1
|
Liu T, Ji X, Zang H, Li Z, Yao W, Wan L, Zhang C, Zhang Y. Endoplasmic reticulum stress: The underlying mechanism of chronic pain. Neurobiol Dis 2024; 202:106697. [PMID: 39389155 DOI: 10.1016/j.nbd.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic pain (CP) affects over 30 % of the global population, imposing significant financial burdens on individuals and society. However, existing treatments for CP offer limited efficacy and troublesome side effects, primarily owing to a lack of knowledge of its precise underlying mechanism. Pathological stimuli disrupt the intricate process of protein folding and endoplasmic reticulum (ER) homeostasis. This disruption leads to the accumulation of misfolded or unfolded proteins in the ER, generating a condition termed ER stress. Emerging data have indicated that ER stress, occurring in the peripheral and central nervous systems, contributes to the development and maintenance of CP. This review aimed to comprehensively explore the intersection of ER stress and CP within the lower and upper nervous systems and highlight the cell-specific contributions of the unfolded protein response in different CP types. We provide a comprehensive synthesis of evidence from animal models, examining neuronal and non-neuronal mechanisms and discuss the damaging ER stress-linked inflammation, autophagy, oxidative stress, and apoptosis, which collectively drive disease progression and contribute to a neurotoxic environment. However, the mechanisms through which ER stress influences the most advanced centre-of-pain projections in the brain remain unclear. Further investigation in this area is crucial to elucidate the relationship between ER stress and CP and facilitate the development of novel therapeutic drugs for this intractable dilemma.
Collapse
Affiliation(s)
- Tongtong Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuofan Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Geng W, Yan S, Sang D, Tao J, Zhang X, Gu X, Zhang X. Downregulating miR-432-5p exacerbates adriamycin-induced cardiotoxicity via activating the RTN3 signaling pathway. Aging (Albany NY) 2024; 16:11904-11916. [PMID: 39177670 PMCID: PMC11386913 DOI: 10.18632/aging.206062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Adriamycin (ADR) is a widely used chemotherapy drug in clinical practice and it causes toxicity in the myocardium affecting its clinical use. miR-432-5p is a miRNA primarily expressed in myocardial cells and has a protective effect in the myocardium. We aim to explore the protective effect of miR-432-5p on ADR-caused impaired mitochondrial ATP metabolism and endoplasmic reticulum stress (ERs). METHOD The primary cardiomyocytes were obtained from neonatal mice and the ADR was added to cells, meanwhile, a mice model was constructed through intravenous ADR challenge, and expression levels of miR-432-5p were examined. Subsequently, the miR-432-5p was introduced in vitro and in vivo to explore its effect on the activity of mitochondrial ATP synthesis, autophagy, and ER stress. The bioinformatics analysis was performed to explore the target of miR-432-5p. RESULTS ADR decreased the expression of miR-432-5p in cardiomyocytes. It also decreases mitochondrial ATP production and activates the ER stress pathway by increasing the expression of LC3B, Beclin 1, cleaved caspase 3, and induces cardiac toxicity. miR-432-5p exogenous supplementation can reduce the cardiotoxicity caused by ADR, and its protective effect on cardiomyocytes depends on the down-regulation of the RTN3 signaling pathway in ER. CONCLUSION ADR can induce the low expression of miR-432-5p, and activate the RTN3 pathway in ER, increase the expression of LC3B, Beclin 1, cleaved caspase 3, CHOP, and RTN3, and induce cardiac toxicity.
Collapse
Affiliation(s)
- Wei Geng
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Shaohua Yan
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Dasen Sang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Jie Tao
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Xuefei Zhang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiangyu Zhang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| |
Collapse
|
3
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Jiao B, Zhang W, Zhang C, Zhang K, Cao X, Yu S, Zhang X. Protein tyrosine phosphatase 1B contributes to neuropathic pain by aggravating NF-κB and glial cells activation-mediated neuroinflammation via promoting endoplasmic reticulum stress. CNS Neurosci Ther 2024; 30:e14609. [PMID: 38334011 PMCID: PMC10853896 DOI: 10.1111/cns.14609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Neuropathic pain is a prevalent and highly debilitating condition that impacts millions of individuals globally. Neuroinflammation is considered a key factor in the development of neuropathic pain. Accumulating evidence suggests that protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in regulating neuroinflammation. Nevertheless, the specific involvement of PTP1B in neuropathic pain remains largely unknown. This study aims to examine the impact of PTP1B on neuropathic pain and unravel the underlying molecular mechanisms implicated. METHODS In the current study, we evaluated the paw withdrawal threshold (PWT) of male rats following spared nerve injury (SNI) to assess the presence of neuropathic pain. To elucidate the underlying mechanisms, western blotting, immunofluorescence, and electron microscopy techniques were employed. RESULTS Our results showed that SNI significantly elevated PTP1B levels, which was accompanied by an increase in the expression of endoplasmic reticulum (ER) stress markers (BIP, p-PERK, p-IRE1α, and ATF6) and phosphorylated NF-κB in the spinal dorsal horn. SNI-induced mechanical allodynia was impaired by the treatment of intrathecal injection of PTP1B siRNA or PTP1B-IN-1, a specific inhibitor of PTP1B. Moreover, the intrathecal administration of PTP1B-IN-1 effectively suppressed the expression of ER stress markers (BIP, p-PERK/p-eIF2α, p-IRE1α, and ATF6), leading to the inhibition of NF-κB, microglia, and astrocytes activation, as well as a decrease in pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. However, these effects were reversed by intrathecal administration of tunicamycin (Tm, an inducer of ER stress). Additionally, intrathecal administration of Tm in healthy rats resulted in the development of mechanical allodynia and the activation of NF-κB-mediated neuroinflammatory signaling. CONCLUSIONS The upregulation of PTP1B induced by SNI facilitates the activation of NF-κB and glial cells via ER stress in the spinal dorsal horn. This, in turn, leads to an increase in the production of pro-inflammatory cytokines, thereby contributing to the development and maintenance of neuropathic pain. Therefore, targeting PTP1B could be a promising therapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Bo Jiao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Caixia Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Kaiwen Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xueqin Cao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Shangchen Yu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
5
|
Zhang Z, Fu X, Zhou F, Zhang D, Xu Y, Fan Z, Wen S, Shao Y, Yao Z, He Y. Huaju Xiaoji Formula Regulates ERS-lncMGC/miRNA to Enhance the Renal Function of Hypertensive Diabetic Mice with Nephropathy. J Diabetes Res 2024; 2024:6942156. [PMID: 38282657 PMCID: PMC10821808 DOI: 10.1155/2024/6942156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Background Better therapeutic drugs are required for treating hypertensive diabetic nephropathy. In our previous study, the Huaju Xiaoji (HJXJ) formula promoted the renal function of patients with diabetes and hypertensive nephropathy. In this study, we investigated the therapeutic effect and regulation mechanism of HJXJ in hypertensive diabetic mice with nephropathy. Methods We constructed a mouse hypertensive diabetic nephropathy (HDN) model by treating mice with streptozotocin (STZ) and nomega-nitro-L-arginine methyl ester (LNAME). We also constructed a human glomerular mesangial cell (HGMC) model that was induced by high doses of sugar (30 mmol/mL) and TGFβ1 (5 ng/mL). Pathological changes were evaluated by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and Masson staining. The fibrosis-related molecules (TGFβ1, fibronectin, laminin, COL I, COL IV, α-SMA, and p-smad2/3) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA levels and protein expression of endoplasmic reticulum stress, fibrosis molecules, and their downstream molecules were assessed using qPCR and Western blotting assays. Results Administering HJXJ promoted the renal function of HDN mice. HJXJ reduced the expression of ER stress makers (CHOP and GRP78) and lncMGC, miR379, miR494, miR495, miR377, CUGBP2, CPEB4, EDEM3, and ATF3 in HDN mice and model HGMCs. The positive control drugs (dapagliflozin and valsartan) also showed similar effects after treatment with HJXJ. Additionally, in model HGMCs, the overexpression of CHOP or lncMGC decreased the effects of HJXJ-M on the level of fibrosis molecules and downstream target molecules. Conclusion In this study, we showed that the HJXJ formula may regulate ERS-lncMGC/miRNA to enhance renal function in hypertensive diabetic mice with nephropathy. This study may act as a reference for further investigating whether combining HJXJ with other drugs can enhance its therapeutic effect. The findings of this study might provide new insights into the clinical treatment of hypertensive diabetic nephropathy with HJXJ.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Fu
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fengzhu Zhou
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Duanchun Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanqiu Xu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhaohua Fan
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Shimei Wen
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanting Shao
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zheng Yao
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
6
|
Zhu J, Shao A, Wang C, Zeng C, Wang H. Inhibition of endoplasmic reticulum stress restores the balance of renal RAS components and lowers blood pressure in the spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2202367. [PMID: 37144334 DOI: 10.1080/10641963.2023.2202367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of hypertension. However, the underlying mechanisms for lowering blood pressure (BP) by suppressing ER stress remain unclear. Here, we hypothesized that inhibition of ER stress could restore the balance between RAS components and lower BP in spontaneously hypertensive rats (SHRs). METHODS Wistar-Kyoto (WKY) rats and SHRs received vehicle or 4-PBA, an ER stress inhibitor, in the drinking water for 4 weeks. BP was measured by tail-cuff plethysmography, and the expression of RAS components was examined by Western blot. RESULTS Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure and increased renal ER stress and oxidative stress, accompanied by impaired diuresis and natriuresis. Moreover, SHRs had higher ACE and AT1R and lower AT2R, ACE2, and MasR expressions in the kidney. Interestingly, 4-PBA treatment improved impaired diuresis and natriuresis and lowered blood pressure in SHRs, accompanied by reducing ACE and AT1R protein expression and increasing AT2R, ACE2, and MasR expression in the kidneys of SHRs. In addition, these changes were associated with the reduction of ER stress and oxidative stress. CONCLUSIONS These results suggest that the imbalance of renal RAS components was associated with increased ER stress in SHRs. Inhibition of ER stress with 4-PBA reversed the imbalance of renal RAS components and restored the impaired diuresis and natriuresis, which, at least in part, explains the blood pressure-lowering effects of 4-PBA in hypertension.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, Shanghai Hospital Wanzhou District, Chongqing, China
| | - Anjing Shao
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Wang
- Department of Surgery, Third People's Hospital, Kaizhou District, Chongqing, China
| | - Chensi Zeng
- Department of Hematology, Chongqing Cancer Hospital, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
7
|
Camargo LL, Wang Y, Rios FJ, McBride M, Montezano AC, Touyz RM. Oxidative Stress and Endoplasmic Reticular Stress Interplay in the Vasculopathy of Hypertension. Can J Cardiol 2023; 39:1874-1887. [PMID: 37875177 DOI: 10.1016/j.cjca.2023.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
Under physiologic conditions, reactive oxygen species (ROS) function as signalling molecules that control cell function. However, in pathologic conditions, increased generation of ROS triggers oxidative stress, which plays a role in vascular changes associated with hypertension, including endothelial dysfunction, vascular reactivity, and arterial remodelling (termed the vasculopathy of hypertension). The major source of ROS in the vascular system is NADPH oxidase (NOX). Increased NOX activity drives vascular oxidative stress in hypertension. Molecular mechanisms underlying vascular damage in hypertension include activation of redox-sensitive signalling pathways, post-translational modification of proteins, and oxidative damage of DNA and cytoplasmic proteins. In addition, oxidative stress leads to accumulation of proteins in the endoplasmic reticulum (ER) (termed ER stress), with consequent activation of the unfolded protein response (UPR). ER stress is emerging as a potential player in hypertension as abnormal protein folding in the ER leads to oxidative stress and dysregulated activation of the UPR promotes inflammation and injury in vascular and cardiac cells. In addition, the ER engages in crosstalk with exogenous sources of ROS, such as mitochondria and NOX, which can amplify redox processes. Here we provide an update of the role of ROS and NOX in hypertension and discuss novel concepts on the interplay between oxidative stress and ER stress.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Yu Wang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Martin McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; McGill University, Department of Medicine and Department of Family Medicine, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Didik S, Wang H, James AS, Slotabec L, Li J. Sestrin2 as a Potential Target in Hypertension. Diagnostics (Basel) 2023; 13:2374. [PMID: 37510117 PMCID: PMC10378131 DOI: 10.3390/diagnostics13142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Hypertension is a highly complex, intricate condition affecting millions of individuals across the globe. Nearly half of adults in the United States are diagnosed with hypertension, with incident rates projected to rise over the next decade. Hypertension is a precursor to many cardiovascular diseases including atherosclerosis, stroke, myocardial infarction, heart failure, and peripheral artery disease. This review describes the major processes contributing to the development of hypertension and how Sestrin2 (Sesn2), an antioxidative protein, could be a potential target in the treatment of hypertension. In hypertension, increased reactive oxygen species (ROS) production is a critical component in the etiology of the condition. The increased ROS in hypertension is derived from a variety of sources, all of which are covered in depth in this review. Increased ROS is generated from mitochondrial stress, endoplasmic reticulum (ER) stress, NADPH oxidase (NOX) overactivity, and the uncoupling of endothelial nitric oxidase synthase (eNOS). Sesn2, a highly conserved, stress-inducible protein, has the structural and functional characteristics to be a potential therapeutic target to alleviate the progression of hypertension. The structure, function, genetics, and characteristics of Sesn2 are presented in the review. The Nrf2/Sesn2, Sesn2/AMPK/mTOR, and Sesn2/Angiotensin II signaling pathways are described in detail in this review. Sesn2 can be utilized in a multitude of ways as a therapeutic modality in hypertension. This review explores potential Sesn2 inducers and activators and how Sesn2 can be incorporated into gene therapy for the treatment of hypertension.
Collapse
Affiliation(s)
- Steven Didik
- Department of Surgery, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans' Hospital, Tampa, FL 33612, USA
| | - Hao Wang
- Department of Surgery, University of South Florida, Tampa, FL 33612, USA
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | - Lily Slotabec
- Department of Surgery, University of South Florida, Tampa, FL 33612, USA
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
9
|
Chen Z, Zhang SL. Endoplasmic Reticulum Stress: A Key Regulator of Cardiovascular Disease. DNA Cell Biol 2023. [PMID: 37140435 DOI: 10.1089/dna.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The problems associated with economic development and social progress have led to an increase in the occurrence of cardiovascular diseases (CVDs), which affect the health of an increasing number of people and are a leading cause of disease and population mortality worldwide. Endoplasmic reticulum stress (ERS), a hot topic of interest for scholars in recent years, has been confirmed in numerous studies to be an important pathogenetic basis for many metabolic diseases and play an important role in maintaining physiological processes. The endoplasmic reticulum (ER) is a major organelle that is involved in protein folding and modification synthesis, and ERS occurs when several physiological and pathological factors allow excessive amounts of unfolded/misfolded proteins to accumulate. ERS often leads to initiation of the unfolded protein response (UPR) in a bid to re-establish tissue homeostasis; however, UPR has been documented to induce vascular remodeling and cardiomyocyte damage under various pathological conditions, leading to or accelerating the development of CVDs such as hypertension, atherosclerosis, and heart failure. In this review, we summarize the latest knowledge gained concerning ERS in terms of cardiovascular system pathophysiology, and discuss the feasibility of targeting ERS as a novel therapeutic target for the treatment of CVDs. Investigation of ERS has immense potential as a new direction for future research involving lifestyle intervention, the use of existing drugs, and the development of novel drugs that target and inhibit ERS.
Collapse
Affiliation(s)
- Zhao Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Liang Zhang
- Section 4, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:7898. [PMID: 37175603 PMCID: PMC10178199 DOI: 10.3390/ijms24097898] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions associated with the risk of diabetes mellitus type 2 and cardiovascular diseases (CVDs). Metabolic syndrome is closely related to obesity. Increased adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving metabolic syndrome components, namely insulin resistance, hypertension, and hyperlipidemia. An increasing number of studies confirm the importance of oxidative stress and chronic inflammation in the etiology of metabolic syndrome. However, few studies have reviewed the mechanisms underlying the role of oxidative stress in contributing to metabolic syndrome. In this review, we highlight mechanisms by which reactive oxygen species (ROS) increase mitochondrial dysfunction, protein damage, lipid peroxidation, and impair antioxidant function in metabolic syndrome. Biomarkers of oxidative stress can be used in disease diagnosis and evaluation of severity.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Lombe S. Kabwe
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Martin Chakulya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Annet Kirabo
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
11
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
12
|
Yarmohammadi F, Hayes AW, Karimi G. The therapeutic effects of berberine against different diseases: A review on the involvement of the endoplasmic reticulum stress. Phytother Res 2022; 36:3215-3231. [PMID: 35778942 DOI: 10.1002/ptr.7539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Various factors interfere with the endoplasmic reticulum (ER) function, which is involved in protein folding and calcium homeostasis. ER dysfunction referred to as ER stress triggers cell death by apoptosis and inflammation. Berberine (BBR) is an alkaloid extracted from the family Berberidacea. It has shown multiple pharmacological activities, including anti-inflammatory, antioxidative, anti-apoptotic, antiproliferative, and antihypertensive. It has been reported that BBR can decrease apoptosis and inflammation following different pathological conditions, which might be mediated by targeting ER stress pathways. In this manuscript, we reviewed the protective potential of BBR against several diseases, such as metabolic disorders, cancer, intestinal diseases, cardiovascular, liver, kidney, and central nervous system diseases, in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
White A, Parekh RU, Theobald D, Pakala P, Myers AL, Van Dross R, Sriramula S. Kinin B1R Activation Induces Endoplasmic Reticulum Stress in Primary Hypothalamic Neurons. Front Pharmacol 2022; 13:841068. [PMID: 35350763 PMCID: PMC8957924 DOI: 10.3389/fphar.2022.841068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in homeostatic functions including protein synthesis and transport, and the storage of free calcium. ER stress potentiates neuroinflammation and neurodegeneration and is a key contributor to the pathogenesis of neurogenic hypertension. Recently, we showed that kinin B1 receptor (B1R) activation plays a vital role in modulating neuroinflammation and hypertension. However, whether B1R activation results in the progression and enhancement of ER stress has not yet been studied. In this brief research report, we tested the hypothesis that B1R activation in neurons contributes to unfolded protein response (UPR) and the development of ER stress. To test this hypothesis, we treated primary hypothalamic neuronal cultures with B1R specific agonist Lys-Des-Arg9-Bradykinin (LDABK) and measured the components of UPR and ER stress. Our data show that B1R stimulation via LDABK, induced the upregulation of GRP78, a molecular chaperone of ER stress. B1R stimulation was associated with an increased expression and activation of transmembrane ER stress sensors, ATF6, IRE1α, and PERK, the critical components of UPR. In the presence of overwhelming ER stress, activated ER stress sensors can lead to oxidative stress, autophagy, or apoptosis. To determine whether B1R activation induces apoptosis we measured intracellular Ca2+ and extracellular ATP levels, caspases 3/7 activity, and cell viability. Our data show that LDABK treatment does increase Ca2+ and ATP levels but does not alter caspase activity or cell viability. These findings suggest that B1R activation initiates the UPR and is a key factor in the ER stress pathway.
Collapse
Affiliation(s)
- Acacia White
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Drew Theobald
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Pranaya Pakala
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Ariel Lynn Myers
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| |
Collapse
|
14
|
Controlled Hemorrhage Sensitizes Angiotensin II-Elicited Hypertension through Activation of the Brain Renin-Angiotensin System Independently of Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6371048. [PMID: 35069977 PMCID: PMC8776443 DOI: 10.1155/2022/6371048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
Hemorrhagic shock is associated with activation of renin-angiotensin system (RAS) and endoplasmic reticulum stress (ERS). Previous studies demonstrated that central RAS activation produced by various challenges sensitizes angiotensin (Ang) II-elicited hypertension and that ERS contributes to the development of neurogenic hypertension. The present study investigated whether controlled hemorrhage could sensitize Ang II-elicited hypertension and whether the brain RAS and ERS mediate this sensitization. Results showed that hemorrhaged (HEM) rats had a significantly enhanced hypertensive response to a slow-pressor infusion of Ang II when compared to sham HEM rats. Treatment with either angiotensin-converting enzyme (ACE) 1 inhibitor, captopril, or ACE2 activator, diminazene, abolished the HEM-induced sensitization of hypertension. Treatment with the ERS agonist, tunicamycin, in sham HEM rats also sensitized Ang II-elicited hypertension. However, blockade of ERS with 4-phenylbutyric acid in HEM rats did not alter HEM-elicited sensitization of hypertension. Either HEM or ERS activation produced a greater reduction in BP after ganglionic blockade, upregulated mRNA and protein expression of ACE1 in the hypothalamic paraventricular nucleus (PVN), and elevated plasma levels of Ang II but reduced mRNA expression of the Ang-(1-7) receptor, Mas-R, and did not alter plasma levels of Ang-(1-7). Treatment with captopril or diminazene, but not phenylbutyric acid, reversed these changes. No treatments had effects on PVN protein expression of the ERS marker glucose-regulated protein 78. The results indicate that controlled hemorrhage sensitizes Ang II-elicited hypertension by augmenting RAS prohypertensive actions and reducing RAS antihypertensive effects in the brain, which is independent of ERS mechanism.
Collapse
|
15
|
Mary S, Boder P, Rossitto G, Graham L, Scott K, Flynn A, Kipgen D, Graham D, Delles C. Salt loading decreases urinary excretion and increases intracellular accumulation of uromodulin in stroke-prone spontaneously hypertensive rats. Clin Sci (Lond) 2021; 135:2749-2761. [PMID: 34870708 PMCID: PMC8689196 DOI: 10.1042/cs20211017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Uromodulin (UMOD) is the most abundant renal protein secreted into urine by the thick ascending limb (TAL) epithelial cells of the loop of Henle. Genetic studies have demonstrated an association between UMOD risk variants and hypertension. We aimed to dissect the role of dietary salt in renal UMOD excretion in normotension and chronic hypertension. Normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) (n=8/sex/strain) were maintained on 1% NaCl for 3 weeks. A subset of salt-loaded SHRSP was treated with nifedipine. Salt-loading in SHRSP increased blood pressure (ΔSBP 35 ± 5 mmHg, P<0.0001) and kidney injury markers such as kidney injury marker-1 (KIM-1; fold change, FC 3.4; P=0.003), neutrophil gelatinase-associated lipocalin (NGAL; FC, 2.0; P=0.012) and proteinuria. After salt-loading there was a reduction in urinary UMOD excretion in WKY and SHRSP by 26 and 55% respectively, compared with baseline. Nifedipine treatment reduced blood pressure (BP) in SHRSP, however, did not prevent salt-induced reduction in urinary UMOD excretion. In all experiments, changes in urinary UMOD excretion were dissociated from kidney UMOD protein and mRNA levels. Colocalization and ex-vivo studies showed that salt-loading increased intracellular UMOD retention in both WKY and SHRSP. Our study provides novel insights into the interplay among salt, UMOD, and BP. The role of UMOD as a cardiovascular risk marker deserves mechanistic reappraisal and further investigations based on our findings.
Collapse
Affiliation(s)
- Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Philipp Boder
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Giacomo Rossitto
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
- Department of Medicine, University of Padua, Padua, Italy
| | - Lesley Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Kayley Scott
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Arun Flynn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - David Kipgen
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, Scotland, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| |
Collapse
|
16
|
Cho SN, Choi JA, Lee J, Son SH, Lee SA, Nguyen TD, Choi SY, Song CH. Ang II-Induced Hypertension Exacerbates the Pathogenesis of Tuberculosis. Cells 2021; 10:cells10092478. [PMID: 34572127 PMCID: PMC8465031 DOI: 10.3390/cells10092478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
It has been known that infection plays a role in the development of hypertension. However, the role of hypertension in the progression of infectious diseases remain unknown. Many countries with high rates of hypertension show geographical overlaps with those showing high incidence rates of tuberculosis (TB). To explore the role of hypertension in tuberculosis, we compared the effects of hypertension during mycobacterial infection, we infected both hypertensive Angiotensin II (Ang II) and control mice with Mycobacterium tuberculosis (Mtb) strain H37Ra by intratracheal injection. Ang II-induced hypertension promotes cell death through both apoptosis and necrosis in Mtb H37Ra infected mouse lungs. Interestingly, we found that lipid accumulation in pulmonary tissues was significantly increased in the hypertension group compared to the normal controls. Ang II-induced hypertension increases the formation of foamy macrophages during Mtb infection and it leads to cell death. Moreover, the hypertension group showed more severe granuloma formation and fibrotic lesions in comparison with the control group. Finally, we observed that the total number of mycobacteria was increased in the lungs in the hypertension group compared to the normal controls. Taken together, these results suggest that hypertension increases intracellular survival of Mtb through formation of foamy macrophages, resulting in severe pathogenesis of TB.
Collapse
Affiliation(s)
- Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Seong-Ahn Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Tam-Doan Nguyen
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Song-Yi Choi
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Translational Immunology Institute, Chungnam National University, Daejeon 34134, Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Translational Immunology Institute, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-580-8245; Fax: +82-42-585-3686
| |
Collapse
|
17
|
Liu T, Li T, Chen X, Li Z, Feng M, Yao W, Wan L, Zhang C, Zhang Y. EETs/sEHi alleviates nociception by blocking the crosslink between endoplasmic reticulum stress and neuroinflammation in a central poststroke pain model. J Neuroinflammation 2021; 18:211. [PMID: 34530836 PMCID: PMC8447610 DOI: 10.1186/s12974-021-02255-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background Central post-stroke pain (CPSP) is a chronic and intolerable neuropathic pain syndrome following a cerebral vascular insult, which negatively impacts the quality of life of stroke survivors but currently lacks efficacious treatments. Though its underlying mechanism remains unclear, clinical features of hyperalgesia and allodynia indicate central sensitization due to excessive neuroinflammation. Recently, the crosslink between neuroinflammation and endoplasmic reticulum (ER) stress has been identified in diverse types of diseases. Nevertheless, whether this interaction contributes to pain development remains unanswered. Epoxyeicosatrienoic acids (EETs)/soluble epoxy hydrolase inhibitors (sEHi) are emerging targets that play a significant role in pain and neuroinflammatory regulation. Moreover, recent studies have revealed that EETs are effective in attenuating ER stress. In this study, we hypothesized that ER stress around the stroke site may activate glial cells and lead to further inflammatory cascades, which constitute a positive feedback loop resulting in central sensitization and CPSP. Additionally, we tested whether EETs/sEHi could attenuate CPSP by suppressing ER stress and neuroinflammation, as well as their vicious cycle, in a rat model of CPSP. Methods Young male SD rats were used to induce CPSP using a model of thalamic hemorrhage and were then treated with TPPU (sEHi) alone or in combination with 14,15-EET or 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, the EET antagonist), tunicamycin (Tm, ER stress inducer), or 4-PBA (ER stress inhibitor). Nociceptive behaviors, ER stress markers, JNK and p38 (two well-recognized inflammatory kinases of mitogen-activated protein kinase (MAPK) signaling) expression, and glial cell activation were assessed. In addition, some healthy rats were intrathalamically microinjected with Tm or lipopolysaccharide (LPS) to test the interaction between ER stress and neuroinflammation in central pain. Results Analysis of the perithalamic lesion tissue from the brain of CPSP rats demonstrated decreased soluble epoxy hydrolase (sEH) expression, which was accompanied by increased expression of ER stress markers, including BIP, p-IRE, p-PERK, and ATF6. In addition, inflammatory kinases (p-p38 and p-JNK) were upregulated and glial cells were activated. Intrathalamic injection of sEHi (TPPU) increased the paw withdrawal mechanical threshold (PWMT), reduced hallmarks of ER stress and MAPK signaling, and restrained the activation of microglia and astrocytes around the lesion site. However, the analgesic effect of TPPU was completely abolished by 14,15-EEZE. Moreover, microinjection of Tm into the thalamic ventral posterior lateral (VPL) nucleus of healthy rats induced mechanical allodynia and activated MAPK-mediated neuroinflammatory signaling; lipopolysaccharide (LPS) administration led to activation of ER stress along the injected site in healthy rats. Conclusions The present study provides evidence that the interaction between ER stress and neuroinflammation is involved in the mechanism of CPSP. Combined with the previously reported EET/sEHi effects on antinociception and neuroprotection, therapy with agents that target EET signaling may serve as a multi-functional approach in central neuropathic pain by attenuating ER stress, excessive neuroinflammation, and subsequent central sensitization. The use of these agents within a proper time window could not only curtail further nerve injury but also produce an analgesic effect.
Collapse
Affiliation(s)
- Tongtong Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Ting Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Xuhui Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Zuofan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Miaomiao Feng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
18
|
Luo H, Lan C, Fan C, Gong X, Chen C, Yu C, Wang J, Luo X, Hu C, Jose PA, Xu Z, Zeng C. Down-regulation of AMPK/PPARδ signalling promotes endoplasmic reticulum stress-induced endothelial dysfunction in adult rat offspring exposed to maternal diabetes. Cardiovasc Res 2021; 118:2304-2316. [PMID: 34415333 PMCID: PMC9890455 DOI: 10.1093/cvr/cvab280] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 01/29/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS Exposure to maternal diabetes is associated with increased prevalence of hypertension in the offspring. The mechanisms underlying the prenatal programming of hypertension remain unclear. Because endoplasmic reticulum (ER) stress plays a key role in vascular endothelial dysfunction in hypertension, we investigated whether aberrant ER stress causes endothelial dysfunction and high blood pressure in the offspring of dams with diabetes. METHODS AND RESULTS Pregnant Sprague-Dawley rats were intraperitoneally injected with streptozotocin (35 mg/kg) or citrate buffer at Day 0 of gestation. Compared with control mother offspring (CMO), the diabetic mother offspring (DMO) had higher blood pressure and impaired endothelium-dependent relaxation in mesenteric arteries, accompanied by decreased AMPK phosphorylation and PPARδ expression, increased ER stress markers, and reactive oxygen species (ROS) levels. The inhibition of ER stress reversed these aberrant changes in DMO. Ex vivo treatment of mesenteric arteries with an AMPK agonist (A769662) or a PPARδ agonist (GW1516) improved the impaired EDR in DMO and reversed the tunicamycin-induced ER stress, ROS production, and EDR impairment in mesenteric arteries from CMO. The effects of A769662 were abolished by co-treatment with GSK0660 (PPARδ antagonist), whereas the effects of GW1516 were unaffected by Compound C (AMPK inhibitor). CONCLUSION These results suggest an abnormal foetal programming of vascular endothelial function in offspring of rats with maternal diabetes that is associated with increased ER stress, which can be ascribed to down-regulation of AMPK/PPARδ signalling cascade.
Collapse
Affiliation(s)
| | | | | | - Xue Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Cheng Yu
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China,Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Xiaoli Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Pharmacology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA,Department of Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zaicheng Xu
- Corresponding author. Tel: +86 23 68757801; fax: +86 23 68757801, E-mail: (C.Z.); (Z.X.)
| | - Chunyu Zeng
- Corresponding author. Tel: +86 23 68757801; fax: +86 23 68757801, E-mail: (C.Z.); (Z.X.)
| |
Collapse
|
19
|
Yu Q, Shu L, Wang L, Gao K, Wang J, Dai M, Cao Q, Zhang Y, Luo Q, Hu B, Dai D, Chen J, Bao M. Effects of carotid baroreceptor stimulation on aortic remodeling in obese rats. Nutr Metab Cardiovasc Dis 2021; 31:1635-1644. [PMID: 33812737 DOI: 10.1016/j.numecd.2021.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM Our previous study found carotid baroreceptor stimulation (CBS) reduces body weight and white adipose tissue (WAT) weight, restores abnormal secretion of adipocytokines and inflammation factors, decreases systolic blood pressure (SBP) by inhibiting activation of sympathetic nervous system (SNS) and renin-angiotensin system (RAS) in obese rats. In this study, we explore effects of CBS on aortic remodeling in obese rats. METHODS AND RESULTS Rats were fed high-fat diet (HFD) for 16 weeks to induce obesity and underwent either CBS device implantation and stimulation or sham operation at 8 weeks. BP and body weight were measured weekly. RAS activity of WAT, histological, biochemical and functional profiles of aortas were detected after 16 weeks. CBS effectively decreased BP in obese rats, downregulated mRNA expression of angiotensinogen (AGT) and renin in WAT, concentrations of AGT, renin, angiotensin II (Ang II), protein levels of Ang II receptor 1 (AT1R) and Ang II receptor 2 (AT2R) in WAT were declined. CBS inhibited reactive oxygen species (ROS) generation, inflammatory response and endoplasmic reticulum (ER) stress in aortas of obese rats, restrained vascular wall thickening and vascular smooth muscle cells (VSMCs) phenotypic switching, increased nitric oxide (NO) synthesis, promoted endothelium-dependent vasodilatation by decreasing protein expression of AT1R and leptin receptor (LepR), increasing protein expression of adiponectin receptor 1 (AdipoR1) in aortic VSMCs. CONCLUSION CBS reduced BP and reversed aortic remodeling in obese rats, the underlying mechanism might be related to the suppressed SNS activity, restored adipocytokine secretion and restrained RAS activity of WAT.
Collapse
MESH Headings
- Adipokines/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Arterial Pressure
- Disease Models, Animal
- Electric Stimulation Therapy/instrumentation
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Implantable Neurostimulators
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Obesity/therapy
- Pressoreceptors/physiopathology
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Adiponectin
- Receptors, Leptin/metabolism
- Renin-Angiotensin System
- Vascular Remodeling
- Vasodilation
- Rats
Collapse
Affiliation(s)
- Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China; Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, People's Republic of China
| | - Ling Shu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Lang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Kaile Gao
- Wuhan Ninth People's Hospital, 20 Jilin Street, Qingshan District, Wuhan 430060, People's Republic of China
| | - Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China
| | - Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Bangwang Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Dilin Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Jie Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China.
| |
Collapse
|
20
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
21
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
22
|
Lin KL, Chen SD, Lin KJ, Liou CW, Chuang YC, Wang PW, Chuang JH, Lin TK. Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:636295. [PMID: 33829016 PMCID: PMC8019794 DOI: 10.3389/fcell.2021.636295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide. Multiple factors are known to affect the cardiovascular system from lifestyles, genes, underlying comorbidities, and age. Requiring high workload, metabolism of the heart is largely dependent on continuous power supply via mitochondria through effective oxidative respiration. Mitochondria not only serve as cellular power plants, but are also involved in many critical cellular processes, including the generation of intracellular reactive oxygen species (ROS) and regulating cellular survival. To cope with environmental stress, mitochondrial function has been suggested to be essential during bioenergetics adaptation resulting in cardiac pathological remodeling. Thus, mitochondrial dysfunction has been advocated in various aspects of cardiovascular pathology including the response to ischemia/reperfusion (I/R) injury, hypertension (HTN), and cardiovascular complications related to type 2 diabetes mellitus (DM). Therefore, mitochondrial homeostasis through mitochondrial dynamics and quality control is pivotal in the maintenance of cardiac health. Impairment of the segregation of damaged components and degradation of unhealthy mitochondria through autophagic mechanisms may play a crucial role in the pathogenesis of various cardiac disorders. This article provides in-depth understanding of the current literature regarding mitochondrial remodeling and dynamics in cardiovascular diseases.
Collapse
Affiliation(s)
- Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Zhao S, Li X, Lu P, Li X, Sun M, Wang H. The Role of the Signaling Pathways Involved in the Effects of Hydrogen Sulfide on Endoplasmic Reticulum Stress. Front Cell Dev Biol 2021; 9:646723. [PMID: 33816495 PMCID: PMC8017186 DOI: 10.3389/fcell.2021.646723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) is a kind of organelle with multiple functions including protein synthesis, modification and folding, calcium storage, and lipid synthesis. Under stress conditions, ER homeostasis is disrupted, which is defined as ER stress (ERS). The accumulation of unfolded proteins in the ER triggers a stable signaling network named unfolded protein response (UPR). Hydrogen sulfide is an important signal molecule regulating various physiological and pathological processes. Recent studies have shown that H2S plays an important role in many diseases by affecting ERS, but its mechanism, especially the signaling pathways, is not fully understood. Therefore, in this review, we summarize the recent studies about the signaling pathways involved in the effects of H2S on ERS in diseases to provide theoretical reference for the related in-depth researches.
Collapse
Affiliation(s)
- Shizhen Zhao
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinping Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ping Lu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Xiaotian Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mingfei Sun
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
24
|
Aoe T. Pathological Aspects of COVID-19 as a Conformational Disease and the Use of Pharmacological Chaperones as a Potential Therapeutic Strategy. Front Pharmacol 2020; 11:1095. [PMID: 32754041 PMCID: PMC7366900 DOI: 10.3389/fphar.2020.01095] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the seventh human coronavirus infectious disease, was first reported in Wuhan, China, in December 2019, followed by its rapid spread globally (251,059 deaths, on May 5, 2020, by Johns Hopkins University). An early clinical report showed that fever, cough, fatigue, sputum production, and myalgia were initial symptoms, with the development of pneumonia as the disease progressed. Increases in the level of serum liver enzymes, D-dimer, cardiac troponin I, and creatinine have been observed in severely ill patients, indicating that multiple organ failure had occurred in these cases. Lymphopenia and an increase in interleukin-6 (IL-6) were also observed. Although COVID-19 patients are administered glucocorticoid therapy to treat the excessive immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, the efficacy of this form of therapy is unclear. Viremia is observed in severe cases, suggesting that in addition to type II alveolar epithelial cells, many cell types, such as vascular endothelial cells, cardiomyocytes, renal tubular cells, neuronal cells, and lymphocytes, may be damaged. The improvement of survival rates requires elucidation of the mechanism by which cellular damage occurs during viral infection. Cellular therapy, along with organ support systems such as oxygen therapy, artificial ventilation, extra corporeal membrane oxygenation and dialysis, as well as antiviral therapy, are required. Viral replication in infected host cells may perturb protein folding in the endoplasmic reticulum (ER), causing ER stress. Although an adaptive cellular response, i.e. the unfolded protein response, can compensate for the misfolded protein burden to some extent, continued viral proliferation may induce inflammation and cell death. Therefore, we propose that proteostasis dysfunction may cause conformational disorders in COVID-19. The application of pharmacological chaperone therapy to treat COVID-19 patients is additionally discussed.
Collapse
Affiliation(s)
- Tomohiko Aoe
- Pain Center, Teikyo University Chiba Medical Center, Ichihara, Japan.,Department of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
25
|
Activation of Liver X Receptors by GW3965 Attenuated Deoxycorticosterone Acetate-Salt Hypertension-Induced Cardiac Functional and Structural Changes. J Cardiovasc Pharmacol 2020; 74:105-117. [PMID: 31397742 DOI: 10.1097/fjc.0000000000000693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, the effect of liver X receptor (LXR) activation on hypertension-induced cardiac structural and functional alterations was investigated. Hypertension was induced by deoxycorticosterone acetate (DOCA)-salt administration in uninephrectomized rats for 6 weeks. LXR agonist GW3965 (3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy}-phenyl)-acetic acid was given for the past week. Rhythmic activity and contractions of the isolated heart tissues were recorded. Biochemical parameters were assessed in ventricular tissue and plasma samples. Cardiac expressions of various proteins were examined, and histopathological evaluation was performed in the left ventricle and liver. GW3965 reduced systolic blood pressure and enhanced noradrenaline-stimulated papillary muscle contraction induced by DOCA-salt + uninephrectomy. Plasma and tissue total antioxidant capacity (TAC) increased and tissue 4-hydroxynonenal (4-HNE) levels decreased in the DOCA-salt group. GW3965 elevated plasma and tissue TAC levels in both of groups. Glucose-regulated protein-78 (GRP78), phospho-dsRNA-activated-protein kinase-like ER kinase (p-PERK), matrix metalloproteinase-2 (MMP-2), and nuclear factor-κB p65 (NF-κB p65) expression was augmented, and inhibitor-κB-α (IκB-α) expression was reduced in hypertensive hearts. The altered levels of all these markers were reversed by GW3965. Also, GW3965 ameliorated DOCA-salt + uninephrectomy-induced cardiac and hepatic inflammation and fibrosis. However, GW3965 unchanged the plasma lipid levels and hepatic balloon degeneration score. These results demonstrated that LXR activation may improve hypertension-induced cardiac changes without undesired effects.
Collapse
|
26
|
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36:659-670. [PMID: 32389339 PMCID: PMC7225748 DOI: 10.1016/j.cjca.2020.02.081] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage. Common to these processes is oxidative stress, defined as an imbalance between oxidants and antioxidants in favour of the oxidants that leads to a disruption of oxidation-reduction (redox) signalling and control and molecular damage. Physiologically, reactive oxygen species (ROS) act as signalling molecules and influence cell function through highly regulated redox-sensitive signal transduction. In hypertension, oxidative stress promotes posttranslational modification (oxidation and phosphorylation) of proteins and aberrant signalling with consequent cell and tissue damage. Many enzymatic systems generate ROS, but NADPH oxidases (Nox) are the major sources in cells of the heart, vessels, kidneys, and immune system. Expression and activity of Nox are increased in hypertension and are the major systems responsible for oxidative stress in cardiovascular disease. Here we provide a unifying concept where oxidative stress is a common mediator underlying pathophysiologic processes in hypertension. We focus on some novel concepts whereby ROS influence vascular function, aldosterone/mineralocorticoid actions, and immunoinflammation, all important processes contributing to the development of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
27
|
Menendez-Castro C, Cordasic N, Dambietz T, Veelken R, Amann K, Hartner A, Hilgers KF. Correlations Between Interleukin-11 Expression and Hypertensive Kidney Injury in a Rat Model of Renovascular Hypertension. Am J Hypertens 2020; 33:331-340. [PMID: 31840157 DOI: 10.1093/ajh/hpz194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/10/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Interleukin-11 (IL-11) is a pleiotropic cytokine of the interleukin-6 family. Recent studies revealed its crucial role in the development of cardiovascular fibrosis. In this study we examined IL-11 expression levels in the heart and the kidney exposed to high blood pressure in renovascular hypertensive rats and their correlations to fibrotic markers and kidney injury. METHODS Two-kidney, one-clip renovascular hypertension (2K1C) was induced in rats. IL-11 expression was measured by real-time polymerase chain reaction in the left ventricle and the right kidney. The correlation of cardiac IL-11 expression with biomarkers of renal fibrosis was assessed. We further investigated IL-11 expression in 2K1C rats grouped into rats with malignant vs. nonmalignant hypertension (distinguishing criteria: weight loss, number of fibrinoid necrosis, and onion skin lesions). RESULTS Thirty-five days after clipping, mean arterial pressure was significantly increased in 2K1C. Renal IL-11 expression was elevated in 2K1C. In the heart there was only a trend toward higher IL-11 expression in 2K1C. IL-11 in the kidney in 2K1C correlated with the expression of transforming growth factor (TGF)-β1/2, collagens, fibronectin, osteopontin, as well as tissue inhibitors of metalloprotease 1/2. There were also correlations of IL-11 with tissue collagen expansion, number of activated fibroblasts and serum creatinine, but no correlation with mean arterial pressure. Renal expression of IL-11 was highest in rats with malignant hypertension. CONCLUSIONS Renal IL-11 expression of renovascular hypertensive rats is markedly increased and correlates with profibrotic markers and loss of function and might therefore serve as a biomarker for the severity of hypertensive nephrosclerosis.
Collapse
Affiliation(s)
- Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Thomas Dambietz
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital of Erlangen, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
28
|
Bal NB, Han S, Kiremitci S, Uludag MO, Demirel-Yilmaz E. Reversal of deleterious effect of hypertension on the liver by inhibition of endoplasmic reticulum stress. Mol Biol Rep 2020; 47:2243-2252. [PMID: 32072406 DOI: 10.1007/s11033-020-05329-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 11/25/2022]
Abstract
Hypertension is an important risk factor for cardiovascular diseases. Besides cardiovascular system, it could cause damage to liver. It has been shown that endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of hypertension. ERS inhibitor tauroursodeoxycholic-acid (TUDCA) has favorable effects on various pathologies including cardiovascular, metabolic and hepatic diseases. In this study, the hepatoprotective effect and mechanism of TUDCA were investigated in the deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Male Wistar rats were used and divided into four groups: Control, DOCA, TUDCA and DOCA + TUDCA. Hypertension was induced by DOCA-salt administration for twelve weeks after the unilateral nephrectomy. TUDCA was given for the last 4 weeks. Systolic blood pressure was measured by using tail-cuff method. At the end of the treatment, liver was isolated and weighed. The expressions of various proteins and histopathological evaluation were examined in the liver. TUDCA markedly decreased systolic blood pressure in the hypertensive animals. Hypertension caused increase in the expressions of glucose-regulated protein-78 (GRP78), matrix metalloproteinase-2 (MMP-2) and phospho-inhibitor κB-α (p-IκB-α) and the decrease in the expression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and phospho-extracellular signal-regulated kinase (p-ERK) in the liver. Alterations in these protein expressions were not detected in the TUDCA-treated hypertensive group. Also, hepatic balloon degeneration, inflammation and fibrosis were observed in the hypertensive group. TUDCA improved inflammation and fibrosis in the hypertensive liver. Our findings indicate that the detrimental effect of DOCA-salt-induced hypertension on the liver was defended by the inhibition of ERS. Hepatic ERS and its treatment should be taken into consideration for therapeutic approaches to hypertension.
Collapse
Affiliation(s)
- Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| | - Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Saba Kiremitci
- Department of Pathology, Faculty of Medicine, Ankara University, Sihhiye, 06100, Ankara, Turkey
| | - Mecit Orhan Uludag
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
29
|
Nwabuo CC, Vasan RS. Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy. Curr Hypertens Rep 2020; 22:11. [PMID: 32016791 DOI: 10.1007/s11906-020-1017-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Given that the life expectancy and the burden of hypertension are projected to increase over the next decade, hypertensive heart disease (HHD) may be expected to play an even more central role in the pathophysiology of cardiovascular disease (CVD). A broader understanding of the features and underlying mechanisms that constitute HHD therefore is of paramount importance. RECENT FINDINGS HHD is a condition that arises as a result of elevated blood pressure and constitutes a key underlying mechanism for cardiovascular morbidity and mortality. Historically, studies investigating HHD have primarily focused on left ventricular (LV) hypertrophy (LVH), but it is increasingly apparent that HHD encompasses a range of target-organ damage beyond LVH, including other cardiovascular structural and functional adaptations that may occur separately or concomitantly. HHD is characterized by micro- and macroscopic myocardial alterations, structural phenotypic adaptations, and functional changes that include cardiac fibrosis, and the remodeling of the atria and ventricles and the arterial system. In this review, we summarize the structural and functional alterations in the cardiac and vascular system that constitute HHD and underscore their underlying pathophysiology.
Collapse
Affiliation(s)
| | - Ramachandran S Vasan
- Framingham Heart Study, 73 Mt. Wayte Avenue, Suite 2, Framingham, MA, 01702, USA. .,Departments of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA, USA. .,Department of Medicine, Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine, Boston University Schools of Medicine, Boston, MA, USA.
| |
Collapse
|
30
|
Yang Y, Zhou Q, Gao A, Chen L, Li L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin Chim Acta 2020; 504:125-137. [PMID: 32017925 DOI: 10.1016/j.cca.2020.01.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) is an intracellular membranous organelle involved in the synthesis, folding, maturation and post-translation modification of secretory and transmembrane proteins. Therefore, ER is closely related to the maintenance of intracellular homeostasis and the good balance between health and diseases. Endoplasmic reticulum stress (ERS) occurs when unfolded/misfolded proteins accumulate after disturbance of ER environment. In response to ERS, cells trigger an adaptive response called the Unfolded protein response (UPR), which helps cells cope with the stress. In recent years, a large number of studies show that ERS can aggravate cardiovascular diseases. ERS-related proteins expression in cardiovascular diseases is on the rise. Therefore, down-regulation of ERS is critical for alleviating symptoms of cardiovascular diseases, which may be used in the near future to treat cardiovascular diseases. This article reviews the relationship between ERS and cardiovascular diseases and drugs that inhibit ERS. Furthermore, we detail the role of ERS inhibitors in the treatment of cardiovascular disease. Drugs that inhibit ERS are considered as promising strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiyuan Yang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
31
|
Liu G, Wu F, Jiang X, Que Y, Qin Z, Hu P, Lee KSS, Yang J, Zeng C, Hammock BD, Tong X. Inactivation of Cys 674 in SERCA2 increases BP by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Br J Pharmacol 2020; 177:1793-1805. [PMID: 31758704 DOI: 10.1111/bph.14937] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The kidney is essential in regulating sodium homeostasis and BP. The irreversible oxidation of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) is increased in the renal cortex of hypertensive mice. Whether inactivation of C674 promotes hypertension is unclear. Here we have investigated the effects on BP of the inactivation of C674, and its role in the kidney. EXPERIMENTAL APPROACH We used heterozygous SERCA2 C674S knock-in (SKI) mice, where half of C674 was substituted by serine, to represent partial irreversible oxidation of C674. The BP, urine volume, and urine composition of SKI mice and their littermate wild-type (WT) mice were measured. The kidneys were collected for cell culture, Na+ /K+ -ATPase activity, protein expression, and immunohistological analysis. KEY RESULTS Compared with WT mice, SKI mice had higher BP, lower urine volume and sodium excretion, up-regulated endoplasmic reticulum (ER) stress markers and soluble epoxide hydrolase (sEH), and down-regulated dopamine D1 receptors in renal cortex and cells from renal proximal tubule. ER stress and sEH were mutually regulated, and both upstream of D1 receptors. Inhibition of ER stress or sEH up-regulated expression of D1 receptors, decreased the activity of Na+ /K+ -ATPase, increased sodium excretion, and lowered BP in SKI mice. CONCLUSIONS AND IMPLICATIONS The inactivation of SERCA2 C674 promotes the development of hypertension by inducing ER stress and sEH. Our study highlights the importance of C674 redox status in BP control and the contribution of SERCA2 to sodium homeostasis and BP in the kidney.
Collapse
Affiliation(s)
- Gang Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Fuhua Wu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoli Jiang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Zhexue Qin
- Department of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Kin Sing Stephen Lee
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, California.,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, California
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
32
|
Vega-Martín E, González-Blázquez R, Manzano-Lista FJ, Martín-Ramos M, García-Prieto CF, Viana M, Rubio MA, Calle-Pascual AL, Lionetti L, Somoza B, Fernández-Alfonso MS, Alcalá M, Gil-Ortega M. Impact of caloric restriction on AMPK and endoplasmic reticulum stress in peripheral tissues and circulating peripheral blood mononuclear cells from Zucker rats. J Nutr Biochem 2020; 78:108342. [PMID: 32004927 DOI: 10.1016/j.jnutbio.2020.108342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
The activation of endoplasmic reticulum (ER) stress and a reduction of AMP-dependent protein kinase (AMPK) phosphorylation have been described in obesity. We hypothesize that a moderate caloric restriction (CR) might contribute to reducing ER stress and increasing AMPK phosphorylation in peripheral tissues from genetically obese Zucker fa/fa rats and in peripheral blood mononuclear cells (PBMCs). Zucker Lean and Zucker fa/fa rats were fed with chow diet either ad libitum (AL) (C, as controls) or 80% of AL (CR) for 2 weeks, giving rise to four experimental groups: Lean C, Lean CR, fa/fa C and fa/fa CR. CR significantly increased AMPK phosphorylation in the liver, perirenal adipose tissue (PRAT) and PBMCs from fa/fa rats but not in the subcutaneous AT (SCAT), suggesting a reduced response of SCAT to CR. Liver samples of fa/fa rats exhibited an increased mRNA expression of PERK, EIF-2α, XBP-1(s), Chop and caspase 3, which was significantly reduced by CR. PRAT exhibited an overexpression of Edem and PDIA-4 in fa/fa rats, but only PDIA-4 expression was reduced by CR. eIF-2α phosphorylation was significantly increased in all studied tissues from fa/fa rats and reduced by CR. A negative correlation was detected between p-AMPK and p-eIF-2α in the liver, PRAT and PBMCs from fa/fa rats but not in SCAT. This study shows that a moderate CR reduces ER stress and improves AMPK phosphorylation in several peripheral tissues and in circulating PBMCs, suggesting that alterations observed in PBMCs could reflect metabolic alterations associated with obesity.
Collapse
Affiliation(s)
- Elena Vega-Martín
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Francisco J Manzano-Lista
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miriam Martín-Ramos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Concepción F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Miguel A Rubio
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain
| | - Alfonso L Calle-Pascual
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain.
| |
Collapse
|
33
|
Gastrodin Ameliorates Acute Rejection via IRE1 α/TRAF2/NF- κB in Rats Receiving Liver Allografts. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9276831. [PMID: 31828147 PMCID: PMC6886336 DOI: 10.1155/2019/9276831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
Background Liver transplantation (LT) is currently an effective treatment for end-stage liver disease, but the occurrence of acute rejection (AR) is still the main problem to be solved. The present study aimed to evaluate the effect of gastrodin (GAS) on LT. Methods Rat transplant models were established and divided into SHAM, LT, GAS-L (50 mg/kg GAS), and GAS-H (100 mg/kg GAS) groups. The liver function, inflammatory factors, liver histopathology, survival of rats, number of M2-type macrophages, liver cell apoptosis, and pathway proteins were assayed at 7 days and 14 days after the operations. Results With increasing GAS concentrations, liver function, expression of proinflammatory factors in the liver, and expression of M2-type molecules in macrophages were significantly improved, and the survival time of rats was significantly prolonged (P < 0.05). All rats treated with low or high doses of GAS were judged to have nondeterministic acute rejection. Flow cytometry showed that liver cell apoptosis was decreased significantly in the GAS-L and GAS-H groups after GAS administration compared with apoptosis and differentiation in the LT group (P < 0.05). Expression levels of Caspase-3, Bad, and Bax proteins were decreased, and the expression of the antiapoptotic protein Bcl-2 was increased in the GAS-L and GAS-H groups (P < 0.05). Mechanistically, the ERS-related IRE1α/TRAF2/NF-κB pathway was suppressed by GAS, and GAS acted mainly on intrahepatic macrophages to affect AR and reduce ROS production (P < 0.05). Conclusion GAS ameliorated AR by inhibiting the IRE1α/TRAF2/NF-κB pathway in LT.
Collapse
|
34
|
Mimori S, Kawada K, Saito R, Takahashi M, Mizoi K, Okuma Y, Hosokawa M, Kanzaki T. Indole-3-propionic acid has chemical chaperone activity and suppresses endoplasmic reticulum stress-induced neuronal cell death. Biochem Biophys Res Commun 2019; 517:623-628. [PMID: 31378367 DOI: 10.1016/j.bbrc.2019.07.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Insoluble aggregated proteins are often associated with neurodegenerative diseases. Previously, we investigated chemical chaperones that prevent the aggregation of denatured proteins. Among these, 4-phenyl butyric acid (4-PBA) has well-documented chemical chaperone activity, but is required at doses that have multiple effects on cells, warranting further optimization of treatment regimens. In this study, we demonstrate chemical chaperone activities of the novel compound indole-3-propionic acid (IPA). Although it has already been reported that IPA prevents β-amyloid aggregation, herein we show that this compound suppresses aggregation of denatured proteins. Our experiments with a cell culture model of Parkinson's disease are the first to show that IPA prevents endoplasmic reticulum (ER) stress and thereby protects against neuronal cell death. We suggest that IPA has potential for the treatment of neurodegenerative diseases and other diseases for which ER stress has been implicated.
Collapse
Affiliation(s)
- Seisuke Mimori
- Department of Clinical Medicine, Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan.
| | - Koichi Kawada
- Department of Pharmacology, Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan
| | - Ryo Saito
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, 255 Furusawa-tsuko, Asao-ku, Kawasaki, Kanagawa, 215-0026, Japan
| | - Masato Takahashi
- Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan
| | - Kenta Mizoi
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60, Nakaorui-machi, Takasaki, Gunma, 377-0033, Japan
| | - Yasunobu Okuma
- Department of Pharmacology, Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan
| | - Masakiyo Hosokawa
- Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan
| | - Tetsuto Kanzaki
- Department of Drug Informatics, Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
35
|
Wu Y, Yue Y, Fu S, Li Y, Wu D, Lv J, Yang D. Icariside II prevents hypertensive heart disease by alleviating endoplasmic reticulum stress via the PERK/ATF-4/CHOP signalling pathway in spontaneously hypertensive rats. J Pharm Pharmacol 2018; 71:400-407. [PMID: 30456794 DOI: 10.1111/jphp.13041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Reducing endoplasmic reticulum stress (ERS)-induced cardiomyocyte apoptosis is a key strategy for preventing hypertensive heart disease. In our previous study, Icariside II can improve left ventricular remodelling in spontaneously hypertensive rats (SHRs). This study aims to determine whether Icariside II can exert its effect by inhibiting ERS-induced cardiomyocyte apoptosis via the PERK/ATF-4/CHOP signalling pathway. METHODS Spontaneously hypertensive rats were randomly divided into model group and Icariside II groups. The rats in the Icariside II groups were intragastrically administrated with Icariside II 4, 8 and 16 mg/kg from 14 to 26 week-age, respectively. The left ventricular function was measured at the 18, 22 and 26 week-age by small animal ultrasound. At the end of the 26th week, cardiomyocyte apoptosis was analysed and the levels of GRP78, PERK, ATF-4 and CHOP gene and protein were detected. KEY FINDINGS The function of left ventricular became declined with age in SHRs, but improved in Icariside II groups. Myocardial apoptosis was aggravated in SHRs, but alleviated in Icariside II groups. Icariside II could reduce the levels of GRP78, PERK, ATF-4, CHOP gene and protein that increased in SHRs. CONCLUSIONS Icariside II prevents hypertensive heart disease by alleviating ERS-induced cardiomyocyte apoptosis, and its mechanism is related to the impediment of the PERK/ATF-4/CHOP signalling pathway.
Collapse
Affiliation(s)
- Yuting Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Yue
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shu Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yeli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dongqing Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Junyuan Lv
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Danli Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
36
|
Yang D, Jiang T, Liu J, Hong J, Lin P, Chen H, Zhou D, Tang K, Wang A, Jin Y. Interferon-τ regulates prostaglandin release in goat endometrial stromal cells via JAB1 - unfolded protein response pathway. Theriogenology 2018; 113:237-246. [DOI: 10.1016/j.theriogenology.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 03/10/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
|
37
|
Ando M, Matsumoto T, Taguchi K, Kobayashi T. Decreased contraction induced by endothelium-derived contracting factor in prolonged treatment of rat renal artery with endoplasmic reticulum stress inducer. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:793-802. [PMID: 29728739 DOI: 10.1007/s00210-018-1508-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 11/24/2022]
Abstract
Recent evidence suggests that endoplasmic reticulum (ER) stress is involved in the regulation of various physiological functions, including those of the vascular system. However, the relationship between ER stress and vascular function is poorly understood. The endothelial cells control the vascular tone by releasing endothelium-derived relaxing factors and contracting factors (EDCFs). We hypothesized that tunicamycin, an inducer of ER stress, modifies endothelium-dependent contraction and prostaglandins (PGs), a major class of EDCFs, induced contractions in the rat renal artery in rats. An organ-culture technique was used to purely investigate the effects of ER stress on the vascular tissue. We observed that tunicamycin treatment (20 μg/mL for 23 ± 1 h) did not affect acetylcholine (ACh)-induced relaxation and decreased EDCF-mediated contractions under nitric oxide synthase (NOS) inhibition induced by ACh, ATP, or A23187 (a calcium ionophore) in the renal arteries. Under NOS inhibition, U46619 (a thromboxane A2 mimetic)- and beraprost (a prostacyclin analog)-induced contractions were also decreased in the renal arteries of the tunicamycin-treated group (vs. vehicle), while PGE2- and PGF2α-induced contractions were similar between the groups. Tunicamycin treatment slightly enhanced the contractions induced by phenylephrine, an α1 adrenoceptor ligand. Isotonic high-K+-induced contractions were similar between the vehicle- and tunicamycin-treated groups. Another ER stress inducer, thapsigargin (4 μmol/L for 23 ± 1 h), also caused substantial reduction of ACh-induced EDCF-mediated contraction (vs. vehicle-treated group). In the cultured renal arteries, tunicamycin and thapsigargin increased the expression of binding immunoglobulin protein (BiP), an ER stress marker. In conclusion, ER stress induction directly affects renal arterial function, especially in reducing EDCF-mediated contractions.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|