1
|
Blair GA, Depman M, Adams WP, Maisonneuve RO, Hoeker GS, Weinberg SH, Poelzing S. Sequence-Dependent Repolarization Is Modulated by Endogenous Action Potential Duration Gradients Rather Than Electrical Coupling in Ventricular Myocardium. J Am Heart Assoc 2025; 14:e030433. [PMID: 39719415 PMCID: PMC12054505 DOI: 10.1161/jaha.123.030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity. METHODS AND RESULTS Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031. SD of APD and the AT-APD slope and coefficient of determination were quantified as metrics of APD heterogeneity. SD of APD increased with carbenoxolone, mannitol, and altered activation sequence. The AT-APD slope was insensitive to carbenoxolone, mannitol, dextran, flecainide, or E4031 but changed in response to activation sequence. The coefficient of determination did not change with carbenoxolone; decreased with mannitol, E4031, and activation sequence; but increased with dextran and flecainide. APD heterogeneity changes were dependent on whether the estimation used SD of APD or the AT-APD relationship. The pacing stimulus increased APD at the site of stimulation, revealing a confounding stimulus effect on APD within the measurement area. Simulations predict that the stimulus artifact and endogenous APD gradients are stronger determinants of APD heterogeneity than AT. CONCLUSIONS APD dependence on conduction is relatively small. Furthermore, APD heterogeneity within a mapping field of view is dependent on endogenous gradients, the stimulus artifact, and the experimental approach, rather than electrical coupling.
Collapse
Affiliation(s)
- Grace A. Blair
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Madeline Depman
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - William P. Adams
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Rowan O. Maisonneuve
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Gregory S. Hoeker
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Seth H. Weinberg
- Department of Biomedical EngineeringDavis Heart and Lung Research Institute, The Ohio State UniversityColumbusOHUSA
| | - Steve Poelzing
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
- Department of Biomedical Engineering and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| |
Collapse
|
2
|
Wells SP, O'Shea C, Hayes S, Weeks KL, Kirchhof P, Delbridge LM, Pavlovic D, Bell JR. Male and female atria exhibit distinct acute electrophysiological responses to sex steroids. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100079. [PMID: 39309304 PMCID: PMC11413518 DOI: 10.1016/j.jmccpl.2024.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 09/25/2024]
Abstract
The electrophysiological properties of the hearts of women and men are different. These differences are at least partly mediated by the actions of circulating estrogens and androgens on the cardiomyocytes. Experimentally, much of our understanding in this field is based on studies focusing on ventricular tissue, with considerably less known in the context of atrial electrophysiology. The aim of this investigation was to compare the electrophysiological properties of male and female atria and assess responses to acute sex steroid exposure. Age-matched adult male and female C57BL/6 mice were anesthetized (4 % isoflurane) and left atria isolated. Atria were loaded with Di-4-ANEPPS voltage sensitive dye and optical mapping performed to assess action potential duration (APD; at 10 %, 20 %, 30 %, 50 %, and 70 % repolarization) and conduction velocity in the presence of 1 nM and 100 nM 17β-estradiol or testosterone. Male and female left atria demonstrated similar baseline action potential duration and conduction velocity, with significantly greater APD70 spatial heterogeneity evident in females. 17β-estradiol prolonged action potential duration in both sexes - an effect that was augmented in females. Atrial conduction was slowed in the presence of 100 nM 17β-estradiol in both males and females. Testosterone prolonged action potential duration in males only and did not modulate conduction velocity in either sex. This study provides novel insights into male and female atrial electrophysiology and its regulation by sex steroids. As systemic sex steroid levels change and intra-cardiac estrogen synthesis capacity increases with aging, these actions may have an increasingly important role in determining atrial arrhythmia vulnerability.
Collapse
Affiliation(s)
- Simon P. Wells
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Hayes
- Centre for Cardiovascular Biology and Disease Research, Cardiac Disease Mechanisms Division, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Kate L. Weeks
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, University Heart and Vascular Center UKE, Hamburg, Hamburg, Germany
| | - Lea M.D. Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James R. Bell
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, Cardiac Disease Mechanisms Division, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
3
|
Chang PC, Lee HL, Wo HT, Liu HT, Wen MS, Chou CC. Vericiguat suppresses ventricular tachyarrhythmias inducibility in a rabbit myocardial infarction model. PLoS One 2024; 19:e0301970. [PMID: 38626004 PMCID: PMC11020759 DOI: 10.1371/journal.pone.0301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND The VICTORIA trial demonstrated a significant decrease in cardiovascular events through vericiguat therapy. This study aimed to assess the potential mechanisms responsible for the reduction of cardiovascular events with vericiguat therapy in a rabbit model of myocardial infarction (MI). METHODS A chronic MI rabbit model was created through coronary artery ligation. Following 4 weeks, the hearts were harvested and Langendorff perfused. Subsequently, electrophysiological examinations and dual voltage-calcium optical mapping studies were conducted at baseline and after administration of vericiguat at a dose of 5 μmol/L. RESULTS Acute vericiguat therapy demonstrated a significant reduction in premature ventricular beat burden and effectively suppressed ventricular arrhythmic inducibility. The electrophysiological influences of vericiguat therapy included an increased ventricular effective refractory period, prolonged action potential duration, and accelerated intracellular calcium (Cai) homeostasis, leading to the suppression of action potential and Cai alternans. The pacing-induced ventricular arrhythmias exhibited a reentrant pattern, attributed to fixed or functional conduction block in the peri-infarct zone. Vericiguat therapy effectively mitigated the formation of cardiac alternans as well as the development of reentrant impulses, providing additional anti-arrhythmic benefits. CONCLUSIONS In the MI rabbit model, vericiguat therapy demonstrates anti-ventricular arrhythmia effects. The vericiguat therapy reduces ventricular ectopic beats, inhibiting the initiation of ventricular arrhythmias. Furthermore, the therapy successfully suppresses cardiac alternans, preventing conduction block and, consequently, the formation of reentry circuits.
Collapse
Affiliation(s)
- Po-Cheng Chang
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ling Lee
- Medical School, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hung-Ta Wo
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Tien Liu
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shien Wen
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Chuan Chou
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Blair GA, Wu X, Bain C, Warren M, Hoeker GS, Poelzing S. Mannitol and hyponatremia regulate cardiac ventricular conduction in the context of sodium channel loss of function. Am J Physiol Heart Circ Physiol 2024; 326:H724-H734. [PMID: 38214908 PMCID: PMC11221810 DOI: 10.1152/ajpheart.00211.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Scn5a heterozygous null (Scn5a+/-) mice have historically been used to investigate arrhythmogenic mechanisms of diseases such as Brugada syndrome (BrS) and Lev's disease. Previously, we demonstrated that reducing ephaptic coupling (EpC) in ex vivo hearts exacerbates pharmacological voltage-gated sodium channel (Nav)1.5 loss of function (LOF). Whether this effect is consistent in a genetic Nav1.5 LOF model is yet to be determined. We hypothesized that loss of EpC would result in greater reduction in conduction velocity (CV) for the Scn5a+/- mouse relative to wild type (WT). In vivo ECGs and ex vivo optical maps were recorded from Langendorff-perfused Scn5a+/- and WT mouse hearts. EpC was reduced with perfusion of a hyponatremic solution, the clinically relevant osmotic agent mannitol, or a combination of the two. Neither in vivo QRS duration nor ex vivo CV during normonatremia was significantly different between the two genotypes. In agreement with our hypothesis, we found that hyponatremia severely slowed CV and disrupted conduction for 4/5 Scn5a+/- mice, but 0/6 WT mice. In addition, treatment with mannitol slowed CV to a greater extent in Scn5a+/- relative to WT hearts. Unexpectedly, treatment with mannitol during hyponatremia did not further slow CV in either genotype, but resolved the disrupted conduction observed in Scn5a+/- hearts. Similar results in guinea pig hearts suggest the effects of mannitol and hyponatremia are not species specific. In conclusion, loss of EpC through either hyponatremia or mannitol alone results in slowed or disrupted conduction in a genetic model of Nav1.5 LOF. However, the combination of these interventions attenuates conduction slowing.NEW & NOTEWORTHY Cardiac sodium channel loss of function (LOF) diseases such as Brugada syndrome (BrS) are often concealed. We optically mapped mouse hearts with reduced sodium channel expression (Scn5a+/-) to evaluate whether reduced ephaptic coupling (EpC) can unmask conduction deficits. Data suggest that conduction deficits in the Scn5a+/- mouse may be unmasked by treatment with hyponatremia and perinexal widening via mannitol. These data support further investigation of hyponatremia and mannitol as novel diagnostics for sodium channel loss of function diseases.
Collapse
Affiliation(s)
- Grace A Blair
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Xiaobo Wu
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Chandra Bain
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Mark Warren
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Gregory S Hoeker
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Steven Poelzing
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| |
Collapse
|
5
|
Woodhams LG, Guo J, Schuftan D, Boyle JJ, Pryse KM, Elson EL, Huebsch N, Genin GM. Virtual blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes. Proc Natl Acad Sci U S A 2023; 120:e2212949120. [PMID: 37695908 PMCID: PMC10515162 DOI: 10.1073/pnas.2212949120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
Fluorescent reporters of cardiac electrophysiology provide valuable information on heart cell and tissue function. However, motion artifacts caused by cardiac muscle contraction interfere with accurate measurement of fluorescence signals. Although drugs such as blebbistatin can be applied to stop cardiac tissue from contracting by uncoupling calcium-contraction, their usage prevents the study of excitation-contraction coupling and, as we show, impacts cellular structure. We therefore developed a robust method to remove motion computationally from images of contracting cardiac muscle and to map fluorescent reporters of cardiac electrophysiological activity onto images of undeformed tissue. When validated on cardiomyocytes derived from human induced pluripotent stem cells (iPSCs), in both monolayers and engineered tissues, the method enabled efficient and robust reduction of motion artifact. As with pharmacologic approaches using blebbistatin for motion removal, our algorithm improved the accuracy of optical mapping, as demonstrated by spatial maps of calcium transient decay. However, unlike pharmacologic motion removal, our computational approach allowed direct analysis of calcium-contraction coupling. Results revealed calcium-contraction coupling to be more uniform across cells within engineered tissues than across cells in monolayer culture. The algorithm shows promise as a robust and accurate tool for optical mapping studies of excitation-contraction coupling in heart tissue.
Collapse
Affiliation(s)
- Louis G Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
| | - Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - John J Boyle
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Kenneth M Pryse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| | - Guy M Genin
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| |
Collapse
|
6
|
Chin SH, Allen E, Brack KE, Ng GA. Autonomic neuro-cardiac profile of electrical, structural and neuronal remodeling in myocardial infarction-induced heart failure. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 5:100044. [PMID: 37745157 PMCID: PMC10512199 DOI: 10.1016/j.jmccpl.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Aims Heart failure is a clinical syndrome typified by abnormal autonomic tone, impaired ventricular function, and increased arrhythmic vulnerability. This study aims to examine electrophysiological, structural and neuronal remodeling following myocardial infarction in a rabbit heart failure model to establish its neuro-cardiac profile. Methods and results Weight-matched adult male New Zealand White rabbits (3.2 ± 0.1 kg, n = 25) were randomized to have coronary ligation surgeries (HF group, n = 13) or sham procedures (SHM group, n = 12). Transthoracic echocardiography was performed six weeks post-operatively. On week 8, dual-innervated Langendorff-perfused heart preparations were set up for terminal experiments. Seventeen hearts (HF group, n = 10) underwent ex-vivo cardiac MRI. Twenty-two hearts (HF group, n = 7) were examined histologically. Electrical remodeling and abnormal autonomic profile were evident in HF rabbits with exaggerated sympathetic and attenuated vagal effect on ventricular fibrillation threshold, ventricular refractoriness and restitution curves, in addition to increased spatial restitution dispersion. Histologically, there was significant neuronal enlargement at the heart hila and conus arteriosus in HF. Structural remodeling was characterized by quantifiable myocardial scarring, enlarged left ventricles, altered ventricular geometry and impaired contractility. Conclusion In an infarct-induced rabbit heart failure model, extensive structural, neuronal and electrophysiological remodeling in conjunction with abnormal autonomic profile provide substrates for ventricular arrhythmias.
Collapse
Affiliation(s)
- Shui Hao Chin
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Emily Allen
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - Kieran E. Brack
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - G. André Ng
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| |
Collapse
|
7
|
Marchal GA, Biasci V, Loew LM, Biggeri A, Campione M, Sacconi L. Optogenetic manipulation of cardiac repolarization gradients using sub-threshold illumination. Front Physiol 2023; 14:1167524. [PMID: 37215182 PMCID: PMC10196067 DOI: 10.3389/fphys.2023.1167524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Mechanisms underlying cardiac arrhythmias are typically driven by abnormalities in cardiac conduction and/or heterogeneities in repolarization time (RT) across the heart. While conduction slowing can be caused by either electrophysiological defects or physical blockade in cardiac tissue, RT heterogeneities are mainly related to action potential (AP) prolongation or abbreviation in specific areas of the heart. Importantly, the size of the area with altered RT and the difference between the short RT and long RT (RT gradient) have been identified as critical determinators of arrhythmogenicity. However, current experimental methods for manipulating RT gradient rely on the use of ion channel inhibitors, which lack spatial and temporal specificity and are commonly only partially reversible. Therefore, the conditions facilitating sustained arrhythmia upon the presence of RT heterogeneities and/or defects in cardiac conduction remain to be elucidated. Methods: We here employ an approach based on optogenetic stimulation in a low-intensity fashion (sub-threshold illumination), to selectively manipulate cardiac electrical activity in defined areas of the heart. Results: As previously described, subthreshold illumination is a robust tool able to prolong action potentials (AP), decrease upstroke velocity as well as slow cardiac conduction, in a fully reversible manner. By applying a patterned sub-threshold illumination in intact mouse hearts constitutively expressing the light-gated ion channel channelrhodopsin-2 (ChR2), we optically manipulate RT gradients and cardiac conduction across the heart in a spatially selective manner. Moreover, in a proof-of-concept assessment we found that in the presence of patterned sub-threshold illumination, mouse hearts were more susceptible to arrhythmias. Hence, this optogenetic-based approach may be able to mimic conduction slowing and RT heterogeneities present in pathophysiological conditions.
Collapse
Affiliation(s)
- Gerard A. Marchal
- European Laboratory for Non-Linear Spectroscopy—LENS, Florence, Italy
- National Institute of Optics (INO-CNR), Florence, Italy
- Institute of Clinical Physiology (IFC-CNR), Pisa, Italy
| | - Valentina Biasci
- European Laboratory for Non-Linear Spectroscopy—LENS, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Leslie M. Loew
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, United States
| | - Annibale Biggeri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Marina Campione
- Institute of Neuroscience (IN-CNR) and Department of Biomedical Science University of Padua, Padua, Italy
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC-CNR), Pisa, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Kappadan V, Sohi A, Parlitz U, Luther S, Uzelac I, Fenton F, Peters NS, Christoph J, Ng FS. Optical mapping of contracting hearts. J Physiol 2023; 601:1353-1370. [PMID: 36866700 PMCID: PMC10952556 DOI: 10.1113/jp283683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Optical mapping is a widely used tool to record and visualize the electrophysiological properties in a variety of myocardial preparations such as Langendorff-perfused isolated hearts, coronary-perfused wedge preparations, and cell culture monolayers. Motion artifact originating from the mechanical contraction of the myocardium creates a significant challenge to performing optical mapping of contracting hearts. Hence, to minimize the motion artifact, cardiac optical mapping studies are mostly performed on non-contracting hearts, where the mechanical contraction is removed using pharmacological excitation-contraction uncouplers. However, such experimental preparations eliminate the possibility of electromechanical interaction, and effects such as mechano-electric feedback cannot be studied. Recent developments in computer vision algorithms and ratiometric techniques have opened the possibility of performing optical mapping studies on isolated contracting hearts. In this review, we discuss the existing techniques and challenges of optical mapping of contracting hearts.
Collapse
Affiliation(s)
- Vineesh Kappadan
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Anies Sohi
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Ulrich Parlitz
- Biomedical Physcis GroupMax Planck Institute for Dynamics and Self‐OrganizationGöttingenGermany
| | - Stefan Luther
- Biomedical Physcis GroupMax Planck Institute for Dynamics and Self‐OrganizationGöttingenGermany
| | - Ilija Uzelac
- School of PhysicsGeorgia Institute of TechnologyAtlantaGAUSA
| | - Flavio Fenton
- School of PhysicsGeorgia Institute of TechnologyAtlantaGAUSA
| | - Nicholas S Peters
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Jan Christoph
- Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCAUSA
| | - Fu Siong Ng
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| |
Collapse
|
9
|
Nakao M, Watanabe M, Miquerol L, Natsui H, Koizumi T, Kadosaka T, Koya T, Hagiwara H, Kamada R, Temma T, de Vries AAF, Anzai T. Optogenetic termination of atrial tachyarrhythmias by brief pulsed light stimulation. J Mol Cell Cardiol 2023; 178:9-21. [PMID: 36965700 DOI: 10.1016/j.yjmcc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
AIMS The most efficient way to acutely restore sinus rhythm from atrial fibrillation (AF) is electrical cardioversion, which is painful without adequate sedation. Recent studies in various experimental models have indicated that optogenetic termination of AF using light-gated ion channels may provide a myocardium-specific and potentially painless alternative future therapy. However, its underlying mechanism(s) remain(s) incompletely understood. As brief pulsed light stimulation, even without global illumination, can achieve optogenetic AF termination, besides direct conduction block also modulation of action potential (AP) properties may be involved in the termination mechanism. We studied the relationship between optogenetic AP duration (APD) and effective refractory period (ERP) prolongation by brief pulsed light stimulation and termination of atrial tachyarrhythmia (AT). METHODS AND RESULTS Hearts from transgenic mice expressing the H134R variant of channelrhodopsin-2 in atrial myocytes were explanted and perfused retrogradely. AT induced by electrical stimulation was terminated by brief pulsed blue light stimulation (470 nm, 10 ms, 16 mW/mm2) with 68% efficacy. The termination rate was dependent on pulse duration and light intensity. Optogenetically imposed APD and ERP changes were systematically examined and optically monitored. Brief pulsed light stimulation (10 ms, 6 mW/mm2) consistently prolonged APD and ERP when light was applied at different phases of the cardiac action potential. Optical tracing showed light-induced APD prolongation during the termination of AT. CONCLUSION Our results directly demonstrate that cationic channelrhodopsin activation by brief pulsed light stimulation prolongs the atrial refractory period suggesting that this is one of the key mechanisms of optogenetic termination of AT.
Collapse
Affiliation(s)
- Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Lucile Miquerol
- Developmental Biology Institute of Marseille, Aix-Marseille Université, CNRS UMR 7288, Campus de Luminy Case 907, CEDEX 9, Marseille 13288, France
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology Department of Cardiology, Leiden University Medical Center Leiden, Netherlands
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Kohl P, Zgierski-Johnston CM. Assessment of Tissue Viability by Functional Imaging of Membrane Potential. Methods Mol Biol 2023; 2644:423-434. [PMID: 37142938 DOI: 10.1007/978-1-0716-3052-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Electrical activity plays a key role in physiology, in particular for signaling and coordination. Cellular electrophysiology is often studied with micropipette-based techniques such as patch clamp and sharp electrodes, but for measurements at the tissue or organ scale, more integrated approaches are needed. Epifluorescence imaging of voltage-sensitive dyes ("optical mapping") is a tissue non-destructive approach to obtain insight into electrophysiology with high spatiotemporal resolution. Optical mapping has primarily been applied to excitable organs, especially the heart and brain. Action potential durations, conduction patterns, and conduction velocities can be determined from the recordings, providing information about electrophysiological mechanisms, including factors such as effects of pharmacological interventions, ion channel mutations, or tissue remodeling. Here, we describe the process for optical mapping of Langendorff-perfused mouse hearts, highlighting potential issues and key considerations.
Collapse
Affiliation(s)
- Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
11
|
Dong X, Tse G, Hao G, Du Y. Heterogeneities in Ventricular Conduction Following Treatment with Heptanol: A Multi-Electrode Array Study in Langendorff-Perfused Mouse Hearts. Life (Basel) 2022; 12:life12070996. [PMID: 35888085 PMCID: PMC9321110 DOI: 10.3390/life12070996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Previous studies have associated slowed ventricular conduction with the arrhythmogenesis mediated by the gap junction and sodium channel inhibitor heptanol in mouse hearts. However, they did not study the propagation patterns that might contribute to the arrhythmic substrate. This study used a multi-electrode array mapping technique to further investigate different conduction abnormalities in Langendorff-perfused mouse hearts exposed to 0.1 or 2 mM heptanol. Methods: Recordings were made from the left ventricular epicardium using multi-electrode arrays in spontaneously beating hearts during right ventricular 8 Hz pacing or S1S2 pacing. Results: In spontaneously beating hearts, heptanol at 0.1 and 2 mM significantly reduced the heart rate from 314 ± 25 to 189 ± 24 and 157 ± 7 bpm, respectively (ANOVA, p < 0.05 and p < 0.001). During regular 8 Hz pacing, the mean LATs were increased by 0.1 and 2 mM heptanol from 7.1 ± 2.2 ms to 19.9 ± 5.0 ms (p < 0.05) and 18.4 ± 5.7 ms (p < 0.05). The standard deviation of the mean LATs was increased from 2.5 ± 0.8 ms to 10.3 ± 4.0 ms and 8.0 ± 2.5 ms (p < 0.05), and the median of phase differences was increased from 1.7 ± 1.1 ms to 13.9 ± 7.8 ms and 12.1 ± 5.0 ms by 0.1 and 2 mM heptanol (p < 0.05). P5 took a value of 0.2 ± 0.1 ms and was not significantly altered by heptanol at 0.1 or 2 mM (1.1 ± 0.9 ms and 0.9 ± 0.5 ms, p > 0.05). P50 was increased from 7.3 ± 2.7 ms to 24.0 ± 12.0 ms by 0.1 mM heptanol and then to 22.5 ± 7.5 ms by 2 mM heptanol (p < 0.05). P95 was increased from 1.7 ± 1.1 ms to 13.9 ± 7.8 ms by 0.1 mM heptanol and to 12.1 ± 5.0 ms by 2 mM heptanol (p < 0.05). These changes led to increases in the absolute inhomogeneity in conduction (P5−95) from 7.1 ± 2.6 ms to 31.4 ± 11.3 ms, 2 mM: 21.6 ± 7.2 ms, respectively (p < 0.05). The inhomogeneity index (P5−95/P50) was significantly reduced from 3.7 ± 1.2 to 3.1 ± 0.8 by 0.1 mM and then to 3.3 ± 0.9 by 2 mM heptanol (p < 0.05). Conclusion: Increased activation latencies, reduced CVs, and the increased inhomogeneity index of conduction were associated with both spontaneous and induced ventricular arrhythmias.
Collapse
Affiliation(s)
- Xiuming Dong
- Henan SCOPE Research Institute of Electrophysiology Co., Ltd., Kaifeng 475000, China; (X.D.); (G.H.)
| | - Gary Tse
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Hong Kong, China;
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Kent and Medway Medical School, Canterbury CT2 7FS, UK
| | - Guoliang Hao
- Henan SCOPE Research Institute of Electrophysiology Co., Ltd., Kaifeng 475000, China; (X.D.); (G.H.)
- Burdon Sanderson Cardiac Science Centre, BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
12
|
George SA, Lin Z, Efimov IR. Simultaneous triple-parametric optical mapping of transmembrane potential, intracellular calcium and NADH for cardiac physiology assessment. Commun Biol 2022; 5:319. [PMID: 35388167 PMCID: PMC8987030 DOI: 10.1038/s42003-022-03279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Investigation of the complex relationships and dependencies of multiple cellular processes that govern cardiac physiology and pathophysiology requires simultaneous dynamic assessment of multiple parameters. In this study, we introduce triple-parametric optical mapping to simultaneously image metabolism, electrical excitation, and calcium signaling from the same field of view and demonstrate its application in the field of drug testing and cardiovascular research. We applied this metabolism-excitation-contraction coupling (MECC) methodology to test the effects of blebbistatin, 4-aminopyridine and verapamil on cardiac physiology. While blebbistatin and 4-aminopyridine alter multiple aspects of cardiac function suggesting off-target effects, the effects of verapamil were on-target and it altered only one of ten tested parameters. Triple-parametric optical mapping was also applied during ischemia and reperfusion; and we identified that metabolic changes precede the effects of ischemia on cardiac electrophysiology.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
| | - Zexu Lin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
13
|
O'Shea C, Winter J, Kabir SN, O'Reilly M, Wells SP, Baines O, Sommerfeld LC, Correia J, Lei M, Kirchhof P, Holmes AP, Fabritz L, Rajpoot K, Pavlovic D. High resolution optical mapping of cardiac electrophysiology in pre-clinical models. Sci Data 2022; 9:135. [PMID: 35361792 PMCID: PMC8971487 DOI: 10.1038/s41597-022-01253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
Optical mapping of animal models is a widely used technique in pre-clinical cardiac research. It has several advantages over other methods, including higher spatial resolution, contactless recording and direct visualisation of action potentials and calcium transients. Optical mapping enables simultaneous study of action potential and calcium transient morphology, conduction dynamics, regional heterogeneity, restitution and arrhythmogenesis. In this dataset, we have optically mapped Langendorff perfused isolated whole hearts (mouse and guinea pig) and superfused isolated atria (mouse). Raw datasets (consisting of over 400 files) can be combined with open-source software for processing and analysis. We have generated a comprehensive post-processed dataset characterising the baseline cardiac electrophysiology in these widely used pre-clinical models. This dataset also provides reference information detailing the effect of heart rate, clinically used anti-arrhythmic drugs, ischaemia-reperfusion and sympathetic nervous stimulation on cardiac electrophysiology. The effects of these interventions can be studied in a global or regional manner, enabling new insights into the prevention and initiation of arrhythmia.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simon P Wells
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Olivia Baines
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Joao Correia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Germany and German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lubeck, Lubeck, Germany
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Germany and German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lubeck, Lubeck, Germany
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
The effective use of blebbistatin to study the action potential of cardiac pacemaker cells of zebrafish (Danio rerio) during incremental warming. Curr Res Physiol 2022; 5:48-54. [PMID: 35128467 PMCID: PMC8803472 DOI: 10.1016/j.crphys.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Blebbistatin potently inhibits actin-myosin interaction, preventing contractile activity of excitable cells including cardiac myocytes, despite electrical excitation of an action potential (AP). We collected intracellular microelectrode recordings of pacemaker cells located in the sinoatrial region (SAR) of the zebrafish heart at room temperature and during acute warming to investigate whether or not blebbistatin inhibition of contraction significantly alters pacemaker cell electrophysiology. Changes were evaluated based on 16 variables that characterized the AP waveform. None of these AP variables nor the spontaneous heart rate were significantly modified with the application of 10 μM blebbistatin when recordings were made at room temperature. Compared with the control group, the blebbistatin-treated group showed minor changes in the rate of spontaneous diastolic depolarization (P = 0.027) and the 50% and 80% repolarization (P = 0.008 and 0.010, respectively) in the 26°C–29°C temperature bin, but not at higher temperatures. These findings suggest that blebbistatin is an effective excitation-contraction uncoupler that does not appreciably affect APs generated in pacemaking cells of the SAR and can, therefore, be used in zebrafish cardiac studies. Blebbistatin uncouples excitation-contraction in zebrafish cardiomyocytes. Blebbistatin does not modify the pacemaker action potential variables. Temperature does not modify the effect of blebbistatin. First validation of the use of blebbistatin in adult fish. Methodology of intracellular microelectrode recording of zebrafish pacemaker cells.
Collapse
|
16
|
Swift LM, Kay MW, Ripplinger CM, Posnack NG. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research. Am J Physiol Heart Circ Physiol 2021; 321:H1005-H1013. [PMID: 34623183 DOI: 10.1152/ajpheart.00477.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this "Getting It Right" perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue.
Collapse
Affiliation(s)
- Luther M Swift
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | | | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
17
|
Wu X, Hoeker GS, Blair GA, King DR, Gourdie RG, Weinberg SH, Poelzing S. Hypernatremia and intercalated disc edema synergistically exacerbate long-QT syndrome type 3 phenotype. Am J Physiol Heart Circ Physiol 2021; 321:H1042-H1055. [PMID: 34623182 DOI: 10.1152/ajpheart.00366.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac voltage-gated sodium channel gain-of-function prolongs repolarization in the long-QT syndrome type 3 (LQT3). Previous studies suggest that narrowing the perinexus within the intercalated disc, leading to rapid sodium depletion, attenuates LQT3-associated action potential duration (APD) prolongation. However, it remains unknown whether extracellular sodium concentration modulates APD prolongation during sodium channel gain-of-function. We hypothesized that elevated extracellular sodium concentration and widened perinexus synergistically prolong APD in LQT3. LQT3 was induced with sea anemone toxin (ATXII) in Langendorff-perfused guinea pig hearts (n = 34). Sodium concentration was increased from 145 to 160 mM. Perinexal expansion was induced with mannitol or the sodium channel β1-subunit adhesion domain antagonist (βadp1). Epicardial ventricular action potentials were optically mapped. Individual and combined effects of varying clefts and sodium concentrations were simulated in a computational model. With ATXII, both mannitol and βadp1 significantly widened the perinexus and prolonged APD, respectively. The elevated sodium concentration alone significantly prolonged APD as well. Importantly, the combination of elevated sodium concentration and perinexal widening synergistically prolonged APD. Computational modeling results were consistent with animal experiments. Concurrently elevating extracellular sodium and increasing intercalated disc edema prolongs repolarization more than the individual interventions alone in LQT3. This synergistic effect suggests an important clinical implication that hypernatremia in the presence of cardiac edema can markedly increase LQT3-associated APD prolongation. Therefore, to our knowledge, this is the first study to provide evidence of a tractable and effective strategy to mitigate LQT3 phenotype by means of managing sodium levels and preventing cardiac edema in patients.NEW & NOTEWORTHY This is the first study to demonstrate that the long-QT syndrome type 3 (LQT3) phenotype can be exacerbated or concealed by regulating extracellular sodium concentrations and/or the intercalated disc separation. The animal experiments and computational modeling in the current study reveal a critically important clinical implication: sodium dysregulation in the presence of edema within the intercalated disc can markedly increase the risk of arrhythmia in LQT3. These findings strongly suggest that maintaining extracellular sodium within normal physiological limits may be an effective and inexpensive therapeutic option for patients with congenital or acquired sodium channel gain-of-function diseases.
Collapse
Affiliation(s)
- Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Seth H Weinberg
- Department of Biomedical Engineering, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
18
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Han B, Trew ML, Zgierski-Johnston CM. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis. Cells 2021; 10:cells10112923. [PMID: 34831145 PMCID: PMC8616078 DOI: 10.3390/cells10112923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac electrophysiological disorders, in particular arrhythmias, are a key cause of morbidity and mortality throughout the world. There are two basic requirements for arrhythmogenesis: an underlying substrate and a trigger. Altered conduction velocity (CV) provides a key substrate for arrhythmogenesis, with slowed CV increasing the probability of re-entrant arrhythmias by reducing the length scale over which re-entry can occur. In this review, we examine methods to measure cardiac CV in vivo and ex vivo, discuss underlying determinants of CV, and address how pathological variations alter CV, potentially increasing arrhythmogenic risk. Finally, we will highlight future directions both for methodologies to measure CV and for possible treatments to restore normal CV.
Collapse
Affiliation(s)
- Bo Han
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Department of Cardiovascular Surgery, The Fourth People’s Hospital of Jinan, 250031 Jinan, China
| | - Mark L. Trew
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand;
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
20
|
Blebbistatin protects iPSC-CMs from hypercontraction and facilitates automated patch-clamp based electrophysiological study. Stem Cell Res 2021; 56:102565. [PMID: 34638057 DOI: 10.1016/j.scr.2021.102565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/11/2023] Open
Abstract
Recently, there have been great advances in cardiovascular channelopathy modeling and drug safety pharmacology using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The automated patch-clamp (APC) technique overcomes the disadvantages of the manual patch-clamp (MPC) technique, which is labor intensive and gives low output. However, the application of the APC platform is still limited in iPSC-CM based research, due to the difficulty in maintaining the high quality of single iPSC-CMs during dissociation and recording. In this study, we improved the method for single iPSC-CM preparation by applying 2.5 µM blebbistatin (BB, an excitation-contraction coupling uncoupler) throughout APC procedures (dissociation, filtration, storage, and recording). Under non-BB buffered condition, iPSC-CMs in suspension showed a severe bleb-like morphology. However, BB-supplement led to significant improvements in morphology and INa recording, and we even obtained several CMs that showed spontaneous action potentials with typical morphology. Furthermore, APC faithfully recapitulated the single-cell electrophysiological phenotypes of iPSC-CMs derived from Brugada syndrome patients, as detected with MPC. Our study indicates that APC is capable of replacing MPC in the modeling of cardiac channelopathies using human iPSC-CMs by providing high-quality data with higher throughput.
Collapse
|
21
|
Rieger M, Dellenbach C, Vom Berg J, Beil-Wagner J, Maguy A, Rohr S. Enabling comprehensive optogenetic studies of mouse hearts by simultaneous opto-electrical panoramic mapping and stimulation. Nat Commun 2021; 12:5804. [PMID: 34608155 PMCID: PMC8490461 DOI: 10.1038/s41467-021-26039-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
During the last decade, cardiac optogenetics has turned into an essential tool for investigating cardiac function in general and for assessing functional interactions between different myocardial cell types in particular. To advance exploitation of the unique research opportunities offered by this method, we develop a panoramic opto-electrical measurement and stimulation (POEMS) system for mouse hearts. The core of the experimental platform is composed of 294 optical fibers and 64 electrodes that form a cup which embraces the entire ventricular surface of mouse hearts and enables straightforward ‘drop&go’ experimentation. The flexible assignment of fibers and electrodes to recording or stimulation tasks permits a precise tailoring of experiments to the specific requirements of individual optogenetic constructs thereby avoiding spectral congestion. Validation experiments with hearts from transgenic animals expressing the optogenetic voltage reporters ASAP1 and ArcLight-Q239 demonstrate concordance of simultaneously recorded panoramic optical and electrical activation maps. The feasibility of single fiber optical stimulation is proven with hearts expressing the optogenetic voltage actuator ReaChR. Adaptation of the POEMS system to larger hearts and incorporation of additional sensors can be achieved by redesigning the system-core accordingly. Current cardiac mapping systems provide either electrical or optical readouts. Here the authors report a panoramic opto-electrical measurement and stimulation (POEMS) system which embraces the entire ventricular surface of mouse hearts, allowing flexible combinations of optical and electrical recording and stimulation modalities.
Collapse
Affiliation(s)
- Michael Rieger
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, Switzerland
| | | | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Ange Maguy
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, Switzerland
| | - Stephan Rohr
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, Switzerland.
| |
Collapse
|
22
|
Ronzhina M, Stracina T, Lacinova L, Ondacova K, Pavlovicova M, Marsanova L, Smisek R, Janousek O, Fialova K, Kolarova J, Novakova M, Provaznik I. Di-4-ANEPPS Modulates Electrical Activity and Progress of Myocardial Ischemia in Rabbit Isolated Heart. Front Physiol 2021; 12:667065. [PMID: 34177617 PMCID: PMC8222999 DOI: 10.3389/fphys.2021.667065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Aims Although voltage-sensitive dye di-4-ANEPPS is a common tool for mapping cardiac electrical activity, reported effects on electrophysiological parameters are rather. The main goals of the study were to reveal effects of the dye on rabbit isolated heart and to verify, whether rabbit isolated heart stained with di-4-ANEPPS is a suitable tool for myocardial ischemia investigation. Methods and Results Study involved experiments on stained (n = 9) and non-stained (n = 11) Langendorff perfused rabbit isolated hearts. Electrophysiological effects of the dye were evaluated by analysis of various electrogram (EG) parameters using common paired and unpaired statistical tests. It was shown that staining the hearts with di-4-ANEPPS leads to only short-term sporadic prolongation of impulse conduction through atria and atrioventricular node. On the other hand, significant irreversible slowing of heart rate and ventricular conduction were found in stained hearts as compared to controls. In patch clamp experiments, significant inhibition of sodium current density was observed in differentiated NG108-15 cells stained by the dye. Although no significant differences in mean number of ventricular premature beats were found between the stained and the non-stained hearts in ischemia as well as in reperfusion, all abovementioned results indicate increased arrhythmogenicity. In isolated hearts during ischemia, prominent ischemic patterns appeared in the stained hearts with 3–4 min delay as compared to the non-stained ones. Moreover, the ischemic changes did not achieve the same magnitude as in controls even after 10 min of ischemia. It resulted in poor performance of ischemia detection by proposed EG parameters, as was quantified by receiver operating characteristics analysis. Conclusion Our results demonstrate significant direct irreversible effect of di-4-ANEPPS on spontaneous heart rate and ventricular impulse conduction in rabbit isolated heart model. Particularly, this should be considered when di-4-ANEPPS is used in ischemia studies in rabbit. Delayed attenuated response of such hearts to ischemia might lead to misinterpretation of obtained results.
Collapse
Affiliation(s)
- Marina Ronzhina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Tibor Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lubica Lacinova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Ondacova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Pavlovicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucie Marsanova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Radovan Smisek
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Oto Janousek
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Katerina Fialova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Kolarova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Marie Novakova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| |
Collapse
|
23
|
Szlovák J, Tomek J, Zhou X, Tóth N, Veress R, Horváth B, Szentandrássy N, Levijoki J, Papp JG, Herring N, Varró A, Eisner DA, Rodriguez B, Nagy N. Blockade of sodium‑calcium exchanger via ORM-10962 attenuates cardiac alternans. J Mol Cell Cardiol 2021; 153:111-122. [PMID: 33383036 PMCID: PMC8035081 DOI: 10.1016/j.yjmcc.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022]
Abstract
Repolarization alternans, a periodic oscillation of long-short action potential duration, is an important source of arrhythmogenic substrate, although the mechanisms driving it are insufficiently understood. Despite its relevance as an arrhythmia precursor, there are no successful therapies able to target it specifically. We hypothesized that blockade of the sodium‑calcium exchanger (NCX) could inhibit alternans. The effects of the selective NCX blocker ORM-10962 were evaluated on action potentials measured with microelectrodes from canine papillary muscle preparations, and calcium transients measured using Fluo4-AM from isolated ventricular myocytes paced to evoke alternans. Computer simulations were used to obtain insight into the drug's mechanisms of action. ORM-10962 attenuated cardiac alternans, both in action potential duration and calcium transient amplitude. Three morphological types of alternans were observed, with differential response to ORM-10962 with regards to APD alternans attenuation. Analysis of APD restitution indicates that calcium oscillations underlie alternans formation. Furthermore, ORM-10962 did not markedly alter APD restitution, but increased post-repolarization refractoriness, which may be mediated by indirectly reduced L-type calcium current. Computer simulations reproduced alternans attenuation via ORM-10962, suggesting that it is acts by reducing sarcoplasmic reticulum release refractoriness. This results from the ORM-10962-induced sodium‑calcium exchanger block accompanied by an indirect reduction in L-type calcium current. Using a computer model of a heart failure cell, we furthermore demonstrate that the anti-alternans effect holds also for this disease, in which the risk of alternans is elevated. Targeting NCX may therefore be a useful anti-arrhythmic strategy to specifically prevent calcium driven alternans.
Collapse
Affiliation(s)
- Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary
| | - Jakub Tomek
- Department of Physiology, Anatomy, and Genetics, University of Oxford, United Kingdom; Department of Computer Science, University of Oxford, United Kingdom.
| | - Xin Zhou
- Department of Computer Science, University of Oxford, United Kingdom
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary; Faculty of Pharmacy, University of Debrecen, Hungary
| | | | | | - Julius Gy Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Neil Herring
- Department of Physiology, Anatomy, and Genetics, University of Oxford, United Kingdom
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - David A Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility, Manchester, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
24
|
Martišienė I, Mačianskienė R, Benetis R, Jurevičius J. Cardiac Optical Mapping in Situ in Swine Models: A View of the Current Situation. MEDICINA-LITHUANIA 2020; 56:medicina56110620. [PMID: 33217906 PMCID: PMC7698624 DOI: 10.3390/medicina56110620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
Optical mapping is recognized as a promising tool for the registration of electrical activity in the heart. Most cardiac optical mapping experiments are performed in ex vivo isolated heart models. However, the electrophysiological properties of the heart are highly influenced by the autonomic nervous system as well as humoral regulation; therefore, in vivo investigations of heart activity in large animals are definitely preferred. Furthermore, such investigations can be considered the last step before clinical application. Recently, two comprehensive studies have examined optical mapping approaches for pig hearts in situ (in vivo), likely advancing the methodological capacity to perform complex electrophysiological investigations of the heart. Both studies had the same aim, i.e., to develop high-spatiotemporal-resolution optical mapping suitable for registration of electrical activity of pig heart in situ, but the methods chosen were different. In this brief review, we analyse and compare the results of recent studies and discuss their translational potential for in situ cardiac optical mapping applications in large animals. We focus on the modes of blood circulation that are employed, the use of different voltage-sensitive dyes and their loading procedures, and ways of eliminating contraction artefacts. Finally, we evaluate the possible scenarios for optical mapping (OM) application in large animals in situ and infer which scenario is optimal.
Collapse
Affiliation(s)
- Irma Martišienė
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.M.); (R.M.); (R.B.)
| | - Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.M.); (R.M.); (R.B.)
| | - Rimantas Benetis
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.M.); (R.M.); (R.B.)
- Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.M.); (R.M.); (R.B.)
- Correspondence:
| |
Collapse
|
25
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
O'Shea C, Kabir SN, Holmes AP, Lei M, Fabritz L, Rajpoot K, Pavlovic D. Cardiac optical mapping - State-of-the-art and future challenges. Int J Biochem Cell Biol 2020; 126:105804. [PMID: 32681973 PMCID: PMC7456775 DOI: 10.1016/j.biocel.2020.105804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022]
Abstract
Cardiac optical mapping is a fluorescent imaging method to study electrical behaviour and calcium handling in the heart. Optical mapping provides higher spatio-temporal resolution than electrode techniques, allowing unique insights into cardiac electrophysiology in health and disease from a variety of pre-clinical models. Both transmembrane voltage and intracellular calcium dynamics can be studied with the use of appropriate fluorescent dyes. Optical mapping has traditionally required the use of mechanical uncouplers, however computational and technical developments have lessened the requirement for these agents. Novel fluorescent dyes have been developed to optimise spectral properties, experimental timescales, biological compatibility and fluorescence output. The combination of these developments has made possible novel mapping experiments, including recent in vivo application of the technique.
Cardiac optical mapping utilises fluorescent dyes to directly image the electrical function of the heart at a high spatio-temporal resolution which far exceeds electrode techniques. It has therefore become an invaluable tool in cardiac electrophysiological research to map the propagation of heterogeneous electrical signals across the myocardium. In this review, we introduce the principles behind cardiac optical mapping and discuss some of the challenges and state of the art in the field. Key advancements discussed include newly developed fluorescent indicators, tools for the analysis of complex datasets, panoramic imaging systems and technical and computational approaches to realise optical mapping in freely beating hearts.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK; Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK; Department Cardiology, University Hospital Birmingham, Birmingham, UK
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
27
|
Lee P, Quintanilla JG, Alfonso-Almazán JM, Galán-Arriola C, Yan P, Sánchez-González J, Pérez-Castellano N, Pérez-Villacastín J, Ibañez B, Loew LM, Filgueiras-Rama D. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res 2020; 115:1659-1671. [PMID: 30753358 PMCID: PMC6704389 DOI: 10.1093/cvr/cvz039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/28/2022] Open
Abstract
Aims Cardiac optical mapping is the gold standard for measuring complex electrophysiology in ex vivo heart preparations. However, new methods for optical mapping in vivo have been elusive. We aimed at developing and validating an experimental method for performing in vivo cardiac optical mapping in pig models. Methods and results First, we characterized ex vivo the excitation-ratiometric properties during pacing and ventricular fibrillation (VF) of two near-infrared voltage-sensitive dyes (di-4-ANBDQBS/di-4-ANEQ(F)PTEA) optimized for imaging blood-perfused tissue (n = 7). Then, optical-fibre recordings in Langendorff-perfused hearts demonstrated that ratiometry permits the recording of optical action potentials (APs) with minimal motion artefacts during contraction (n = 7). Ratiometric optical mapping ex vivo also showed that optical AP duration (APD) and conduction velocity (CV) measurements can be accurately obtained to test drug effects. Secondly, we developed a percutaneous dye-loading protocol in vivo to perform high-resolution ratiometric optical mapping of VF dynamics (motion minimal) using a high-speed camera system positioned above the epicardial surface of the exposed heart (n = 11). During pacing (motion substantial) we recorded ratiometric optical signals and activation via a 2D fibre array in contact with the epicardial surface (n = 7). Optical APs in vivo under general anaesthesia showed significantly faster CV [120 (63–138) cm/s vs. 51 (41–64) cm/s; P = 0.032] and a statistical trend to longer APD90 [242 (217–254) ms vs. 192 (182–233) ms; P = 0.095] compared with ex vivo measurements in the contracting heart. The average rate of signal-to-noise ratio (SNR) decay of di-4-ANEQ(F)PTEA in vivo was 0.0671 ± 0.0090 min−1. However, reloading with di-4-ANEQ(F)PTEA fully recovered the initial SNR. Finally, toxicity studies (n = 12) showed that coronary dye injection did not generate systemic nor cardiac damage, although di-4-ANBDQBS injection induced transient hypotension, which was not observed with di-4-ANEQ(F)PTEA. Conclusions In vivo optical mapping using voltage ratiometry of near-infrared dyes enables high-resolution cardiac electrophysiology in translational pig models.
Collapse
Affiliation(s)
- Peter Lee
- Essel Research and Development Inc., Toronto, 337 Sheppard Ave East, Toronto, Ontario M2N 3B3, Canada
| | - Jorge G Quintanilla
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,Arrhythmia Unit, Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, Madrid, Spain
| | - José M Alfonso-Almazán
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain
| | - Carlos Galán-Arriola
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, USA
| | | | - Nicasio Pérez-Castellano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,Arrhythmia Unit, Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, Madrid, Spain
| | - Julián Pérez-Villacastín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,Arrhythmia Unit, Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Paseo de San Francisco de Sales 3, Madrid, Spain
| | - Borja Ibañez
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,IIS-University Hospital Fundación Jiménez Díaz, Department of Cardiology, Av. Reyes Católicos 2, Madrid, Spain
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, USA
| | - David Filgueiras-Rama
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,Arrhythmia Unit, Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, Madrid, Spain
| |
Collapse
|
28
|
Pollnow S, Schwaderlapp G, Loewe A, Dössel O. Monitoring the dynamics of acute radiofrequency ablation lesion formation in thin-walled atria - a simultaneous optical and electrical mapping study. BIOMED ENG-BIOMED TE 2020; 65:327-341. [PMID: 31756159 DOI: 10.1515/bmt-2019-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/27/2019] [Indexed: 11/15/2022]
Abstract
Background Radiofrequency ablation (RFA) is a common approach to treat cardiac arrhythmias. During this intervention, numerous strategies are applied to indirectly estimate lesion formation. However, the assessment of the spatial extent of these acute injuries needs to be improved in order to create well-defined and durable ablation lesions. Methods We investigated the electrophysiological characteristics of rat atrial myocardium during an ex vivo RFA procedure with fluorescence-optical and electrical mapping. By analyzing optical data, the temporal growth of punctiform ablation lesions was reconstructed after stepwise RFA sequences. Unipolar electrograms (EGMs) were simultaneously recorded by a multielectrode array (MEA) before and after each RFA sequence. Based on the optical results, we searched for electrical features to delineate these lesions from healthy myocardium. Results Several unipolar EGM parameters were monotonically decreasing when distances between the electrode and lesion boundary were smaller than 2 mm. The negative component of the unipolar EGM [negative peak amplitude (Aneg)] vanished for distances lesser than 0.4 mm to the lesion boundary. Median peak-to-peak amplitude (Vpp) was decreased by 75% compared to baseline. Conclusion Aneg and Vpp are excellent parameters to discriminate the growing lesion area from healthy myocardium. The experimental setup opens new opportunities to investigate EGM characteristics of more complex ablation lesions.
Collapse
Affiliation(s)
- Stefan Pollnow
- Karlsruhe Institute of Technology, Institute of Biomedical Engineering, Fritz-Haber-Weg 1, Karlsruhe 76131, Germany, Tel.: +49-721-608-42650, Fax: +49-721-608-42789
| | - Gerald Schwaderlapp
- Karlsruhe Institute of Technology, Institute of Biomedical Engineering, Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Axel Loewe
- Karlsruhe Institute of Technology, Institute of Biomedical Engineering, Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Olaf Dössel
- Karlsruhe Institute of Technology, Institute of Biomedical Engineering, Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| |
Collapse
|
29
|
Kappadan V, Telele S, Uzelac I, Fenton F, Parlitz U, Luther S, Christoph J. High-Resolution Optical Measurement of Cardiac Restitution, Contraction, and Fibrillation Dynamics in Beating vs. Blebbistatin-Uncoupled Isolated Rabbit Hearts. Front Physiol 2020; 11:464. [PMID: 32528304 PMCID: PMC7264405 DOI: 10.3389/fphys.2020.00464] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Optical mapping is a high-resolution fluorescence imaging technique, that uses voltage- or calcium-sensitive dyes to visualize electrical excitation waves on the heart surface. However, optical mapping is very susceptible to the motion of cardiac tissue, which results in so-called motion artifacts in the fluorescence signal. To avoid motion artifacts, contractions of the heart muscle are typically suppressed using pharmacological excitation-contraction uncoupling agents, such as Blebbistatin. The use of pharmacological agents, however, may influence cardiac electrophysiology. Recently, it has been shown that numerical motion tracking can significantly reduce motion-related artifacts in optical mapping, enabling the simultaneous optical measurement of cardiac electrophysiology and mechanics. Here, we combine ratiometric optical mapping with numerical motion tracking to further enhance the robustness and accuracy of these measurements. We evaluate the method's performance by imaging and comparing cardiac restitution and ventricular fibrillation (VF) dynamics in contracting, non-working vs. Blebbistatin-arrested Langendorff-perfused rabbit hearts (N = 10). We found action potential durations (APD) to be, on average, 25 ± 5% shorter in contracting hearts compared to hearts uncoupled with Blebbistatin. The relative shortening of the APD was found to be larger at higher frequencies. VF was found to be significantly accelerated in contracting hearts, i.e., 9 ± 2Hz with Blebbistatin and 15 ± 4Hz without Blebbistatin, and maintained a broader frequency spectrum. In contracting hearts, the average number of phase singularities was NPS = 11 ± 4 compared to NPS = 6 ± 3 with Blebbistatin during VF on the anterior ventricular surface. VF inducibility was reduced with Blebbistatin. We found the effect of Blebbistatin to be concentration-dependent and reversible by washout. Aside from the electrophysiological characterization, we also measured and analyzed cardiac motion. Our findings may have implications for the interpretation of optical mapping data, and highlight that physiological conditions, such as oxygenation and metabolic demand, must be carefully considered in ex vivo imaging experiments.
Collapse
Affiliation(s)
- Vineesh Kappadan
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Saba Telele
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partnersite Göttingen, Göttingen, Germany
| | - Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Flavio Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ulrich Parlitz
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partnersite Göttingen, Göttingen, Germany.,Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Stefan Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partnersite Göttingen, Göttingen, Germany.,Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Christoph
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partnersite Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Optical mapping of the pig heart in situ under artificial blood circulation. Sci Rep 2020; 10:8548. [PMID: 32444634 PMCID: PMC7244500 DOI: 10.1038/s41598-020-65464-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/22/2020] [Indexed: 12/05/2022] Open
Abstract
The emergence of optical imaging has revolutionized the investigation of cardiac electrical activity and associated disorders in various cardiac pathologies. The electrical signals of the heart and the propagation pathways are crucial for elucidating the mechanisms of various cardiac pathological conditions, including arrhythmia. The synthesis of near-infrared voltage-sensitive dyes and the voltage sensitivity of the FDA-approved dye Cardiogreen have increased the importance of optical mapping (OM) as a prospective tool in clinical practice. We aimed to develop a method for the high-spatiotemporal-resolution OM of the large animal hearts in situ using di-4-ANBDQBS and Cardiogreen under patho/physiological conditions. OM was adapted to monitor cardiac electrical behaviour in an open-chest pig heart model with physiological or artificial blood circulation. We detail the methods and display the OM data obtained using di-4-ANBDQBS and Cardiogreen. Activation time, action potential duration, repolarization time and conduction velocity maps were constructed. The technique was applied to track cardiac electrical activity during regional ischaemia and arrhythmia. Our study is the first to apply high-spatiotemporal-resolution OM in the pig heart in situ to record cardiac electrical activity qualitatively under artificial blood perfusion. The use of an FDA-approved voltage-sensitive dye and artificial blood perfusion in a swine model, which is generally accepted as a valuable pre-clinical model, demonstrates the promise of OM for clinical application.
Collapse
|
31
|
Valverde CA, Mazzocchi G, Di Carlo MN, Ciocci Pardo A, Salas N, Ragone MI, Felice JI, Cely-Ortiz A, Consolini AE, Portiansky E, Mosca S, Kranias EG, Wehrens XHT, Mattiazzi A. Ablation of phospholamban rescues reperfusion arrhythmias but exacerbates myocardium infarction in hearts with Ca2+/calmodulin kinase II constitutive phosphorylation of ryanodine receptors. Cardiovasc Res 2020; 115:556-569. [PMID: 30169578 DOI: 10.1093/cvr/cvy213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS Abnormal Ca2+ release from the sarcoplasmic reticulum (SR), associated with Ca2+-calmodulin kinase II (CaMKII)-dependent phosphorylation of RyR2 at Ser2814, has consistently been linked to arrhythmogenesis and ischaemia/reperfusion (I/R)-induced cell death. In contrast, the role played by SR Ca2+ uptake under these stress conditions remains controversial. We tested the hypothesis that an increase in SR Ca2+ uptake is able to attenuate reperfusion arrhythmias and cardiac injury elicited by increased RyR2-Ser2814 phosphorylation. METHODS AND RESULTS We used WT mice, which have been previously shown to exhibit a transient increase in RyR2-Ser2814 phosphorylation at the onset of reperfusion; mice with constitutive pseudo-phosphorylation of RyR2 at Ser2814 (S2814D) to exacerbate CaMKII-dependent reperfusion arrhythmias and cardiac damage, and phospholamban (PLN)-deficient-S2814D knock-in (SDKO) mice resulting from crossbreeding S2814D with phospholamban knockout deficient (PLNKO) mice. At baseline, S2814D and SDKO mice had structurally normal hearts. Moreover none of the strains were arrhythmic before ischaemia. Upon cardiac I/R, WT, and S2814D hearts exhibited abundant arrhythmias that were prevented by PLN ablation. In contrast, PLN ablation increased infarct size compared with WT and S2814D hearts. Mechanistically, the enhanced SR Ca2+ sequestration evoked by PLN ablation in SDKO hearts prevented arrhythmogenic events upon reperfusion by fragmenting SR Ca2+ waves into non-propagated and non-arrhythmogenic events (mini-waves). Conversely, the increase in SR Ca2+ sequestration did not reduce but rather exacerbated I/R-induced SR Ca2+ leak, as well as mitochondrial alterations, which were greatly avoided by inhibition of RyR2. These results indicate that the increase in SR Ca2+ uptake is ineffective in preventing the enhanced SR Ca2+ leak of PLN ablated myocytes from either entering into nearby mitochondria and/or activating additional CaMKII pathways, contributing to cardiac damage. CONCLUSION Our results demonstrate that increasing SR Ca2+ uptake by PLN ablation can prevent the arrhythmic events triggered by CaMKII-dependent phosphorylation of RyR2-induced SR Ca2+ leak. These findings underscore the benefits of increasing SERCA2a activity in the face of SR Ca2+ triggered arrhythmias. However, enhanced SERCA2a cannot prevent but rather exacerbates I/R cardiac injury.
Collapse
Affiliation(s)
- Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Gabriela Mazzocchi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Mariano N Di Carlo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Nehuen Salas
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - María Ines Ragone
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alicia E Consolini
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Enrique Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - Susana Mosca
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine (in Cardiology), Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| |
Collapse
|
32
|
Chang PC, Wo HT, Lee HL, Lin SF, Chu Y, Wen MS, Chou CC. Sacubitril/Valsartan Therapy Ameliorates Ventricular Tachyarrhythmia Inducibility in a Rabbit Myocardial Infarction Model. J Card Fail 2020; 26:527-537. [PMID: 32209390 DOI: 10.1016/j.cardfail.2020.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Coronary artery disease is the most common cause of heart failure (HF) in developed countries. The aim of this study was to elucidate the mechanisms of reduction of arrhythmias after sacubitril/valsartan (LCZ696) therapy in a myocardial infarction (MI)-HF rabbit model. METHODS AND RESULTS Chronic MI in rabbits with HF were divided into 3 groups: placebo control, valsartan 30 mg/day and LCZ696 60 mg/day. After 4 weeks of therapy, an electrophysiologic study and a dual voltage-calcium optical mapping study were performed. The LCZ696 group had significantly better left ventricular ejection fraction and lower ventricular tachyarrhythmia inducibility than the valsartan and placebo groups. The most common ventricular tachyarrhythmia pattern was 1 or 2 ectopic beats originating from the peri-infarct areas, followed by re-entrant beats surrounding phase singularity points. Compared to the valsartan and placebo groups, the LCZ696 group had significantly shorter action-potential duration, shorter intracellular calcium tau constant, faster conduction velocity, and shorter pacing cycle length to induce arrhythmogenic alternans. LCZ696 therapy reduced the phosphorylated calmodulin-dependent protein kinase II (CaMKII-p) expression. CONCLUSIONS In a rabbit model with chronic MI and HF, LCZ696 therapy ameliorated postinfarct heart function impairment and electrophysiologic remodeling and altered CaMKII-p expression, leading to reduced ventricular tachyarrhythmia inducibility.
Collapse
Affiliation(s)
- Po-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Hung-Ta Wo
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou
| | - Hui-Ling Lee
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, National Chiao Tung University, Hsin Chu, Taiwan
| | - Yen Chu
- Division of Thoracic Surgery, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Chung-Chuan Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan.
| |
Collapse
|
33
|
Scardigli M, Cannazzaro S, Coppini R, Crocini C, Yan P, Loew LM, Sartiani L, Cerbai E, Pavone FS, Sacconi L, Ferrantini C. Arrhythmia susceptibility in a rat model of acute atrial dilation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:21-29. [PMID: 32063273 DOI: 10.1016/j.pbiomolbio.2019.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, associated with an increased risk of stroke and heart failure. Acute AF occurs in response to sudden increases of atrial hemodynamic load, leading to atrial stretch. The mechanisms of stretch-induced AF were investigated in large mammals with controversial results. We optimized an approach to monitor rat atrial electrical activity using a red-shifted voltage sensitive dye (VSD). The methodology includes cauterization of the main ventricular coronary arteries, allowing improved atrial staining by the VSD and appropriate atrial perfusion for long experiments. Next, we developed a rat model of acute biatrial dilation (ABD) through the insertion of latex balloons into both atria, which could be inflated with controlled volumes. A chronic model of atrial dilation (spontaneous hypertensive rats; SHR) was used for comparison. ABD was performed on atria from healthy Wistar-Kyoto (WKY) rats (WKY-ABD). The atria were characterized in terms of arrhythmias susceptibility, action potential duration and conduction velocity. The occurrence of arrhythmias in WKY-ABD was significantly higher compared to non-dilated WKY atria. In WKY-ABD we found a reduction of conduction velocity, similar to that observed in SHR atria, while action potential duration was unchanged. Low-dose caffeine was used to introduce a drop of CV in WKY atria (WKY-caff), quantitatively similar to the one observed after ABD, but no increased arrhythmia susceptibility was observed with caffeine only. In conclusion, CV decrease is not sufficient to promote arrhythmias; enlargement of atrial surface is essential to create a substrate for acute reentry-based arrhythmias.
Collapse
Affiliation(s)
- M Scardigli
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino (FI), Italy
| | - S Cannazzaro
- National Institute of Optics, National Research Council, 50125, Florence, Italy
| | - R Coppini
- Division of Pharmacology, Department "NeuroFarBa,", University of Florence, 50139, Florence, Italy
| | - C Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, USA
| | - P Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - L M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - L Sartiani
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - E Cerbai
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - F S Pavone
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino (FI), Italy; National Institute of Optics, National Research Council, 50125, Florence, Italy; Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - L Sacconi
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino (FI), Italy; National Institute of Optics, National Research Council, 50125, Florence, Italy
| | - C Ferrantini
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino (FI), Italy; Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy.
| |
Collapse
|
34
|
van Meer BJ, Krotenberg A, Sala L, Davis RP, Eschenhagen T, Denning C, Tertoolen LGJ, Mummery CL. Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nat Commun 2019; 10:4325. [PMID: 31541103 PMCID: PMC6754438 DOI: 10.1038/s41467-019-12354-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are increasingly recognized as valuable for determining the effects of drugs on ion channels but they do not always accurately predict contractile responses of the human heart. This is in part attributable to their immaturity but the sensitivity of measurement tools may also be limiting. Measuring action potential, calcium flux or contraction individually misses critical information that is captured when interrogating the complete excitation-contraction coupling cascade simultaneously. Here, we develop an hypothesis-based statistical algorithm that identifies mechanisms of action. We design and build a high-speed optical system to measure action potential, cytosolic calcium and contraction simultaneously using fluorescent sensors. These measurements are automatically processed, quantified and then assessed by the algorithm. Multiplexing these three critical physical features of hiPSC-CMs allows identification of all major drug classes affecting contractility with detection sensitivities higher than individual measurement of action potential, cytosolic calcium or contraction.
Collapse
Affiliation(s)
- Berend J van Meer
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Ana Krotenberg
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Luca Sala
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands.,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Richard P Davis
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Thomas Eschenhagen
- Dept. of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Chris Denning
- Dept. of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Leon G J Tertoolen
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Christine L Mummery
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands. .,Dept. of Applied Stem Cell Technologies, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
35
|
Paradoxical Effects of Sodium-Calcium Exchanger Inhibition on Torsade de Pointes and Early Afterdepolarization in a Heart Failure Rabbit Model. J Cardiovasc Pharmacol 2019; 72:97-105. [PMID: 29738372 DOI: 10.1097/fjc.0000000000000598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium homeostasis plays an important role in development of early afterdepolarizations (EADs) and torsade de pointes (TdP). The role of sodium-calcium exchanger (NCX) inhibition in genesis of secondary Ca rise and EAD-TdP is still debated. Dual voltage and intracellular Ca optical mapping were conducted in 6 control and 9 failing rabbit hearts. After baseline electrophysiological and optical mapping studies, E4031 was given to simulate long QT syndrome. ORM-10103 was then administrated to examine the electrophysiological effects on EAD-TdP development. E4031 enhanced secondary Ca rise, EADs development, and TdP inducibility in both control and failing hearts. The results showed that ORM-10103 reduced premature ventricular beats but was unable to suppress the inducibility of TdP or EADs. The electrophysiological effects of ORM-10103 included prolongation of action potential duration (APD) and increased APD heterogeneity in failing hearts. ORM-10103 had a neutral effect on the amplitude of secondary Cai rise in control and heart failure groups. In this model, most EADs generated from long-short APD junction area. In conclusion, highly selective NCX inhibition with ORM-10103 reduced premature ventricular beat burden but was unable to suppress secondary Ca rise, EADs development, or inducibility of TdP. The possible electrophysiological mechanisms include APD prolongation and increased APD heterogeneity.
Collapse
|
36
|
Ashton JL, Trew ML, LeGrice IJ, Paterson DJ, Paton JF, Gillis AM, Smaill BH. Shift of leading pacemaker site during reflex vagal stimulation and altered electrical source-to-sink balance. J Physiol 2019; 597:3297-3313. [PMID: 31087820 DOI: 10.1113/jp276876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Vagal reflexes slow heart rate and can change where the heartbeat originates within the sinoatrial node (SAN). The mechanisms responsible for this process - termed leading pacemaker (LP) shift - have not been investigated fully. We used optical mapping to measure the effects of baroreflex, chemoreflex and carbachol on pacemaker entrainment and electrical conduction across the SAN. All methods of stimulation triggered shifts in LP site from the central SAN to one or two caudal pacemaker regions. These shifts were associated with reduced current generation capacity centrally and increased electrical load caudally. Previous studies suggest LP shift is a rate-dependent phenomenon whereby acetylcholine slows central pacemaker rate disproportionately, enabling caudal cells that are less acetylcholine sensitive to assume control. However, our findings indicate the LP region is defined by both pacemaker rate and capacity to drive activation. Shifts in LP site provide an important homeostatic mechanism for rapid switches in heart rate. ABSTRACT Reflex vagal activity causes abrupt heart rate slowing with concomitant caudal shifts of the leading pacemaker (LP) site within the sinoatrial node (SAN). However, neither the mechanisms responsible nor their dynamics have been investigated fully. Therefore, the objective of this study was to elucidate the mechanisms driving cholinergic LP shift. Optical maps of right atrial activation were acquired in a rat working heart-brainstem preparation during baroreflex and chemoreflex stimulation or with carbachol. All methods of stimulation triggered shifts in LP site from the central SAN to caudal pacemaker regions, which were positive for HCN4 and received uniform cholinergic innervation. During baroreflex onset, the capacity of the central region to drive activation declined with a decrease in amplitude and gradient of optical action potentials (OAPs) in the surrounding myocardium. Accompanying this decline, there was altered entrainment in the caudal SAN as shown by decreased conduction velocity, OAP amplitude, gradient and activation time. Atropine abolished these responses. Chemoreflex stimulation produced similar effects but central capacity to drive activation was preserved before the LP shift. In contrast, carbachol produced a prolonged period of reduced capacity to drive and altered entrainment. Previous studies suggest LP shift is a rate-dependent phenomenon whereby acetylcholine slows central pacemaker rate disproportionately, enabling caudal cells that are less acetylcholine sensitive to assume control. Our findings indicate that cholinergic LP shifts are also determined by altered electrical source-to-sink balance in the SAN. We conclude that the LP region is defined by both rate and capacity to drive atrial activation.
Collapse
Affiliation(s)
| | - Mark L Trew
- University of Auckland, Auckland, New Zealand
| | | | | | | | - Anne M Gillis
- University of Calgary - Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | | |
Collapse
|
37
|
Calloe K. Doctoral Dissertation: The transient outward potassium current in healthy and diseased hearts. Acta Physiol (Oxf) 2019; 225 Suppl 717:e13225. [PMID: 30628199 DOI: 10.1111/apha.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kirstine Calloe
- Section for Anatomy; Biochemistry and Physiology; Department for Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
38
|
Schmidt MM, Iaizzo PA. The Visible Heart® project and methodologies: novel use for studying cardiac monophasic action potentials and evaluating their underlying mechanisms. Expert Rev Med Devices 2018; 15:467-477. [PMID: 29989510 DOI: 10.1080/17434440.2018.1493922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION This review describes the utilization of Visible Heart® methodologies for electrophysiologic studies, specifically in the investigation of monophasic action potential (MAP) recordings, with the aim to facilitate new catheter/device design and development that may lead to earlier diagnosis, treatment, and ultimately a higher quality of life for patients with atrial fibrillation. AREAS COVERED We describe the historically proposed mechanisms behind which electrode is responsible for the MAP recording, new catheters for recording these signals, and how Visible Heart methodologies can be utilized to develop and test new technologies for electrophysiologic investigations. EXPERT OPINION When compared to traditional electrogram recordings, MAP waveforms provide clinical information vital to the understanding, diagnosis, and treatment of cardiac arrhythmias. New catheters and ablation technologies are routinely being assessed on reanimated large mammalian hearts (swine and human) in our laboratory. These abilities, combined with continued enhancements in imaging modalities and computational systems for electrical mapping, are being applied to the MAP catheter design process. Through this testing we are hopeful that the time from concept to product can be reduced, and that an array of MAP catheters can be placed in the hands of physicians, where they will improve patient outcomes.
Collapse
Affiliation(s)
- Megan M Schmidt
- a Department of Biomedical Engineering , University of Minnesota , Minneapolis , MN , USA
| | - Paul A Iaizzo
- b Department of Surgery , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
39
|
An adaptive spatio-temporal Gaussian filter for processing cardiac optical mapping data. Comput Biol Med 2018; 102:267-277. [PMID: 29891242 DOI: 10.1016/j.compbiomed.2018.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/25/2023]
Abstract
Optical mapping is widely used as a tool to investigate cardiac electrophysiology in ex vivo preparations. Digital filtering of fluorescence-optical data is an important requirement for robust subsequent data analysis and still a challenge when processing data acquired from thin mammalian myocardium. Therefore, we propose and investigate the use of an adaptive spatio-temporal Gaussian filter for processing optical mapping signals from these kinds of tissue usually having low signal-to-noise ratio (SNR). We demonstrate how filtering parameters can be chosen automatically without additional user input. For systematic comparison of this filter with standard filtering methods from the literature, we generated synthetic signals representing optical recordings from atrial myocardium of a rat heart with varying SNR. Furthermore, all filter methods were applied to experimental data from an ex vivo setup. Our developed filter outperformed the other filter methods regarding local activation time detection at SNRs smaller than 3 dB which are typical noise ratios expected in these signals. At higher SNRs, the proposed filter performed slightly worse than the methods from literature. In conclusion, the proposed adaptive spatio-temporal Gaussian filter is an appropriate tool for investigating fluorescence-optical data with low SNR. The spatio-temporal filter parameters were automatically adapted in contrast to the other investigated filters.
Collapse
|
40
|
Boukens BJ, Meijborg VMF, Belterman CN, Opthof T, Janse MJ, Schuessler RB, Coronel R, Efimov IR. Local transmural action potential gradients are absent in the isolated, intact dog heart but present in the corresponding coronary-perfused wedge. Physiol Rep 2018; 5:e13251. [PMID: 28554962 PMCID: PMC5449556 DOI: 10.14814/phy2.13251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 11/24/2022] Open
Abstract
The left ventricular (LV) coronary‐perfused canine wedge preparation is a model commonly used for studying cardiac repolarization. In wedge studies, transmembrane potentials typically are recorded; whereas, extracellular electrical recordings are commonly used in intact hearts. We compared electrically measured activation recovery interval (ARI) patterns in the intact heart with those recorded at the same location in the LV wedge preparation. We also compared electrically recorded and optically obtained ARIs in the LV wedge preparation. Five Langendorff‐perfused canine hearts were paced from the right atrium. Local activation and repolarization times were measured with eight transmural needle electrodes. Subsequently, left ventricular coronary‐perfused wedge preparations were prepared from these hearts while the electrodes remained in place. Three electrodes remained at identical positions as in the intact heart. Both electrograms and optical action potentials were recorded (pacing cycle length 400–4000 msec) and activation and repolarization patterns were analyzed. ARIs found in the subepicardium were shorter than in the subendocardium in the LV wedge preparation but not in the intact heart. The transmural ARI gradient recorded at the cut surface of the wedge was not different from that recorded internally. ARIs recorded internally and at the cut surface in the LV wedge preparation, both correlated with optically recorded action potentials. ARI and RT gradients in the LV wedge preparation differed from those in the intact canine heart, implying that those observations in human LV wedge preparations also should be extrapolated to the intact human heart with caution.
Collapse
Affiliation(s)
- Bastiaan J Boukens
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia.,Department of Medical Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Veronique M F Meijborg
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Heart Institute, Holland Heart House, Utrecht, The Netherlands
| | - Charly N Belterman
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Institut LIRYC, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac- Bordeaux, France
| | - Tobias Opthof
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Physiology, University of Utrecht, Utrecht, The Netherlands
| | - Michiel J Janse
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ruben Coronel
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Institut LIRYC, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac- Bordeaux, France
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia.,Institut LIRYC, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac- Bordeaux, France
| |
Collapse
|
41
|
Winter J, Bishop MJ, Wilder CDE, O'Shea C, Pavlovic D, Shattock MJ. Sympathetic Nervous Regulation of Calcium and Action Potential Alternans in the Intact Heart. Front Physiol 2018; 9:16. [PMID: 29410631 PMCID: PMC5787134 DOI: 10.3389/fphys.2018.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
Rationale: Arrhythmogenic cardiac alternans are thought to be an important determinant for the initiation of ventricular fibrillation. There is limited information on the effects of sympathetic nerve stimulation (SNS) on alternans in the intact heart and the conclusions of existing studies, focused on investigating electrical alternans, are conflicted. Meanwhile, several lines of evidence implicate instabilities in Ca handling, not electrical restitution, as the primary mechanism underpinning alternans. Despite this, there have been no studies on Ca alternans and SNS in the intact heart. The present study sought to address this, by application of voltage and Ca optical mapping for the simultaneous study of APD and Ca alternans in the intact guinea pig heart during direct SNS. Objective: To determine the effects of SNS on APD and Ca alternans in the intact guinea pig heart and to examine the mechanism(s) by which the effects of SNS are mediated. Methods and Results: Studies utilized simultaneous voltage and Ca optical mapping in isolated guinea pig hearts with intact innervation. Alternans were induced using a rapid dynamic pacing protocol. SNS was associated with rate-independent shortening of action potential duration (APD) and the suppression of APD and Ca alternans, as indicated by a shift in the alternans threshold to faster pacing rates. Qualitatively similar results were observed with exogenous noradrenaline perfusion. In contrast with previous reports, both SNS and noradrenaline acted to flatten the slope of the electrical restitution curve. Pharmacological block of the slow delayed rectifying potassium current (IKs), sufficient to abolish IKs-mediated APD-adaptation, partially reversed the effects of SNS on pacing-induced alternans. Treatment with cyclopiazonic acid, an inhibitor of the sarco(endo)plasmic reticulum ATPase, had opposite effects to that of SNS, acting to increase susceptibility to alternans, and suggesting that accelerated Ca reuptake into the sarcoplasmic reticulum is a major mechanism by which SNS suppresses alternans in the guinea pig heart. Conclusions: SNS suppresses calcium and action potential alternans in the intact guinea pig heart by an action mediated through accelerated Ca handling and via increased IKs.
Collapse
Affiliation(s)
- James Winter
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom.,Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Martin J Bishop
- Biomedical Engineering Department, King's College London, United Kingdom
| | - Catherine D E Wilder
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Michael J Shattock
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom
| |
Collapse
|
42
|
Johnston CM, Krafft AJ, Russe MF, Rog-Zielinska EA. A new look at the heart-novel imaging techniques. Herzschrittmacherther Elektrophysiol 2017; 29:14-23. [PMID: 29242981 DOI: 10.1007/s00399-017-0546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/24/2017] [Indexed: 01/20/2023]
Abstract
The development and successful implementation of cutting-edge imaging technologies to visualise cardiac anatomy and function is a key component of effective diagnostic efforts in cardiology. Here, we describe a number of recent exciting advances in the field of cardiology spanning from macro- to micro- to nano-scales of observation, including magnetic resonance imaging, computed tomography, optical mapping, photoacoustic imaging, and electron tomography. The methodologies discussed are currently making the transition from scientific research to routine clinical use, albeit at different paces. We discuss the most likely trajectory of this transition into clinical research and standard diagnostics, and highlight the key challenges and opportunities associated with each of the methodologies.
Collapse
Affiliation(s)
- C M Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A J Krafft
- Department of Radiology, Medical Physics, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M F Russe
- Department of Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
43
|
Electromechanical optical mapping. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:150-169. [DOI: 10.1016/j.pbiomolbio.2017.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/10/2017] [Indexed: 11/23/2022]
|
44
|
QRS duration reflects underlying changes in conduction velocity during increased intraventricular pressure and heart failure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:394-403. [DOI: 10.1016/j.pbiomolbio.2017.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 11/19/2022]
|
45
|
Restitution characteristics of His bundle and working myocardium in isolated rabbit hearts. PLoS One 2017; 12:e0186880. [PMID: 29073179 PMCID: PMC5658095 DOI: 10.1371/journal.pone.0186880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
The Purkinje system (PS) and the His bundle have been recently implicated as an important driver of the rapid activation rate after 1-2 minutes of ventricular fibrillation (VF). It is unknown whether activations during VF propagate through the His-Purkinje system to other portions of the the working myocardium (WM). Little is known about restitution characteristic differences between the His bundle and working myocardium at short cycle lengths. In this study, rabbit hearts (n = 9) were isolated, Langendorff-perfused, and electromechanically uncoupled with blebbistatin (10 μM). Pacing pulses were delivered directly to the His bundle. By using standard glass microelectrodes, action potentials duration (APD) from the His bundle and WM were obtained simultaneously over a wide range of stimulation cycle lengths (CL). The global F-test indicated that the two restitution curves of the His bundle and the WM are statistically significantly different (P<0.05). Also, the APD of the His bundle was significantly shorter than that of WM throughout the whole pacing course (P<0.001). The CL at which alternans developed in the His bundle vs. the WM were shorter for the His bundle (134.2±13.1ms vs. 148.3±13.3ms, P<0.01) and 2:1 block developed at a shorter CL in the His bundle than in WM (130.0±10.0 vs. 145.6±14.2ms, P<0.01). The His bundle APD was significantly shorter than that of WM under both slow and rapid pacing rates, which suggest that there may be an excitable gap during VF and that the His bundle may conduct wavefronts from one bundle branch to the other at short cycle lengths and during VF.
Collapse
|
46
|
Ng GA. Feasibility of selection of antiarrhythmic drug treatment on the basis of arrhythmogenic mechanism — Relevance of electrical restitution, wavebreak and rotors. Pharmacol Ther 2017; 176:1-12. [DOI: 10.1016/j.pharmthera.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Zhang H, Iijima K, Huang J, Walcott GP, Rogers JM. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts. Biophys J 2017; 111:438-451. [PMID: 27463145 DOI: 10.1016/j.bpj.2016.03.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/01/2016] [Accepted: 03/24/2016] [Indexed: 11/26/2022] Open
Abstract
Cardiac optical mapping uses potentiometric fluorescent dyes to image membrane potential (Vm). An important limitation of conventional optical mapping is that contraction is usually arrested pharmacologically to prevent motion artifacts from obscuring Vm signals. However, these agents may alter electrophysiology, and by abolishing contraction, also prevent optical mapping from being used to study coupling between electrical and mechanical function. Here, we present a method to simultaneously map Vm and epicardial contraction in the beating heart. Isolated perfused swine hearts were stained with di-4-ANEPPS and fiducial markers were glued to the epicardium for motion tracking. The heart was imaged at 750 Hz with a video camera. Fluorescence was excited with cyan or blue LEDs on alternating camera frames, thus providing a 375-Hz effective sampling rate. Marker tracking enabled the pixel(s) imaging any epicardial site within the marked region to be identified in each camera frame. Cyan- and blue-elicited fluorescence have different sensitivities to Vm, but other signal features, primarily motion artifacts, are common. Thus, taking the ratio of fluorescence emitted by a motion-tracked epicardial site in adjacent frames removes artifacts, leaving Vm (excitation ratiometry). Reconstructed Vm signals were validated by comparison to monophasic action potentials and to conventional optical mapping signals. Binocular imaging with additional video cameras enabled marker motion to be tracked in three dimensions. From these data, epicardial deformation during the cardiac cycle was quantified by computing finite strain fields. We show that the method can simultaneously map Vm and strain in a left-sided working heart preparation and can image changes in both electrical and mechanical function 5 min after the induction of regional ischemia. By allowing high-resolution optical mapping in the absence of electromechanical uncoupling agents, the method relieves a long-standing limitation of optical mapping and has potential to enhance new studies in coupled cardiac electromechanics.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenichi Iijima
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jian Huang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregory P Walcott
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
48
|
Chou CC, Chang PC, Wei YC, Lee KY. Optical Mapping Approaches on Muscleblind-Like Compound Knockout Mice for Understanding Mechanistic Insights Into Ventricular Arrhythmias in Myotonic Dystrophy. J Am Heart Assoc 2017; 6:JAHA.116.005191. [PMID: 28416514 PMCID: PMC5533016 DOI: 10.1161/jaha.116.005191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac arrhythmias are common causes of death in patients with myotonic dystrophy (dystrophia myotonica [DM]). Evidence shows that atrial tachyarrhythmia is an independent risk factor for sudden death; however, the relationship is unclear. Methods and Results Control wild‐type (Mbnl1+/+; Mbnl2+/+) and DM mutant (Mbnl1−/−; Mbnl2+/−) mice were generated by crossing double heterozygous knockout (Mbnl1+/−; Mbnl2+/−) mice. In vivo electrophysiological study and optical mapping technique were performed to investigate mechanisms of ventricular tachyarrhythmias. Transmission electron microscopy scanning was performed for myocardium ultrastructural analysis. DM mutant mice were more vulnerable to anesthesia medications and program electrical pacing: 2 of 12 mice had sudden apnea and cardiac arrest during premedication of general anesthesia; 9 of the remaining 10 had atrial tachycardia and/or atrioventricular block, but none of the wild‐type mice had spontaneous arrhythmias; and 9 of 10 mice had pacing‐induced ventricular tachyarrhythmias, but only 1 of 14 of the wild‐type mice. Optical mapping studies revealed prolonged action potential duration, slower conduction velocity, and steeper conduction velocity restitution curves in the DM mutant mice than in the wild‐type group. Spatially discordant alternans was more easily inducible in DM mutant than wild‐type mice. Transmission electron microscopy showed disarranged myofibrils with enlarged vacuole‐occupying mitochondria in the DM mutant group. Conclusions This DM mutant mouse model presented with clinical myofibril ultrastructural abnormality and cardiac arrhythmias, including atrial tachyarrhythmias, atrioventricular block, and ventricular tachyarrhythmias. Optical mapping studies revealed prolonged action potential duration and slow conduction velocity in the DM mice, leading to vulnerability of spatially discordant alternans and ventricular arrhythmia induction to pacing.
Collapse
Affiliation(s)
- Chung-Chuan Chou
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Cheng Chang
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
49
|
Technical advances in studying cardiac electrophysiology - Role of rabbit models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:97-109. [PMID: 27210306 DOI: 10.1016/j.pbiomolbio.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/01/2016] [Indexed: 12/15/2022]
Abstract
Cardiovascular research has made a major contribution to an unprecedented 10 year increase in life expectancy during the last 50 years: most of this increase due to a decline in mortality from heart disease and stroke. The majority of the basic cardiovascular science discoveries, which have led to this impressive extension of human life, came from investigations conducted in various small and large animal models, ranging from mouse to pig. The small animal models are currently popular because they are amenable to genetic engineering and are relatively inexpensive. The large animal models are favored at the translational stage of the investigation, as they are anatomically and physiologically more proximal to humans, and can be implanted with various devices; however, they are expensive and less amenable to genetic manipulations. With the advent of CRISPR genetic engineering technology and the advances in implantable bioelectronics, the large animal models will continue to advance. The rabbit model is particularly poised to become one of the most popular among the animal models that recapitulate human heart diseases. Here we review an array of the rabbit models of atrial and ventricular arrhythmias, as well as a range of the imaging and device technologies enabling these investigations.
Collapse
|
50
|
Watanabe M, Rollins AM, Polo-Parada L, Ma P, Gu S, Jenkins MW. Probing the Electrophysiology of the Developing Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3010010. [PMID: 29367561 PMCID: PMC5715694 DOI: 10.3390/jcdd3010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes.
Collapse
Affiliation(s)
- Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65201, USA.
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|