1
|
Cui L, Tan C, Huang L, Wang W, Huang Z, Geng F, Wu M, Chen X, Cowley M, Roelfsema F, Chen C. Dapagliflozin partially restores reproductive function in MC4R KO obese female mice. J Endocrinol 2022; 254:65-76. [PMID: 35612570 DOI: 10.1530/joe-21-0449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Obese women often have certain degree of reproductive dysfunction with infertility. Although the clinical impact of obesity on female infertility has been extensively studied, the effective and targeted treatment is still lacking. Melanocortin-4-receptor knock-out (MC4R KO) mouse is an over-eating obese model with hyperphagia, hyperinsulinemia, reduced growth hormone (GH), and insulin resistance. Dapagliflozin improved the metabolic and hormonal parameters in MC4R KO mice. MC4R KO female mice were treated with dapagliflozin for 14 weeks from 14-week age. Age-matched WT littermates and non-treated MC4R KO mice were used as control groups. Food intake was measured daily. Body weight was measured twice a week. Estrous cycles, GH, and luteinizing hormone (LH) profiles were measured. Selected tissues were collected at the end of experiments for gene expression profiles and hematoxylin-eosin staining. Regularity and mode of hormonal profiles were restored by the dapagliflozin treatment. Estrous cycle was partially normalized, number of CL was significantly increased, and the expression of Kiss1 and Gnrh1 in the hypothalamus and LH in the pituitary was markedly increased by the dapagliflozin treatment. It is conclsuded that dapagliflozin may recover LH and GH profiles partially through modification of relevant gene expression in the hypothalamus and pituitary, and result in an improved ovulation rate in obese mouse model. Dapagliflozin may therefore improve fertility in obese patients.
Collapse
Affiliation(s)
- Ling Cui
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Department of Reproduction and Infertility, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunlu Tan
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Lili Huang
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Weihao Wang
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Zhengxiang Huang
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Fang Geng
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Mengjun Wu
- Department of Reproduction and Infertility, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolin Chen
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei Province, China
| | - Michael Cowley
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | - Chen Chen
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Wang W, Huang Z, Huang L, Gao L, Cui L, Cowley M, Guo L, Chen C. Time-Restricted Feeding Restored Insulin-Growth Hormone Balance and Improved Substrate and Energy Metabolism in MC4RKO Obese Mice. Neuroendocrinology 2022; 112:174-185. [PMID: 33735897 DOI: 10.1159/000515960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dysregulation of metabolic regulatory hormones often occurs during the progress of obesity. Key regulatory hormone insulin-growth hormone (GH) balance has recently been proposed to maintain metabolism profiles. Time-restricted feeding (TRF) is an effective strategy against obesity without detailed research on pulsatile GH releasing patterns. METHODS TRF was performed in an over-eating melanocortin 4 receptor-knockout (MC4RKO) obese mouse model using normal food. Body weight and food intake were measured. Series of blood samples were collected for 6-h pulsatile GH profile, glucose tolerance test, and insulin tolerance test at 5, 8, and 9 weeks of TRF, respectively. Indirect calorimetric recordings were performed by the Phenomaster system at 6 weeks for 1 week, and body composition was measured by nuclear magnetic resonance spectroscopy (NMR). Substrate- and energy metabolism-related gene expressions were measured in terminal liver and subcutaneous white adipose tissues. RESULTS TRF increased pulsatile GH secretion in dark phase and suppressed hyperinsulinemia in MC4RKO obese mice to reach a reduced insulin/GH ratio. This was accompanied by the improvement in insulin sensitivity, metabolic flexibility, glucose tolerance, and decreased glucose fluctuation, together with appropriate modification of gene expression involved in substrate metabolism and adipose tissue browning. NMR measurement showed that TRF decreased fat mass but increased lean mass. Indirect calorimeter recording indicated that TRF decreased the respiratory exchange ratio (RER) reflecting consumption of more fatty acid in energy production in light phase and increased the oxygen consumption during activities in dark phase. CONCLUSIONS TRF effectively decreases hyperinsulinemia and restores pulsatile GH secretion in the overeating obese mice with significant improvement in substrate and energy metabolism and body composition without reducing total caloric intake.
Collapse
Affiliation(s)
- Weihao Wang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Lyn Gao
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ling Cui
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Cowley
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Wang W, Huang Z, Huang L, Tan C, Chen W, Roelfsema F, Chen C, Guo L. Rotating Day and Night Disturb Growth Hormone Secretion Profiles, Body Energy Metabolism, and Insulin Levels in Mice. Neuroendocrinology 2022; 112:481-492. [PMID: 34348337 DOI: 10.1159/000518338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Insulin and growth hormone (GH) - 2 vital metabolic regulatory hormones - regulate glucose, lipid, and energy metabolism. These 2 hormones determine substrate and energy metabolism under different living conditions. Shift of day and night affects the clock system and metabolism probably through altered insulin and GH secretion. METHODS Five-week-old male mice were randomly assigned to a rotating light (RL) group (3-day normal light/dark cycle followed by 4-day reversed light/dark cycle per week) and normal light (NL) group. Body weight and food intake were recorded every week. Series of blood samples were collected for pulsatile GH analysis, glucose tolerance test, and insulin tolerance test at 9, 10, and 11 weeks from the start of intervention, respectively. Indirect calorimetric measurement was performed, and body composition was tested at 12 weeks. Expressions of energy and substrate metabolism-related genes were evaluated in pituitary and liver tissues at the end of 12-week intervention. RESULTS The RL group had an increased number of GH pulsatile bursts and reduced GH mass/burst. RL also disturbed the GH secretion regularity and mode. It suppressed insulin secretion, which led to a disturbed insulin/GH balance. It was accompanied by the reduced metabolic flexibility and modified gene expression involved in energy balance and substrate metabolism. Indirect calorimeter recording revealed that RL decreased the respiratory exchange ratio (RER) and oxygen consumption at the dark phase, which resulted in an increase in fat mass and free fatty acid levels in circulation. CONCLUSION RL disturbed pulsatile GH secretion and decreased insulin secretion in male mice with significant impairment in energy, substrate metabolism, and body composition.
Collapse
Affiliation(s)
- Weihao Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Chunlu Tan
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Wanlin Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | | | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Lixin Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Sun EW, Iepsen EW, Pezos N, Lumsden AL, Martin AM, Schober G, Isaacs NJ, Rayner CK, Nguyen NQ, de Fontgalland D, Rabbitt P, Hollington P, Wattchow DA, Hansen T, Holm JC, Liou AP, Jackson VM, Torekov SS, Young RL, Keating DJ. A Gut-Intrinsic Melanocortin Signaling Complex Augments L-Cell Secretion in Humans. Gastroenterology 2021; 161:536-547.e2. [PMID: 33848536 DOI: 10.1053/j.gastro.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Hypothalamic melanocortin 4 receptors (MC4R) are a key regulator of energy homeostasis. Brain-penetrant MC4R agonists have failed, as concentrations required to suppress food intake also increase blood pressure. However, peripherally located MC4R may also mediate metabolic benefits of MC4R activation. Mc4r transcript is enriched in mouse enteroendocrine L cells and peripheral administration of the endogenous MC4R agonist, α-melanocyte stimulating hormone (α-MSH), triggers the release of the anorectic hormones Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) in mice. This study aimed to determine whether pathways linking MC4R and L-cell secretion exist in humans. DESIGN GLP-1 and PYY levels were assessed in body mass index-matched individuals with or without loss-of-function MC4R mutations following an oral glucose tolerance test. Immunohistochemistry was performed on human intestinal sections to characterize the mucosal MC4R system. Static incubations with MC4R agonists were carried out on human intestinal epithelia, GLP-1 and PYY contents of secretion supernatants were assayed. RESULTS Fasting PYY levels and oral glucose-induced GLP-1 secretion were reduced in humans carrying a total loss-of-function MC4R mutation. MC4R was localized to L cells and regulates GLP-1 and PYY secretion from ex vivo human intestine. α-MSH immunoreactivity in the human intestinal epithelia was predominantly localized to L cells. Glucose-sensitive mucosal pro-opiomelanocortin cells provide a local source of α-MSH that is essential for glucose-induced GLP-1 secretion in small intestine. CONCLUSION Our findings describe a previously unidentified signaling nexus in the human gastrointestinal tract involving α-MSH release and MC4R activation on L cells in an autocrine and paracrine fashion. Outcomes from this study have direct implications for targeting mucosal MC4R to treat human metabolic disorders.
Collapse
Affiliation(s)
- Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Eva W Iepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nektaria Pezos
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Amanda L Lumsden
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Gudrun Schober
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Nichole J Isaacs
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Nam Q Nguyen
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | | | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Christian Holm
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Holbæk University Hospital, Holbæk, Denmark
| | - Alice P Liou
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - V Margaret Jackson
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Richard L Young
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia.
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| |
Collapse
|
5
|
Huang Z, Lu X, Huang L, Zhang C, Veldhuis JD, Cowley MA, Chen C. Stimulation of endogenous pulsatile growth hormone secretion by activation of growth hormone secretagogue receptor reduces the fat accumulation and improves the insulin sensitivity in obese mice. FASEB J 2021; 35:e21269. [PMID: 33368660 DOI: 10.1096/fj.202001924rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Obese individuals often show low growth hormone (GH) secretion, which leads to reduced lipid mobilization and further fat accumulation. Pharmacological approaches to increase GH levels in obese individuals by GH injection or GH-releasing hormone receptor agonist showed promising effects on fat reduction. However, side effects on glucose metabolism and the heavy costs on making large peptides hindered their clinical application. Here, we tested whether stimulation of endogenous GH secretion by a synthetic GH secretagogue receptor (GHSR) agonist, hexarelin, improved the metabolism in a hyperphagic obese mouse model. Male melanocortin 4 receptor knockout mice (MC4RKO) were pair-fed and received continuous hexarelin (10.56 μg/day) or vehicle infusion by an osmotic pump for 3-4 weeks. Hexarelin treatment significantly increased the pulsatile GH secretion without detectable alteration on basal GH secretion in MC4RKO mice. The treated mice showed increased lipolysis and lipid oxidation in the adipose tissue, and reduced de novo lipogenesis in the liver, leading to reduced visceral fat mass, reduced triglyceride content in liver, and unchanged circulating free fatty acid levels. Importantly, hexarelin treatment improved the whole-body insulin sensitivity but did not alter glucose tolerance, insulin levels, or insulin-like growth factor 1 (IGF-1) levels. The metabolic effects of hexarelin were likely through the direct action of GH, as indicated by the increased expression level of genes involved in GH signaling pathways in visceral adipose tissues and liver. In conclusion, hexarelin treatment stimulated the pulsatile GH secretion and reduced the fat accumulation in visceral depots and liver in obese MC4RKO mice with improved insulin sensitivity without altered levels of insulin or IGF-1. It provides evidence for managing obesity by enhancing pulsatile GH secretion through activation of GHSR in the pituitary gland.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Xuehan Lu
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Chunhong Zhang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Johannes D Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - Michael A Cowley
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Gregoric N, Groselj U, Bratina N, Debeljak M, Zerjav Tansek M, Suput Omladic J, Kovac J, Battelino T, Kotnik P, Avbelj Stefanija M. Two Cases With an Early Presented Proopiomelanocortin Deficiency-A Long-Term Follow-Up and Systematic Literature Review. Front Endocrinol (Lausanne) 2021; 12:689387. [PMID: 34177811 PMCID: PMC8220084 DOI: 10.3389/fendo.2021.689387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/07/2021] [Indexed: 02/03/2023] Open
Abstract
Proopiomelanocortin (POMC) deficiency is an extremely rare inherited autosomal recessive disorder characterized by severe obesity, adrenal insufficiency, skin hypopigmentation, and red hair. It is caused by pathogenic variants in the POMC gene that codes the proopiomelanocortin polypeptide which is cleaved to several peptides; the most notable ones are adrenocorticotropic hormone (ACTH), alpha- and beta-melanocyte-stimulating hormones (α-MSH and β-MSH); the latter two are crucial in melanogenesis and the energy balance by regulating feeding behavior and energy homeostasis through melanocortin receptor 4 (MC4R). The lack of its regulation leads to polyphagia and early onset severe obesity. A novel MC4R agonist, setmelanotide, has shown promising results regarding weight loss in patients with POMC deficiency. A systematic review on previously published clinical and genetic characteristics of patients with POMC deficiency and additional data obtained from two unrelated patients in our care was performed. A 25-year-old male patient, partly previously reported, was remarkable for childhood developed type 1 diabetes (T1D), transient growth hormone deficiency, and delayed puberty. The second case is a girl with an unusual presentation with central hypothyroidism and normal pigmentation of skin and hair. Of all evaluated cases, only 50% of patients had characteristic red hair, fair skin, and eye phenotype. Central hypothyroidism was reported in 36% of patients; furthermore, scarce adolescent data indicate possible growth axis dysbalance and central hypogonadism. T1D was unexpectedly prevalent in POMC deficiency, reported in 14% of patients, which could be an underestimation. POMC deficiency reveals to be a syndrome with several endocrinological abnormalities, some of which may become apparent with time. Apart from timely diagnosis, careful clinical follow-up of patients through childhood and adolescence for possible additional disease manifestations is warranted.
Collapse
Affiliation(s)
- Nadan Gregoric
- Department for Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Natasa Bratina
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marusa Debeljak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Zerjav Tansek
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jasna Suput Omladic
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovac
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Primoz Kotnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Magdalena Avbelj Stefanija
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- *Correspondence: Magdalena Avbelj Stefanija,
| |
Collapse
|
7
|
de Souza Cordeiro LM, Elsheikh A, Devisetty N, Morgan DA, Ebert SN, Rahmouni K, Chhabra KH. Hypothalamic MC4R regulates glucose homeostasis through adrenaline-mediated control of glucose reabsorption via renal GLUT2 in mice. Diabetologia 2021; 64:181-194. [PMID: 33052459 PMCID: PMC7718429 DOI: 10.1007/s00125-020-05289-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Melanocortin 4 receptor (MC4R) mutation is the most common cause of known monogenic obesity in humans. Unexpectedly, humans and rodents with MC4R deficiency do not develop hyperglycaemia despite chronic obesity and insulin resistance. To explain the underlying mechanisms for this phenotype, we determined the role of MC4R in glucose homeostasis in the presence and absence of obesity in mice. METHODS We used global and hypothalamus-specific MC4R-deficient mice to investigate the brain regions that contribute to glucose homeostasis via MC4R. We performed oral, intraperitoneal and intravenous glucose tolerance tests in MC4R-deficient mice that were either obese or weight-matched to their littermate controls to define the role of MC4R in glucose regulation independently of changes in body weight. To identify the integrative pathways through which MC4R regulates glucose homeostasis, we measured renal and adrenal sympathetic nerve activity. We also evaluated glucose homeostasis in adrenaline (epinephrine)-deficient mice to investigate the role of adrenaline in mediating the effects of MC4R in glucose homeostasis. We employed a graded [13C6]glucose infusion procedure to quantify renal glucose reabsorption in MC4R-deficient mice. Finally, we measured the levels of renal glucose transporters in hypothalamus-specific MC4R-deficient mice and adrenaline-deficient mice using western blotting to ascertain the molecular mechanisms underlying MC4R control of glucose homeostasis. RESULTS We found that obese and weight-matched MC4R-deficient mice exhibited improved glucose tolerance due to elevated glucosuria, not enhanced beta cell function. Moreover, MC4R deficiency selectively in the paraventricular nucleus of the hypothalamus (PVH) is responsible for reducing the renal threshold for glucose as measured by graded [13C6]glucose infusion technique. The MC4R deficiency suppressed renal sympathetic nerve activity by 50% in addition to decreasing circulating adrenaline and renal GLUT2 levels in mice, which contributed to the elevated glucosuria. We further report that adrenaline-deficient mice recapitulated the increased excretion of glucose in urine observed in the MC4R-deficient mice. Restoration of circulating adrenaline in both the MC4R- and adrenaline-deficient mice reversed their phenotype of improved glucose tolerance and elevated glucosuria, demonstrating the role of adrenaline in mediating the effects of MC4R on glucose reabsorption. CONCLUSIONS/INTERPRETATION These findings define a previously unrecognised function of hypothalamic MC4R in glucose reabsorption mediated by adrenaline and renal GLUT2. Taken together, our findings indicate that elevated glucosuria due to low sympathetic tone explains why MC4R deficiency does not cause hyperglycaemia despite inducing obesity and insulin resistance. Graphical abstract.
Collapse
Affiliation(s)
- Leticia Maria de Souza Cordeiro
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Arwa Elsheikh
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nagavardhini Devisetty
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kavaljit H Chhabra
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Huang Z, Huang L, Waters MJ, Chen C. Insulin and Growth Hormone Balance: Implications for Obesity. Trends Endocrinol Metab 2020; 31:642-654. [PMID: 32416957 DOI: 10.1016/j.tem.2020.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Disruption of endocrine hormonal balance (i.e., increased levels of insulin, and reduced levels of growth hormone, GH) often occurs in pre-obesity and obesity. Using distinct intracellular signaling pathways to control cell and body metabolism, GH and insulin also regulate each other's secretion to maintain overall metabolic homeostasis. Therefore, a comprehensive understanding of insulin and GH balance is essential for understanding endocrine hormonal contributions to energy storage and utilization. In this review we summarize the actions of, and interactions between, insulin and GH at the cellular level, and highlight the association between the insulin/GH ratio and energy metabolism, as well as fat accumulation. Use of the [insulin]:[GH] ratio as a biomarker for predicting the development of obesity is proposed.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
9
|
Huang L, Huang Z, Chen C. Rhythmic growth hormone secretion in physiological and pathological conditions: Lessons from rodent studies. Mol Cell Endocrinol 2019; 498:110575. [PMID: 31499134 DOI: 10.1016/j.mce.2019.110575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 02/01/2023]
Abstract
Evolutionally conserved in all mammalians, the release of GH occurs in a rhythmic pattern, characterized by several dominant surges (pulsatile GH) with tonic low inter-pulse levels (tonic GH). Such pulsatile secretion pattern is essential for many physiological actions of GH on different tissues with defined gender dimorphism. Rhythmic release of pulsatile GH is tightly controlled by hypothalamic neurons as well as peripheral metabolic factors. Changes of GH pattern occur within a range of sophisticated physiological and pathological settings and significantly contribute to growth, ageing, survival and disease predispositions. Precise analysis of GH secretion pattern is vitally important for a comprehensive understanding of the function of GH and the components that regulate GH secretion pattern.
Collapse
Affiliation(s)
- Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
10
|
McAllan L, Maynard KR, Kardian AS, Stayton AS, Fox SL, Stephenson EJ, Kinney CE, Alshibli NK, Gomes CK, Pierre JF, Puchowicz MA, Bridges D, Martinowich K, Han JC. Disruption of brain-derived neurotrophic factor production from individual promoters generates distinct body composition phenotypes in mice. Am J Physiol Endocrinol Metab 2018; 315:E1168-E1184. [PMID: 30253111 PMCID: PMC6336959 DOI: 10.1152/ajpendo.00205.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a key neuropeptide in the central regulation of energy balance. The Bdnf gene contains nine promoters, each producing specific mRNA transcripts that encode a common protein. We sought to assess the phenotypic outcomes of disrupting BDNF production from individual Bdnf promoters. Mice with an intact coding region but selective disruption of BDNF production from Bdnf promoters I, II, IV, or VI (Bdnf-e1-/-, -e2-/-, -e4-/-, and -e6-/-) were created by inserting an enhanced green fluorescent protein-STOP cassette upstream of the targeted promoter splice donor site. Body composition was measured by MRI weekly from age 4 to 22 wk. Energy expenditure was measured by indirect calorimetry at 18 wk. Food intake was measured in Bdnf-e1-/- and Bdnf-e2-/- mice, and pair feeding was conducted. Weight gain, lean mass, fat mass, and percent fat of Bdnf-e1-/- and Bdnf-e2-/- mice (both sexes) were significantly increased compared with wild-type littermates. For Bdnf-e4-/- and Bdnf-e6-/- mice, obesity was not observed with either chow or high-fat diet. Food intake was increased in Bdnf-e1-/- and Bdnf-e2-/- mice, and pair feeding prevented obesity. Mutant and wild-type littermates for each strain (both sexes) had similar total energy expenditure after adjustment for body composition. These findings suggest that the obesity phenotype observed in Bdnf-e1-/- and Bdnf-e2-/- mice is attributable to hyperphagia and not altered energy expenditure. Our findings show that disruption of BDNF from specific promoters leads to distinct body composition effects, with disruption from promoters I or II, but not IV or VI, inducing obesity.
Collapse
Affiliation(s)
- Liam McAllan
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Alisha S Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Amanda S Stayton
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Shelby L Fox
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Erin J Stephenson
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Clint E Kinney
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Noor K Alshibli
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Charles K Gomes
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Dave Bridges
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine , Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Joan C Han
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
11
|
Abstract
Growth hormone (GH) secretory patterns emerge following birth, and changes in patterning occur throughout life. These secretory patterns are coupled to growth, reproduction and metabolism. Comparing human and animal studies, this review will highlight ultradian patterning of GH release and the mechanisms that contribute to this. Discussions will focus on the emergence in variations in the number and frequency of GH secretory events, and the amounts of GH released (peak and basal). Animal studies have contributed significantly to our understanding of the processes that regulate GH release. However, translation of knowledge from animal models to benefit our understanding of human physiology is sometimes limited. To overcome these limitations, it is critical that we reconcile the cause and consequences of differences in GH release between humans and model organisms. In doing so, we can embrace emerging technologies that will rapidly advance our knowledge of endogenous process that control GH release.
Collapse
Affiliation(s)
- Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Queensland, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia.
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia; Queensland Brain Institute, The University of Queensland, Australia.
| |
Collapse
|
12
|
Chen X, Huang L, Tan HY, Li H, Wan Y, Cowley M, Veldhuis JD, Chen C. Deficient melanocortin-4 receptor causes abnormal reproductive neuroendocrine profile in female mice. Reproduction 2017; 153:267-276. [PMID: 28003536 DOI: 10.1530/rep-16-0341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/24/2022]
Abstract
Deletion of the melanocortin-4-receptor (Mc4r) gene in mice causes hyperphagia, followed by hyperinsulinemia, obesity and progressive infertility. Evidence shows that the number of developed corpora lutea is reduced in obese MC4R-knockout (MC4R KO) female mice, but the mechanism is unclear. The effect of hyperphagia and obesity by MC4R KO on pulsatile luteinizing hormone (LH) secretion and ovulation remains unknown. In MC4R KO mice and wild-type littermates (WT LM) during the diestrus period throughout different ages, we examined and monitored their metabolic status, pulsatile LH profiles, follicular morphology and the number of corpora lutea. MC4R KO mice were hyperphagic, obese, hyperglycemic, hyperinsulinemic and demonstrated insulin resistance and hepatic steatosis. Irregular estrous cycles and significant changes in the LH secretion profiles were observed in sexually matured 16- to 28-week MC4R KO mice, without any difference in testosterone levels. In addition, MC4R KO mice at 16 weeks of age had significantly fewer corpora lutea than same age WT LM mice. The ovary examinations of MC4R KO mice at 28 weeks of age showed predominantly antral and preovulatory follicles with no corpora lutea. These findings were consistent with the decrease in total, pulsatile, mass and basal LH releases in MC4R KO mice. The characteristics of hormone profiles in obese MC4R KO mice indicate that MC4R plays an important role in regulating LH release, ovulation and reproductive ability probably via hyperphagia-induced obesity. Further study of correlation between metabolic and reproductive regulatory hormones is warranted to dissect the pathological mechanism underlying obesity-induced infertility.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/3/267/suppl/DC1.
Collapse
Affiliation(s)
- Xiaolin Chen
- School of Biomedical ScienceUniversity of Queensland, St Lucia, Brisbane, Queensland, Australia.,Endocrinology DepartmentRenmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei Province, People's Republic of China
| | - Lili Huang
- School of Biomedical ScienceUniversity of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hwee Y Tan
- School of Biomedical ScienceUniversity of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hongzhuo Li
- School of Biomedical ScienceUniversity of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ying Wan
- School of Biomedical ScienceUniversity of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Michael Cowley
- Department of PhysiologyMonash University, Clayton, Victoria, Australia
| | - Johannes D Veldhuis
- Endocrine Research UnitMayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Chen Chen
- School of Biomedical ScienceUniversity of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Page LC, Shi M, Freemark M. Early-Onset Obesity Caused by Monogenic Disorders. CURRENT PEDIATRICS REPORTS 2017. [DOI: 10.1007/s40124-017-0132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Boswell T, Dunn IC. Regulation of Agouti-Related Protein and Pro-Opiomelanocortin Gene Expression in the Avian Arcuate Nucleus. Front Endocrinol (Lausanne) 2017; 8:75. [PMID: 28450851 PMCID: PMC5389969 DOI: 10.3389/fendo.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
The arcuate nucleus is generally conserved across vertebrate taxa in its neuroanatomy and neuropeptide expression. Gene expression of agouti-related protein (AGRP), neuropeptide Y (NPY), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) has been established in the arcuate nucleus of several bird species and co-localization demonstrated for AGRP and NPY. The proteins encoded by these genes exert comparable effects on food intake in birds after central administration to those seen in other vertebrates, with AGRP and NPY being orexigenic and CART and α-melanocyte-stimulating hormone anorexigenic. We have focused on the measurement of arcuate nucleus AGRP and POMC expression in several avian models in relation to the regulation of energy balance, incubation, stress, and growth. AGRP mRNA and POMC mRNA are, respectively, up- and downregulated after energy deprivation and restriction. This suggests that coordinated changes in the activity of AGRP and POMC neurons help to drive the homeostatic response to replace depleted energy stores in birds as in other vertebrates. While AGRP and POMC expression are generally positively and negatively correlated with food intake, respectively, we review here situations in some avian models in which AGRP gene expression is dissociated from the level of food intake and may have an influence on growth independent of changes in appetite. This suggests the possibility that the central melanocortin system exerts more pleiotropic functions in birds. While the neuroanatomical arrangement of AGRP and POMC neurons and the sensitivity of their activity to nutritional state appear generally conserved with other vertebrates, detailed knowledge is lacking of the key nutritional feedback signals acting on the avian arcuate nucleus and there appear to be significant differences between birds and mammals. In particular, recently identified avian leptin genes show differences between bird species in their tissue expression patterns and appear less closely linked in their expression to nutritional state. It is presently uncertain how the regulation of the central melanocortin system in birds is brought about in the situation of the apparently reduced importance of leptin and ghrelin compared to mammals.
Collapse
Affiliation(s)
- Timothy Boswell
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
- *Correspondence: Timothy Boswell,
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| |
Collapse
|