1
|
Lin WH, Tung YH, Wu ZS, Chang PK, Yang ST, Yang YL, Lu KT. Loop diuretics mitigate juvenile immobilization treatment-induced hippocampal dysfunction. Eur J Pharmacol 2025; 996:177447. [PMID: 40023355 DOI: 10.1016/j.ejphar.2025.177447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Juvenile traumatic experiences can lead to adult cognitive impairments, including learning deficits and increased anxiety risk. Dysfunction of the hippocampus is crucial in stress-induced behavioral disorders, and recent evidence suggests that disrupted chloride homeostasis through the chloride transporter NKCC1 may alter GABAergic signaling and contribute to neuropathology. This study investigates the role of NKCC1 in long-term hippocampal dysfunction induced by juvenile immobilization (J_IMO). Male C57BL/6 mice underwent J_IMO treatment at five weeks of age and were assessed at six and twelve weeks using inhibitory avoidance (IA), open field tests (OFT), extracellular recording, qPCR, and Western blot analyses. Following J_IMO treatment, mice exhibited significant learning deficits in IA, with no notable differences in total movement distance in the OFT. Electrophysiological analysis revealed a marked increase in long-term potentiation (LTP) within the hippocampal Schaffer collateral pathway, while paired-pulse facilitation remained unchanged. An altered input-output curve indicated post-synaptic dysregulation in J_IMO-treated mice. Additionally, Western blot and qPCR analyses showed significant upregulation of Slc12a2 (NKCC1) expression, primarily localized to neural cells, as confirmed by double-staining immunohistochemistry. These findings suggest that NKCC1 plays a pivotal role in J_IMO-induced hippocampal dysfunction, particularly by impairing GABAergic inhibitory neurotransmission. The GABAA agonist isoguvacine's inhibitory effect on the fEPSP was diminished in J_IMO-treated mice but restored with NKCC1 inhibitor co-treatment, indicating that altered NKCC1 function undermines GABAergic inhibitory neurotransmission in this stress model. In conclusion, our results indicate that NKCC1 contributes to J_IMO-induced hippocampal dysfunction by diminishing GABAergic inhibitory neurotransmission. NKCC1 inhibitors may significantly alleviate these dysfunctions.
Collapse
Affiliation(s)
- Wei-Hsing Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Yu-Hsuen Tung
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Zong-Syun Wu
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Peng-Kai Chang
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Shih-Te Yang
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan; Department of Science Education, National Museum of Marine Biology and Aquarium, Pintung, Taiwan
| | - Yi-Ling Yang
- Department of Biochemical Science and Technology, National Chia-Yi University, Chia-Yi, 60004, Taiwan.
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan.
| |
Collapse
|
2
|
Reyes-Chapero RM, Tapia D, Ortega A, Laville A, Padilla-Orozco M, Fuentes-Serrano A, Serrano-Reyes M, Bargas J, Galarraga E. Cortical parvalbumin-expressing interneurons sample network oscillations in their synaptic activity. Neuroscience 2025; 573:25-41. [PMID: 40088965 DOI: 10.1016/j.neuroscience.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Synaptic activity is thought to be the primary input of the frequency bands conveyed in the electroencephalogram (EEG) and local field potentials (LFPs) recorded on the cortex. Here we ask whether synaptic activity observed in parvalbumin expressing (PV + ) neurons recorded in isolated cortical tissue bear these frequency bands. The muscarinic agonist carbachol (CCh) was used to increase cortical excitability. PV + neurons play a significant role in perisomatic inhibition and the synchronization of cortical ensembles to generate gamma (γ) oscillations during cholinergic modulation. γ-oscillations associate with cognitive activities co-existing with slower rhythms. While CCh induces depolarization and firing in pyramidal neurons, it only causes barrages of synaptic potentials without firing in most PV + neurons. We show that the frequency spectra of CCh-induced synaptic events recorded onto layer 5 PV + neurons display the various frequency bands generated by cortical networks: from δ to γ. Isolation of inhibitory events shows potency increases in the δ band and decreases in other bands. Isolated excitatory events exhibit a decrease in the β-band. Excitatory potentials appear to drive the circuitry while inhibitory ones appear to regulate events frequency. Muscarinic M1-class receptors are mainly responsible for the synaptic activity from which oscillatory bands emerge. These results demonstrate that PV + interneurons "sample" network activity through the ligand-gated synaptic events that receive from it. We conclude that random synaptic events recorded in single neurons contain the wide range of brain oscillations as revealed by frequency spectra and power density analyses.
Collapse
Affiliation(s)
- Rosa M Reyes-Chapero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Alejandra Fuentes-Serrano
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México; Departamento de Ingeniería en Sistemas Biomédicos, Centro de Ingeniería Avanzada, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México.
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México.
| |
Collapse
|
3
|
Kourdougli N, Nomura T, Wu MW, Heuvelmans A, Dobler Z, Contractor A, Portera-Cailliau C. The NKCC1 Inhibitor Bumetanide Restores Cortical Feedforward Inhibition and Lessens Sensory Hypersensitivity in Early Postnatal Fragile X Mice. Biol Psychiatry 2025; 97:507-516. [PMID: 38950809 PMCID: PMC11825064 DOI: 10.1016/j.biopsych.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Exaggerated responses to sensory stimuli, a hallmark of fragile X syndrome, contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of fragile X syndrome. Recent studies in Fmr1 KO mice have demonstrated differences in the activity of cortical interneurons and a delayed switch in the polarity of GABA (gamma-aminobutyric acid) signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide could rescue synaptic circuit phenotypes in the primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS We demonstrated that layer 2/3 pyramidal neurons in the S1 of Fmr1 KO mice showed a higher frequency of synchronous events on postnatal day 6 than wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (postnatal days 5-14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of layer 2/3 neurons in the S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the Food and Drug Administration-approved diuretic bumetanide.
Collapse
Affiliation(s)
- Nazim Kourdougli
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
| | - Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michelle W Wu
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California; UCLA-Caltech Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, California
| | - Anouk Heuvelmans
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
| | - Zoë Dobler
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California
| | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Carlos Portera-Cailliau
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
4
|
Choi H, An YK, Lee CJ, Song CU, Kim EJ, Lee CE, Cho SJ, Eyun SI. Genome assembly, gene content, and plastic gene expression responses to salinity changes in the Brackishwater Clam (Corbicula japonica) from a dynamic estuarine environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136627. [PMID: 39616841 DOI: 10.1016/j.jhazmat.2024.136627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 01/28/2025]
Abstract
Estuaries are dynamic transition zones between marine and freshwater environments, where salinity varies greatly on spatial and temporal scales. The temporal salinity fluctuations of these habitats require organisms to rapidly regulate ionic concentrations and osmotic pressure to survive in these dynamic conditions. Understanding the extent of plasticity of euryhaline animals is vital for predicting their responses and resilience to salinity change. We generated the first high-resolution genome and transcriptome sequences of C. japonica. In comparison with 11 other molluscan genomes, the C. japonica genome displayed striking expansions of putative neuron-related genes and gene families. The involvement of these genes in the glutamate/GABA-glutamine and glycine cycle suggests a possible contribution to the excitation of neuronal networks, particularly under high salinity conditions. This study contributes to our understanding of mechanisms underlying the rapid responses of estuarine species to changing conditions and raises many intriguing hypotheses and questions for future investigation.
Collapse
Affiliation(s)
- Hyeongwoo Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yun Keun An
- Division of Marine Technology, Chonnam National University, Yeosu 59626, Korea
| | - Chan-Jun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| | - Chi-Une Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
5
|
Vedururu Srinivas A, Canavier CC. Existence and stability criteria for global synchrony and for synchrony in two alternating clusters of pulse-coupled oscillators updated to include conduction delays. Math Biosci 2024; 378:109335. [PMID: 39491588 PMCID: PMC11614676 DOI: 10.1016/j.mbs.2024.109335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Phase Response Curves (PRCs) have been useful in determining and analyzing various phase-locking modes in networks of oscillators under pulse-coupling assumptions, as reviewed in Mathematical Biosciences, 226:77-96, 2010. Here, we update that review to include progress since 2010 on pulse coupled oscillators with conduction delays. We then present original results that extend the derivation of the criteria for stability of global synchrony in networks of pulse-coupled oscillators to include conduction delays. We also incorporate conduction delays to extend previous studies that showed how an alternating firing pattern between two synchronized clusters could enforce within-cluster synchrony, even for clusters unable to synchronize themselves in isolation. To obtain these results, we used self-connected neurons to represent clusters. These results greatly extend the applicability of the stability analyses to networks of pulse-coupled oscillators since conduction delays are ubiquitous and strongly impact the stability of synchrony. Although these analyses only strictly apply to identical oscillators with identical connections to other oscillators, the principles are general and suggest how to promote or impede synchrony in physiological networks of neurons, for example. Heterogeneity can be interpreted as a form of frozen noise, and approximate synchrony can be sustained despite heterogeneity. The pulse-coupled oscillator model can not only be used to describe biological neuronal networks but also cardiac pacemakers, lasers, fireflies, artificial neural networks, social self-organization, and wireless sensor networks.
Collapse
Affiliation(s)
- Ananth Vedururu Srinivas
- Louisiana State University Health Sciences Center, Department of Cell Biology and Anatomy, New Orleans, LA, 70112, USA
| | - Carmen C Canavier
- Louisiana State University Health Sciences Center, Department of Cell Biology and Anatomy, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Kazashi K, Miura K, Ueda S, Utsunomiya K, Kiriyama M, Yagisawa M, Ikeda M, Kano M, Tabata T. Delayed gramicidin delivery through an intra-pipette capillary facilitates perforated patch recordings. Neurosci Res 2024; 207:45-48. [PMID: 38740268 DOI: 10.1016/j.neures.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The gramicidin-perforated patch-clamp technique is indispensable for recording neuronal activities without changing the intracellular Cl- concentration. Conventionally, gramicidin contained in the pipette fluid is delivered to the cell membrane by passive diffusion. Gramicidin deposited on the pipette orifice sometimes hampers giga-seal formation, and perforation progresses only slowly. These problems may be circumvented by delivering a high concentration of gramicidin from an intra-pipette capillary after a giga-seal is formed. We herein describe the detailed protocol of this improved method. This protocol would greatly facilitate the investigation of Cl- gradient-dependent neuronal activities.
Collapse
Affiliation(s)
- Kosuke Kazashi
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Kakeru Miura
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Sota Ueda
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Kazuhito Utsunomiya
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Mari Kiriyama
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Motoki Yagisawa
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Masayuki Ikeda
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshihide Tabata
- Laboratory for Biological Information Processing, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
7
|
Vedururu Srinivas A, Canavier CC. Existence and Stability Criteria for Global Synchrony and for Synchrony in two Alternating Clusters of Pulse-Coupled Oscillators Updated to Include Conduction Delays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575222. [PMID: 38260324 PMCID: PMC10802586 DOI: 10.1101/2024.01.11.575222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Phase Response Curves (PRCs) have been useful in determining and analyzing various phase-locking modes in networks of oscillators under pulse-coupling assumptions, as reviewed in Mathematical Biosciences, 226:77-96, 2010. Here, we update that review to include progress since 2010 on pulse coupled oscillators with conduction delays. We then present original results that extend the derivation of the criteria for stability of global synchrony in networks of pulse-coupled oscillators to include conduction delays. We also incorporate conduction delays to extend previous studies that showed how an alternating firing pattern between two synchronized clusters could enforce within cluster synchrony, even for clusters unable to synchronize themselves in isolation. To obtain these results, we used self-connected neurons to represent clusters. These results greatly extend the applicability of the stability analyses to networks of pulse-coupled oscillators since conduction delays are ubiquitous and strongly impact the stability of synchrony. Although these analyses only strictly apply to identical oscillators with identical connections to other oscillators, the principles are general and suggest how to promote or impede synchrony in physiological networks of neurons, for example. Heterogeneity can be interpreted as a form of frozen noise, and approximate synchrony can be sustained despite heterogeneity. The pulse-coupled oscillator model can not only be used to describe biological neuronal networks but also cardiac pacemakers, lasers, fireflies, artificial neural networks, social self-organization, and wireless sensor networks. AMS Subject Classification 37N25, 39A06, 39A30, 92B25, 92C20.
Collapse
|
8
|
Burman RJ, Diviney T, Călin A, Gothard G, Jouhanneau JSM, Poulet JFA, Sen A, Akerman CJ. Optogenetic Determination of Dynamic and Cell-Type-Specific Inhibitory Reversal Potentials. J Neurosci 2024; 44:e1392232024. [PMID: 38604778 PMCID: PMC11097265 DOI: 10.1523/jneurosci.1392-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.
Collapse
Affiliation(s)
- Richard J Burman
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Tara Diviney
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Alexandru Călin
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Gemma Gothard
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Jean-Sébastien M Jouhanneau
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - James F A Poulet
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
9
|
Baravalle R, Canavier CC. Synchrony in Networks of Type 2 Interneurons Is More Robust to Noise with Hyperpolarizing Inhibition Compared to Shunting Inhibition in Both the Stochastic Population Oscillator and the Coupled Oscillator Regimes. eNeuro 2024; 11:ENEURO.0399-23.2024. [PMID: 38471777 PMCID: PMC10972736 DOI: 10.1523/eneuro.0399-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Synchronization in the gamma band (25-150 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's Type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple Type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator (SPO), as previously shown for Type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and SPO regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition.
Collapse
Affiliation(s)
- Roman Baravalle
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana 70112
| | - Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana 70112
| |
Collapse
|
10
|
Kim HR, Martina M. Bidirectional Regulation of GABA A Reversal Potential in the Adult Brain: Physiological and Pathological Implications. Life (Basel) 2024; 14:143. [PMID: 38276272 PMCID: PMC10817304 DOI: 10.3390/life14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In physiological conditions, the intracellular chloride concentration is much lower than the extracellular. As GABAA channels are permeable to anions, the reversal potential of GABAA is very close to that of Cl-, which is the most abundant free anion in the intra- and extracellular spaces. Intracellular chloride is regulated by the activity ratio of NKCC1 and KCC2, two chloride-cation cotransporters that import and export Cl-, respectively. Due to the closeness between GABAA reversal potential and the value of the resting membrane potential in most neurons, small changes in intracellular chloride have a major functional impact, which makes GABAA a uniquely flexible signaling system. In most neurons of the adult brain, the GABAA reversal potential is slightly more negative than the resting membrane potential, which makes GABAA hyperpolarizing. Alterations in GABAA reversal potential are a common feature in numerous conditions as they are the consequence of an imbalance in the NKCC1-KCC2 activity ratio. In most conditions (including Alzheimer's disease, schizophrenia, and Down's syndrome), GABAA becomes depolarizing, which causes network desynchronization and behavioral impairment. In other conditions (neonatal inflammation and neuropathic pain), however, GABAA reversal potential becomes hypernegative, which affects behavior through a potent circuit deactivation.
Collapse
Affiliation(s)
- Haram R. Kim
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
| | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Tescarollo FC, Valdivia D, Chen S, Sun H. Unilateral optogenetic kindling of hippocampus leads to more severe impairments of the inhibitory signaling in the contralateral hippocampus. Front Mol Neurosci 2023; 16:1268311. [PMID: 37942301 PMCID: PMC10627882 DOI: 10.3389/fnmol.2023.1268311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023] Open
Abstract
The kindling model has been used extensively by researchers to study the neurobiology of temporal lobe epilepsy (TLE) due to its capacity to induce intensification of seizures by the progressive recruitment of additional neuronal clusters into epileptogenic networks. We applied repetitive focal optogenetic activation of putative excitatory neurons in the dorsal CA1 area of the hippocampus of mice to investigate the role of inhibitory signaling during this process. This experimental protocol resulted in a kindling phenotype that was maintained for 2 weeks after the animals were fully kindled. As a result of the different phases of optogenetic kindling (OpK), key inhibitory signaling elements, such as KCC2 and NKCC1, exhibited distinct temporal and spatial dynamics of regulation. These alterations in protein expression were related to the distinct pattern of ictal activity propagation through the different hippocampal sublayers. Our results suggest the KCC2 disruption in the contralateral hippocampus of fully kindled animals progressively facilitated the creation of pathological pathways for seizure propagation through the hippocampal network. Upon completion of kindling, we observed animals that were restimulated after a rest period of 14-day showed, besides a persistent KCC2 downregulation, an NKCC1 upregulation in the bilateral dentate gyrus and hippocampus-wide loss of parvalbumin-positive interneurons. These alterations observed in the chronic phase of OpK suggest that the hippocampus of rekindled animals continued to undergo self-modifications during the rest period. The changes resulting from this period suggest the possibility of the development of a mirror focus on the hippocampus contralateral to the site of optical stimulations. Our results offer perspectives for preventing the recruitment and conversion of healthy neuronal networks into epileptogenic ones among patients with epilepsy.
Collapse
Affiliation(s)
| | | | | | - Hai Sun
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Baravalle R, Canavier CC. Synchrony in Networks of Type 2 Interneurons is More Robust to Noise with Hyperpolarizing Inhibition Compared to Shunting Inhibition in Both the Stochastic Population Oscillator and the Coupled Oscillator Regimes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560219. [PMID: 37873166 PMCID: PMC10592850 DOI: 10.1101/2023.09.29.560219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synchronization in the gamma band (30-80 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator, as previously shown for type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and stochastic population oscillator regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition. Significance Statement Brain rhythms in the gamma frequency band (30-80 Hz) depend on the activity of inhibitory interneurons and evidence for a causal role for gamma oscillations in cognitive functions is accumulating. Here we extend previous studies on synchronization mechanisms to interneurons that have an abrupt threshold frequency below which they cannot sustain firing. In addition to current based synapses, we examined inhibitory networks with conductance based synapses. We found that if the reversal potential for inhibition was below the average membrane potential (hyperpolarizing), synchrony was more robust to noise than if the reversal potential was very close to the average potential (shunting). These results have implications for therapies to ameliorate cognitive deficits.
Collapse
|
13
|
Peerboom C, de Kater S, Jonker N, Rieter MPJM, Wijne T, Wierenga CJ. Delaying the GABA Shift Indirectly Affects Membrane Properties in the Developing Hippocampus. J Neurosci 2023; 43:5483-5500. [PMID: 37438107 PMCID: PMC10376938 DOI: 10.1523/jneurosci.0251-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
During the first two postnatal weeks, intraneuronal chloride concentrations in rodents gradually decrease, causing a shift from depolarizing to hyperpolarizing GABA responses. The postnatal GABA shift is delayed in rodent models for neurodevelopmental disorders and in human patients, but the impact of a delayed GABA shift on the developing brain remains obscure. Here we examine the direct and indirect consequences of a delayed postnatal GABA shift on network development in organotypic hippocampal cultures made from 6- to 7-d-old mice by treating the cultures for 1 week with VU0463271, a specific inhibitor of the chloride exporter KCC2. We verified that VU treatment delayed the GABA shift and kept GABA signaling depolarizing until DIV9. We found that the structural and functional development of excitatory and inhibitory synapses at DIV9 was not affected after VU treatment. In line with previous studies, we observed that GABA signaling was already inhibitory in control and VU-treated postnatal slices. Surprisingly, 14 d after the VU treatment had ended (DIV21), we observed an increased frequency of spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, while excitatory currents were not changed. Synapse numbers and release probability were unaffected. We found that dendrite-targeting interneurons in the stratum radiatum had an elevated resting membrane potential, while pyramidal cells were less excitable compared with control slices. Our results show that depolarizing GABA signaling does not promote synapse formation after P7, and suggest that postnatal intracellular chloride levels indirectly affect membrane properties in a cell-specific manner.SIGNIFICANCE STATEMENT During brain development, the action of neurotransmitter GABA shifts from depolarizing to hyperpolarizing. This shift is a thought to play a critical role in synapse formation. A delayed shift is common in rodent models for neurodevelopmental disorders and in human patients, but its consequences for synaptic development remain obscure. Here, we delayed the GABA shift by 1 week in organotypic hippocampal cultures and carefully examined the consequences for circuit development. We find that delaying the shift has no direct effects on synaptic development, but instead leads to indirect, cell type-specific changes in membrane properties. Our data call for careful assessment of alterations in cellular excitability in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Sam de Kater
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Nikki Jonker
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Marijn P J M Rieter
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Tessel Wijne
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
14
|
Simonnet C, Sinha M, Goutierre M, Moutkine I, Daumas S, Poncer JC. Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory. Neuropsychopharmacology 2023; 48:1067-1077. [PMID: 36302847 PMCID: PMC10209115 DOI: 10.1038/s41386-022-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Delayed upregulation of the neuronal chloride extruder KCC2 underlies the progressive shift in GABA signaling polarity during development. Conversely, KCC2 downregulation is observed in a variety of neurological and psychiatric disorders often associated with cognitive impairment. Reduced KCC2 expression and function in mature networks may disrupt GABA signaling and promote anomalous network activities underlying these disorders. However, the causal link between KCC2 downregulation, altered brain rhythmogenesis, and cognitive function remains elusive. Here, by combining behavioral exploration with in vivo electrophysiology we assessed the impact of chronic KCC2 downregulation in mouse dorsal hippocampus and showed it compromises both spatial and contextual memory. This was associated with altered hippocampal rhythmogenesis and neuronal hyperexcitability, with increased burst firing in CA1 neurons during non-REM sleep. Reducing neuronal excitability with terbinafine, a specific Task-3 leak potassium channel opener, occluded the impairment of contextual memory upon KCC2 knockdown. Our results establish a causal relationship between KCC2 expression and cognitive performance and suggest that non-epileptiform rhythmopathies and neuronal hyperexcitability are central to the deficits caused by KCC2 downregulation in the adult mouse brain.
Collapse
Affiliation(s)
- Clémence Simonnet
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
- Basic Neuroscience Department, Centre Medical Universitaire, 1211, Geneva, Switzerland
| | - Manisha Sinha
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marie Goutierre
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Imane Moutkine
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Stéphanie Daumas
- Sorbonne Université, 75005, Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005, Paris, France
| | - Jean Christophe Poncer
- Inserm UMR-S 1270, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
- Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
15
|
Călin A, Waseem T, Raimondo JV, Newey SE, Akerman CJ. A genetically targeted ion sensor reveals distinct seizure-related chloride and pH dynamics in GABAergic interneuron populations. iScience 2023; 26:106363. [PMID: 37034992 PMCID: PMC10074576 DOI: 10.1016/j.isci.2023.106363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Intracellular chloride and pH play fundamental roles in determining a neuron's synaptic inhibition and excitability. Yet it has been difficult to measure changes in these ions during periods of heightened network activity, such as occur in epilepsy. Here we develop a version of the fluorescent reporter, ClopHensorN, to enable simultaneous quantification of chloride and pH in genetically defined neurons during epileptiform activity. We compare pyramidal neurons to the major GABAergic interneuron subtypes in the mouse hippocampus, which express parvalbumin (PV), somatostatin (SST), or vasoactive intestinal polypeptide (VIP). Interneuron populations exhibit higher baseline chloride, with PV interneurons exhibiting the highest levels. During an epileptiform discharge, however, all subtypes converge upon a common elevated chloride level. Concurrent with these dynamics, epileptiform activity leads to different degrees of intracellular acidification, which reflect baseline pH. Thus, a new optical tool for dissociating chloride and pH reveals neuron-specific ion dynamics during heightened network activity.
Collapse
Affiliation(s)
- Alexandru Călin
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tatiana Waseem
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Joseph V. Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Sarah E. Newey
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Colin J. Akerman
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
16
|
Chamberland S, Nebet ER, Valero M, Hanani M, Egger R, Larsen SB, Eyring KW, Buzsáki G, Tsien RW. Brief synaptic inhibition persistently interrupts firing of fast-spiking interneurons. Neuron 2023; 111:1264-1281.e5. [PMID: 36787751 PMCID: PMC10121938 DOI: 10.1016/j.neuron.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/06/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Neurons perform input-output operations that integrate synaptic inputs with intrinsic electrical properties; these operations are generally constrained by the brevity of synaptic events. Here, we report that sustained firing of CA1 hippocampal fast-spiking parvalbumin-expressing interneurons (PV-INs) can be persistently interrupted for several hundred milliseconds following brief GABAAR-mediated inhibition in vitro and in vivo. A single presynaptic neuron could interrupt PV-IN firing, occasionally with a single action potential (AP), and reliably with AP bursts. Experiments and computational modeling reveal that the persistent interruption of firing maintains neurons in a depolarized, quiescent state through a cell-autonomous mechanism. Interrupted PV-INs are strikingly responsive to Schaffer collateral inputs. The persistent interruption of firing provides a disinhibitory circuit mechanism favoring spike generation in CA1 pyramidal cells. Overall, our results demonstrate that neuronal silencing can far outlast brief synaptic inhibition owing to the well-tuned interplay between neurotransmitter release and postsynaptic membrane dynamics, a phenomenon impacting microcircuit function.
Collapse
Affiliation(s)
- Simon Chamberland
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Erica R Nebet
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Manuel Valero
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Monica Hanani
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Samantha B Larsen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Katherine W Eyring
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - György Buzsáki
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
17
|
Lateral Diffusion of NKCC1 Contributes to Chloride Homeostasis in Neurons and Is Rapidly Regulated by the WNK Signaling Pathway. Cells 2023; 12:cells12030464. [PMID: 36766805 PMCID: PMC9914440 DOI: 10.3390/cells12030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
An upregulation of the Na+-K+-2Cl- cotransporter NKCC1, the main chloride importer in mature neurons, can lead to depolarizing/excitatory responses mediated by GABA type A receptors (GABAARs) and, thus, to hyperactivity. Understanding the regulatory mechanisms of NKCC1 would help prevent intra-neuronal chloride accumulation that occurs in pathologies with defective inhibition. The cell mechanisms regulating NKCC1 are poorly understood. Here, we report in mature hippocampal neurons that GABAergic activity controls the membrane diffusion and clustering of NKCC1 via the chloride-sensitive WNK lysine deficient protein kinase 1 (WNK1) and the downstream Ste20 Pro-line Asparagine Rich Kinase (SPAK) kinase that directly phosphorylates NKCC1 on key threonine residues. At rest, this signaling pathway has little effect on intracellular Cl- concentration, but it participates in the elevation of intraneuronal Cl- concentration in hyperactivity conditions associated with an up-regulation of NKCC1. The fact that the main chloride exporter, the K+-Cl- cotransporter KCC2, is also regulated in mature neurons by the WNK1 pathway indicates that this pathway will be a target of choice in the pathology.
Collapse
|
18
|
Liedtke W. Long March Toward Safe and Effective Analgesia by Enhancing Gene Expression of Kcc2: First Steps Taken. Front Mol Neurosci 2022; 15:865600. [PMID: 35645734 PMCID: PMC9137411 DOI: 10.3389/fnmol.2022.865600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Low intraneuronal chloride in spinal cord dorsal horn pain relay neurons is critical for physiologic transmission of primary pain afferents because low intraneuronal chloride dictates whether GABA-ergic and glycin-ergic neurotransmission is inhibitory. If the neuronal chloride elevates to pathologic levels, then spinal cord primary pain relay becomes leaky and exhibits the behavioral hallmarks of pathologic pain, namely hypersensitivity and allodynia. Low chloride in spinal cord dorsal horn neurons is maintained by proper gene expression of Kcc2 and sustained physiologic function of the KCC2 chloride extruding electroneutral transporter. Peripheral nerve injury and other forms of neural injury evoke greatly diminished Kcc2 gene expression and subsequent corruption of inhibitory neurotransmission in the spinal cord dorsal horn, thus causing derailment of the gate function for pain. Here I review key discoveries that have helped us understand these fundamentals, and focus on recent insights relating to the discovery of Kcc2 gene expression enhancing compounds via compound screens in neurons. One such study characterized the kinase inhibitor, kenpaullone, more in-depth, revealing its function as a robust and long-lasting analgesic in preclinical models of nerve injury and cancer bone pain, also elucidating its mechanism of action via GSK3β inhibition, diminishing delta-catenin phosphorylation, and facilitating its nuclear transfer and subsequent enhancement of Kcc2 gene expression by de-repressing Kaiso epigenetic transcriptional regulator. Future directions re Kcc2 gene expression enhancement are discussed, namely combination with other analgesics and analgesic methods, such as spinal cord stimulation and electroacupuncture, gene therapy, and leveraging Kcc2 gene expression-enhancing nanomaterials.
Collapse
|
19
|
Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022; 15:826427. [PMID: 35370549 PMCID: PMC8966887 DOI: 10.3389/fnmol.2022.826427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
K-Cl transporter KCC2 is an important regulator of neuronal development and neuronal function at maturity. Through its canonical transporter role, KCC2 maintains inhibitory responses mediated by γ-aminobutyric acid (GABA) type A receptors. During development, late onset of KCC2 transporter activity defines the period when depolarizing GABAergic signals promote a wealth of developmental processes. In addition to its transporter function, KCC2 directly interacts with a number of proteins to regulate dendritic spine formation, cell survival, synaptic plasticity, neuronal excitability, and other processes. Either overexpression or loss of KCC2 can lead to abnormal circuit formation, seizures, or even perinatal death. GABA has been reported to be especially important for driving migration and development of cortical interneurons (IN), and we hypothesized that properly timed onset of KCC2 expression is vital to this process. To test this hypothesis, we created a mouse with conditional knockout of KCC2 in Dlx5-lineage neurons (Dlx5 KCC2 cKO), which targets INs and other post-mitotic GABAergic neurons in the forebrain starting during embryonic development. While KCC2 was first expressed in the INs of layer 5 cortex, perinatal IN migrations and laminar localization appeared to be unaffected by the loss of KCC2. Nonetheless, the mice had early seizures, failure to thrive, and premature death in the second and third weeks of life. At this age, we found an underlying change in IN distribution, including an excess number of somatostatin neurons in layer 5 and a decrease in parvalbumin-expressing neurons in layer 2/3 and layer 6. Our research suggests that while KCC2 expression may not be entirely necessary for early IN migration, loss of KCC2 causes an imbalance in cortical interneuron subtypes, seizures, and early death. More work will be needed to define the specific cellular basis for these findings, including whether they are due to abnormal circuit formation versus the sequela of defective IN inhibition.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States,Department of Neurology, Tennessee Valley Healthcare – Veterans Affairs (TVH VA), Medical Center, Nashville, TN, United States,*Correspondence: Andre H. Lagrange,
| |
Collapse
|
20
|
Herrmann T, Gerth M, Dittmann R, Pensold D, Ungelenk M, Liebmann L, Hübner CA. Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated With a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons. Front Mol Neurosci 2022; 14:807090. [PMID: 35185464 PMCID: PMC8850922 DOI: 10.3389/fnmol.2021.807090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors are ligand-gated ion channels, which are predominantly permeable for chloride. The neuronal K-Cl cotransporter KCC2 lowers the intraneuronal chloride concentration and thus plays an important role for GABA signaling. KCC2 loss-of-function is associated with seizures and epilepsy. Here, we show that KCC2 is expressed in the majority of parvalbumin-positive interneurons (PV-INs) of the mouse brain. PV-INs receive excitatory input from principle cells and in turn control principle cell activity by perisomatic inhibition and inhibitory input from other interneurons. Upon Cre-mediated disruption of KCC2 in mice, the polarity of the GABA response of PV-INs changed from hyperpolarization to depolarization for the majority of PV-INs. Reduced excitatory postsynaptic potential-spike (E-S) coupling and increased spontaneous inhibitory postsynaptic current (sIPSC) frequencies further suggest that PV-INs are disinhibited upon disruption of KCC2. In vivo, PV-IN-specific KCC2 knockout mice display a reduced seizure threshold and develop spontaneous sometimes fatal seizures. We further found a time dependent loss of PV-INs, which was preceded by an up-regulation of pro-apoptotic genes upon disruption of KCC2.
Collapse
|
21
|
Al Awabdh S, Donneger F, Goutierre M, Séveno M, Vigy O, Weinzettl P, Russeau M, Moutkine I, Lévi S, Marin P, Poncer JC. Gephyrin Interacts with the K-Cl Cotransporter KCC2 to Regulate Its Surface Expression and Function in Cortical Neurons. J Neurosci 2022; 42:166-182. [PMID: 34810232 PMCID: PMC8802937 DOI: 10.1523/jneurosci.2926-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/31/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.
Collapse
Affiliation(s)
- Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Martial Séveno
- BCM, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Oana Vigy
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Pauline Weinzettl
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Institute of Biotechnology, University of Applied Sciences, Krems, Austria
| | - Marion Russeau
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Imane Moutkine
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
22
|
Kilb W. When Are Depolarizing GABAergic Responses Excitatory? Front Mol Neurosci 2021; 14:747835. [PMID: 34899178 PMCID: PMC8651619 DOI: 10.3389/fnmol.2021.747835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The membrane responses upon activation of GABA(A) receptors critically depend on the intracellular Cl− concentration ([Cl−]i), which is maintained by a set of transmembrane transporters for Cl−. During neuronal development, but also under several pathophysiological conditions, the prevailing expression of the Cl− loader NKCC1 and the low expression of the Cl− extruder KCC2 causes elevated [Cl−]i, which result in depolarizing GABAergic membrane responses. However, depolarizing GABAergic responses are not necessarily excitatory, as GABA(A) receptors also reduces the input resistance of neurons and thereby shunt excitatory inputs. To summarize our knowledge on the effect of depolarizing GABA responses on neuronal excitability, this review discusses theoretical considerations and experimental studies illustrating the relation between GABA conductances, GABA reversal potential and neuronal excitability. In addition, evidences for the complex spatiotemporal interaction between depolarizing GABAergic and glutamatergic inputs are described. Moreover, mechanisms that influence [Cl−]i beyond the expression of Cl− transporters are presented. And finally, several in vitro and in vivo studies that directly investigated whether GABA mediates excitation or inhibition during early developmental stages are summarized. In summary, these theoretical considerations and experimental evidences suggest that GABA can act as inhibitory neurotransmitter even under conditions that maintain substantial depolarizing membrane responses.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
23
|
Xie L, Xie Y, Mao G, Cao S, Fang R, Zhou S, Jiang J, Yao T, Fan J, Liu D, Wu D, Ge J. Decreased spasticity of Baishaoluoshi Decoction through the BDNF/TrKB-KCC2 pathway on poststroke spasticity rats. Neuroreport 2021; 32:1183-1191. [PMID: 34284448 PMCID: PMC8389354 DOI: 10.1097/wnr.0000000000001709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE K+-Cl- cotransporter-2 (KCC2), which primarily extrudes chloride in mature neurons, triggers hemiplegia limb spasticity after ischemic stroke by affecting neuronal excitability. Our previous study revealed that the Chinese herb Baishaoluoshi Decoction decreases hemiplegia limb spasticity in poststroke spasticity (PSS) patients. This study aimed at elucidating on the effects of Baishaoluoshi Decoction on the BDNF/TrKB-KCC2 pathway in PSS rat models. METHODS Middle cerebral artery occlusion (MCAO) was adopted for the establishment of PSS rat models. Muscle tension was evaluated by Modified Ashworth Scale. Nissl staining and transmission electron microscopy were used to measure the protective effects of Baishaoluoshi Decoction on ischemic injury-induced neuronal damage due to MCAO. Expression levels of BDNF, TrKB, and KCC2 in brain tissues around the infarct and brainstem were detected by immunohistochemical staining. RESULTS It was found that Baishaoluoshi Decoction suppressed hemiplegia limb spasticity and alleviated the damage in neurons and synapses in PSS rat models. Importantly, the expression of BDNF, TrKB, and KCC2 in brain tissues around the infarct and brainstem were significantly upregulated after treatment with low-dose and high-dose Baishaoluoshi Decoction. CONCLUSION Suppression of spasticity by Baishaoluoshi Decoction in PSS rat models may be correlated with upregulated BDNF/TrKB-KCC2 pathway, which may be a complementary therapeutic strategy for PSS.
Collapse
Affiliation(s)
- Le Xie
- Neurology Department, Hunan Academy of Chinese Medicine Affiliated Hospital
| | - Yao Xie
- Neurology Department, Hunan Academy of Chinese Medicine Affiliated Hospital
| | - Guo Mao
- Neurology Department, Hunan Academy of Chinese Medicine Affiliated Hospital
| | - Sijia Cao
- Foreign Languages Department, School of Humanities and Management, Hunan University of Chinese Medicine
| | - Rui Fang
- Chinese Pharmacy Teaching and Research Department, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan
| | - Shen Zhou
- Neurology Department, Hunan Academy of Chinese Medicine Affiliated Hospital
| | - Junlin Jiang
- Neurology Department, Hunan Academy of Chinese Medicine Affiliated Hospital
| | - Ting Yao
- Neurology Department, Hunan Academy of Chinese Medicine Affiliated Hospital
| | - Jianhu Fan
- Neurology Department, Hunan Academy of Chinese Medicine Affiliated Hospital
| | - Dong Liu
- Hunan Key Laboratory of Prevention and Treatment in Cardiovascular Disease, College of Pharmacy, Guiyang University of Chinese Medicine, Guiyang, Guizhou, China
| | - Dahua Wu
- Neurology Department, Hunan Academy of Chinese Medicine Affiliated Hospital
| | - Jinwen Ge
- Chinese Pharmacy Teaching and Research Department, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan
| |
Collapse
|
24
|
Anstötz M, Fiske MP, Maccaferri G. Impaired KCC2 Function Triggers Interictal-Like Activity Driven by Parvalbumin-Expressing Interneurons in the Isolated Subiculum In Vitro. Cereb Cortex 2021; 31:4681-4698. [PMID: 33987649 PMCID: PMC8408463 DOI: 10.1093/cercor/bhab115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022] Open
Abstract
The decreased expression of the KCC2 membrane transporter in subicular neurons has been proposed to be a key epileptogenic event in temporal lobe epilepsy (TLE). Here, we have addressed this question in a reduced model in vitro and have studied the properties and mechanistic involvement of a major class of interneurons, that is, parvalbumin-expressing cells (PVs). When exposed to the KCC2 blocker VU0463271, mouse subicular slices generated hypersynchronous discharges that could be recorded electrophysiologically and visualized as clusters of co-active neurons with calcium imaging. The pharmacological profile of these events resembled interictal-like discharges in human epileptic tissue because of their dependence on GABAA and AMPA receptors. On average, PVs fired before pyramidal cells (PCs) and the area of co-active clusters was comparable to the individual axonal spread of PVs, suggesting their mechanistic involvement. Optogenetic experiments confirmed this hypothesis, as the flash-stimulation of PVs in the presence of VU0463271 initiated interictal-like discharges, whereas their optogenetic silencing suppressed network hyper-excitability. We conclude that reduced KCC2 activity in subicular networks in vitro is sufficient to induce interictal-like activity via altered GABAergic signaling from PVs without other epilepsy-related changes. This conclusion supports an epileptogenic role for impaired subicular KCC2 function during the progression of TLE.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael Patrick Fiske
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Peerboom C, Wierenga CJ. The postnatal GABA shift: A developmental perspective. Neurosci Biobehav Rev 2021; 124:179-192. [PMID: 33549742 DOI: 10.1016/j.neubiorev.2021.01.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Ekins TG, Mahadevan V, Zhang Y, D'Amour JA, Akgül G, Petros TJ, McBain CJ. Emergence of non-canonical parvalbumin-containing interneurons in hippocampus of a murine model of type I lissencephaly. eLife 2020; 9:e62373. [PMID: 33150866 PMCID: PMC7673787 DOI: 10.7554/elife.62373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Type I lissencephaly is a neuronal migration disorder caused by haploinsuffiency of the PAFAH1B1 (mouse: Pafah1b1) gene and is characterized by brain malformation, developmental delays, and epilepsy. Here, we investigate the impact of Pafah1b1 mutation on the cellular migration, morphophysiology, microcircuitry, and transcriptomics of mouse hippocampal CA1 parvalbumin-containing inhibitory interneurons (PV+INTs). We find that WT PV+INTs consist of two physiological subtypes (80% fast-spiking (FS), 20% non-fast-spiking (NFS)) and four morphological subtypes. We find that cell-autonomous mutations within interneurons disrupts morphophysiological development of PV+INTs and results in the emergence of a non-canonical 'intermediate spiking (IS)' subset of PV+INTs. We also find that now dominant IS/NFS cells are prone to entering depolarization block, causing them to temporarily lose the ability to initiate action potentials and control network excitation, potentially promoting seizures. Finally, single-cell nuclear RNAsequencing of PV+INTs revealed several misregulated genes related to morphogenesis, cellular excitability, and synapse formation.
Collapse
Affiliation(s)
- Tyler G Ekins
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- NIH-Brown University Graduate Partnership ProgramProvidenceUnited States
| | - Vivek Mahadevan
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yajun Zhang
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - James A D'Amour
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- Postdoctoral Research Associate Training Program, National Institute of General Medical SciencesBethesdaUnited States
| | - Gülcan Akgül
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Timothy J Petros
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
27
|
Holthoff K. The Janus face of GABAergic synaptic transmission during brain development. J Physiol 2020; 598:1801-1802. [PMID: 32189342 DOI: 10.1113/jp279623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Knut Holthoff
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, Jena, 07747, Germany
| |
Collapse
|