, UK
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
31
|
Moro LN, Viale DL, Bastón JI, Arnold V, Suvá M, Wiedenmann E, Olguín M, Miriuka S, Vichera G. Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer. Sci Rep 2020; 10:15587. [PMID: 32973188 PMCID: PMC7518276 DOI: 10.1038/s41598-020-72040-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The application of new technologies for gene editing in horses may allow the generation of improved sportive individuals. Here, we aimed to knock out the myostatin gene (MSTN), a negative regulator of muscle mass development, using CRISPR/Cas9 and to generate edited embryos for the first time in horses. We nucleofected horse fetal fibroblasts with 1, 2 or 5 µg of 2 different gRNA/Cas9 plasmids targeting the first exon of MSTN. We observed that increasing plasmid concentrations improved mutation efficiency. The average efficiency was 63.6% for gRNA1 (14/22 edited clonal cell lines) and 96.2% for gRNA2 (25/26 edited clonal cell lines). Three clonal cell lines were chosen for embryo generation by somatic cell nuclear transfer: one with a monoallelic edition, one with biallelic heterozygous editions and one with a biallelic homozygous edition, which rendered edited blastocysts in each case. Both MSTN editions and off-targets were analyzed in the embryos. In conclusion, CRISPR/Cas9 proved an efficient method to edit the horse genome in a dose dependent manner with high specificity. Adapting this technology sport advantageous alleles could be generated, and a precision breeding program could be developed.
Collapse
Affiliation(s)
- Lucia Natalia Moro
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Diego Luis Viale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Neurología y Citogenética Molecular, CESyMA, Buenos Aires, Argentina
| | | | | | - Mariana Suvá
- KHEIRON BIOTECH S.A, Pilar, Buenos Aires, Argentina
| | | | | | - Santiago Miriuka
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
32
|
Evaluation of the CRISPR/Cas9 Genetic Constructs in Efficient Disruption of Porcine Genes for Xenotransplantation Purposes Along with an Assessment of the Off-Target Mutation Formation. Genes (Basel) 2020; 11:genes11060713. [PMID: 32604937 PMCID: PMC7349392 DOI: 10.3390/genes11060713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing life expectancy of humans has led to an increase in the number of patients with chronic diseases and organ failure. However, the imbalance between the supply and the demand for human organs is a serious problem in modern transplantology. One of many solutions to overcome this problem is the use of xenotransplantation. The domestic pig (Sus scrofa domestica) is currently considered as the most suitable for human organ procurement. However, there are discrepancies between pigs and humans that lead to the creation of immunological barriers preventing the direct xenograft. The introduction of appropriate modifications to the pig genome to prevent xenograft rejection is crucial in xenotransplantation studies. In this study, porcine GGTA1, CMAH, β4GalNT2, vWF, ASGR1 genes were selected to introduce genetic modifications. The evaluation of three selected gRNAs within each gene was obtained, which enabled the selection of the best site for efficient introduction of changes. Modifications were examined after nucleofection of porcine primary kidney fibroblasts with CRISPR/Cas9 system genetic constructs, followed by the tracking of indels by decomposition (TIDE) analysis. In addition, off-target analysis was carried out for selected best gRNAs using the TIDE tool, which is new in the research conducted so far and shows the utility of this tool in these studies.
Collapse
|
33
|
Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning. Transgenic Res 2020; 29:369-379. [PMID: 32358721 DOI: 10.1007/s11248-020-00201-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetically modified pigs. We used to generate GTKO/hCD55/hCD59 triple-gene modified pigs by using drug-selective cell lines for SCNT, but the majority of cloned pigs were transgenic-negative individuals. In this study, to improve the production efficiency of multiple genetically modified pigs, we performed the recloning process by using transgenic porcine fetal fibroblast cells. As a result, two fetuses expressing hCD55 and hCD59 were obtained from 12 live-cloned fetuses, and one carrying high transgene expression was selected as a source of donor cells for recloning. Then we obtained 12 cloned piglets, all GTKO and carrying hCD55 and hCD59. Both hCD55 and hCD59 were expressed in fibroblast cells, but the expression levels of hCD55 and hCD59 were different among these piglets. Furthermore, piglet P5# had the highest expression of hCD55 and hCD59 in fibroblast cells than other piglets. Correspondingly, fibroblast cells of piglet P5# had significantly higher resistance against human serum-mediated cytolysis than those of piglet P11#. In conclusion, our results firstly provide support for improving efficiency of generating multiple genetically modified pig by recloning.
Collapse
|
34
|
Tector AJ, Mosser M, Tector M, Bach JM. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front Immunol 2020; 11:622. [PMID: 32351506 PMCID: PMC7174778 DOI: 10.3389/fimmu.2020.00622] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.
Collapse
Affiliation(s)
- Alfred Joseph Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| |
Collapse
|
35
|
Livestock Gene Editing by One-step Embryo Manipulation. J Equine Vet Sci 2020; 89:103025. [PMID: 32563448 DOI: 10.1016/j.jevs.2020.103025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
The breakthrough and rapid advance of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has enabled the efficient generation of gene-edited animals by one-step embryo manipulation. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 delivery to the livestock embryos has been typically achieved by intracytoplasmic microinjection; however, recent studies show that electroporation may be a reliable, efficient, and practical method for CRISPR/Cas9 delivery. The source of embryos used to generate gene-edited animals varies from in vivo to in vitro produced, depending mostly on the species of interest. In addition, different Cas9 and gRNA reagents can be used for embryo editing, ranging from Cas9-coding plasmid or messenger RNA to Cas9 recombinant protein, which can be combined with in vitro transcribed or synthetic guide RNAs. Mosaicism is reported as one of the main problems with generation of animals by embryo editing. On the other hand, off-target mutations are rarely found in livestock derived from one-step editing. In this review, we discussed these and other aspects of generating gene-edited animals by single-step embryo manipulation.
Collapse
|
36
|
Wang J, Zhang C, Feng B. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations. J Cell Mol Med 2020; 24:3256-3270. [PMID: 32037739 PMCID: PMC7131926 DOI: 10.1111/jcmm.15039] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-Cas technologies derived from bacterial and archaeal adaptive immune systems have emerged as a series of groundbreaking nucleic acid-guided gene editing tools, ultimately standing out among several engineered nucleases because of their high efficiency, sequence-specific targeting, ease of programming and versatility. Facilitated by the advancement across multiple disciplines such as bioinformatics, structural biology and high-throughput sequencing, the discoveries and engineering of various innovative CRISPR-Cas systems are rapidly expanding the CRISPR toolbox. This is revolutionizing not only genome editing but also various other types of nucleic acid-guided manipulations such as transcriptional control and genomic imaging. Meanwhile, the adaptation of various CRISPR strategies in multiple settings has realized numerous previously non-existing applications, ranging from the introduction of sophisticated approaches in basic research to impactful agricultural and therapeutic applications. Here, we summarize the recent advances of CRISPR technologies and strategies, as well as their impactful applications.
Collapse
Affiliation(s)
- Jingyi Wang
- Key Laboratory for Regenerative Medicine, Ministry of EducationSchool of Biomedical Sciences, Faculty of MedicineCUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Chenzi Zhang
- Key Laboratory for Regenerative Medicine, Ministry of EducationSchool of Biomedical Sciences, Faculty of MedicineCUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)The Chinese University of Hong KongHong Kong SARChina
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of EducationSchool of Biomedical Sciences, Faculty of MedicineCUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)The Chinese University of Hong KongHong Kong SARChina
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of SciencesGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
| |
Collapse
|
37
|
Lu T, Yang B, Wang R, Qin C. Xenotransplantation: Current Status in Preclinical Research. Front Immunol 2020; 10:3060. [PMID: 32038617 PMCID: PMC6989439 DOI: 10.3389/fimmu.2019.03060] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing life expectancy of humans has led to a growing numbers of patients with chronic diseases and end-stage organ failure. Transplantation is an effective approach for the treatment of end-stage organ failure; however, the imbalance between organ supply and the demand for human organs is a bottleneck for clinical transplantation. Therefore, xenotransplantation might be a promising alternative approach to bridge the gap between the supply and demand of organs, tissues, and cells; however, immunological barriers are limiting factors in clinical xenotransplantation. Thanks to advances in gene-editing tools and immunosuppressive therapy as well as the prolonged xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation has become more viable. In this review, we focus on the evolution and current status of xenotransplantation research, including our current understanding of the immunological mechanisms involved in xenograft rejection, genetically modified pigs used for xenotransplantation, and progress that has been made in developing pig-to-pig-to-non-human primate models. Three main types of rejection can occur after xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection, (2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in studies on immunological rejection, genetically modified pigs have been generated to bridge cross-species molecular incompatibilities; in the last decade, most advances made in the field of xenotransplantation have resulted from the production of genetically engineered pigs; accordingly, we summarize the genetically modified pigs that are currently available for xenotransplantation. Next, we summarize the longest survival time of solid organs in preclinical models in recent years, including heart, liver, kidney, and lung xenotransplantation. Overall, we conclude that recent achievements and the accumulation of experience in xenotransplantation mean that the first-in-human clinical trial could be possible in the near future. Furthermore, we hope that xenotransplantation and various approaches will be able to collectively solve the problem of human organ shortage.
Collapse
Affiliation(s)
- Tianyu Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Bochao Yang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ruolin Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
38
|
Lee K, Uh K, Farrell K. Current progress of genome editing in livestock. Theriogenology 2020; 150:229-235. [PMID: 32000993 DOI: 10.1016/j.theriogenology.2020.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Historically, genetic engineering in livestock proved to be challenging. Without stable embryonic stem cell lines to utilize, somatic cell nuclear transfer (SCNT) had to be employed to produce many of the genetically engineered (GE) livestock models. Through the genetic engineering of somatic cells followed by SCNT, GE livestock models could be generated carrying site-specific modifications. Although successful, only a few GE livestock models were generated because of low efficiency and associated birth defects. Recently, there have been major strides in the development of genome editing tools: Zinc-Finger Nucleases (ZFNs), Transcription activator-like effector nucleases (TALENS), and Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated 9 (Cas9) system. These tools rely on the generation of a double strand DNA break, followed by one of two repair pathways: non-homologous end joining (NHEJ) or homology directed repair (HDR). Compared to the traditional approaches, these tools dramatically reduce time and effort needed to establish a GE animal. Another benefit of utilizing genome editing tools is the application of direct injection into developing embryos to induce targeted mutations, therefore, eliminating side effects associated with SCNT. Emerging technological advancements of genome editing systems have dramatically improved efficiency to generate GE livestock models for both biomedical and agricultural purposes. Although the efficiency of genome editing tools has revolutionized GE livestock production, improvements for safe and consistent application are desired. This review will provide an overview of genome editing techniques, as well as examples of GE livestock models for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Kyungjun Uh
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kayla Farrell
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The use of genetically modified donor pigs has been integral to recent major advances in xenograft survival in preclinical nonhuman primate models. CRISPR-Cas9 gene editing technology has dramatically accelerated the development of multimodified pigs. This review examines the current and projected impact of CRISPR-Cas9-mediated donor modification on preventing rejection and potentially promoting tolerance of porcine xenografts. RECENT FINDINGS CRISPR-Cas9 has been used to engineer several genetic modifications relevant to xenotransplantation into pigs, including glycosyltransferase knockouts (GGTA1, CMAH, β4GALNT2, A3GALT2 and combinations thereof), other knockouts (SLA-I, ULBP1, PERV and GHR), and one knock-in (anti-CD2 monoclonal antibody transgene knocked into GGTA1). Although the use of these pigs as donors in preclinical nonhuman primate models has been limited to a single study to date, in-vitro analysis of their cells has provided invaluable information. For example, deletion of three of the glycosyltransferases progressively decreased the binding and cytotoxicity of preexisting immunoglobulin G and immunoglobulin M in human sera, suggesting that this 'triple-KO' pig could be a platform for clinical xenotransplantation. SUMMARY CRISPR-Cas9 enables the rapid generation of gene-edited pigs containing multiple tailored genetic modifications that are anticipated to have a positive impact on the efficacy and safety of pig-to-human xenotransplantation.
Collapse
|
40
|
Abstract
This chapter highlights the importance of reproductive technologies that are applied to porcine breeds. Nowadays the porcine industry, part of a high technological and specialized sector, offers high-quality protein food. The development of the swine industry is founded in the development of breeding/genetics, nutrition, animal husbandry, and animal health. The implementation of reproductive technologies in swine has conducted to levels of productivity never reached before. In addition, the pig is becoming an important species for biomedicine. The generation of pig models for human disease, xenotransplantation, or production of therapeutic proteins for human medicine has in fact generated a growing field of interest.
Collapse
|
41
|
Kumbha R, Hosny N, Matson A, Steinhoff M, Hering BJ, Burlak C. Efficient production of GGTA1 knockout porcine embryos using a modified handmade cloning (HMC) method. Res Vet Sci 2019; 128:59-68. [PMID: 31722267 DOI: 10.1016/j.rvsc.2019.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Handmade cloning is a zona-free nuclear transfer approach and an economical, efficient, and simple micromanipulation-free alternative to dolly based traditional cloning (TC). In this study, based on handmade cloning with minor modifications, an optimized bi-oocyte fusion (BOF) cloning method was established to produce GGTA1 KO porcine embryos using the CRISPR/Cas9 gene editing system. The GGTA1 gene is responsible for the generation of Gal epitopes on the surface of porcine cells, triggering hyperacute immune rejection in preclinical porcine-to-human xenotransplantation. The purpose of the present study is to establish an efficient protocol for activation of porcine oocyte cytoplast-fibroblast fused constructs developed to GGTA1 KO blastocysts by the zona-free bi-oocyte fusion cloning method. High percentages of cleavage (90 ± 2.6%) and blastocyst rates (39 ± 4.0%) were achieved upon treatment with demecolcine-assisted oocyte enucleation followed by 6 V alternating current for proper alignment and single-step fusion technique using a single direct current pulse of 1.0 kV/cm for 9 μs duration, compared to the double-step fusion method with combined chemical activation using thimerosal and dithiothreitol. Overall blastocyst rate was higher for oocyte enucleation by demecolcine (0.4 μg/ml) and 45 min incubation (42 ± 1.5%) compared to without demecolcine incubation followed by complete chemical thimerosal/dithiothreitol activation (33 ± 1.1%). The blastocyst rate (39 ± 1.0%) was found to be significantly higher 1 h post-electrofusion, compared to at 0 and 4 h (28 ± 1.5 and 6 ± 1.5%, respectively). Blastocyst development rates for GGTA1 knockout embryos (38 ± 1.76%) were comparable to those obtained with wild-type embryos (41.1 ± 0.67%). In conclusion, we achieved high overall efficiency in production of GGTA1 KO blastocysts by modified HMC protocol.
Collapse
Affiliation(s)
- Ramesh Kumbha
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Nora Hosny
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States; Department of Medical Biochemistry and Molecular Biology, Suez Canal University Faculty of Medicine, Ismailia, Egypt
| | - Anders Matson
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Magie Steinhoff
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States.
| |
Collapse
|
42
|
Perota A, Galli C. N-Glycolylneuraminic Acid (Neu5Gc) Null Large Animals by Targeting the CMP-Neu5Gc Hydroxylase (CMAH). Front Immunol 2019; 10:2396. [PMID: 31681287 PMCID: PMC6803385 DOI: 10.3389/fimmu.2019.02396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
The two major sialic acids described in mammalian cells are the N-glycolylneuraminic acid (Neu5Gc) and the N-acetylneuraminic acid (Neu5Ac). Neu5Gc synthesis starts from the N-acetylneuraminic acid (Neu5Ac) precursor modified by an hydroxylic group addition catalyzed by CMP-Neu5Ac hydroxylase enzyme (CMAH). In humans, CMAH was inactivated by a 92 bp deletion occurred 2-3 million years ago. Few other mammals do not synthetize Neu5Gc, however livestock species used for food production and as a source of biological materials for medical applications carry Neu5Gc. Trace amounts of Neu5Gc are up taken through the diet and incorporated into various tissues including epithelia and endothelia cells. Humans carry "natural," diet-induced Anti-Neu5Gc antibodies and when undertaking medical treatments or receiving transplants or devices that contain animal derived products they can cause immunological reaction affecting pharmacology, immune tolerance, and severe side effect like serum sickness disease (SSD). Neu5Gc null mice have been the main experimental model to study such phenotype. With the recent advances in genome editing, pigs and cattle KO for Neu5Gc have been generated always in association with the αGal KO. These large animals are normal and fertile and provide additional experimental models to study such mutation. Moreover, they will be the base for the development of new therapeutic applications like polyclonal IgG immunotherapy, Bioprosthetic Heart Valves, cells and tissues replacement.
Collapse
Affiliation(s)
- Andrea Perota
- Laboratory of Reproductive Technologies, Avantea, Cremona, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, Cremona, Italy.,Fondazione Avantea, Cremona, Italy
| |
Collapse
|
43
|
Wang Z, Wang L, Liu W, Hu D, Gao Y, Ge Q, Liu X, Li L, Wang Y, Wang S, Li C. Pathogenic mechanism and gene correction for LQTS-causing double mutations in KCNQ1 using a pluripotent stem cell model. Stem Cell Res 2019; 38:101483. [PMID: 31226583 DOI: 10.1016/j.scr.2019.101483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS To establish a KCNQ1 mutant-specific induced pluripotent stem cell (iPSC) model of a Chinese inherited long QT syndrome (LQTS) patient and to explore the pathogenesis of KCNQ1 mutations. METHODS AND RESULTS (1) Two patient-specific iPSC lines from the proband were obtained. (2) The experiments produced spontaneously beating cardiomyocytes (CMs) from patient iPSCs. Splicing mutation c. 605-2A > G in iPSC-derived cardiomyocytes (iPSC-CMs) resulted in the skipping of exon 4, exons 3-4, or exons 3-6 in KCNQ1 transcription what was observed in the patient's peripheral leukocytes. (3) Action potential duration (APD) at 50% and 90% repolarization (APD50 and APD90) of the patient's iPSC-derived ventricular-like-CMs was significantly longer than that of the control. Moreover, early after depolarization (EAD) and coupled beats were observed only in L1-iPSC-CMs. (4) A c.815G > A corrected iPSC line was obtained by using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) system. CONCLUSION (1) Cardiomyocytes with spontaneous pulsation were successfully differentiated from LQTS patient-specific iPSC lines. (2) For KCNQ1 splicing mutations, there is a chance that splicing patterns in peripheral leukocytes are similar to that in patient iPSC-CMs. (3) The truncated KCNQ1 proteins induced by such splicing mutation might cause Iks decrease, which in turn produced APD prolongation and triggered activities. (4) Our data showed that CRISPR-Cas9 system could be used to rescue the LQTS-related mutations.
Collapse
Affiliation(s)
- Zhen Wang
- Heart Center, Peking University People's Hospital, Beijing, China
| | - Lipeng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Wenling Liu
- Heart Center, Peking University People's Hospital, Beijing, China
| | - Dayi Hu
- Heart Center, Peking University People's Hospital, Beijing, China
| | - Yuanfeng Gao
- Heart Center, Peking University People's Hospital, Beijing, China
| | - Qing Ge
- Heart Center, Peking University People's Hospital, Beijing, China
| | - Xin Liu
- Heart Center, Peking University People's Hospital, Beijing, China
| | - Lei Li
- Heart Center, Peking University People's Hospital, Beijing, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.
| | - Shiqiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China.
| | - Cuilan Li
- Heart Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
44
|
Perota A, Lagutina I, Duchi R, Zanfrini E, Lazzari G, Judor JP, Conchon S, Bach JM, Bottio T, Gerosa G, Costa C, Galiñanes M, Roussel JC, Padler-Karavani V, Cozzi E, Soulillou JP, Galli C. Generation of cattle knockout for galactose-α1,3-galactose and N-glycolylneuraminic acid antigens. Xenotransplantation 2019; 26:e12524. [PMID: 31115108 PMCID: PMC6852128 DOI: 10.1111/xen.12524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
Two well‐characterized carbohydrate epitopes are absent in humans but present in other mammals. These are galactose‐α1,3‐galactose (αGal) and N‐glycolylneuraminic acid (Neu5Gc) which are introduced by the activities of two enzymes including α(1,3) galactosyltransferase (encoded by the GGTA1 gene) and CMP‐Neu5Gc hydroxylase (encoded by the CMAH gene) that are inactive in humans but present in cattle. Hence, bovine‐derived products are antigenic in humans who receive bioprosthetic heart valves (BHVs) or those that suffer from red meat syndrome. Using programmable nucleases, we disrupted (knockout, KO) GGTA1 and CMAH genes encoding for the enzymes that catalyse the synthesis of αGal and Neu5Gc, respectively, in both male and female bovine fibroblasts. The KO in clonally selected fibroblasts was detected by polymerase chain reaction (PCR) and confirmed by Sanger sequencing. Selected fibroblasts colonies were used for somatic cell nuclear transfer (SCNT) to produce cloned embryos that were implanted in surrogate recipient heifers. Fifty‐three embryos were implanted in 33 recipients heifers; 3 pregnancies were carried to term and delivered 3 live calves. Primary cell cultures were established from the 3 calves and following molecular analyses confirmed the genetic deletions. FACS analysis showed the double‐KO phenotype for both antigens confirming the mutated genotypes. Availability of such cattle double‐KO model lacking both αGal and Neu5Gc offers a unique opportunity to study the functionality of BHV manufactured with tissues of potentially lower immunogenicity, as well as a possible new clinical approaches to help patients with red meat allergy syndrome due to the presence of these xenoantigens in the diet.
Collapse
Affiliation(s)
- Andrea Perota
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Irina Lagutina
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Roberto Duchi
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Elisa Zanfrini
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Giovanna Lazzari
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy.,Fondazione Avantea, Cremona, Italy
| | - Jean Paul Judor
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Conchon
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Jean Marie Bach
- IECM, Immuno-endocrinology, EA4644 Oniris, University of Nantes, USC1383 INRA, Oniris, Nantes, France
| | - Tomaso Bottio
- Cardiac Surgery Unit - Department of Cardiac, Thoracic and Vascular Sciences and Public Health - Padova University School of Medicine and CORIS, Padova, Italy
| | - Gino Gerosa
- Cardiac Surgery Unit - Department of Cardiac, Thoracic and Vascular Sciences and Public Health - Padova University School of Medicine and CORIS, Padova, Italy
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Galiñanes
- Reparative Therapy of the Heart, Vall d'Hebron Research Institute (VHIR) and Department of Cardiac Surgery, University Hospital Vall d'Hebron, Autonomous University of Barcelona (AUB), Barcelona, Spain
| | - Jean Christian Roussel
- Department of Thoracic and CardioVascular Surgery, Nantes Hospital University, Nantes, France
| | - Vered Padler-Karavani
- The George S. Wise Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Emanuele Cozzi
- Transplant Immunology Unit, Padua General Hospital, Padua, Italy
| | - Jean Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy.,Fondazione Avantea, Cremona, Italy
| |
Collapse
|
45
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
46
|
Production of Cloned Pigs Derived from Double Gene Knockout Cells Using CRISPR/Cas9 System and MACS-based Enrichment System. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
47
|
Adams AB, Kim SC, Martens GR, Ladowski JM, Estrada JL, Reyes LM, Breeden C, Stephenson A, Eckhoff DE, Tector M, Tector AJ. Xenoantigen Deletion and Chemical Immunosuppression Can Prolong Renal Xenograft Survival. Ann Surg 2018; 268:564-573. [PMID: 30048323 PMCID: PMC6382078 DOI: 10.1097/sla.0000000000002977] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Xenotransplantation using pig organs could end the donor organ shortage for transplantation, but humans have xenoreactive antibodies that cause early graft rejection. Genome editing can eliminate xenoantigens in donor pigs to minimize the impact of these xenoantibodies. Here we determine whether an improved cross-match and chemical immunosuppression could result in prolonged kidney xenograft survival in a pig-to-rhesus preclinical model. METHODS Double xenoantigen (Gal and Sda) knockout (DKO) pigs were created using CRISPR/Cas. Serum from rhesus monkeys (n = 43) was cross-matched with cells from the DKO pigs. Kidneys from the DKO pigs were transplanted into rhesus monkeys (n = 6) that had the least reactive cross-matches. The rhesus recipients were immunosuppressed with anti-CD4 and anti-CD8 T-cell depletion, anti-CD154, mycophenolic acid, and steroids. RESULTS Rhesus antibody binding to DKO cells is reduced, but all still have positive CDC and flow cross-match. Three grafts were rejected early at 5, 6, and 6 days. Longer survival was achieved in recipients with survival to 35, 100, and 435 days. Each of the 3 early graft losses was secondary to IgM antibody-mediated rejection. The 435-day graft loss occurred secondary to IgG antibody-mediated rejection. CONCLUSIONS Reducing xenoantigens in donor pigs and chemical immunosuppression can be used to achieve prolonged renal xenograft survival in a preclinical model, suggesting that if a negative cross-match can be obtained for humans then prolonged survival could be achieved.
Collapse
Affiliation(s)
| | | | | | | | | | - Luz M Reyes
- University of Alabama Birmingham, Birmingham, AL
| | | | | | | | - Matt Tector
- University of Alabama Birmingham, Birmingham, AL
| | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Porcine islets represent a potentially attractive beta-cell source for xenotransplantation into patients with type 1 diabetes, who are not eligible to islet allo-transplantation due to a lack of suitable human donor organs. Recent progress in genetic engineering/gene editing of donor pigs provides new opportunities to overcome rejection of xeno-islets, to improve their engraftment and insulin secretion capacity, and to reduce the risk for transmission of porcine endogenous retroviruses. This review summarizes the current issues and progress in islet xenotransplantation with special emphasis on genetically modified/gene edited donor pigs. RECENT FINDINGS Attempts to overcome acute rejection of xeno-islets, especially after intraportal transplantation into the liver, include the genetic elimination of specific carbohydrate antigens such as αGal, Neu5Gc, and Sd(a) for which humans and-in part-non-human primates have natural antibodies that bind to these targets leading to activation of complement and coagulation. A complementary approach is the expression of one or more human complement regulatory proteins (hCD46, hCD55, hCD59). Transgenic attempts to overcome cellular rejection of islet xenotransplants include the expression of proteins that inhibit co-stimulation of T cells. Expression of glucagon-like peptide-1 and M3 muscarinic receptors has been shown to increase the insulin secretion of virally transduced porcine islets in vitro and it will be interesting to see the effects of these modifications in transgenic pigs and islet products derived from them. Genome-wide inactivation of porcine endogenous retrovirus (PERV) integrants by mutating their pol genes using CRISPR/Cas9 is a recent approach to reduce the risk for PERV transmission by xeno-islets. Genetic engineering/gene editing of xeno-islet donor pigs facilitated major progress towards clinical islet xenotransplantation. The required set of genetic modifications will depend on the source of islets (fetal/neonatal vs. adult), the mode of delivery (encapsulated vs. free), and the transplantation site.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Joachim Denner
- Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Eckhard Wolf
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
49
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
50
|
Abstract
BACKGROUND Over 130 000 patients in the United States alone need a lifesaving organ transplant. Genetically modified porcine organs could resolve the donor organ shortage, but human xenoreactive antibodies destroy pig cells and are the major barrier to clinical application of xenotransplantation. The objective of this study was to determine whether waitlisted patients possess preformed antibodies to swine leukocyte antigen (SLA) class II, homologs of the class II HLA. METHODS Sera from people currently awaiting solid organ transplant were tested for IgG binding to class II SLA proteins when expressed on mammalian cells. Pig fibroblasts were made positive by transfection with the class II transactivator. As a second expression system, transgenes encoding the alpha and beta chains of class II SLA were transfected into human embryonic kidney cells. RESULTS Human sera containing IgG specific for class II HLA molecules exhibited greater binding to class II SLA positive cells than to SLA negative cells. Sera lacking antibodies against class II HLA showed no change in binding regardless of the presence of class II SLA. These antibodies could recognize either SLA-DR or SLA-DQ complexes. CONCLUSIONS Class II SLA proteins may behave as xenoantigens for people with humoral immunity toward class II HLA molecules.
Collapse
|