1
|
Harada K, Matsuoka H, Inoue M. Expression of Mitochondrial Uncoupling Proteins and GABA Signaling Molecules in Unstimulated and Nerve Growth Factor-Stimulated PC12 Cells: Models for Chromaffin Cells and Sympathetic Neurons. J Histochem Cytochem 2025:221554251332981. [PMID: 40289998 PMCID: PMC12037542 DOI: 10.1369/00221554251332981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
PC12 cells are a cell line originating from rat adrenal medullary chromaffin (AMC) cells. They extend a neurite-like structure in response to nerve growth factor (NGF). Thus, unstimulated and NGF-stimulated PC12 cells are used as models for AMC cells and sympathetic ganglion cells, respectively. However, how closely unstimulated and stimulated PC12 cells resemble AMC cells and sympathetic neurons, respectively, has not been elucidated sufficiently. We explored these issues by using biochemical and immunocytochemical methods. AMC cells and PC12 cells selectively expressed uncoupling protein 3 (UCP3) and uncoupling protein 4 (UCP4), respectively, and glucocorticoid activity inhibited UCP4 expression in PC12 cells. PC12 cells expressed extremely low levels of chromaffin granule-associated proteins, whereas the amount of synaptophysin, a synaptic vesicle-associated protein, was much higher than that in the adrenal medulla. Similar to AMC cells, the muscarinic receptor type 1 was located at the cell periphery in unstimulated PC12 cells, and its expression was markedly enhanced by NGF. Furthermore, NGF stimulation abolished the expression of GABA signaling molecules in PC12 cells. The results suggest that the properties of unstimulated PC12 cells are between those of AMC cells and sympathetic ganglion cells and GABA signaling is intrinsic to AMC cells.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidetada Matsuoka
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
2
|
Sönmez M, Stüdemann T, Manthey C, Covic A, Shehata N, Im J, Schwarzova B, Rössinger J, Srikantharajah R, Shibamiya A, Schwedhelm E, Eschenhagen T, Christ T, Weinberger F. Modulation of cardiomyocyte contractility and action potentials with chemogenetic chloride currents. J Physiol 2025; 603:1399-1415. [PMID: 39992007 PMCID: PMC11908473 DOI: 10.1113/jp286428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Transient perturbation of electrical activity is used in neuroscience to study the impact of specific neuronal cell populations on brain function. Similarly, cardiomyocyte (CM) physiology can be controlled by the activation of artificially expressed ion channels. Pharmacologically selective actuator modules (PSAMs) are engineered ligand-gated ion channels that can be activated with small molecules. We aimed to use the 'inhibitory' PSAMs, (i) PSAML141F,Y115F-GlyR (PSAM-GlyR) and (ii) PSAML131G,Q139L,Y217F (ultrapotent PSAM4-GlyR), which consist of modified α7-nicotinergic acetylcholine receptor ligand binding domains and the ion pore domain of the glycine receptor, to modulate CM physiology with chloride currents. We employed CRISPR/Cas9 to integrate PSAM-GlyR and PSAM4-GlyR in induced pluripotent stem cells, differentiated CMs and generated engineered heart tissue (EHT). Video optical force recordings, sharp microelectrode action potential measurements and patch-clamp technique were used to characterize PSAM-GlyR and PSAM4-GlyR CMs. PSAM-GlyR and PSAM4-GlyR activation allowed titration of chloride currents in a reversible manner. We found that chloride currents modulated action potential characteristics. Patch clamp recordings showed that channel activation resulted in chloride-driven currents that depolarized the cell. In EHT, this resulted in a stop of contractility that was fully reversible after wash-out. We provide a comprehensive characterization of the chemogenetic tools PSAM-GlyR and PSAM4-GlyR in CMs, demonstrating their utility to modulate CM activity in vitro (PSAM-GlyR and PSAM4-GlyR) but also potential for in vivo applications (PSAM4-GlyR). KEY POINTS: Pharmacologically selective actuator modules (PSAMs) are engineered ligand-gated ion channels that can be activated with small molecules. These chemogenetic tools have been applied in neuroscience to inhibit neuronal activity. Chemogenetic tools can also be used to modulate cardiomyocyte physiology. Activation of the PSAMs, PSAM-GlyR and PSAM4-GlyR depolarized cardiomyocytes and thus stopped cardiac contractility. Our study characterizes novel tools that can be used to modulate cardiomyocyte physiology in vitro and in vivo.
Collapse
Affiliation(s)
- Muhammed Sönmez
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Tim Stüdemann
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Christoph Manthey
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Anita Covic
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nancy Shehata
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Junsoo Im
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Barbora Schwarzova
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Judith Rössinger
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Rajiven Srikantharajah
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Aya Shibamiya
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Edzard Schwedhelm
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
- Institute of Clinical PharmacologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Torsten Christ
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Florian Weinberger
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
- Research Group Tissue Engineering and Regenerative TherapiesCentro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| |
Collapse
|
3
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
4
|
Perucca E, Bialer M, White HS. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023; 37:755-779. [PMID: 37603262 PMCID: PMC10501955 DOI: 10.1007/s40263-023-01027-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Choudhary S, Abongwa M, Kashyap SS, Verma S, Mair GR, Kulke D, Martin RJ, Robertson AP. Nodulisporic acid produces direct activation and positive allosteric modulation of AVR-14B, a glutamate-gated chloride channel from adult Brugia malayi. Proc Natl Acad Sci U S A 2022; 119:e2111932119. [PMID: 35969762 PMCID: PMC9407656 DOI: 10.1073/pnas.2111932119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Glutamate-gated chloride channels (GluCls) are unique to invertebrates and are targeted by macrocyclic lactones. In this study, we cloned an AVR-14B GluCl subunit from adult Brugia malayi, a causative agent of lymphatic filariasis in humans. To elucidate this channel's pharmacological properties, we used Xenopus laevis oocytes for expression and performed two-electrode voltage-clamp electrophysiology. The receptor was gated by the natural ligand L-glutamate (effective concentration, 50% [EC50] = 0.4 mM) and ivermectin (IVM; EC50 = 1.8 nM). We also characterized the effects of nodulisporic acid (NA) on Bma-AVR-14B and NA-produced dual effects on the receptor as an agonist and a type II positive allosteric modulator. Here we report characterization of the complex activity of NA on a nematode GluCl. Bma-AVR-14B demonstrated some unique pharmacological characteristics. IVM did not produce potentiation of L-glutamate-mediated responses but instead, reduced the channel's sensitivity for the ligand. Further electrophysiological exploration showed that IVM (at a moderate concentration of 0.1 nM) functioned as an inhibitor of both agonist and positive allosteric modulatory effects of NA. This suggests that IVM and NA share a complex interaction. The pharmacological properties of Bma-AVR-14B indicate that the channel is an important target of IVM and NA. In addition, the unique electrophysiological characteristics of Bma-AVR-14B could explain the observed variation in drug sensitivities of various nematode parasites. We have also shown the inhibitory effects of IVM and NA on adult worm motility using Worminator. RNA interference (RNAi) knockdown suggests that AVR-14 plays a role in influencing locomotion in B. malayi.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Melanie Abongwa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Sudhanva S. Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Saurabh Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Gunnar R. Mair
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Daniel Kulke
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Alan P. Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
6
|
Picrotoxin Delineates Different Transport Configurations for Malate and γ Aminobutyric Acid through TaALMT1. BIOLOGY 2022; 11:biology11081162. [PMID: 36009788 PMCID: PMC9405015 DOI: 10.3390/biology11081162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Plant-derived pharmacological agents have been used extensively to dissect the structure–function relationships of mammalian GABA receptors and ion channels. Picrotoxin is a non-competitive antagonist of mammalian GABAA receptors. Here, we report that picrotoxin inhibits the anion (malate) efflux mediated by wheat (Triticum aestivum) ALMT1 but has no effect on GABA transport. The EC50 for inhibition was 0.14 nM and 0.18 nM when the ALMTs were expressed in tobacco BY2 cells and in Xenopus oocytes, respectively. Patch clamping of the oocyte plasma membrane expressing wheat ALMT1 showed that picrotoxin inhibited malate currents from both sides of the membrane. These results demonstrate that picrotoxin inhibits anion efflux effectively and can be used as a new inhibitor to study the ion fluxes mediated by ALMT proteins that allow either GABA or anion transport.
Collapse
|
7
|
Kono M, Ozoe F, Asahi M, Ozoe Y. State-dependent inhibition of GABA receptor channels by the ectoparasiticide fluralaner. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105008. [PMID: 35082031 DOI: 10.1016/j.pestbp.2021.105008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
γ-Aminobutyric acid (GABA) receptors (GABARs) are ligand-gated Cl- channels, which cause an influx of Cl- that inhibits excitation in postsynaptic cells upon activation. GABARs are important targets for drugs and pest control chemicals. We previously reported that the isoxazoline ectoparasiticide fluralaner inhibits GABA-induced currents in housefly (Musca domestica) GABARs by binding to the putative binding site in the transmembrane subunit interface. In the present study, we investigated whether fluralaner inhibits the GABA response in the GABAR activated state, the resting state, or both, using two-electrode voltage clamp electrophysiology protocols. We found that inhibition progresses over time to steady-state levels by repeated short applications of GABA during fluralaner perfusion. The GABA response was not impaired by fluralaner treatment in the GABAR resting state. However, once inhibited, the GABA response was not restored by repeated applications of GABA. These findings suggest that fluralaner might reach the binding site of the activated conformation of GABARs in a stepwise fashion and tightly bind to it.
Collapse
Affiliation(s)
- Miku Kono
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Fumiyo Ozoe
- Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Miho Asahi
- Biological Research Laboratories, Nissan Chemical Corporation, Shiraoka, Saitama 349-0294, Japan
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
8
|
A Flurothyl-Induced Seizure Does Not Disrupt Hippocampal Memory Reconsolidation in C57BL/6J Mice. Epilepsy Res 2022; 181:106867. [DOI: 10.1016/j.eplepsyres.2022.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
9
|
Morud J, Hardege I, Liu H, Wu T, Choi MK, Basu S, Zhang Y, Schafer WR. Deorphanization of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning. Curr Biol 2021; 31:4282-4292.e6. [PMID: 34388373 PMCID: PMC8536830 DOI: 10.1016/j.cub.2021.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Pentameric ligand-gated ion channels (LGICs) play conserved, critical roles in both excitatory and inhibitory synaptic transmission and can be activated by diverse neurochemical ligands. We have performed a characterization of orphan channels from the nematode C. elegans, identifying five new monoamine-gated LGICs with diverse functional properties and expression postsynaptic to aminergic neurons. These include polymodal anion channels activated by both dopamine and tyramine, which may mediate inhibitory transmission by both molecules in vivo. Intriguingly, we also find that a novel serotonin-gated cation channel, LGC-50, is essential for aversive olfactory learning of pathogenic bacteria, a process known to depend on serotonergic neurotransmission. Remarkably, the redistribution of LGC-50 to neuronal processes is modulated by olfactory conditioning, and lgc-50 point mutations that cause misregulation of receptor membrane expression interfere with olfactory learning. Thus, the intracellular trafficking and localization of these receptors at synapses may represent a molecular cornerstone of the learning mechanism.
Collapse
Affiliation(s)
- Julia Morud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iris Hardege
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Medicinaregatan 9A, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - William R Schafer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Investigating the Anticonvulsant Properties of Aqueous Ethanolic Extracts of the Leaves, Roots, and Fruits of Jatropha gossypifolia L. (Euphorbiaceae). Adv Pharmacol Pharm Sci 2021; 2021:5547353. [PMID: 34223167 PMCID: PMC8213495 DOI: 10.1155/2021/5547353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Convulsion is a typical symptom associated with epilepsy. Jatropha gossypifolia, a common plant in Ghana, has been used traditionally for the management of epilepsy. This study was carried out to ascertain the scientific basis for the traditional utility of Jatropha gossypifolia for various convulsive disorders and also determine the part of the plant with the most anticonvulsant activity. The anticonvulsant activity of the leaf, root, and fruit extracts in doses of 30–300 mg/kg was assessed using the picrotoxin-induced seizure models in mice. The drugs and chemical preparations used included diazepam, picrotoxin, ethanol (70%), and normal saline. GraphPad Prism 6 was used for all statistical analysis and plotting of graphs. Data were analyzed using one-way ANOVA, followed by Bonferroni's multiple comparison test. The leaf extract significantly and dose-independently reduced the frequency of myoclonic jerks (P=0.0001) and decreased the duration of clonic convulsions (P=0.019). The root extract also significantly and dose-dependently reduced the frequency of myoclonic jerks (P=0.001) but only decreased the frequency of tonic convulsions at 100 mg/kg (P=0.006). It also significantly decreased the duration of tonic convulsions (P=0.0001). The fruit extract only significantly and dose-independently reduced the frequency of myoclonic jerks (P=0.0001). It, however, showed an increase in the duration of both clonic and tonic convulsions. The study shows that the leaves and roots of Jatropha gossypifolia produce anticonvulsant activity which may be through enhancement of GABAergic transmission or activation of GABA receptors which support the traditional use of the plant to treat epileptic fits.
Collapse
|
11
|
Walker AS, Raliski BK, Karbasi K, Zhang P, Sanders K, Miller EW. Optical Spike Detection and Connectivity Analysis With a Far-Red Voltage-Sensitive Fluorophore Reveals Changes to Network Connectivity in Development and Disease. Front Neurosci 2021; 15:643859. [PMID: 34054405 PMCID: PMC8155641 DOI: 10.3389/fnins.2021.643859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to optically record dynamics of neuronal membrane potential promises to revolutionize our understanding of neurobiology. In this study, we show that the far-red voltage sensitive fluorophore, Berkeley Red Sensor of Transmembrane potential-1, or BeRST 1, can be used to monitor neuronal membrane potential changes across dozens of neurons at a sampling rate of 500 Hz. Notably, voltage imaging with BeRST 1 can be implemented with affordable, commercially available illumination sources, optics, and detectors. BeRST 1 is well-tolerated in cultures of rat hippocampal neurons and provides exceptional optical recording fidelity, as judged by dual fluorescence imaging and patch-clamp electrophysiology. We developed a semi-automated spike-picking program to reduce user bias when calling action potentials and used this in conjunction with BeRST 1 to develop an optical spike and connectivity analysis (OSCA) for high-throughput dissection of neuronal activity dynamics. The high temporal resolution of BeRST 1 enables dissection of firing rate changes in response to acute, pharmacological interventions with commonly used inhibitors like gabazine and picrotoxin. Over longer periods of time, BeRST 1 also tracks chronic perturbations to neurons exposed to amyloid beta 1-42 (Aβ 1-42), revealing modest changes to spiking frequency but profound changes to overall network connectivity. Finally, we use OSCA to track changes in neuronal connectivity during maturation in culture, providing a functional readout of network assembly. We envision that use of BeRST 1 and OSCA described here will be of use to the broad neuroscience community.
Collapse
Affiliation(s)
- Alison S. Walker
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin K. Raliski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Kaveh Karbasi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Patrick Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Kate Sanders
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
12
|
Cardoso D, Cardoso RC, de Paula Nogueira G. Functions of the GABAergic system on serum LH concentrations in pre-pubertal Nellore heifers. Anim Reprod Sci 2021; 229:106764. [PMID: 33991835 DOI: 10.1016/j.anireprosci.2021.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted to evaluate the luteinizing hormone (LH) secretion pattern after gamma-aminobutyric acid (GABAA) antagonist to determine the effects of the GABAergic system on LH secretion during reproductive maturation in pre-pubertal Nellore heifers. Nellore heifers (n = 10) were administered a picrotoxin injection of 0.18 mg/kg, i.v. Blood samples were collected every 15 min for 3 h at different developmental stages (8, 10, 14 and 17 mo of age). Plasma concentrations of LH were quantified using an RIA (sensitivity of 0.04 ng/mL and CV of 15 %). There was an interaction between treatment and age (P = 0.034). Picrotoxin-treated heifers had lesser (P ≤ 0.05) LH mean concentrations during a 3 h period at 10 and 17 mo of age compared to control heifers (P ≤ 0.05). Comparing the period before and after Picrotoxin injection in the same animals, there was a 33 % decrease in LH concentration at 8 mo of age (P = 0.0165). These results indicate the GABAergic system has a stimulatory function in inducing LH secretion in pre-pubertal Nellore heifers. These findings corroborate previous results that GABA increases GnRH/LH secretion in other species during the pre-pubertal period.
Collapse
Affiliation(s)
- Daniel Cardoso
- Biological Institute, São Paulo Agency for Agribusiness Technology, Secretary of Agriculture and Food Supply, São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Olfactory encoding within the insect antennal lobe: The emergence and role of higher order temporal correlations in the dynamics of antennal lobe spiking activity. J Theor Biol 2021; 522:110700. [PMID: 33819477 DOI: 10.1016/j.jtbi.2021.110700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
In this review, we focus on the antennal lobe (AL) of three insect species - the fruit fly, sphinx moth, and locust. We first review the experimentally elucidated anatomy and physiology of the early olfactory system of each species; empirical studies of AL activity, however, often focus on assessing firing rates (averaged over time scales of about 100 ms), and hence the AL odor code is often analyzed in terms of a temporally evolving vector of firing rates. However, such a perspective necessarily misses the possibility of higher order temporal correlations in spiking activity within a single cell and across multiple cells over shorter time scales (of about 10 ms). Hence, we then review our prior theoretical work, where we constructed biophysically detailed, species-specific AL models within the fly, moth, and locust, finding that in each case higher order temporal correlations in spiking naturally emerge from model dynamics (i.e., without a prioriincorporation of elements designed to produce correlated activity). We therefore use our theoretical work to argue the perspective that temporal correlations in spiking over short time scales, which have received little experimental attention to-date, may provide valuable coding dimensions (complementing the coding dimensions provided by the vector of firing rates) that nature has exploited in the encoding of odors within the AL. We further argue that, if the AL does indeed utilize temporally correlated activity to represent odor information, such an odor code could be naturally and easily deciphered within the Mushroom Body.
Collapse
|
14
|
Lo AC, Rajan N, Gastaldo D, Telley L, Hilal ML, Buzzi A, Simonato M, Achsel T, Bagni C. Absence of RNA-binding protein FXR2P prevents prolonged phase of kainate-induced seizures. EMBO Rep 2021; 22:e51404. [PMID: 33779029 PMCID: PMC8024897 DOI: 10.15252/embr.202051404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
Status epilepticus (SE) is a condition in which seizures are not self-terminating and thereby pose a serious threat to the patient's life. The molecular mechanisms underlying SE are likely heterogeneous and not well understood. Here, we reveal a role for the RNA-binding protein Fragile X-Related Protein 2 (FXR2P) in SE. Fxr2 KO mice display reduced sensitivity specifically to kainic acid-induced SE. Immunoprecipitation of FXR2P coupled to next-generation sequencing of associated mRNAs shows that FXR2P targets are enriched in genes that encode glutamatergic post-synaptic components. Of note, the FXR2P target transcriptome has a significant overlap with epilepsy and SE risk genes. In addition, Fxr2 KO mice fail to show sustained ERK1/2 phosphorylation induced by KA and present reduced burst activity in the hippocampus. Taken together, our findings show that the absence of FXR2P decreases the expression of glutamatergic proteins, and this decrease might prevent self-sustained seizures.
Collapse
Affiliation(s)
- Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nicholas Rajan
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Ludovic Telley
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Muna L Hilal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Buzzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
15
|
Jin H, Fishman ZH, Ye M, Wang L, Zuker CS. Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell 2021; 184:257-271.e16. [PMID: 33417862 DOI: 10.1016/j.cell.2020.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Hardwired circuits encoding innate responses have emerged as an essential feature of the mammalian brain. Sweet and bitter evoke opposing predetermined behaviors. Sweet drives appetitive responses and consumption of energy-rich food sources, whereas bitter prevents ingestion of toxic chemicals. Here we identified and characterized the neurons in the brainstem that transmit sweet and bitter signals from the tongue to the cortex. Next we examined how the brain modulates this hardwired circuit to control taste behaviors. We dissect the basis for bitter-evoked suppression of sweet taste and show that the taste cortex and amygdala exert strong positive and negative feedback onto incoming bitter and sweet signals in the brainstem. Finally we demonstrate that blocking the feedback markedly alters responses to ethologically relevant taste stimuli. These results illustrate how hardwired circuits can be finely regulated by top-down control and reveal the neural basis of an indispensable behavioral response for all animals.
Collapse
Affiliation(s)
- Hao Jin
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Z Hershel Fishman
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mingyu Ye
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Li Wang
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Charles S Zuker
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
16
|
Olivon F, Retailleau P, Desrat S, Touboul D, Roussi F, Apel C, Litaudon M. Isolation of Picrotoxanes from Austrobuxus carunculatus Using Taxonomy-Based Molecular Networking. JOURNAL OF NATURAL PRODUCTS 2020; 83:3069-3079. [PMID: 33016067 DOI: 10.1021/acs.jnatprod.0c00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A unique collection of 292 extracts from 107 New Caledonian Euphorbiaceae species sensu lato was profiled by LC-MS2 and the metabolite content organized by molecular networking. Based on the assumption that taxon-specific molecules are more likely to be structurally novel, taxonomic data were mapped on spectral networks to detect genus-specific clusters. Using this approach, a group of compounds unique to the genus Austrobuxus was highlighted. The subsequent MS-guided purification of the fruit EtOAc extract of Austrobuxus carunculatus led to the isolation of 13 new monolactone and "norditerpene" picrotoxanes (2-14), along with the known tutin (1). The structures of the new compounds were elucidated by HRESIMS and NMR spectroscopic data analysis, and the absolute configurations of compounds 1, 3, 7, 11, 12, and 14 were determined by single-crystal X-ray diffraction analysis. The relative and absolute configurations of compounds 4 and 5 were ascertained by chemical transformation of compound 3. The absolute configurations of other members of the series have been proposed on the basis of biogenetic considerations and specific rotation values of similar sign and magnitude. Compounds 1-14 were evaluated for their antiproliferative activities against HCT116 colon, U87-MG glioblastoma, and A549 lung human cancer cell lines. Compounds bearing an acyl chain at C-2 (i.e., 2, 4, and 13) showed IC50 values in the micromolar range for the three cell lines used.
Collapse
Affiliation(s)
- Florent Olivon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Sandy Desrat
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Fanny Roussi
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Cécile Apel
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Marc Litaudon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Gunia-Krzyżak A, Żesławska E, Słoczyńska K, Żelaszczyk D, Sowa A, Koczurkiewicz-Adamczyk P, Popiół J, Nitek W, Pękala E, Marona H. S(+)-(2 E)- N-(2-Hydroxypropyl)-3-Phenylprop-2-Enamide (KM-568): A Novel Cinnamamide Derivative with Anticonvulsant Activity in Animal Models of Seizures and Epilepsy. Int J Mol Sci 2020; 21:ijms21124372. [PMID: 32575479 PMCID: PMC7352759 DOI: 10.3390/ijms21124372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/03/2022] Open
Abstract
Epilepsy is one of the most frequent neurological disorders affecting about 1% of the world’s human population. Despite availability of multiple treatment options including antiseizure drugs, it is estimated that about 30% of seizures still remain resistant to pharmacotherapy. Searching for new antiseizure and antiepileptic agents constitutes an important issue within modern medicinal chemistry. Cinnamamide derivatives were identified in preclinical as well as clinical studies as important drug candidates for the treatment of epilepsy. The cinnamamide derivative presented here: S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide (S(+)-N-(2-hydroxypropyl)cinnamamide, compound KM-568) showed anticonvulsant activity in several models of epilepsy and seizures in mice and rats. It was active in a genetic animal model of epilepsy (Frings audiogenic seizure-susceptible mouse model, ED50 = 13.21 mg/kg, i.p.), acute seizures induced electrically (maximal electroshock test ED50 = 44.46 mg/kg mice i.p., ED50 = 86.6 mg/kg mice p.o., ED50 = 27.58 mg/kg rats i.p., ED50 = 30.81 mg/kg rats p.o., 6-Hz psychomotor seizure model 32 mA ED50 = 71.55 mg/kg mice i.p., 44 mA ED50 = 114.4 mg/kg mice i.p.), chronic seizures induced electrically (corneal kindled mouse model ED50 = 79.17 mg/kg i.p., hippocampal kindled rat model ED50 = 24.21 mg/kg i.p., lamotrigine-resistant amygdala kindled seizure model in rats ED50 = 58.59 mg/kg i.p.), acute seizures induced chemically (subcutaneous metrazol seizure threshold test ED50 = 104.29 mg/kg mice i.p., ED50 = 107.27 mg/kg mice p.o., ED50 = 41.72 mg/kg rats i.p., seizures induced by picrotoxin in mice ED50 = 94.11 mg/kg i.p.) and the pilocarpine-induced status epilepticus model in rats (ED50 = 279.45 mg/kg i.p., ED97 = 498.2 mg/kg i.p.). The chemical structure of the compound including configuration of the chiral center was confirmed by NMR spectroscopy, LC/MS spectroscopy, elemental analysis, and crystallography. Compound KM-568 was identified as a moderately stable derivative in an in vitro mouse liver microsome system. According to the Ames microplate format mutagenicity assay performed, KM-568 was not a base substitution or frameshift mutagen. Cytotoxicity evaluation in two cell lines (HepG2 and H9c2) proved the safety of the compound in concentrations up to 100 µM. Based on the results of anticonvulsant activity and safety profile, S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide could be proposed as a new lead compound for further preclinical studies on novel treatment options for epilepsy.
Collapse
Affiliation(s)
- Agnieszka Gunia-Krzyżak
- Jagiellonian University Medical College, Faculty of Pharmacy, Chair of Organic Chemistry, Department of Bioorganic Chemistry, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
- Correspondence:
| | - Ewa Żesławska
- Pedagogical University, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland;
| | - Karolina Słoczyńska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Dorota Żelaszczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Chair of Organic Chemistry, Department of Bioorganic Chemistry, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| | - Aleksandra Sowa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Justyna Popiół
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Wojciech Nitek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Henryk Marona
- Jagiellonian University Medical College, Faculty of Pharmacy, Chair of Organic Chemistry, Department of Bioorganic Chemistry, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| |
Collapse
|
18
|
Horvath PM, Piazza MK, Monteggia LM, Kavalali ET. Spontaneous and evoked neurotransmission are partially segregated at inhibitory synapses. eLife 2020; 9:52852. [PMID: 32401197 PMCID: PMC7250572 DOI: 10.7554/elife.52852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Synaptic transmission is initiated via spontaneous or action-potential evoked fusion of synaptic vesicles. At excitatory synapses, glutamatergic receptors activated by spontaneous and evoked neurotransmission are segregated. Although inhibitory synapses also transmit signals spontaneously or in response to action potentials, they differ from excitatory synapses in both structure and function. Therefore, we hypothesized that inhibitory synapses may have different organizing principles. We report picrotoxin, a GABAAR antagonist, blocks neurotransmission in a use-dependent manner at rat hippocampal synapses and therefore can be used to interrogate synaptic properties. Using this tool, we uncovered partial segregation of inhibitory spontaneous and evoked neurotransmission. We found up to 40% of the evoked response is mediated through GABAARs which are only activated by evoked neurotransmission. These data indicate GABAergic spontaneous and evoked neurotransmission processes are partially non-overlapping, suggesting they may serve divergent roles in neuronal signaling.
Collapse
Affiliation(s)
- Patricia M Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, United States
| | - Michelle K Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States.,Neuroscience Program, Vanderbilt University, Nashville, United States
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| |
Collapse
|
19
|
Using Toxins in Brain Slice Recordings. Methods Mol Biol 2019. [PMID: 31576533 DOI: 10.1007/978-1-4939-9845-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Use of biological toxins from different kinds is widely accepted in electrophysiological experiments. In particular, electrophysiological recordings from brain tissue slices are usually conducted with toxins to manipulate on different receptors or ion channels. Here we describe usage of toxins in electrophysiological experiments in acute brain slices.
Collapse
|
20
|
O'Neill N, Sylantyev S. Spontaneously opening GABA A receptors play a significant role in neuronal signal filtering and integration. Cell Death Dis 2018; 9:813. [PMID: 30042389 PMCID: PMC6057890 DOI: 10.1038/s41419-018-0856-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
Continuous (tonic) charge transfer through ionotropic receptors of γ-aminobutyric acid (GABAARs) is an important mechanism of inhibitory signalling in the brain. The conventional view has been that tonic GABA-ergic inhibitory currents are mediated by low concentrations of ambient GABA. Recently, however, it was shown that the GABA-independent, spontaneously opening GABAARs (s-GABAARs), may contribute significantly to the tonic GABAAR current. One of the common approaches to temporal lobe epilepsy (TLE) therapy is an increase of GABA concentration in the cerebrospinal fluid to augment tonic current through GABAARs. Such an increase, however, generates multiple side effects, which impose significant limitations on the use of correspondent drugs. In contrast, activation/deactivation of s-GABAARs in a GABA-independent manner may provide a mechanism of regulation of tonic conductance without modification of extracellular GABA concentration, thus avoiding connected side effects. Although s-GABAARs have been detected in our earlier work, it is unclear whether they modulate neural signalling, or, due to their independence from the neurotransmitter, they provide just a stable background effect without much impact on neural crosstalk dynamics. Here, we focused on the causal relationship between s-GABAAR activity and signal integration in the rat's dentate gyrus granule cells to find that s-GABAARs play an important role in neural signal transduction. s-GABAARs shape the dynamics of phasic inhibitory responses, regulate the action potential generation machinery and control the coincidence detection window pertinent to excitatory input summation. Our results demonstrate that tonic inhibition delivered by s-GABAARs contributes to the key mechanisms that ensure implementation of neural signal filtering and integration, in a GABA-independent manner. This makes s-GABAAR a new and important actor in the regulation of long-term neural plasticity and a perspective target for TLE therapy.
Collapse
Affiliation(s)
- Nathanael O'Neill
- CCBS, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sergiy Sylantyev
- CCBS, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- DCEE, Institute of Neurology, University College London, QSH, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
21
|
Toxins as tools: Fingerprinting neuronal pharmacology. Neurosci Lett 2018; 679:4-14. [DOI: 10.1016/j.neulet.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
|
22
|
Witkin JM, Shenvi RA, Li X, Gleason SD, Weiss J, Morrow D, Catow JT, Wakulchik M, Ohtawa M, Lu HH, Martinez MD, Schkeryantz JM, Carpenter TS, Lightstone FC, Cerne R. Pharmacological characterization of the neurotrophic sesquiterpene jiadifenolide reveals a non-convulsant signature and potential for progression in neurodegenerative disease studies. Biochem Pharmacol 2018; 155:61-70. [PMID: 29940173 DOI: 10.1016/j.bcp.2018.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
The 'neurotrophic sesquiterpenes' refer to a group of molecules derived from the Illicium genus of flowering plant. They display neurotrophic effects in cultured neuron preparations and have been suggested to be cognitive enhancers and potential therapeutics for neurodegenerative disorders and dementias. Recent synthetic advances generated sufficient quantities of jiadifenolide for in vivo investigation into its biological effects. Jiadifenolide did not induce convulsions in mice nor did it enhance or diminish convulsions induced by pentylenetetrazole. Other negative allosteric modulators of GABAA receptors, picrotoxin, tetramethylenedisulfotetramine (TETS), and bilobalide all induced convulsions. Either i.p. or i.c.v. dosing generated micromolar plasma and brain levels of jiadifenolide but only small effects on locomotion of mice. However, jiadifenolide decreased d-amphetamine-induced hyperlocomotion in mice, an antipsychotic-like drug effect. Jiadifenolide did not significantly alter body temperature or behavior in the forced-swim test in mice. Molecular simulation data suggested a potential site in the pore/M2 helix region that is at an overlapping, yet lower position than those observed for other 'cage convulsant' compounds such as TETS and picrotoxin. We hypothesize that a position nearer to the entrance of the pore channel may allow for easier displacement of jiadifenolide from its blocking location leading to lower potency and lower side-effect liability. Like jiadifenolide, memantine (Namenda), one of the few drugs used in the symptomatic treatment of dementias, occupies a unique site on the NMDA receptor complex that creates low binding affinity that is associated with its reduced side-effect profile. Given the potential therapeutic applications of jiadifenolide and its relatively inert effects on overt behavior, the possibility of clinical utility for jiadifenolide and related compounds becomes intriguing.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Xia Li
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Scott D Gleason
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Julie Weiss
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Denise Morrow
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - John T Catow
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mark Wakulchik
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Masaki Ohtawa
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hai-Hua Lu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael D Martinez
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Rok Cerne
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
23
|
Kim S, Kim SM, Oh B, Tak J, Yang E, Jin YH. Allopregnanolone Effects on Transmission in the Brain Stem Solitary Tract Nucleus (NTS). Neuroscience 2018; 379:219-227. [PMID: 29604384 DOI: 10.1016/j.neuroscience.2018.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
During pregnancy, the progesterone metabolite, allopregnanolone (ALLO), becomes elevated and has been associated with altered levels within the CNS and resulting changes in GABAA receptor function. Pregnant animals poorly compensate reflexes for a decrease in blood pressure during hemorrhage. Previous works suggested that ALLO decreases baroreflex responses by central actions, however, the underlying mechanisms are poorly understood. In this study, we tested ALLO actions on visceral afferent synaptic transmission at second-order neurons within medial portions of the nucleus tractus solitarius (NTS) using hindbrain slices from non-pregnant female rats. Solitary tract (ST) stimulation-evoked excitatory postsynaptic currents (ST-eEPSCs) in NTS neurons directly connected to vagal afferents within the ST. ST-eEPSCs were functionally identified as monosynaptic by the latency characteristics (low jitter = standard deviation of latency, ≤200 μs) to ST stimulation. Such second-order neurons all displayed spontaneous inhibitory postsynaptic currents (sIPSCs), and low micromolar concentrations of ALLO increased frequency and decay time. At submicromolar concentrations, ALLO induced a tonic, GABAergic inhibitory current and suppressed ST-eEPSCs' amplitude. While GABAA receptor antagonist, bicuculline, blocked all ALLO effects, gabazine only blocked sIPSC actions. In current-clamp mode, ALLO perfusion increased failure of ST stimulation to trigger action potentials in most neurons. Thus, our results indicate that ALLO acts to suppress visceral afferent ST synaptic transmission at first synapses by activating pharmacologically distinct GABAA subtypes at different concentration ranges. This ALLO-mediated attenuated visceral afferent signal integration in NTS may underlie reflex changes in blood pressure during gestation.
Collapse
Affiliation(s)
- Sojin Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Moon Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jihoon Tak
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunhee Yang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
24
|
Daanaa S, Abotsi WKM, Boakye-Gyasi E, Woode E. Anticonvulsant effect of the hydroethanolic leaf extract of Psydrax subcordata (DC.) Bridson in murine models. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:384-394. [PMID: 29183747 DOI: 10.1016/j.jep.2017.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psydrax subcordata (DC.) Bridson is a tropical medicinal plant used traditionally for the management of epilepsy. However, there is little scientific evidence to support its use. AIM OF STUDY The current study investigated the anticonvulsant properties of the hydroethanolic leaf extract of Psydrax subcordata (PSE) in animal models. MATERIALS AND METHODS The anticonvulsant effects were evaluated in mouse models of acute seizures (pentylenetetrazole-, picrotoxin-, 4-aminopyridine-, strychnine- and maximal electroshock-induced seizure tests) and status epilepticus (Lithium/pilocarpine-induced SE). The role of GABAergic mechanisms in the actions of the extract was also examined by pre-treatment of animals with flumazenil in the pentylenetetrazole test. RESULTS The extract (30, 100 and 300mg/kg, p.o.) significantly delayed the onset and decreased the duration and frequency of pentylenetetrazole- and picrotoxin-convulsions. PSE also reduced the duration of tonic hind limb extensions in the maximal electroshock-induced seizure test. Furthermore, PSE pre-treatment significantly delayed the onset of seizures and improved survival in the 4-aminopyridine-induced seizure test. In the strychnine-induced seizure test, PSE treatment did not significantly affect the latency to convulsions and time until death when compared to controls. PSE exhibited anticonvulsant effects in the lithium/pilocarpine test by delaying the onset of seizures and status epilepticus as well as reducing the severity of seizures and mortality of mice. Again, the anticonvulsant effect of PSE (100mg/kg, p.o.) was blocked by pre-treatment with flumazenil in the PTZ test. CONCLUSION PSE has anticonvulsant activity in animal models, and this effect may be mediated, at least partly, through GABAergic mechanisms.
Collapse
Affiliation(s)
- Samuel Daanaa
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Wonder Kofi Mensah Abotsi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Eric Woode
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
25
|
Seljeset S, Bright DP, Thomas P, Smart TG. Probing GABA A receptors with inhibitory neurosteroids. Neuropharmacology 2018; 136:23-36. [PMID: 29447845 PMCID: PMC6018617 DOI: 10.1016/j.neuropharm.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
Abstract
γ-aminobutyric acid type A receptors (GABAARs) are important components of the central nervous system and they are functionally tasked with controlling neuronal excitability. These receptors are subject to post-translational modification and also to modulation by endogenous regulators, such as the neurosteroids. These modulators can either potentiate or inhibit GABAAR function. Whilst the former class of neurosteroids are considered to bind to and act from the transmembrane domain of the receptor, the domains that are important for the inhibitory neurosteroids remain less clear. In this study, we systematically compare a panel of recombinant synaptic-type and extrasynaptic-type GABAARs expressed in heterologous cell systems for their sensitivity to inhibition by the classic inhibitory neurosteroid, pregnenolone sulphate. Generally, peak GABA current responses were inhibited less compared to steady-state currents, implicating the desensitised state in inhibition. Moreover, pregnenolone sulphate inhibition increased with GABA concentration, but showed minimal voltage dependence. There was no strong dependence of inhibition on receptor subunit composition, the exception being the ρ1 receptor, which is markedly less sensitive. By using competition experiments with pregnenolone sulphate and the GABA channel blocker picrotoxinin, discrete binding sites are proposed. Furthermore, by assessing inhibition using site-directed mutagenesis and receptor chimeras comprising α, β or γ subunits with ρ1 subunits, the receptor transmembrane domains are strongly implicated in mediating inhibition and most likely the binding location for pregnenolone sulphate in GABAARs. This article is part of the “Special Issue Dedicated to Norman G. Bowery”. A range of GABAA receptor subtypes are inhibited by pregenolone sulphate. Peak GABA curents are less sensitive to inhibition than steady-state currents. Desensitised state of GABAA receptors most sensitive to neurosteroid inhibition. Inhibition increases with GABA concentration, but not strongly voltage-dependent. Pregnenolone sulphate binding site located within subunit transmembrane domains.
Collapse
Affiliation(s)
- Sandra Seljeset
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Damian P Bright
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Philip Thomas
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
26
|
Yang X, Lin J, Peng X, Zhang Q, Zhang Y, Guo N, Zhou S, Li Q. Effects of picrotoxin on zebrafish larvae behaviors: A comparison study with PTZ. Epilepsy Behav 2017; 70:224-231. [PMID: 28437751 DOI: 10.1016/j.yebeh.2017.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/09/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
Abstract
Larval zebrafish (Danio rerio) have been suggested as a high-throughput experimental animal model for epilepsy-related genetic and developmental studies. The behavioral manifestations in response to the seizure-inducing drugs picrotoxin (PTX) (1, 5, 25, 125, or 625μM) or pentylenetetrazole (PTZ) (1, 2, 4, 8, or 16mM) under light-dark conditions were studied using zebrafish larvae at 5days post-fertilization (dpf). Two behavioral parameters, locomotor activity and thigmotaxis behavior, were analyzed. We conclude that high concentrations of PTX treatment increased locomotion and thigmotaxis in 5 dpf zebrafish larvae under continuous illumination and the locomotion of PTX-treated zebrafish was decreased under the dark condition. High concentrations of PTX treatment also increased thigmotaxis (an indicator of increased anxiety levels) in zebrafish larvae under both continuous illumination and dark condition. PTZ treatment increased the locomotion of 5 dpf zebrafish larvae under continuous illumination. However, 2mM PTZ decreased locomotion, and high concentrations of PTZ decreased the locomotion of larvae under dark conditions. High concentrations of PTZ treatment also increased thigmotaxis in the zebrafish larvae under both continuous illumination and dark condition. Compared with PTZ, PTX leads to higher levels of movement under light conditions and lower levels of movement under dark condition. However, the level of thigmotaxis in the zebrafish larvae was similar between the two drug treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neurology, Children's Hospital of Fudan University, No. 399, Wanyuan Road, Minhang District, Shanghai 201102, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Xiaolan Peng
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | | | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Ning Guo
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, No. 399, Wanyuan Road, Minhang District, Shanghai 201102, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
27
|
The Neuropeptide Orexin-A Inhibits the GABAA Receptor by PKC and Ca2+/CaMKII-Dependent Phosphorylation of Its β1 Subunit. J Mol Neurosci 2017; 61:459-467. [DOI: 10.1007/s12031-017-0886-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
|
28
|
Assessment of Methods for the Intracellular Blockade of GABAA Receptors. PLoS One 2016; 11:e0160900. [PMID: 27501143 PMCID: PMC4976935 DOI: 10.1371/journal.pone.0160900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility.
Collapse
|
29
|
Yu H, Benitez SG, Jung SR, Farias Altamirano LE, Kruse M, Seo JB, Koh DS, Muñoz EM, Hille B. GABAergic signaling in the rat pineal gland. J Pineal Res 2016; 61:69-81. [PMID: 27019076 PMCID: PMC5489258 DOI: 10.1111/jpi.12328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/25/2016] [Indexed: 11/29/2022]
Abstract
Pinealocytes secrete melatonin at night in response to norepinephrine released from sympathetic nerve terminals in the pineal gland. The gland also contains many other neurotransmitters whose cellular disposition, activity, and relevance to pineal function are not understood. Here, we clarify sources and demonstrate cellular actions of the neurotransmitter γ-aminobutyric acid (GABA) using Western blotting and immunohistochemistry of the gland and electrical recording from pinealocytes. GABAergic cells and nerve fibers, defined as containing GABA and the synthetic GAD67, were identified. The cells represent a subset of interstitial cells while the nerve fibers were distinct from the sympathetic innervation. The GABAA receptor subunit α1 was visualized in close proximity of both GABAergic and sympathetic nerve fibers as well as fine extensions among pinealocytes and blood vessels. The GABAB 1 receptor subunit was localized in the interstitial compartment but not in pinealocytes. Electrophysiology of isolated pinealocytes revealed that GABA and muscimol elicit strong inward chloride currents sensitive to bicuculline and picrotoxin, clear evidence for functional GABAA receptors on the surface membrane. Applications of elevated potassium solution or the neurotransmitter acetylcholine depolarized the pinealocyte membrane potential enough to open voltage-gated Ca(2+) channels leading to intracellular calcium elevations. GABA repolarized the membrane and shut off such calcium rises. In 48-72-h cultured intact glands, GABA application neither triggered melatonin secretion by itself nor affected norepinephrine-induced secretion. Thus, strong elements of GABA signaling are present in pineal glands that make large electrical responses in pinealocytes, but physiological roles need to be found.
Collapse
Affiliation(s)
- Haijie Yu
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergio G. Benitez
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM-CONICET), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Luz E. Farias Altamirano
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM-CONICET), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Jong-Bae Seo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Estela M. Muñoz
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM-CONICET), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
30
|
Rossokhin AV, Zhorov BS. Side chain flexibility and the pore dimensions in the GABAA receptor. J Comput Aided Mol Des 2016; 30:559-67. [PMID: 27460059 DOI: 10.1007/s10822-016-9929-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Permeation of ions through open channels and their accessibility to pore-targeting drugs depend on the pore cross-sectional dimensions, which are known only for static X-ray and cryo-EM structures. Here, we have built homology models of the closed, open and desensitized α1β2γ2 GABAA receptor (GABAAR). The models are based, respectively, on the X-ray structure of α3 glycine receptor (α3 GlyR), cryo-EM structure of α1 GlyR and X-ray structure of β3 GABAAR. We employed Monte Carlo energy minimizations to explore how the pore lumen may increase due to repulsions of flexible side chains from a variable-diameter electroneutral atom (an expanding sphere) pulled through the pore. The expanding sphere computations predicted that the pore diameter averaged along the permeation pathway is larger by approximately 3 Å than that computed for the models with fixed sidechains. Our models predict three major pore constrictions located at the levels of -2', 9' and 20' residues. Residues around the -2' and 9' rings are known to form the desensitization and activation gates of GABAAR. Our computations predict that the 20' ring may also serve as GABAAR gate whose physiological role is unclear. The side chain flexibility of residues -2', 9' and 20' and hence the dimensions of the constrictions depend on the GABAAR functional state.
Collapse
Affiliation(s)
- Alexey V Rossokhin
- Research Center of Neurology, RAS, by-str. Obukha 5, Moscow, Russia, 105064.
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, St. Petersburg, Russia
| |
Collapse
|
31
|
Lei H, Yu Y, Zhu S, Rangan AV. Intrinsic and Network Mechanisms Constrain Neural Synchrony in the Moth Antennal Lobe. Front Physiol 2016; 7:80. [PMID: 27014082 PMCID: PMC4781831 DOI: 10.3389/fphys.2016.00080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/18/2016] [Indexed: 11/30/2022] Open
Abstract
Projection-neurons (PNs) within the antennal lobe (AL) of the hawkmoth respond vigorously to odor stimulation, with each vigorous response followed by a ~1 s period of suppression—dubbed the “afterhyperpolarization-phase,” or AHP-phase. Prior evidence indicates that this AHP-phase is important for the processing of odors, but the mechanisms underlying this phase and its function remain unknown. We investigate this issue. Beginning with several physiological experiments, we find that pharmacological manipulation of the AL yields surprising results. Specifically, (a) the application of picrotoxin (PTX) lengthens the AHP-phase and reduces PN activity, whereas (b) the application of Bicuculline-methiodide (BIC) reduces the AHP-phase and increases PN activity. These results are curious, as both PTX and BIC are inhibitory-receptor antagonists. To resolve this conundrum, we speculate that perhaps (a) PTX reduces PN activity through a disinhibitory circuit involving a heterogeneous population of local-neurons, and (b) BIC acts to hamper certain intrinsic currents within the PNs that contribute to the AHP-phase. To probe these hypotheses further we build a computational model of the AL and benchmark our model against our experimental observations. We find that, for parameters which satisfy these benchmarks, our model exhibits a particular kind of synchronous activity: namely, “multiple-firing-events” (MFEs). These MFEs are causally-linked sequences of spikes which emerge stochastically, and turn out to have important dynamical consequences for all the experimentally observed phenomena we used as benchmarks. Taking a step back, we extract a few predictions from our computational model pertaining to the real AL: Some predictions deal with the MFEs we expect to see in the real AL, whereas other predictions involve the runaway synchronization that we expect when BIC-application hampers the AHP-phase. By examining the literature we see support for the former, and we perform some additional experiments to confirm the latter. The confirmation of these predictions validates, at least partially, our initial speculation above. We conclude that the AL is poised in a state of high-gain; ready to respond vigorously to even faint stimuli. After each response the AHP-phase functions to prevent runaway synchronization and to “reset” the AL for another odor-specific response.
Collapse
Affiliation(s)
- Hong Lei
- Department of Neuroscience, The University of Arizona Tucson, AZ, USA
| | - Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine Beijing, China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine Beijing, China
| | - Aaditya V Rangan
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University New York, NY, USA
| |
Collapse
|
32
|
Collier ZA, Gust KA, Gonzalez-Morales B, Gong P, Wilbanks MS, Linkov I, Perkins EJ. A weight of evidence assessment approach for adverse outcome pathways. Regul Toxicol Pharmacol 2016; 75:46-57. [DOI: 10.1016/j.yrtph.2015.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023]
|
33
|
Kumar M, González LA, Dillon GH. Assessment of subunit-dependent direct gating and allosteric modulatory effects of carisoprodol at GABA(A) receptors. Neuropharmacology 2015; 97:414-25. [PMID: 25896767 DOI: 10.1016/j.neuropharm.2015.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Carisoprodol is a widely prescribed muscle relaxant, abuse of which has grown considerably in recent years. It directly activates and allosterically modulates α1β2γ2 GABAARs, although the site(s) of action are unknown. To gain insight into the actions of carisoprodol, subunit-dependent effects of this drug were assessed. Whole-cell patch clamp recordings were obtained from HEK293 cells expressing α1β2, α1β3 or αxβzγ2 (where x = 1-6 and z = 1-3) GABAARs, and in receptors incorporating the δ subunit (modeling extrasynaptic receptors). The ability to directly gate and allosterically potentiate GABA-gated currents was observed for all configurations. Presence or absence of the γ2 subunit did not affect the ability of carisoprodol to directly gate or allosterically modulate the receptor. Presence of the β1 subunit conferred highest efficacy for direct activation relative to maximum GABA currents, while presence of the β2 subunit conferred highest efficacy for allosteric modulation of the GABA response. With regard to α subunits, carisoprodol was most efficacious at enhancing the actions of GABA in receptors incorporating the α1 subunit. The ability to directly gate the receptor was generally comparable regardless of the α subunit isoform, although receptors incorporating the α3 subunit showed significantly reduced direct gating efficacy and affinity. In extrasynaptic (α1β3δ and α4β3δ) receptors, carisoprodol had greater efficacy than GABA as a direct gating agonist. In addition, carisoprodol allosterically potentiated both EC20 and saturating GABA concentrations in these receptors. In assessing voltage-dependence, we found direct gating and inhibitory effects were insensitive to membrane voltage, whereas allosteric modulatory effects were affected by membrane voltage. Our findings demonstrate direct and allosteric effects of carisoprodol at synaptic and extrasynpatic GABAARs and that subunit isoform influences these effects.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Physiology and Pharmacology and Center for Neuroscience, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506, USA
| | - Lorie A González
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Glenn H Dillon
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Physiology and Pharmacology and Center for Neuroscience, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506, USA.
| |
Collapse
|
34
|
Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 72:53-96. [PMID: 25600367 DOI: 10.1016/bs.apha.2014.10.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAA receptors are ligand-gated ion channels composed of five subunits that can be opened by GABA and be modulated by multiple pharmacologically and clinically important drugs. Over the time, hundreds of compounds from different structural classes have been demonstrated to modulate, directly activate, or inhibit GABAA receptors, and most of these compounds interact with more than one binding site at these receptors. Crystal structures of proteins and receptors homologous to GABAA receptors as well as homology modeling studies have provided insights into the possible location of ligand interaction sites. Some of these sites have been identified by mutagenesis, photolabeling, and docking studies. For most of these ligands, however, binding sites are not known. Due to the high flexibility of GABAA receptors and the existence of multiple drug-binding sites, the unequivocal identification of interaction sites for individual drugs is extremely difficult. The existence of multiple GABAA receptor subtypes with distinct subunit composition, the contribution of distinct subunit sequences to binding sites of different receptor subtypes, as well as the observation that even subunits not directly contributing to a binding site are able to influence affinity and efficacy of drugs, contribute to a unique pharmacology of each GABAA receptor subtype. Thus, each receptor subtype has to be investigated to identify a possible subtype selectivity of a compound. Although multiple binding sites make GABAA receptor pharmacology even more complicated, the exploitation of ligand interaction with novel-binding sites also offers additional possibilities for a subtype-selective modulation of GABAA receptors.
Collapse
Affiliation(s)
- Werner Sieghart
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Rossokhin AV, Sharonova IN, Bukanova JV, Kolbaev SN, Skrebitsky VG. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism. Mol Cell Neurosci 2014; 63:72-82. [PMID: 25305478 DOI: 10.1016/j.mcn.2014.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022] Open
Abstract
GABA(A) receptors (GABA(A)R) mainly mediate fast inhibitory neurotransmission in the central nervous system. Different classes of modulators target GABA(A)R properties. Penicillin G (PNG) belongs to the class of noncompetitive antagonists blocking the open GABA(A)R and is a prototype of β-lactam antibiotics. In this study, we combined electrophysiological and modeling approaches to investigate the peculiarities of PNG blockade of GABA-activated currents recorded from isolated rat Purkinje cells and to predict the PNG binding site. Whole-cell patch-сlamp recording and fast application system was used in the electrophysiological experiments. PNG block developed after channel activation and increased with membrane depolarization suggesting that the ligand binds within the open channel pore. PNG blocked stationary component of GABA-activated currents in a concentration-dependent manner with IC50 value of 1.12mM at -70mV. The termination of GABA and PNG co-application was followed by a transient tail current. Protection of the tail current from bicuculline block and dependence of its kinetic parameters on agonist affinity suggest that PNG acts as a sequential open channel blocker that prevents agonist dissociation while the channel remains blocked. We built the GABA(A)R models based on nAChR and GLIC structures and performed an unbiased systematic search of the PNG binding site. Monte-Carlo energy minimization was used to find the lowest energy binding modes. We have shown that PNG binds close to the intracellular vestibule. In both models the maximum contribution to the energy of ligand-receptor interactions revealed residues located on the level of 2', 6' and 9' rings formed by a bundle of M2 transmembrane segments, indicating that these residues most likely participate in PNG binding. The predicted structural models support the described mechanism of PNG block.
Collapse
Affiliation(s)
- Alexey V Rossokhin
- Research Center of Neurology, Russian Academy of Medical Sciences, 105064 Moscow, Russia.
| | - Irina N Sharonova
- Research Center of Neurology, Russian Academy of Medical Sciences, 105064 Moscow, Russia
| | - Julia V Bukanova
- Research Center of Neurology, Russian Academy of Medical Sciences, 105064 Moscow, Russia
| | - Sergey N Kolbaev
- Research Center of Neurology, Russian Academy of Medical Sciences, 105064 Moscow, Russia
| | - Vladimir G Skrebitsky
- Research Center of Neurology, Russian Academy of Medical Sciences, 105064 Moscow, Russia
| |
Collapse
|
36
|
Toyoda H, Saito M, Sato H, Tanaka T, Ogawa T, Yatani H, Kawano T, Kanematsu T, Hirata M, Kang Y. Enhanced desensitization followed by unusual resensitization in GABAA receptors in phospholipase C-related catalytically inactive protein-1/2 double-knockout mice. Pflugers Arch 2014; 467:267-84. [PMID: 24737248 DOI: 10.1007/s00424-014-1511-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/29/2022]
Abstract
Phospholipase C-related catalytically inactive proteins (PRIP-1/2) are previously reported to be involved in the membrane trafficking of GABAA receptor (GABAAR) and the regulation of intracellular Ca(2+) stores. GABAAR-mediated currents can be regulated by the intracellular Ca(2+). However, in PRIP-1/2 double-knockout (PRIP-DKO) mice, it remains unclear whether the kinetic properties of GABAARs are modulated by the altered regulation of intracellular Ca(2+) stores. Here, we investigated whether GABAAR currents (IGABA) evoked by GABA puff in layer 3 (L3) pyramidal cells (PCs) of the barrel cortex are altered in PRIP-DKO mice. The deletion of PRIP-1/2 enhanced the desensitization of IGABA but induced a hump-like tail current (tail-I) at the GABA puff offset. IGABA and the hump-like tail-I were suppressed by GABAAR antagonists. The enhanced desensitization of IGABA and the hump-like tail-I in PRIP-DKO PCs were mediated by increases in the intracellular Ca(2+) concentration and were largely abolished by a calcineurin inhibitor and ruthenium red. Calcium imaging revealed that Ca(2+)-induced Ca(2+) release (CICR) and subsequent store-operated Ca(2+) entry (SOCE) are more potent in PRIP-DKO PCs than in wild-type PCs. A mathematical model revealed that a slowdown of GABA-unbinding rate and an acceleration of fast desensitization rate by enhancing its GABA concentration dependency are involved in the generation of hump-like tail-Is. These results suggest that in L3 PCs of the barrel cortex in PRIP-DKO mice, the increased calcineurin activity due to the potentiated CICR and SOCE enhances the desensitization of GABAARs and slows the GABA-unbinding rate, resulting in their unusual resensitization following removal of GABA.
Collapse
Affiliation(s)
- Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stepanyuk AR, Borisyuk AL, Tsugorka TM, Belan PV. Different pools of postsynaptic GABAA receptors mediate inhibition evoked by low- and high-frequency presynaptic stimulation at hippocampal synapses. Synapse 2014; 68:344-54. [PMID: 24677449 DOI: 10.1002/syn.21742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 11/12/2022]
Abstract
Patterns of short-term synaptic plasticity could considerably differ between synapses of the same axon. This may lead to separation of synaptic receptors transmitting either low- or high-frequency signals and, therefore, may have functional consequences for the information transfer in the brain. Here, we estimated a degree of such separation at hippocampal GABAergic synapses using a use-dependent GABAA receptor antagonist, picrotoxin, to selectively suppress a pool of GABAA receptors monosynaptically activated during the low-frequency stimulation. The relative changes in postsynaptic responses evoked by the high-frequency stimulation before and after such block were used to estimate the contribution of this GABAA receptor pool to synaptic transmission at high frequencies. Using this approach, we have shown that IPSCs evoked by low-frequency (0.2 Hz) stimulation and asynchronous currents evoked by high-frequency (20-40 Hz) stimulation are mediated by different pools of postsynaptic GABAA receptors. Thus, our findings suggest that inhibition produced by a single hippocampal interneuron may be selectively routed to different postsynaptic targets depending on the presynaptic discharge frequency.
Collapse
Affiliation(s)
- Andrey R Stepanyuk
- Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, 4 Bogomoletz street, Kiev, 01024, Ukraine; State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology, 4 Bogomoletz street, Kiev, 01024, Ukraine
| | | | | | | |
Collapse
|
38
|
Bright DP, Smart TG. Methods for recording and measuring tonic GABAA receptor-mediated inhibition. Front Neural Circuits 2013; 7:193. [PMID: 24367296 PMCID: PMC3852068 DOI: 10.3389/fncir.2013.00193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023] Open
Abstract
Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current.
Collapse
Affiliation(s)
- Damian P Bright
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
39
|
Carpenter TS, Lau EY, Lightstone FC. Identification of a possible secondary picrotoxin-binding site on the GABA(A) receptor. Chem Res Toxicol 2013; 26:1444-54. [PMID: 24028067 DOI: 10.1021/tx400167b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type A GABA receptors (GABARs) are ligand-gated ion channels (LGICs) found in the brain and are the major inhibitory neurotransmitter receptors. Upon binding of an agonist, the GABAR opens and increases the intraneuronal concentration of chloride ions, thus hyperpolarizing the cell and inhibiting the transmission of the nerve action potential. GABARs also contain many other modulatory binding pockets that differ from the agonist-binding site. The composition of the GABAR subunits can alter the properties of these modulatory sites. Picrotoxin is a noncompetitive antagonist for LGICs, and by inhibiting GABAR, picrotoxin can cause overstimulation and induce convulsions. We use addition of picrotoxin to probe the characteristics and possible mechanism of an additional modulatory pocket located at the interface between the ligand-binding domain and the transmembrane domain of the GABAR. Picrotoxin is widely regarded as a pore-blocking agent that acts at the cytoplasmic end of the channel. However, there are also data to suggest that there may be an additional, secondary binding site for picrotoxin. Through homology modeling, molecular docking, and molecular dynamics simulations, we show that binding of picrotoxin to this interface pocket correlates with these data, and negative modulation occurs at the pocket via a kinking of the pore-lining helices into a more closed orientation.
Collapse
Affiliation(s)
- Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | | | | |
Collapse
|
40
|
Abstract
Picrotoxin is a pore blocker that can differentiate ligand-gated inhibitory chloride channels. Even within one receptor type, such as the glycine receptor, picrotoxin block differs between subunits. The effect of subunit gating properties on block of the inhibitory glycine receptor (GlyR) was explored using heteromeric α subunit expression in voltage-clamped HEK293 cells. The α2 GlyR is more sensitive to picrotin block than the α1 GlyR, and this difference was used to explore whether mutations that interfered with gating of the α2 subunit would also interfere with picrotin block. Two mutations were used: one that decreased the glycine sensitivity of α2 by almost two log units and the other that was unresponsive to glycine. In both cases, the sensitivity to picrotin was essentially unaltered. The results indicated that α2 subunits can determine the picrotin sensitivity of α1α2-heteromeric receptors and that direct gating of the α2 subunit is not required for this picrotin inhibition.
Collapse
|
41
|
Huang SH, Lewis TM, Lummis SC, Thompson AJ, Chebib M, Johnston GA, Duke RK. Mixed antagonistic effects of the ginkgolides at recombinant human ρ1 GABAC receptors. Neuropharmacology 2012; 63:1127-39. [PMID: 22828636 PMCID: PMC3465557 DOI: 10.1016/j.neuropharm.2012.06.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 06/18/2012] [Accepted: 06/24/2012] [Indexed: 11/26/2022]
Abstract
The diterpene lactones of Ginkgo biloba, ginkgolides A, B and C are antagonists at a range of Cys-loop receptors. This study examined the effects of the ginkgolides at recombinant human ρ(1) GABA(C) receptors expressed in Xenopus oocytes using two-electrode voltage clamp. The ginkgolides were moderately potent antagonists with IC(50)s in the μM range. At 10 μM, 30 μM and 100 μM, the ginkgolides caused rightward shifts of GABA dose-response curves and reduced maximal GABA responses, characteristic of noncompetitive antagonists, while the potencies showed a clear dependence on GABA concentration, indicating apparent competitive antagonism. This suggests that the ginkgolides exert a mixed-type antagonism at the ρ(1) GABA(C) receptors. The ginkgolides did not exhibit any obvious use-dependent inhibition. Fitting of the data to a number of kinetic schemes suggests an allosteric inhibition as a possible mechanism of action of the ginkgolides which accounts for their inhibition of the responses without channel block or use-dependent inhibition. Kinetic modelling predicts that the ginkgolides exhibit saturation of antagonism at high concentrations of GABA, but this was only partially observed for ginkgolide B. It also suggests that there may be different binding sites in the closed and open states of the receptor, with a higher affinity for the receptor in the closed state.
Collapse
Affiliation(s)
- Shelley H. Huang
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of Sydney, Australia
| | - Trevor M. Lewis
- School of Medical Sciences, University of New South Wales, Australia
| | - Sarah C.R. Lummis
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Thompson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, Australia
| | - Graham A.R. Johnston
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of Sydney, Australia
| | - Rujee K. Duke
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of Sydney, Australia
| |
Collapse
|
42
|
|
43
|
Othman NA, Gallacher M, Deeb TZ, Baptista-Hon DT, Perry DC, Hales TG. Influences on blockade by t-butylbicyclo-phosphoro-thionate of GABA(A) receptor spontaneous gating, agonist activation and desensitization. J Physiol 2011; 590:163-78. [PMID: 22083597 DOI: 10.1113/jphysiol.2011.213249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Picrotoxin and t-butylbicyclophosphorothionate (TBPS) are GABA(A) receptor (GABA(A)R) open channel blockers. However, picrotoxin displaceable [(35)S]TBPS binding to α1β2γ2 GABA(A)Rs occurs in the absence of GABA, suggesting that access to the binding site is independent of activation. Alternatively, spontaneous gating may provide access to the channel. In the absence of episodic GABA application, picrotoxin and TBPS blocked (by 91 ± 3% and 85 ± 5%, respectively) GABA-evoked currents mediated by α1β2γ2 receptors. We used two approaches to inhibit spontaneous GABA(A)R gating, bicuculline, which inhibits spontaneous current in the absence of exogenous agonist and the α1(K278M) mutant subunit. Whole-cell patch-clamp recordings demonstrated that α1(K278M)β2γ2 receptors have negligible spontaneous gating. Application of bicuculline to α1β2γ2 receptors in the absence of exogenous GABA caused a 35% reduction of current blockade by TBPS and reduced [(35)S]TBPS binding by 25%. Consistent with this, in the absence of exogenous GABA, α1(K278M)β2γ2 receptors exhibited reduced blockade by TBPS current compared to wild-type receptors. These data suggest that a decrease in spontaneous gating reduces accessibility of TBPS to its binding site. GABA application during picrotoxin or TBPS administration enhanced α1β2γ2 receptor blockade (to 98% in both cases). The GABA-dependent component of TBPS blockade accounts for the stimulation of [(35)S]TBPS binding to α1β2γ2 receptors seen with GABA (1 μm) application. Moreover, application of GABA at concentrations that cause significant steady-state desensitization reduced [(35)S]TBPS binding. The α1(K278M) subunit slowed desensitization kinetics and increased the rate of deactivation of GABA-evoked currents. Furthermore, there was a marked increase in the GABA EC(50) for desensitization of α1(K278M)β2γ2 receptors associated with a large increase in the GABA-dependent stimulation of [(35)S]TBPS binding. These data establish a relationship between GABA(A)R function and the three phases of [(35)S]TBPS binding seen in the absence and the presence of GABA.
Collapse
Affiliation(s)
- Nidaa A Othman
- The Institute of Academic Anaesthesia, Division of Neuroscience, University of Dundee, Dundee DD1 9SY, UK
| | | | | | | | | | | |
Collapse
|
44
|
Fuentealba J, Muñoz B, Yévenes G, Moraga-Cid G, Pérez C, Guzmán L, Rigo JM, Aguayo LG. Potentiation and inhibition of glycine receptors by tutin. Neuropharmacology 2011; 60:453-9. [DOI: 10.1016/j.neuropharm.2010.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 11/28/2022]
|
45
|
Karlsson A, Lindquist C, Malmgren K, Asztely F. Altered spontaneous synaptic inhibition in an animal model of cerebral heterotopias. Brain Res 2011; 1383:54-61. [PMID: 21281607 DOI: 10.1016/j.brainres.2011.01.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 11/27/2022]
Abstract
We have investigated spontaneous synaptic transmission in hippocampal nodular heterotopias in rats exposed to methylazoxymethanol (MAM) in utero. Pregnant Wistar rats were injected with MAM at E16. Acute hippocampal slices were prepared from the rat pups P14 to P40. Whole-cell voltage-clamp recordings were made from visually identified neurons using IR-DIC video microscopy. Synaptic events were recorded from either heterotopic neurons in the CA1 region or "slice-matched" normotopic CA1 pyramidal neurons. Both the spontaneous inhibitory (sIPSC) and excitatory synaptic transmission (sEPSC) to the same neurons were recorded. We found a profound reduction in the frequency of sIPSCs in the heterotopic neurons vs. normotopic neurons. No significant differences in the frequency of sEPSCs were found. We also found a profound reduction in the frequency of spontaneous IPSCs in normotopic neurons following application of the GABA reuptake blocker, NO-711, even in the presence of a GABA(B) receptor antagonist (CGP 55845). Preferentially blocking extrasynaptic GABA(A) receptors caused an increased frequency of sIPSCs in the heterotopic neurons. Our data suggest that there is a predominant change in inhibitory synaptic transmission, as measured by changes in sIPSCs, with no change in excitatory synaptic transmission to heterotopic neurons in hippocampus of rats exposed to MAM in utero. We suggest that this change is caused by an increase in the extracellular concentration of GABA but is not mediated via activation of presynaptic GABA(B) receptors. Rather, we propose that the increased extracellular GABA concentration in the heterotopias dampens the activity in inhibitory neurons via activation of extrasynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- Anna Karlsson
- Epilepsy Research Group, Section of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, SE 413 45 Göteborg, Sweden
| | | | | | | |
Collapse
|
46
|
Wyrembek P, Lebida K, Mercik K, Szczuraszek K, Szczot M, Pollastro F, Appendino G, Mozrzymas JW. Block and allosteric modulation of GABAergic currents by oenanthotoxin in rat cultured hippocampal neurons. Br J Pharmacol 2010; 160:1302-15. [PMID: 20590622 DOI: 10.1111/j.1476-5381.2010.00644.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Oenanthotoxin (OETX), a polyacetylenic alcohol from plants of the genus Oenanthe, has recently been identified as potent inhibitor of GABA-evoked currents. However, the effects of OETX on the inhibitory postsynaptic currents (IPSCs), as well as the pharmacological mechanism(s) underlying its effects on GABA(A) receptors, remain unknown. The purpose of this study was to elucidate the mechanism underlying the inhibition of GABAergic currents by OETX. EXPERIMENTAL APPROACH Effects of OETX on GABAergic currents were studied using the patch clamp technique on rat cultured hippocampal neurons. Miniature IPSCs (mIPSCs) were recorded in the whole-cell configuration, while the current responses were elicited by ultrafast GABA applications onto the excised patches. KEY RESULTS OETX potently inhibited both mIPSCs and current responses, but its effect was much stronger on synaptic currents. Analysis of the effects of OETX on mIPSCs and evoked currents disclosed a complex mechanism: allosteric modulation of both GABA(A) receptor binding and gating properties and a non-competitive, probably open channel block mechanism. In particular, OETX reduced the binding rate and nearly abolished receptor desensitization. A combination of rapid clearance of synaptic GABA and OETX-induced slowing of binding kinetics is proposed to underlie the potent action of OETX on mIPSCs. CONCLUSIONS AND IMPLICATIONS OETX shows a complex blocking mechanism of GABA(A) receptors, and the impact of this toxin is more potent on mIPSCs than on currents evoked by exogenous GABA. Such effects on GABAergic currents are compatible with the convulsions and epileptic-like activity reported for OETX.
Collapse
Affiliation(s)
- Paulina Wyrembek
- Department of Biophysics, Wrocław Medical University, Chałubińskiego, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chisari M, Shu HJ, Taylor A, Steinbach JH, Zorumski CF, Mennerick S. Structurally diverse amphiphiles exhibit biphasic modulation of GABAA receptors: similarities and differences with neurosteroid actions. Br J Pharmacol 2010; 160:130-41. [PMID: 20412070 DOI: 10.1111/j.1476-5381.2010.00679.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Some neurosteroids, notably 3alpha-hydroxysteroids, positively modulate GABA(A) receptors, but sulphated steroids negatively modulate these receptors. Recently, other lipophilic amphiphiles have been suggested to positively modulate GABA receptors. We examined whether there was similarity among the actions of these agents and the mechanisms of neurosteroids. Significant similarity would affect theories about the specificity of steroid actions. EXPERIMENTAL APPROACH Xenopus laevis oocytes were challenged with Triton X-100, octyl-beta-glucoside, capsaicin, docosahexaenoic acid and sodium dodecyl sulphate (SDS), along with different GABA concentrations. KEY RESULTS These compounds have both positive and negative effects on GABA currents, which can be accentuated according to the degree of receptor activation. A low GABA concentration (1 microM) promoted potentiation and a high concentration (20 microM) promoted inhibition of current, except for SDS that inhibited function even at low GABA concentrations. Amphiphile inhibition was characterized by enhanced apparent desensitization and by weak voltage dependence, similar to pregnenolone sulphate antagonism. We then tested amphiphile effects on mutated receptor subunits that are insensitive to negative (alpha1V256S) and positive (alpha1Q241L or alpha1N407A/Y410F) steroid modulation. Negative regulation by amphiphiles was nearly abolished in alpha1V256S-mutated receptors, but potentiation was unaffected. In alpha1Q241L- or alpha1N407A/Y410F-mutated receptors, potentiation by amphiphiles remained intact. CONCLUSIONS AND IMPLICATIONS Structurally diverse amphiphiles have antagonist actions at GABA(A) receptors very similar to those of sulphated neurosteroids, while the potentiating mechanisms of these amphiphiles are distinct from those of neurosteroid-positive modulators. Thus, such antagonism at GABA(A) receptors does not have a clear pharmacophore requirement.
Collapse
Affiliation(s)
- M Chisari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
48
|
Prigol M, Wilhelm EA, Nogueira CW, Zeni G. Diphenyl diselenide-induced seizures in rat pups: possible interaction with GABAergic system. Neurol Res 2010; 32:1002-8. [PMID: 20433775 DOI: 10.1179/016164110x12670144737738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The involvement of the GABAergic system in seizures induced by diphenyl diselenide (PhSe)₂ in rat pups was investigated. METHODS To this end, the effect of aminooxyacetic acid hemihydrochloride (AOAA, 20 mg/kg; by intraperitoneal route, i.p.), a GABA-T inhibitor; DL-2,4-diamino-n-butyric acid hydrochloride (DABA, 16 mg/kg; i.p.), an inhibitor of GABA uptake; and γ-aminobutyric acid (GABA, 10 and 40 mg/kg; i.p.), diazepam (3 mg/kg; i.p.) and phenobarbital (40 mg/kg; i.p.), GABAergic agonists as well as picrotoxin (1 mg/kg; i.p.), a GABAA receptor antagonist on (PhSe)₂ (50 and 500 mg/kg, by oral route, p.o.)-induced seizures, were studied. The [(3)H]GABA uptake levels by cortical and hippocampal slices in rat pups exposed to (PhSe)₂ were also carried out. RESULTS Pre-treatment with GABA (40 mg/kg), diazepam, phenobarbital, AOAA and DABA abolished the appearance of seizures induced by 50 mg/kg (PhSe)₂ in rat pups. Picrotoxin increased the percentage of convulsing rat pups from 42 to 100% and reduced significantly the onset for the first convulsive episode induced by (PhSe)₂ at the dose of 50 mg/kg. Diazepam and phenobarbital prolonged significantly the latency for the onset of the first convulsive episode caused by 500 mg/kg (PhSe)₂ in rat pups. [(3)H]GABA uptake levels were stimulated in cerebral cortical and hippocampal slices of convulsing rat pups administered with both doses of (PhSe)₂. DISCUSSION Our findings demonstrated that seizures induced by (PhSe)₂ are mediated, at least in part, by an interaction with GABAergic system.
Collapse
Affiliation(s)
- Marina Prigol
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Brazil
| | | | | | | |
Collapse
|
49
|
Abstract
Functional studies of the ligand gated ion channel family (nicotinic acetylcholine, serotonin Type 3, glycine and GABA receptors) along with the crystal structure of the acetylcholine binding protein (AChBP) and molecular dynamics simulations of the nAChR structure have resulted in a structural model in which the agonist-binding pocket comprises six loops (A-F) contributed by adjacent subunits. It is presumed that the binding of agonist results in a local structural rearrangement that is then transduced to the gate, causing the pore to open. Efforts are underway to better define the specific roles of the six binding loops. Several studies have suggested Loop F may play a direct role in linking the structural rearrangement within the binding pocket to the gate, although other investigations have indicated Loop F may be crucial for locking the agonist molecule into the binding site. This review will focus on the controversy surrounding the role of Loop F during GABA receptor activation.
Collapse
Affiliation(s)
- Alpa Khatri
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | |
Collapse
|
50
|
Korshoej AR, Holm MM, Jensen K, Lambert JDC. Kinetic analysis of evoked IPSCs discloses mechanism of antagonism of synaptic GABAA receptors by picrotoxin. Br J Pharmacol 2010; 159:636-49. [PMID: 20105180 DOI: 10.1111/j.1476-5381.2009.00542.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Although picrotoxin is a well-established antagonist of GABA(A) receptors, detailed studies of its action on inhibitory synaptic transmission have not previously been made. EXPERIMENTAL APPROACH Electrophysiological techniques were used to study the action of picrotoxin on inhibitory postsynaptic currents (IPSCs) evoked in hippocampal neurones, in culture and slice preparations prepared from Wistar rat embryos and juveniles, respectively. KEY RESULTS Picrotoxin gradually reduced the amplitude of GABA(A) receptor-mediated eIPSCs in a concentration-dependent manner. This was accompanied by a marked acceleration of the eIPSC decay kinetics, which, in contrast to the effect on amplitude, developed immediately and was completely reversed on washing. The decaying phase of the IPSC could be resolved into two components; 30 microM picrotoxin reduced tau(fast) by 34% and increased its relative amplitude, while tau(slow) was reduced by 38%, and its relative amplitude decreased. The area under the decaying phase of the normalized eIPSC showed an immediate reduction by 36% in 30 microM picrotoxin. With increasing concentrations of picrotoxin, this normalized area converged towards 55% of the control, indicating that the rate of relaxation and block has a finite maximum. This implies that picrotoxin does not act by a pore-occluding mechanism (open-channel blocking), and suggests allosteric stabilization of desensitized receptor states as a more likely alternative. This was corroborated by modelling, based on two established microscopic GABA(A) receptor transition schemes. CONCLUSIONS AND IMPLICATIONS Although the identity of the stabilized state has not been determined unequivocally, picrotoxin effectively traps synaptic GABA(A) receptors in a desensitized state.
Collapse
Affiliation(s)
- A R Korshoej
- Department of Physiology and Biophysics, Aarhus University, Ole Worms Allé 1160, DK 8000 Arhus C, Denmark
| | | | | | | |
Collapse
|