1
|
Bäckström T, Turkmen S, Das R, Doverskog M, Blackburn TP. The GABA system, a new target for medications against cognitive impairment-Associated with neuroactive steroids. J Intern Med 2023; 294:281-294. [PMID: 37518841 DOI: 10.1111/joim.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The prevalence of cognitive dysfunction, dementia, and neurodegenerative disorders such as Alzheimer's disease (AD) is increasing in parallel with an aging population. Distinct types of chronic stress are thought to be instrumental in the development of cognitive impairment in central nervous system (CNS) disorders where cognitive impairment is a major unmet medical need. Increased GABAergic tone is a mediator of stress effects but is also a result of other factors in CNS disorders. Positive GABA-A receptor modulating stress and sex steroids (steroid-PAMs) such as allopregnanolone (ALLO) and medroxyprogesterone acetate can provoke impaired cognition. As such, ALLO impairs memory and learning in both animals and humans. In transgenic AD animal studies, continuous exposure to ALLO at physiological levels impairs cognition and increases degenerative AD pathology, whereas intermittent ALLO injections enhance cognition, indicating pleiotropic functions of ALLO. We have shown that GABA-A receptor modulating steroid antagonists (GAMSAs) can block the acute negative cognitive impairment of ALLO on memory in animal studies and in patients with cognitive impairment due to hepatic encephalopathy. Here we describe disorders affected by steroid-PAMs and opportunities to treat these adverse effects of steroid-PAMs with novel GAMSAs.
Collapse
Affiliation(s)
| | - Sahruh Turkmen
- Department of Clinical Sciences, University of Umeå, Umeå, Sweden
| | - Roshni Das
- Department of Clinical Sciences, University of Umeå, Umeå, Sweden
- Umecrine Cognition AB, Solna, Sweden
| | | | | |
Collapse
|
2
|
Mechanisms of inhibition and activation of extrasynaptic αβ GABA A receptors. Nature 2022; 602:529-533. [PMID: 35140402 PMCID: PMC8850191 DOI: 10.1038/s41586-022-04402-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, β-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αβ, α4βδ, α6βδ and α5βγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1βγ, α2βγ and α3βγ receptor responses5,7–12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αβ GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA–Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αβ receptors that adapt them to a role in tonic signalling. Cryo-electron microscopy structures are used to identify mechanisms underlying distinct features of extrasynaptic type A γ-aminobutyric acid receptors.
Collapse
|
3
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
4
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
5
|
Bengtsson S, Bäckström T, Brinton R, Irwin R, Johansson M, Sjöstedt J, Wang M. GABA-A receptor modulating steroids in acute and chronic stress; relevance for cognition and dementia? Neurobiol Stress 2020; 12:100206. [PMID: 31921942 PMCID: PMC6948369 DOI: 10.1016/j.ynstr.2019.100206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
Cognitive dysfunction, dementia and Alzheimer's disease (AD) are increasing as the population worldwide ages. Therapeutics for these conditions is an unmet need. This review focuses on the role of the positive GABA-A receptor modulating steroid allopregnanolone (APα), it's role in underlying mechanisms for impaired cognition and of AD, and to determine options for therapy of AD. On one hand, APα given intermittently promotes neurogenesis, decreases AD-related pathology and improves cognition. On the other, continuous exposure of APα impairs cognition and deteriorates AD pathology. The disparity between these two outcomes led our groups to analyze the mechanisms underlying the difference. We conclude that the effects of APα depend on administration pattern and that chronic slightly increased APα exposure is harmful to cognitive function and worsens AD pathology whereas single administrations with longer intervals improve cognition and decrease AD pathology. These collaborative assessments provide insights for the therapeutic development of APα and APα antagonists for AD and provide a model for cross laboratory collaborations aimed at generating translatable data for human clinical trials.
Collapse
Affiliation(s)
- S.K.S. Bengtsson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - T. Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - R. Brinton
- Center for Innovation in Brain Science, Professor Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R.W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - M. Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - J. Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - M.D. Wang
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| |
Collapse
|
6
|
Chuang SH, Reddy DS. Zinc reduces antiseizure activity of neurosteroids by selective blockade of extrasynaptic GABA-A receptor-mediated tonic inhibition in the hippocampus. Neuropharmacology 2018; 148:244-256. [PMID: 30471294 DOI: 10.1016/j.neuropharm.2018.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023]
Abstract
Zinc is an abundant trace metal in the hippocampus nerve terminals. Previous studies demonstrate the ability of zinc to selectively block neurosteroid-sensitive, extrasynaptic GABA-A receptors in the hippocampus (Carver et al, 2016). Here we report that zinc prevents the seizure protective effects of the synthetic neurosteroid ganaxolone (GX) in an experimental model of epilepsy. GABA-gated and tonic currents were recorded from dissociated dentate gyrus granule cells (DGGCs), CA1 pyramidal cells (CA1PCs), and hippocampal slices from adult mice. Antiseizure effects of GX and the reversal of these effects by zinc were evaluated in fully-kindled mice expressing generalized (stage 5) seizures. In electrophysiological studies, zinc blocked the GABA-evoked and GX-potentiated GABA-gated chloride currents in DGGCs and CA1PCs in a concentration-dependent fashion similar to the competitive GABA-A receptor antagonists bicuculline and gabazine. Zinc completely blocked GX potentiation of extrasynaptic tonic currents, but not synaptic phasic currents. In hippocampus kindling studies, systemic administration of GX produced a dose-dependent suppression of behavioral and electrographic seizures in fully-kindled mice with complete seizure protection at the 10 mg/kg dose. However, the antiseizure effects of GX were significantly prevented by intrahippocampal administration of zinc (ED50, 150 μM). The zinc antagonistic response was reversible as animals responded normally to GX administration 24 h post-zinc blockade. These results demonstrate that zinc reduces the antiseizure effects of GX by selectively blocking extrasynaptic δGABA-A receptors in the hippocampus. These pharmacodynamic interactions have clinical implications in neurosteroid therapy for brain conditions associated with zinc fluctuations.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
7
|
Chen ZL, Huang RQ. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus. Neuroscience 2014; 271:64-76. [PMID: 24780768 DOI: 10.1016/j.neuroscience.2014.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission, which is mediated by both presynaptic and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Z L Chen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States
| | - R Q Huang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States.
| |
Collapse
|
8
|
Danscher G, Mosekilde L, Rungby J. Histochemical Detection of Zinc in Mineralizing Rat Bone: Autometallographic Tracing of Zinc Ions in the Mineralization Front, Osteocytes, and Osteoblasts. J Histotechnol 2013. [DOI: 10.1179/his.1999.22.2.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Sadiq S, Ghazala Z, Chowdhury A, Büsselberg D. Metal toxicity at the synapse: presynaptic, postsynaptic, and long-term effects. J Toxicol 2012; 2012:132671. [PMID: 22287959 PMCID: PMC3263637 DOI: 10.1155/2012/132671] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/05/2011] [Indexed: 12/19/2022] Open
Abstract
Metal neurotoxicity is a global health concern. This paper summarizes the evidence for metal interactions with synaptic transmission and synaptic plasticity. Presynaptically metal ions modulate neurotransmitter release through their interaction with synaptic vesicles, ion channels, and the metabolism of neurotransmitters (NT). Many metals (e.g., Pb(2+), Cd(2+), and Hg(+)) also interact with intracellular signaling pathways. Postsynaptically, processes associated with the binding of NT to their receptors, activation of channels, and degradation of NT are altered by metals. Zn(2+), Pb(2+), Cu(2+), Cd(2+), Ni(2+), Co(2+), Li(3+), Hg(+), and methylmercury modulate NMDA, AMPA/kainate, and/or GABA receptors activity. Al(3+), Pb(2+), Cd(2+), and As(2)O(3) also impair synaptic plasticity by targeting molecules such as CaM, PKC, and NOS as well as the transcription machinery involved in the maintenance of synaptic plasticity. The multiple effects of metals might occur simultaneously and are based on the specific metal species, metal concentrations, and the types of neurons involved.
Collapse
Affiliation(s)
| | | | | | - Dietrich Büsselberg
- Weill Cornell Medical College in Qatar, Qatar Foundation—Education City, P.O. Box 24144, Doha, Qatar
| |
Collapse
|
10
|
Abstract
Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABA(A)-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl(-) currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABA(A)-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABA(A)-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABA(A)-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABA(A)-receptor, mood changes, and cognitive functions.
Collapse
Affiliation(s)
- Mingde Wang
- Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå UniversityUmeå, Sweden
- *Correspondence: Mingde Wang, Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå University, 901 85 Umeå, Sweden. e-mail:
| |
Collapse
|
11
|
Bhalla P, Chadha VD, Dhawan DK. Effectiveness of zinc in modulating lithium induced biochemical and behavioral changes in rat brain. Cell Mol Neurobiol 2007; 27:595-607. [PMID: 17458692 PMCID: PMC11517329 DOI: 10.1007/s10571-007-9146-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 03/29/2007] [Indexed: 11/30/2022]
Abstract
1. The purpose of the present study was to determine the effect of zinc on the status of various neurotransmitters as well as behavioral patterns of lithium-treated rats. The study was designed with a view to find out whether zinc affords protection to brain against lithium toxicity. 2. Animals were segregated into four different groups. Animals in group I were fed with standard laboratory feed and water ad libitum and served as normal controls. Animals in group II and IV were given lithium in the form of lithium carbonate in their diet at a dose level of 1.1 g/Kg diet. Animals in group III and IV were given zinc treatment in the form of zinc sulfate at a dose level of 227 mg/L mixed in drinking water of animals. 3. The effects of all the treatments were studied for a duration of 1, 2, and 4 months with regard to the parameters, which included estimation of serotonin and dopamine concentrations as well as the activity of acetylcholinesterase in cerebral cortex of rat brain. Further, passive avoidance, active avoidance, and behavior despair tests were conducted to assess the short-term memory, cognitive behavior, and psychomotor dysfunction of the animals, respectively. 4. Initially, a decrease in the acetylcholinesterase activity was reported in cerebral cortex followed by an increase in the enzyme activity after 2 and 4 months of lithium treatment. Serotonin concentration significantly decreased after 2 and 4 months of lithium treatment, whereas dopamine concentration increased significantly after 4 months of lithium treatment. Zinc administration to the lithium-treated group significantly improved the acetylcholinesterase activity as well as the concentration of dopamine and serotonin. Further, lithium-treated rats showed an increase in depression time as compared to normal controls both after 1 and 4 months of treatment. Short-term memory significantly improved in lithium-treated rats in all treatment groups. However, no change in the cognitive behavior of the animals was reported after lithium treatment. Zinc co-administration with lithium significantly improved the short-term memory and cognitive functions of the animals. From the above results it can be concluded that zinc proved beneficial in altering the status of neurotransmitters as well as the behavior patters of the animals treated with both short and long-term lithium therapy.
Collapse
Affiliation(s)
- Punita Bhalla
- Department of Biophysics, Panjab University, Chandigarh, 160 014 India
| | | | - D. K. Dhawan
- Department of Biophysics, Panjab University, Chandigarh, 160 014 India
| |
Collapse
|
12
|
Zhou C, Xiao C, Deng C, Hong Ye J. Extracellular proton modulates GABAergic synaptic transmission in rat hippocampal CA3 neurons. Brain Res 2007; 1145:213-20. [PMID: 17321506 PMCID: PMC1894887 DOI: 10.1016/j.brainres.2007.01.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Acidification, which occurs in some pathological conditions, such as ischemia and hypoxia often induces neurotoxicity. The activation of acid-sensing ion channels (ASICs), which are highly permeable to calcium, has been considered the main target responsible for calcium overload in ischemic/hypoxic brain. However, the influence of extracellular proton on GABAergic synaptic transmission is not well understood. In the rat (aged 6-12 postnatal days) hippocampal CA3 neurons dissociated with an enzyme-free, mechanical method, we show that raising the extracellular pH (to 8.5) or lowering it (to 6.0) significantly increased or decreased, respectively, the frequency and the amplitude of spontaneous inhibitory postsynaptic currents mediated by gamma-aminobutyric acid A (GABA(A)) receptors. Interestingly, these modifications were not altered by amiloride (100 microM, an antagonist for ASICs), tetrodotoxin (0.5 microM, a sodium channel blocker), cadmium (100 microM, a nonselective blocker for voltage-gated calcium channels), or a medium containing low calcium (0.5 mM). Significantly, changes in extracellular pH biphasically altered the peak amplitude of the currents elicited by exogenous GABA in CA3 neurons dissociated with enzyme. Raising the extracellular pH (to 8.5) or lowering (to 6.5) shifted the concentration-response curves of GABA to the left or right, respectively, without altering the maximal responses. These data suggest that proton alters the apparent affinity of GABA receptors for agonist. Thus, extracellular proton modifies GABAergic synaptic transmission both presynaptically and postsynaptically, and this could be independent of ASICs and voltage-gated calcium channels. Our finding may constitute a new mechanism underlying acidification-induced neurotoxicity.
Collapse
Affiliation(s)
- Chunyi Zhou
- Department of Anesthesiology, Pharmacology and Physiology, New Jersey Medical School, UMDNJ, Rutgers-UMDNJ Integrative Neuroscience Program, 185 South Orange Avenue, Newark, NJ 07103-2714, USA
| | | | | | | |
Collapse
|
13
|
Hadley SH, Amin J. Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities. J Physiol 2007; 581:1001-18. [PMID: 17395622 PMCID: PMC2170852 DOI: 10.1113/jphysiol.2007.132886] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The onset of motor learning in rats coincides with exclusive expression of GABAA receptors containing alpha6 and delta subunits in the granule neurons of the cerebellum. This development temporally correlates with the presence of a spontaneously active chloride current through alpha6-containing GABAA receptors, known as tonic inhibition. Here we report that the coexpression of alpha6, beta2, and delta subunits produced receptor-channels which possessed two distinct and separable states of agonist affinity, one exhibiting micromolar and the other nanomolar affinities for GABA. The high-affinity state was associated with a significant level of spontaneous channel activity. Increasing the level of expression or the ratio of beta2 to alpha6 and delta subunits increased the prevalence of the high-affinity state. Comparative studies of alpha6beta2delta, alpha1beta2delta, alpha6beta2gamma2, alpha1beta2gamma2 and alpha4beta2delta receptors under equivalent levels of expression demonstrated that the significant level of spontaneous channel activity is uniquely attributable to alpha6beta2delta receptors. The pharmacology of spontaneous channel activity arising from alpha6beta2delta receptor expression corresponded to that of tonic inhibition. For example, GABAA receptor antagonists, including furosemide, blocked the spontaneous current. Further, the neuroactive steroid 5alpha-THDOC and classical glycine receptor agonists beta-alanine and taurine directly activated alpha6beta2delta receptors with high potency. Specific mutation within the GABA-dependent activation domain (betaY157F) impaired both low- and high-affinity components of GABA agonist activity in alpha6betaY157Fdelta receptors, but did not attenuate the spontaneous current. In comparison, a mutation located between the second and third transmembrane segments of the delta subunit (deltaR287M) significantly diminished the nanomolar component and the spontaneous activity. The possibility that the high affinity state of the alpha6beta2delta receptor modulates the granule neuron activity as well as potential mechanisms affecting its expression are discussed.
Collapse
Affiliation(s)
- Stephen H Hadley
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | |
Collapse
|
14
|
Mortensen M, Smart TG. Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol 2006; 577:841-56. [PMID: 17023503 PMCID: PMC1890388 DOI: 10.1113/jphysiol.2006.117952] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2006] [Accepted: 10/04/2006] [Indexed: 11/08/2022] Open
Abstract
Extrasynaptic GABA(A) receptors that are tonically activated by ambient GABA are important for controlling neuronal excitability. In hippocampal pyramidal neurons, the subunit composition of these extrasynaptic receptors may include alpha5betagamma and/or alpha4betadelta subunits. Our present studies reveal that a component of the tonic current in the hippocampus is highly sensitive to inhibition by Zn(2+). This component is probably not mediated by either alpha5betagamma or alpha4betadelta receptors, but might be explained by the presence of alphabeta isoforms. Using patch-clamp recording from pyramidal neurons, a small tonic current measured in the absence of exogenous GABA exhibited both high and low sensitivity to Zn(2+) inhibition (IC(50) values, 1.89 and 223 microm, respectively). Using low nanomolar and micromolar GABA concentrations to replicate tonic currents, we identified two components that are mediated by benzodiazepine-sensitive and -insensitive receptors. The latter indicated that extrasynaptic GABA(A) receptors exist that are devoid of gamma2 subunits. To distinguish whether the benzodiazepine-insensitive receptors were alphabeta or alphabetadelta isoforms, we used single-channel recording. Expressing recombinant alpha1beta3gamma2, alpha5beta3gamma2, alpha4beta3delta and alpha1beta3 receptors in human embryonic kidney (HEK) or mouse fibroblast (Ltk) cells, revealed similar openings with high main conductances (approximately 25-28 pS) for gamma2 or delta subunit-containing receptors whereas alphabeta receptors were characterized by a lower main conductance state (approximately 11 pS). Recording from pyramidal cell somata revealed a similar range of channel conductances, indicative of a mixture of GABA(A) receptors in the extrasynaptic membrane. The lowest conductance state (approximately 11 pS) was the most sensitive to Zn(2+) inhibition in accord with the presence of alphabeta receptors. This receptor type is estimated to account for up to 10% of all extrasynaptic GABA(A) receptors on hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Martin Mortensen
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
15
|
Wang MD, Rahman M, Zhu D, Bäckström T. Pregnenolone sulphate and Zn2+ inhibit recombinant rat GABA(A) receptor through different channel property. Acta Physiol (Oxf) 2006; 188:153-162. [PMID: 17054655 DOI: 10.1111/j.1748-1716.2006.01617.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS We compared the antagonistic effects of state-dependent gamma-aminobutyric acid A (GABA(A)) receptor blockers picrotoxin, Zn(2+) and pregnenolone sulphate (PS) on GABA- and pentobarbital-activated currents in recombinant rat GABA(A) receptors in Xenopus oocytes. METHODS Experiments were performed with wild type rat alpha1 beta2 gamma2L and alpha1beta2 receptors, mutants alpha1V256S beta2 gamma2L and alpha1beta2A252Sgamma2L receptors by the two-electrode voltage-clamp technique. RESULTS In contrast to respective 3840- and 56-fold increases in Zn(2+) potencies to inhibit GABA- and pentobarbital-activated currents in the alpha1beta2 receptor, the corresponding potencies of PS remained unchanged in comparison with the alpha1 beta2 gamma2L receptor. A homologous mutation of the residue at 2' position closest to the cytoplasmic end of the M(2) helix to serine on both alpha1 and beta2 subunit, alpha1V256S and beta2A252S, abolished the inhibition of GABA(A) receptor by PS. In comparison with the wild type alpha1beta2gamma2L receptor, mutants alpha1V256S beta2 gamma2L and alpha1beta2 A252S gamma2L receptors did not affect the Zn(2+) inhibition. Furthermore, a significant increase in GABA potency was observed in the mutant alpha1V256S beta2 gamma2L receptor (P < 0.05), but not the mutant alpha1beta2 A252S gamma2L receptor compared with the wild type receptor. CONCLUSIONS Pregnenolone sulphate was a gamma2-subunit independent inhibitor in the GABA(A) receptor, whereas the Zn(2+) antagonism was profoundly influenced by the gamma2-subunit. It is likely that the 2' residue closest to the N-terminus of the protein at M(2) helix on both alpha1 and beta2 subunit are critical to the inhibitory actions of PS and the function of Cl(-) channels. These results are consistent with the hypothesis that PS behaves as a Cl(-) channel blocker that does not share with Zn(2+), the coincident channel property in the GABA(A) receptors.
Collapse
Affiliation(s)
- M-D Wang
- Department of Clinical Science, Obstetrics and Gynecology, Umeå Neurosteroid Research Center, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
16
|
Goutman JD, Escobar AL, Calvo DJ. Analysis of macroscopic ionic currents mediated by GABArho1 receptors during lanthanide modulation predicts novel states controlling channel gating. Br J Pharmacol 2006; 146:1000-9. [PMID: 16231008 PMCID: PMC1751227 DOI: 10.1038/sj.bjp.0706411] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lanthanide-induced modulation of GABA(C) receptors expressed in Xenopus oocytes was studied. We obtained two-electrode voltage-clamp recordings of ionic currents mediated by recombinant homomeric GABArho(1) receptors and performed numerical simulations of kinetic models of the macroscopic ionic currents.GABA-evoked chloride currents were potentiated by La(3+), Lu(3+) and Gd(3+) in the micromolar range. Lanthanide effects were rapid, reversible and voltage independent. The degree of potentiation was reduced by increasing GABA concentration.Lu(3+) also induced receptor desensitization and decreased the deactivation rate of GABArho(1) currents. In the presence of 300 microM Lu(3+), dose-response curves for GABA-evoked currents showed a significant enhancement of the maximum amplitude and an increase of the apparent affinity. The rate of onset of TPMPA and picrotoxin antagonism of GABArho(1) receptors was modulated by Lu(3+). These results suggest that the potentiation of the anionic current was the result of a direct lanthanide-receptor interaction at a site capable of allosterically modulating channel properties. Based on kinetic schemes, which included a second open state and a nonconducting desensitized state that closely reproduced the experimental results, two nonexclusive probable models of GABArho(1) channels gating are proposed.
Collapse
Affiliation(s)
- Juan D Goutman
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Vuelta de Obligado 2490, CP 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel L Escobar
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, U.S.A
| | - Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Vuelta de Obligado 2490, CP 1428 Ciudad Autónoma de Buenos Aires, Argentina
- Author for correspondence:
| |
Collapse
|
17
|
Varea E, Alonso-Llosà G, Molowny A, Lopez-Garcia C, Ponsoda X. Capture of extracellular zinc ions by astrocytes. Glia 2006; 54:304-15. [PMID: 16856150 DOI: 10.1002/glia.20382] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Synaptic zinc ions released during synaptic transmission interact with pre- and postsynaptic neuroreceptors, thus modulating neurotransmission. It is likely that they have to be efficiently cleared from the extracellular milieu to assure subsequent synaptic events. Both neurons and glia are assumed to participate in this clearance by mechanisms that are not fully understood. In this study, electron microscopic zinc cytochemistry has shown zinc-electrondense particles associated with hippocampal astrocytic membranes frequently found accumulated in stacked lamellae. In cultured astrocytes, the use of zinc fluorochromes and endocytic markers allowed the simultaneous imaging of the capture of extracellular zinc simultaneously to plasma membrane markers; this endocytic process was inhibited by high sucrose concentrations. Finally, electron microscopy of zinc-loaded and fluorochrome photoconverted cells demonstrated some early events of extracellular zinc capture as well as its late accumulation in lysosome-like organelles.
Collapse
Affiliation(s)
- Emilio Varea
- Cell Biology Department, Universitat de Valencia, Valencia, Spain
| | | | | | | | | |
Collapse
|
18
|
Wang MD, Rahman M, Zhu D. Protons inhibit Cl- conductance by direct or allosteric interaction with the GABA-binding site in the rat recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptor. Eur J Pharmacol 2005; 528:1-6. [PMID: 16325175 DOI: 10.1016/j.ejphar.2005.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 10/24/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Functional roles of external pH on the Cl- conductance were examined on Xenopus oocytes expressing rat recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptors. Acidic pH inhibited GABA-response in a reversible and concentration-dependent manner, significantly increasing the EC50 without appreciably changing the slope or maximal currents induced by GABA in the alpha1beta2gamma2L and alpha1beta2 receptors. In contrast, protonation did not influence the pentobarbital-gated currents in the alpha1beta2gamma2L receptors, suggesting that protons do not modulate channel activity by directly affecting the channel gating process. Protons competitively inhibited the bicuculline-induced antagonism on GABA in the alpha1beta2gamma2L receptors. The data support the hypothesis that protons inhibit GABAA receptor function by direct or allosteric interaction with the GABA-binding site.
Collapse
Affiliation(s)
- Ming-De Wang
- Umeå Neurosteroid Research Center, Department of Clinical Science, Obstetrics and Gynecology, Umeå University, Bldg 5B, 5th floor, S-901 85 Umeå, Sweden.
| | | | | |
Collapse
|
19
|
Wilkins ME, Hosie AM, Smart TG. Proton modulation of recombinant GABA(A) receptors: influence of GABA concentration and the beta subunit TM2-TM3 domain. J Physiol 2005; 567:365-77. [PMID: 15946973 PMCID: PMC1474194 DOI: 10.1113/jphysiol.2005.088823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of GABA(A) receptors by extracellular pH exhibits a dependence on the receptor subunit composition. To date, the molecular mechanism responsible for the modulation of GABA(A) receptors at alkaline pH has remained elusive. We report here that the GABA-activated current can be potentiated at pH 8.4 for both alphabeta and alphabeta gamma subunit-containing receptors, but only at GABA concentrations below the EC40. Site-specific mutagenesis revealed that a single lysine residue, K279 in the beta subunit TM2-TM3 linker, was critically important for alkaline pH to modulate the function of both alpha1beta2 and alpha1beta2 gamma2 receptors. The ability of low concentrations of GABA to reveal different pH titration profiles for GABA(A) receptors was also examined at acidic pH. At pH 6.4, GABA activation of alphabeta gamma receptors was enhanced at low GABA concentrations. This effect was ablated by the mutation H267A in the beta subunit. Decreasing the pH further to 5.4 inhibited GABA responses via alphabeta gamma receptors, whereas those responses recorded from alphabeta receptors were potentiated. Inserting homologous beta subunit residues into the gamma2 subunit to recreate, in alphabeta gamma receptors, the proton modulatory profile of alphabeta receptors, established that in the presence of beta2(H267), the mutation gamma2(T294K) was necessary to potentiate the GABA response at pH 5.4. This residue, T294, is homologous to K279 in the beta subunit and suggests that a lysine at this position is an important residue for mediating the allosteric effects of both acidic and alkaline pH changes, rather than forming a direct site for protonation within the GABA(A) receptor.
Collapse
Affiliation(s)
- Megan E Wilkins
- Department of Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
20
|
Miller PS, Beato M, Harvey RJ, Smart TG. Molecular determinants of glycine receptor alphabeta subunit sensitivities to Zn2+-mediated inhibition. J Physiol 2005; 566:657-70. [PMID: 15905212 PMCID: PMC1464794 DOI: 10.1113/jphysiol.2005.088575] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glycine receptors exhibit a biphasic sensitivity profile in response to Zn2+-mediated modulation, with low Zn2+ concentrations potentiating (< 10 microm), and higher Zn2+ concentrations inhibiting submaximal responses to glycine. Here, a substantial 30-fold increase in sensitivity to Zn2+-mediated inhibition was apparent for the homomeric glycine receptor (GlyR) alpha1 subunit compared to either GlyR alpha2 or alpha3 subtypes. Swapping the divergent histidine (H107) residue in GlyR alpha1, which together with the conserved H109 forms part of an intersubunit Zn2+-binding site, for the equivalent asparagine residue present in GlyR alpha2 and alpha3, reversed this phenotype. Co-expression of heteromeric GlyR alpha1 or alpha2 with the ancillary beta subunit yielded receptors that maintained their distinctive sensitivities to Zn2+ inhibition. However, GlyR alpha2beta heteromers were consistently 2-fold more sensitive to inhibition compared to the GlyR alpha2 homomer. Comparative studies to elucidate the specific residue in the beta subunit responsible for this differential sensitivity revealed instead threonine 133 in the alpha1 subunit as a new vital component for Zn2+-mediated inhibition. Further studies on heteromeric receptors demonstrated that a mutated beta subunit could indeed affect Zn2+-mediated inhibition but only from one side of the intersubunit Zn2+-binding site, equivalent to the GlyR alpha1 H107 face. This strongly suggests that the alpha subunit is responsible for Zn2+-mediated inhibition and that this is effectively transduced, asymmetrically, from the side of the Zn2+-binding site where H109 and T133 are located.
Collapse
Affiliation(s)
- Paul S Miller
- Department of Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
21
|
Smart TG, Hosie AM, Miller PS. Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist 2005; 10:432-42. [PMID: 15359010 DOI: 10.1177/1073858404263463] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of Zn(2+) in the CNS has remained enigmatic for several decades. This divalent cation is accumulated by specific neurons into synaptic vesicles and can be released by stimulation in a Ca(2+)-dependent manner. Using Zn(2+) fluorophores, radiolabeled Zn(2+), and selective chelators, the location of this ion and its release pattern have been established across the brain. Given the distribution and possible release under physiological conditions, Zn(2+) has the potential to act as a modulator of both excitatory and inhibitory neurotransmission. Excitatory N-methyl-D-aspartate (NMDA) receptors are directly inhibited by Zn(2+), whereas non-NMDA receptors appear relatively unaffected. In contrast, inhibitory transmission mediated via GABA(A)receptors can be potentiated via a presynaptic mechanism, influencing transmitter release; however, although some tonic GABAergic inhibition may be suppressed by Zn(2+), most synaptic GABA receptors are unlikely to be modulated directly by this cation. In the spinal cord, glycinergic transmission may also be affected by Zn(2+) causing potentiation. Recently, the penetration of synaptically released Zn(2+) into neurons suggests that this ion has the potential to act as a direct transmitter, by affecting postsynaptic signaling pathways. Taken overall, present studies are broadly supportive of a neuromodulatory role for Zn(2+) at specific excitatory and inhibitory synapses.
Collapse
|
22
|
Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ. Changes on the properties of glycine receptors during neuronal development. ACTA ACUST UNITED AC 2004; 47:33-45. [PMID: 15572161 DOI: 10.1016/j.brainresrev.2004.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2004] [Indexed: 11/29/2022]
Abstract
Glycine receptors (GlyRs) play a major role in the excitability of spinal cord and brain stem neurons. During development, several properties of these receptors undergo significant changes resulting in major modifications of their physiological functions. For example, the receptor structure switches from a monomeric alpha or heteromeric alpha 2 beta in immature neurons to an alpha 1 beta receptor type in mature neurons. Together with these changes in receptor subunits, the postsynaptic cluster size increases with development. Parallel to these modifications, the apparent receptor affinity to glycine and strychnine, as well as that of Zn(2+) and ethanol increases with time. The mature receptor is characterized by a slow desensitizing current and high sensitivity to modulation by protein kinase C. Also, the high level of glycinergic transmission in immature spinal neurons modulates neuronal excitability causing membrane depolarization and changes in intracellular calcium. Due to these properties, chronic inhibition of glycinergic transmission affects neurite outgrowth and produces changes in the level of synaptic transmission induced by GABA(A) and AMPA receptors. Finally, the high level of plasticity found in immature GlyRs is likely associated to changes in cytoskeleton dynamics.
Collapse
Affiliation(s)
- Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, P.O. Box 160-C, Concepcíon, Chile.
| | | | | | | | | |
Collapse
|
23
|
Huang RQ, Chen Z, Dillon GH. Molecular Basis for Modulation of Recombinant α1β2γ2 GABAA Receptors by Protons. J Neurophysiol 2004; 92:883-94. [PMID: 15028749 DOI: 10.1152/jn.01040.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that extracellular protons inhibit recombinant and native GABAA receptors. In this report, we studied the site(s) and mechanism by which protons modulate the GABAA receptor. Whole cell GABA-activated currents were recorded from human embryonic kidney (HEK) 293 cells expressing recombinant α1β2γ2 GABAA receptors. Protons competitively inhibited the response to GABA and bicuculline. In contrast, change in pH did not influence direct gating of the channel by pentobarbital, and it did not influence spontaneous channel openings in α1(L264T)β2γ2 receptors, suggesting pH does not modulate channel activity by affecting the channel gating process directly. To test the hypothesis that protons modulate GABAA receptors at the ligand binding site, we systemically mutated N-terminal residues known to be involved in GABA binding and assessed effects of pH on these mutant receptors. Site-specific mutation of β2 Y205 to F or α1 F64 to A, both of which are known to influence GABA binding, significantly reduced pH sensitivity of the GABA response. These mutations did not affect Zn2+ sensitivity, suggesting that H+ and Zn2+ do not share a common site of action. Additional experiments further tested this possibility. Treatment with the histidine-modifying reagent diethylpyrocarbonate (DEPC) reduced Zn2+-mediated inhibition of GABAA receptors but had no effect on proton-induced inhibition of GABA currents. In addition, mutation of residues known to be involved in Zn2+ modulation had no effect on pH modulation of GABAA receptors. Our results support the hypothesis that protons inhibit GABAA receptor function by direct or allosteric interaction with the GABA binding site. In addition, the sites of action of H+ and Zn2+ in GABAA receptors are distinct.
Collapse
Affiliation(s)
- Ren-Qi Huang
- Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| | | | | |
Collapse
|
24
|
Mortensen M, Kristiansen U, Ebert B, Frølund B, Krogsgaard-Larsen P, Smart TG. Activation of single heteromeric GABA(A) receptor ion channels by full and partial agonists. J Physiol 2004; 557:389-413. [PMID: 14990676 PMCID: PMC1665090 DOI: 10.1113/jphysiol.2003.054734] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The linkage between agonist binding and the activation of a GABA(A) receptor ion channel is yet to be resolved. This aspect was examined on human recombinant alpha1beta2gamma2S GABA(A) receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration-response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25-27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, alpha, ranged from 200 to 600 s(-1). The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, beta, and the total dissociation rates, k(-1), for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E approximately 7-9) compared to the weak partial agonists ( approximately 0.4-0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABA(A) receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion channel.
Collapse
Affiliation(s)
- Martin Mortensen
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
25
|
Henderson LP, Jorge JC. Steroid modulation of GABAA receptors:from molecular mechanisms to CNS roles in reproduction, dysfunction and drug abuse. MOLECULAR INSIGHTS INTO ION CHANNEL BIOLOGY IN HEALTH AND DISEASE 2004. [DOI: 10.1016/s1569-2558(03)32010-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Hosie AM, Dunne EL, Harvey RJ, Smart TG. Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci 2003; 6:362-9. [PMID: 12640458 DOI: 10.1038/nn1030] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 02/05/2003] [Indexed: 11/09/2022]
Abstract
Zinc ions are concentrated in the central nervous system and regulate GABA(A) receptors, which are pivotal mediators of inhibitory synaptic neurotransmission. Zinc ions inhibit GABA(A) receptor function by an allosteric mechanism that is critically dependent on the receptor subunit composition: alphabeta subunit combinations show the highest sensitivity, and alphabetagamma isoforms are the least sensitive. Here we propose a mechanistic and structural basis for this inhibition and its dependence on the receptor subunit composition. We used molecular modeling to identify three discrete sites that mediate Zn2+ inhibition. One is located within the ion channel, and the other two are on the external amino (N)-terminal face of the receptor at the interfaces between alpha and beta subunits. We found that the characteristically low Zn2+ sensitivity of GABA(A) receptors containing the gamma2 subunit results from disruption to two of the three sites after receptor subunit co-assembly.
Collapse
Affiliation(s)
- Alastair M Hosie
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
27
|
|
28
|
Abstract
GABA type A (GABA(A)) receptors are functionally regulated by external protons in a manner dependent on the receptor subunit composition. Although H(+) can regulate the open probability of single GABA ion channels, exactly what residues and receptor subunits are responsible for proton-induced modulation remain unknown. This study resolves this issue by using recombinant alpha1betai subunit GABA(A) receptors expressed in human embryonic kidney cells. The potentiating effect of low external pH on GABA responses exhibited p(Ka) in accord with the involvement of histidine and/or cysteine residues. The exposure of GABA(A) receptors to the histidine-modifying reagent DEPC ablated regulation by H(+), implicating the involvement of histidine residues rather than cysteines in proton regulation. Site-specific substitution of all conserved external histidines to alanine on the beta subunits revealed that H267 alone, in the TM2 domain, is important for H(+) regulation. These results are interpreted as a direct protonation of H267 on alpha1betai receptors rather than an involvement in signal transduction. The opposing functional effects induced by Zn(2+) and H(+) at this single histidine residue most likely reflect differences in charge delocalization on the imidazole rings in the mouth of the GABA(A) receptor ion channel. Additional substitutions of H267 in beta subunits with other residues possessing charged side chains (glutamate and lysine) reveal that this area of the ion channel can profoundly influence the functional properties of GABA(A) receptors.
Collapse
|
29
|
Fisher JL. A histidine residue in the extracellular N-terminal domain of the GABA(A) receptor alpha5 subunit regulates sensitivity to inhibition by zinc. Neuropharmacology 2002; 42:922-8. [PMID: 12069902 DOI: 10.1016/s0028-3908(02)00050-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The divalent cation zinc is abundant in the brain, particularly in the mossy fibers of the hippocampus. Recent evidence suggests that zinc is packaged into some synaptic vesicles in this region and can be co-released with neurotransmitter. Zinc inhibits the activity of GABA(A) receptors and the sensitivity of the receptor to zinc is influenced by its alpha subunit subtype composition. The alpha4, alpha5 and alpha6 subunits confer greater sensitivity to zinc than receptors containing other alpha subunits. The alpha4 and alpha5 subunits are highly expressed in hippocampal neurons, and likely mediate any effects of zinc on GABAergic neurotransmission in this area. The alpha5 subunit contains a unique histidine residue in the N-terminal extracellular domain while the other alpha subunits have an aspartate residue in this location. Point mutations were created to exchange the histidine and aspartate residues of the alpha1 and alpha5 subunits. Receptors containing the mutated alpha5((H195D)) subunit had reduced sensitivity to zinc, while alpha1((D191H))beta3gamma2L receptors had increased sensitivity to zinc, similar to the alpha5beta3gamma2L wild type receptors. These findings indicate that histidine195 of the alpha5 subunit plays an important role in determining the sensitivity of recombinant GABA(A) receptors to zinc.
Collapse
Affiliation(s)
- Janet L Fisher
- University of South Carolina School of Medicine, Department of Pharmacology and Physiology, Columbia, South Carolina, USA.
| |
Collapse
|
30
|
Gourine AV, Spyer KM. Chemosensitivity of medullary inspiratory neurones: a role for GABA(A) receptors? Neuroreport 2001; 12:3395-400. [PMID: 11711893 DOI: 10.1097/00001756-200110290-00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study tested the hypothesis that during hypercapnia partial removal of a tonic GABA-mediated inhibition contributes to the increase in activity of the ventrolateral medulla (VLM) inspiratory neurones. Extracellular recordings were taken from 22 inspiratory neurones in the VLM of rats anaesthetised with pentobarbitone and artificially ventilated. It was found that during hypercapnia, changes in the discharge pattern (i.e. an increase in the discharge frequency during the neurone's normally active phase) and firing frequency of the VLM inspiratory neurones were similar to those evoked by GABA(A) receptor antagonist bicuculline methiodide (BMI, 10 mM, 20 nA), applied ionophoretically in conditions of normocapnia. During hypercapnia BMI (20 nA) failed to evoke a further increase in firing of these neurones. This suggests that CO2-evoked activation of VLM inspiratory neurones may involve a withdrawal in part of a tonic GABA(A) receptor-mediated inhibition. This disinhibition may play a role in the hypercapnia-induced increase in ventilatory activity.
Collapse
Affiliation(s)
- A V Gourine
- Department of Physiology, Royal Free and University College London Medical School, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | |
Collapse
|
31
|
Baumann SW, Baur R, Sigel E. Subunit arrangement of gamma-aminobutyric acid type A receptors. J Biol Chem 2001; 276:36275-80. [PMID: 11466317 DOI: 10.1074/jbc.m105240200] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GABA(A) receptors are ligand-gated chloride channels. The subunit stoichiometry of the receptors is controversial; four, five, or six subunits per receptor molecule have been proposed for alphabeta receptors, whereas alphabetagamma receptors are assumed to be pentamers. In this study, alpha-beta and beta-alpha tandem cDNAs from the alpha1 and beta2 subunits of the GABA(A) receptor were constructed. We determined the minimal length of the linker that is required between the two subunits for functional channel expression for each of the tandem constructs. 10- and 23-amino acid residues are required for alpha-beta and beta-alpha, respectively. The tandem constructs either alone or in combination with each other failed to express functional channels in Xenopus oocytes. Therefore, we can exclude tetrameric or hexameric alphabeta GABA(A) receptors. We can also exclude proteolysis of the tandem constructs. In addition, the tandem constructs were combined with single alpha, beta, or gamma subunits to allow formation of pentameric arrangements. In contrast to the combination with alpha subunits, the combination with either beta or gamma subunits led to expression of functional channels. Therefore, a pentameric arrangement containing two alpha1 and three beta2 subunits is proposed for the receptor composed of alpha and beta subunits. Our findings also favor an arrangement betaalphagammabetaalpha for the receptor composed of alpha, beta, and gamma subunits.
Collapse
Affiliation(s)
- S W Baumann
- Department of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | | | | |
Collapse
|
32
|
Farre C, Sjöberg A, Jardemark K, Jacobson I, Orwar O. Screening of ion channel receptor agonists using capillary electrophoresis-patch clamp detection with resensitized detector cells. Anal Chem 2001; 73:1228-33. [PMID: 11305656 DOI: 10.1021/ac001061i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient techniques for identifying endogenous and synthetic ligands of ion channels are important in understanding neuronal communication and for screening drug libraries. This paper describes a technique based on capillary electrophoresis (CE) separation coupled to patch-clamp (PC) detection where a pulsed-flow superfusion scheme was implemented for improved detection. The nicotinic acetylcholine receptor (nAChr) agonists acetylcholine, carbachol, and (-)-nicotine were fractionated and detected by patch-clamped pheochromcytoma detector cells. The high-conductance state of the nAChr during CE-PC detection was maintained and repetitively resensitized using pulsed-flow superfusion with agonist-free buffer. In this way, each agonist evoked an ensemble of peak currents that reflected the spatiotemporal distribution for the ligand at the cell surface. The technique takes advantage of the intrinsic high selectivity and sensitivity of membrane-expressed receptors and allowed for resolution and identification of closely migrating ligands. The method was employed for determination of acetylcholine content in cell lysates.
Collapse
Affiliation(s)
- C Farre
- Department of Chemistry, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
33
|
Abstract
Zinc is abundantly present in the CNS, and after nerve stimulation is thought to be released in sufficient quantity to modulate the synaptic transmission. Although it is known that this divalent cation inhibits the GABAergic synaptic currents, the underlying mechanisms were not fully elucidated. Here we report that zinc reduced the amplitude, slowed the rise time, and accelerated the decay of mIPSCs in cultured hippocampal neurons. The analysis of current responses to rapid GABA applications and model simulations indicated that these effects on mIPSCs are caused by zinc modulation of GABA(A) receptor gating. In particular, zinc slowed the onset of GABA-evoked currents by decreasing both the binding (k(on)) and the transition rate from closed to open state (beta(2)). Moreover, slower onset and recovery from desensitization as well as an increased unbinding rate (k(off)) were shown to underlie the accelerated deactivation kinetics in the presence of zinc. The nonequilibrium conditions of GABA(A) receptor activation were found to strongly affect zinc modulation of this receptor. In particular, an extremely fast clearance of synaptic GABA is implicated to be responsible for a stronger zinc effect on mIPSCs than on current responses to exogenous GABA. Finally, the analysis of currents evoked by GABA coapplied with zinc indicated that the interaction between zinc and GABA(A) receptors was too slow to explain zinc effects in terms of competitive antagonism. In conclusion, our results provide evidence that inhibition of mIPSCs by zinc is attributable to the allosteric modulation of GABA(A) receptor gating.
Collapse
|
34
|
Abstract
Notions of what constitutes a neurotransmitter have changed markedly with the advent in the past decade of synaptic molecules, which satisfy key neurotransmitter criteria but differ radically from classical transmitters. Thus, NO and carbon monoxide are neither stored in synaptic vesicles nor released by exocytosis. These gases do not act via traditional receptors on postsynaptic membranes. In addition, zinc, stored together with glutamate in synaptic vesicles, appears to act as an 'antagonist' co-transmitter at the NMDA receptor, and although localized exclusively to glia, D-serine fulfills most neurotransmitter criteria as an endogenous ligand for the 'glycine' site of NMDA receptors.
Collapse
Affiliation(s)
- D E Barañano
- Johns Hopkins University School of Medicine, Dept of Neuroscience, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
35
|
Krishek BJ, Smart TG. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development. J Physiol 2001; 530:219-33. [PMID: 11208970 PMCID: PMC2278406 DOI: 10.1111/j.1469-7793.2001.0219l.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The effect of GABAA receptor development in culture on the modulation of GABA-induced currents by external H+ was examined in cerebellar granule cells using whole-cell and single-channel recording. Equilibrium concentration-response curves revealed a lower potency for GABA between 11 and 12 days in vitro (DIV) resulting in a shift of the EC50 from 10.7 to 2.4 uM. For granule cells before 11 DIV, the peak GABA-activated current was inhibited at low external pH and enhanced at high pH with a pKa of 6.6. For the steady-state response, low pH was inhibitory with a pKa of 5.56. After 11 DIV, the peak GABA-activated current was largely pH insensitive; however, the steady-state current was potentiated at low pH with a pKa of 6.84. Single GABA-activated ion channels were recorded from outside-out patches of granule cell bodies. At pH 5.4-9.4, single GABA channels exhibited multiple conductance states occurring at 22-26, 16-17 and 12-14 pS. The conductance levels were not significantly altered over the time period of study, nor by changing the external H+ concentration. Two exponential functions were required to fit the open-time frequency histograms at both early (< 11 DIV) and late (> 11 DIV) development times at each H+ concentration. The short and long open time constants were unaffected either by the extracellular H+ concentration or by neuronal development. The distribution of all shut times was fitted by the sum of three exponentials designated as short, intermediate and long. At acidic pH, the long shut time constant decreased with development as did the relative contribution of these components to the overall distribution. This was concurrent with an increase in the mean probability of channel opening. In conclusion, this study demonstrates in cerebellar granule cells that external pH can either reduce, have no effect on, or enhance GABA-activated responses depending on the stage of development, possibly related to the subunit composition of the GABAA receptors. The mode of interaction of H+ at the single-channel level and implications of such interactions at cerebellar granule cell GABAA receptors are discussed.
Collapse
Affiliation(s)
- B J Krishek
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|
36
|
Barberis A, Cherubini E, Mozrzymas JW. Zinc inhibits miniature GABAergic currents by allosteric modulation of GABAA receptor gating. J Neurosci 2000; 20:8618-27. [PMID: 11102466 PMCID: PMC6773059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Zinc is abundantly present in the CNS, and after nerve stimulation is thought to be released in sufficient quantity to modulate the synaptic transmission. Although it is known that this divalent cation inhibits the GABAergic synaptic currents, the underlying mechanisms were not fully elucidated. Here we report that zinc reduced the amplitude, slowed the rise time, and accelerated the decay of mIPSCs in cultured hippocampal neurons. The analysis of current responses to rapid GABA applications and model simulations indicated that these effects on mIPSCs are caused by zinc modulation of GABA(A) receptor gating. In particular, zinc slowed the onset of GABA-evoked currents by decreasing both the binding (k(on)) and the transition rate from closed to open state (beta(2)). Moreover, slower onset and recovery from desensitization as well as an increased unbinding rate (k(off)) were shown to underlie the accelerated deactivation kinetics in the presence of zinc. The nonequilibrium conditions of GABA(A) receptor activation were found to strongly affect zinc modulation of this receptor. In particular, an extremely fast clearance of synaptic GABA is implicated to be responsible for a stronger zinc effect on mIPSCs than on current responses to exogenous GABA. Finally, the analysis of currents evoked by GABA coapplied with zinc indicated that the interaction between zinc and GABA(A) receptors was too slow to explain zinc effects in terms of competitive antagonism. In conclusion, our results provide evidence that inhibition of mIPSCs by zinc is attributable to the allosteric modulation of GABA(A) receptor gating.
Collapse
Affiliation(s)
- A Barberis
- Neuroscience Program and Istituto Nazionale Fisica della Materia Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | | | | |
Collapse
|
37
|
Valeyev AY, Hackman JC, Holohean AM, Wood PM, Davidoff RA. Pentobarbital-activated Cl(-) channels in cultured adult and embryonic human DRG neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 124:137-40. [PMID: 11113523 DOI: 10.1016/s0165-3806(00)00117-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Developmental differences in pentobarbital-activated Cl(-) currents were studied in adult and embryonic human dorsal root ganglia (DRG) neurons using whole-cell patch-clamp recordings. Pentobarbital-induced Cl(-) conductance was significantly greater in adult DRGs (28.4 pS) than in embryonic cells (19.1 pS). Fluctuation analysis of the spectral density plots of Cl(-) channel activation by pentobarbital showed age differences in the length and number of open time constants (adult cells, tau(1), tau(2), tau(3) were 224, 8. 4, 1.5 ms, respectively; embryonic cells tau(1) and tau (2) were 165 and 26.3 ms, respectively). The different kinetic properties of human adult and embryonic DRG Cl(-) channels opened by pentobarbital may reflect the presence of different subunits in the two populations of neurons.
Collapse
Affiliation(s)
- A Y Valeyev
- Neurophysiology and Spinal Cord Pharmacology Laboratories, Veterans Affairs Medical Center, Miami, FL 33101, USA.
| | | | | | | | | |
Collapse
|
38
|
Feigenspan A, Gustincich S, Raviola E. Pharmacology of GABA(A) receptors of retinal dopaminergic neurons. J Neurophysiol 2000; 84:1697-707. [PMID: 11024062 DOI: 10.1152/jn.2000.84.4.1697] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When the vertebrate retina is stimulated by light, a class of amacrine or interplexiform cells release dopamine, a modulator responsible for neural adaptation to light. In the intact retina, dopamine release can be pharmacologically manipulated with agonists and antagonists at GABA(A) receptors, and dopaminergic (DA) cells receive input from GABAergic amacrines. Because there are only 450 DA cells in each mouse retina and they cannot be distinguished in the living state from other cells on the basis of their morphology, we used transgenic technology to label DA cells with human placental alkaline phosphatase, an enzyme that resides on the outer surface of the cell membrane. We could therefore identify DA cells in vitro after dissociation of the retina and investigate their activity with whole cell voltage clamp. We describe here the pharmacological properties of the GABA(A) receptors of solitary DA cells. GABA application induces a large inward current carried by chloride ions. The receptors are of the GABA(A) type because the GABA-evoked current is blocked by bicuculline. Their affinity for GABA is very high with an EC(50) value of 7.4 microM. Co-application of benzodiazepine receptor ligands causes a strong increase in the peak current induced by GABA (maximal enhancement: CL-218872 220%; flunitrazepam 214%; zolpidem 348%) proving that DA cells express a type I benzodiazepine-receptor (BZ1). GABA-evoked currents are inhibited by Zn(2+) with an IC(50) of 58.9 +/- 8.9 microM. Furthermore, these receptors are strongly potentiated by the modulator alphaxalone with an EC(50) of 340 +/- 4 nM. The allosteric modulator loreclezole increases GABA receptor currents by 43% (1 microM) and by 107% (10 microM). Using outside-out patches, we measured in single-channel recordings a main conductance (29 pS) and two subconductance (20 and 9 pS) states. We have previously shown by single-cell RT-PCR and immunocytochemistry that DA cells express seven different GABA(A) receptor subunits (alpha1, alpha3, alpha4, beta1, beta3, gamma1, gamma2(S), and gamma2(L)) and by immunocytochemistry that all subunits are expressed in the intact retina. We show here that at least alpha1, beta3 and gamma2 subunits are assembled into functional receptors.
Collapse
Affiliation(s)
- A Feigenspan
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
39
|
Lorez M, Benke D, Luscher B, Mohler H, Benson JA. Single-channel properties of neuronal GABAA receptors from mice lacking the 2 subunit. J Physiol 2000; 527 Pt 1:11-31. [PMID: 10944167 PMCID: PMC2270058 DOI: 10.1111/j.1469-7793.2000.t01-1-00011.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The aim of this study was to define the biophysical properties contributed by the gamma2 subunit to native single GABAA receptors. 2. Single-channel activity was recorded from neurones of wild-type (gamma2+/+) mice and compared with that from mice which were heterozygous (gamma2+/-) or homozygous (gamma2-/-) for a targeted disruption in the gamma2 subunit gene of the GABAA receptor. Unitary currents were evoked by low concentrations of GABA (0.5-5 microM) in membrane patches from acutely isolated dorsal root ganglion (DRG) neurones (postnatal day 0) and by 1 microM GABA in patches from embryonic hippocampal neurones which were cultured for up to 3 weeks. 3. GABAA receptors from DRG and hippocampal neurones of gamma2+/+ and gamma2+/- mice displayed predominantly a conductance state of 28 pS and less frequently 18 and 12 pS states. In gamma2-/- mice, conductance states mainly of 12 pS and less frequently of 24 pS were found. 4. The mean open duration of the 28 pS state in gamma2+/+ GABAA receptors (1.5-2.6 ms) was substantially longer than for the 12 pS state of gamma2-/- GABAA receptors (0.9-1.2 ms) at all GABA concentrations. For gamma2+/+ and gamma2-/- channels, the mean open duration was increased at higher GABA concentrations. 5. Open duration frequency distributions of 28 and 12 pS receptors revealed the existence of at least three exponential components. Components with short mean durations declined and components with long mean durations increased in relative frequency at higher GABA concentration indicating at least two binding sites of GABA per 28 and 12 pS receptor. 6. Shut time frequency distributions revealed at least four exponential components of which two were identified as intraburst components in 28 pS and one in 12 pS GABAA receptors. 7. The mean burst duration and the mean number of openings per burst increased in 28 and 12 pS GABAA receptors with increasing GABA concentration. At least two burst types were identified: simple bursts consisting of single openings and complex bursts of five to six openings in 28 pS but only two to three openings in 12 pS GABAA receptors. 8. We conclude that the gamma2 subunit enhances the efficacy of GABA by determining open conformations of high conductance and long lifetime, and by prolonging the time receptors remain in the activated bursting state.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Electric Conductivity
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiology
- Hippocampus/metabolism
- Hippocampus/physiology
- Ion Channel Gating
- Ion Channels/metabolism
- Kinetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/metabolism
- Neurons/physiology
- Patch-Clamp Techniques
- Protein Structure, Quaternary
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/physiology
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- M Lorez
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Mellor JR, Wisden W, Randall AD. Somato-synaptic variation of GABA(A) receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit. Neuropharmacology 2000; 39:1495-513. [PMID: 10854895 DOI: 10.1016/s0028-3908(00)00007-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden, W., 1997. Ligand-gated ion channel partnerships: GABA(A) receptor alpha(6) subunit inactivation inhibits delta subunit expression. Journal of Neuroscience 17, 1350-1362).
Collapse
Affiliation(s)
- J R Mellor
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
| | | | | |
Collapse
|
41
|
Rivera C, Wegelius K, Reeben M, Kaila K, Michael Pasternack. Different sensitivities of human and rat rho(1) GABA receptors to extracellular pH. Neuropharmacology 2000; 39:977-89. [PMID: 10727708 DOI: 10.1016/s0028-3908(99)00208-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have examined the sensitivity of human and rat homo-oligomeric rho(1) GABA receptors to variations in extracellular pH (pH(o)) using the whole-cell patch clamp technique. The GABA-induced conductance mediated by the rat rho(1) receptor (rho(1)-R) decreased with a decrease in pH(o) between 9.0 to 5.4. Below pH(o) 7.4 the effect of protons on the GABA-induced conductance was apparently competitive, but above pH(o) 7.4 the inhibitory effect of extracellular protons was almost independent on the GABA concentration. Titration of the GABA-induced conductance at 3 microM GABA revealed two protonation sites on rat rho(1)-R with pKa 6.4 and pKa 8.2. At 10 microM GABA the low pKa (6.4) was shifted to a clearly lower value (5.6), but the high pKa was only slightly decreased (from 8.2 to 7.9). Zn(2+) ions were capable of relieving the proton inhibition at low pH(o) indicating that Zn(2+) interacts with the low pKa site. Unlike the rat rho(1)-R, the human rho(1)-R was sensitive only to changes in pH(o) at acidic levels. Proton inhibition of human rho(1)-R was apparently competitive, as observed on rat-rho(1) at acidic pH(o). Titration of the human rho(1)-R gave a single H(+) binding site with a pKa of 6.3, similar to the value for the low pKa on rat rho(1)-R. The pKa value of human rho(1)-R was not dependent on the GABA concentration. A chimeric receptor, consisting of the N-terminal part of the rat rho(1)-R and C-terminal part of the human rho(1)-R, displayed pH(o) sensitivity similar to that observed for rat rho(1)-R. This indicates that the high pKa of rat rho(1)-R is attributable to the 11 amino acid differences between the rat and human rho(1)-R extracellular domains.
Collapse
Affiliation(s)
- C Rivera
- Department of Biosciences, Division of Animal Physiology, P.O. Box 17, FIN-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
42
|
Demuro A, Martínez-Torres A, Miledi R. Functional and pharmacological properties of GABArho1delta51 receptors. Neurosci Res 2000; 36:141-6. [PMID: 10711811 DOI: 10.1016/s0168-0102(99)00116-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gamma-aminobutyrate is the main inhibitory neurotransmitter in the vertebrate brain, and the gamma-aminobutyric acid (GABA) receptor subunit GABArho1delta51 is an alternatively spliced form of the GABArho1 receptor that was recently isolated from human retina cDNA libraries. The rho1delta51 receptor subunit lacks 17 amino acids in the extracellular N-terminal domain and, when expressed in Xenopus oocytes, forms functional homomeric GABA receptors. Unexpectedly, even after a such a big deletion, the fundamental properties of the deleted variant receptors are very similar to those of the complete GABArho1 receptors. For example, both types of receptors are bicuculline resistant, desensitize very little, and are negatively modulated by Zn2+ and positively modulated by La3+. In spite of such similarities, the GABArho1delta51 receptors are more sensitive to GABA, to the specific GABA(C) antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid and to Zn2+, than the complete GABArho1 receptors. The GABArho1delta51 receptors extend the variety of inhibitory receptors in the retina. Their functional significance still remains to be determined.
Collapse
Affiliation(s)
- A Demuro
- Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
43
|
Fisher JL, Hinkle DJ, Macdonald RL. Loreclezole inhibition of recombinant alpha1beta1gamma2L GABA(A) receptor single channel currents. Neuropharmacology 2000; 39:235-45. [PMID: 10670419 DOI: 10.1016/s0028-3908(99)00108-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loreclezole had two different effects on GABA(A) receptor (GABAR) currents. When applied to GABARs that contained a beta2 or beta3 subunit subtype, but not a beta1 subtype, loreclezole potentiated the peak current evoked by sub-maximal concentrations of GABA. Loreclezole also increased the rate and degree of apparent desensitization of GABAR whole-cell currents, an effect that was independent of the beta subunit subtype, suggesting that potentiation and inhibition of GABAR current by loreclezole occurred through separate sites. We used patch-clamp recording from outside-out and inside-out patches from L929 fibroblasts transiently transfected with rat GABAR subunits to examine the properties of inhibition of alpha1beta1gamma2L single channel currents by loreclezole. Loreclezole decreased the mean open time of the channel by decreasing the average durations of the open states. Loreclezole also increased the occurrence of a closed component with an average duration near 20 ms. Inhibition by loreclezole was not voltage-dependent. Loreclezole was equally effective when applied to the intracellular side of the receptor, suggesting that its binding site was readily accessible from both sides of the membrane. Pre-application of loreclezole effectively inhibited the GABAR current in macropatches, indicating that binding did not require an open channel. These findings were consistent with a mechanism of allosteric modulation at a site formed by the membrane spanning regions of the receptor.
Collapse
Affiliation(s)
- J L Fisher
- Department of Neurology, University of Michigan Medical Center, Ann Arbor 48104-1687, USA
| | | | | |
Collapse
|
44
|
Connolly CN, Kittler JT, Thomas P, Uren JM, Brandon NJ, Smart TG, Moss SJ. Cell surface stability of gamma-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J Biol Chem 1999; 274:36565-72. [PMID: 10593956 DOI: 10.1074/jbc.274.51.36565] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type A gamma-aminobutyric acid receptors (GABA(A)), the major sites of fast synaptic inhibition in the brain, are believed to be composed predominantly of alpha, beta, and gamma subunits. Although cell surface expression is essential for GABA(A) receptor function, little is known regarding its regulation. To address this issue, the membrane stability of recombinant alpha(1)beta(2) or alpha(1)beta(2)gamma(2) receptors was analyzed in human embryonic kidney cells. Alpha(1)beta(2)gamma(2) but not alpha(1)beta(2) receptors were found to recycle constitutively between the cell surface and a microtubule-dependent, perinuclear endosomal compartment. Similar GABA(A) receptor endocytosis was also seen in cultured hippocampal and cortical neurons. GABA(A) receptor surface levels were reduced upon protein kinase C (PKC) activation. Like basal endocytosis, this response required the gamma(2) subunit but not receptor phosphorylation. Although inhibiting PKC activity did not block alpha(1)beta(2)gamma(2) receptor endocytosis, it did prevent receptor down-regulation, suggesting that PKC activity may block alpha(1)beta(2)gamma(2) receptor recycling to the cell surface. In agreement with this observation, blocking recycling from endosomes with wortmannin selectively reduced surface levels of gamma(2)-containing receptors. Together, our results demonstrate that the surface stability of GABA(A) receptors can be dynamically and specifically regulated, enabling neurons to modulate cell surface receptor number upon the appropriate cues.
Collapse
Affiliation(s)
- C N Connolly
- Medical Research Council Laboratory of Molecular Cell Biology and Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Pawelzik H, Bannister AP, Deuchars J, Ilia M, Thomson AM. Modulation of bistratified cell IPSPs and basket cell IPSPs by pentobarbitone sodium, diazepam and Zn2+: dual recordings in slices of adult rat hippocampus. Eur J Neurosci 1999; 11:3552-64. [PMID: 10564363 DOI: 10.1046/j.1460-9568.1999.00772.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Simultaneous intracellular recordings from presynaptic Stratum pyramidale interneurons and postsynaptic pyramidal cells in adult rat hippocampal slices were performed to investigate the strength of the modulation of single-axon inhibitory postsynaptic potentials (IPSPs) by the GABAA receptor modulators pentobarbitone, diazepam and zinc. The processing of biocytin-filled interneurons for light microscopy revealed that these single-axon IPSPs were generated by basket cells (n = 33), bistratified cells (n = 18) and axo-axonic cells (n = 2). The IPSPs generated by these three groups of interneurons had amplitudes and widths at half amplitude with similar ranges, but when bistratified cell IPSPs were compared with basket cell IPSPs with similar half widths their rise times were slower. Pentobarbitone sodium (250 microM) powerfully enhanced 13 tested IPSPs generated by all three cell types. Amplitudes were enhanced by 82 +/- 56%, 10-90% rise times by 150 +/- 101% and the widths at half amplitude by 71 +/- 29%. Diazepam (1-2 microM) also increased all IPSPs tested, although the changes were more moderate in basket cell IPSPs (amplitudes increased by 19 +/- 11%, n = 8) than in bistratified cell IPSPs (amplitudes increased by 66 +/- 48%, n = 5). Basket cell IPSP 10-90% rise times and widths at half amplitude were not significantly increased. Bistratified cell IPSP 10-90% rise times were increased by 44 +/- 24% and the widths at half amplitude by 32 +/- 35%. The one tested IPSP generated by an axo-axonic cell was also diazepam-sensitive. Zinc, 250 microM, decreased four out of 10 IPSPs generated by basket cells and four out of five IPSPs generated by bistratified cells. The one tested axo-axonic cell IPSP was zinc-insensitive. These data suggest that IPSPs generated in CA1 pyramidal cells by basket and bistratified cells display different pharmacologies and may be mediated by different receptors or receptor combinations.
Collapse
Affiliation(s)
- H Pawelzik
- Department of Physiology, Royal Free and University College Medical School London, UK.
| | | | | | | | | |
Collapse
|
47
|
Huang RQ, Dillon GH. Effect of extracellular pH on GABA-activated current in rat recombinant receptors and thin hypothalamic slices. J Neurophysiol 1999; 82:1233-43. [PMID: 10482743 DOI: 10.1152/jn.1999.82.3.1233] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effects of extracellular pH (pHo) on gamma-aminobutyric acid (GABA)-mediated Cl- current in rat hypothalamic neurons and recombinant type-A GABA (GABA(A)) receptors stably expressed in human embryonic kidney cells (HEK 293), using whole cell and outside-out patch-clamp recordings. In alpha3beta2gamma2s receptors, acidic pH decreased, whereas alkaline pH increased the response to GABA in a reversible and concentration-dependent manner. Acidification shifted the GABA concentration-response curve to the right, significantly increasing the EC50 for GABA without appreciably changing the slope or maximal current induced by GABA. We obtained similar effects of pH in alpha1beta2gamma2 receptors and in GABA-activated currents recorded from thin hypothalamic brain slices. In outside-out patches recorded from alpha3beta2gamma2 recombinant receptors, membrane patches were exposed to 5 microM GABA at control (7.3), acidic (6.4), or alkaline (8.4) pH. GABA activated main and subconductance states of 24 and 16 pS, respectively, in alpha3beta2gamma2 receptors. Alkaline pH(o) increased channel opening frequency and decreased the duration of the long closed state, resulting in an increase in open probability (from 0.0801 +/- 0.015 in pH 7.3 to 0.138 +/- 0.02 in pH 8.4). Exposure of the channels to acidic pH(o) had the opposite effects on open probability (decreased to 0.006 +/- 0.0001). Taken together, our results indicate that the function of GABA(A) receptors is modulated by extracellular pH. The proton effect is similar in recombinant and native receptors and is dependent on GABA concentration. In addition, the effect appears to be independent of the alpha-subunit isoform, and is due to the ability of H+ to alter the frequency of channel opening. Our findings indicate that GABAergic signaling in the CNS may be significantly altered during conditions that increase or decrease pH.
Collapse
Affiliation(s)
- R Q Huang
- Department of Pharmacology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107, USA
| | | |
Collapse
|
48
|
Ye JH, Ren J, McArdle JJ. Waglerin-1 inhibits GABA(A) current of neurons in the nucleus accumbens of neonatal rats. Brain Res 1999; 837:29-37. [PMID: 10433985 DOI: 10.1016/s0006-8993(99)01668-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of Waglerin-1, a 22-amino acid peptide purified from the venom of Wagler's pit viper on the whole cell current response (I(GABA)) to gamma-aminobutyric acid (GABA) was examined for neurons freshly isolated from the nucleus accumbens of 3- to 7-day-old rats. Waglerin-1 depressed I(GABA) induced by subsaturating concentrations of GABA; the IC(50) for I(GABA) induced by 10 microM GABA was 2.5 microM Waglerin-1. This concentration of Waglerin-1 shifted the GABA concentration-response curve to the right in a parallel manner, increasing the GABA EC(50) from 12+/-3 to 27+/-5 microM. The depressant effect of Waglerin-1 was greater at negative holding potentials. Zn(2+) also inhibited I(GABA) with an IC(50) of 0.3 microM. Phosphorylation state appeared to modulate GABA(A) receptor sensitivity to the inhibitory effect of Waglerin-1 since dialysis of neurons with N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide HCl (H-89), an inhibitor of protein kinase A, prevented inhibition. The data are discussed in terms of developmental influences on the subunit composition of GABA(A) receptors in neurons of the nucleus accumbens.
Collapse
Affiliation(s)
- J H Ye
- Departments of Anesthesiology, and Pharmacology and Physiology, New Jersey Medical School (UMDNJ), 185 South Orange Avenue, Newark, NJ 07103-2714, USA
| | | | | |
Collapse
|
49
|
Valeyev AY, Hackman JC, Holohean AM, Wood PM, Katz JL, Davidoff RA. GABA-Induced Cl- current in cultured embryonic human dorsal root ganglion neurons. J Neurophysiol 1999; 82:1-9. [PMID: 10400929 DOI: 10.1152/jn.1999.82.1.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Aminobutyric acid (GABA)-activated channels in embryonic (5-8 wk old) human dorsal root ganglion (DRG) neurons in dissociated culture were characterized by whole cell and single-channel techniques. All DRG neurons when held at negative holding membrane potentials displayed inward current to micromolar concentrations of GABA applied by pressure pulses from closely positioned micropipettes. The current was directly proportional to the concentration of GABA (EC50, 111 microM; Hill coefficient, 1.7). DRG neurons also responded to micromolar concentrations of pentobarbital and alphaxalone but not to cis-4-aminocrotonic acid (CACA), glycine, or taurine. Baclofen (100 microM) affected neither the holding currents nor K+ conductance (when patch pipettes were filled with 130 mM KCl) caused by depolarizing pulses. Whole cell GABA-currents were blocked by bicuculline, picrotoxin, and t-butylbicyclophosphorothionate (TBPS; all at 100 microM). The reversal potential of whole cell GABA-currents was close to the theoretical Cl- equilibrium potential, shifting with changes in intracellular Cl- concentration in a manner expected for Cl--selective channels. The whole cell I-V curve for GABA-induced currents demonstrated slight outward rectification with nearly symmetrical outside and inside Cl- concentrations. Spectral analysis of GABA-induced membrane current fluctuations showed that the kinetic components were best fitted by a triple Lorentzian function. The apparent elementary conductance for GABA-activated Cl- channels determined from the power spectra was 22.6 pS. Single-channel recordings from cell-attached patches with pipettes containing 10 microM GABA indicated that GABA-activated channels have a main and a subconductance level with values of 30 and 19 pS, respectively. Mean open and closed times of the channel were characterized by two or three exponential decay functions, suggesting two or three open channel states and two closed states. Single channels showed a lack of rectification. The actions of GABA on cultured human embryonic DRG neurons are mediated through the activation of GABAA receptors with properties corresponding to those found in the CNS of human and other mammalian species but differing from those of cultured human adult DRG neurons.
Collapse
Affiliation(s)
- A Y Valeyev
- Neurophysiology and Spinal Cord Pharmacology Laboratories, Veterans Affairs Medical Center, Miami, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
50
|
Amato A, Connolly CN, Moss SJ, Smart TG. Modulation of neuronal and recombinant GABAA receptors by redox reagents. J Physiol 1999; 517 ( Pt 1):35-50. [PMID: 10226147 PMCID: PMC2269321 DOI: 10.1111/j.1469-7793.1999.0035z.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1998] [Accepted: 10/22/1998] [Indexed: 11/29/2022] Open
Abstract
1. The functional role played by the postulated disulphide bridge in gamma-aminobutyric acid type A (GABAA) receptors and its susceptibility to oxidation and reduction were studied using recombinant (murine receptor subunits expressed in human embryonic kidney cells) and rat neuronal GABAA receptors in conjunction with whole-cell and single channel patch-clamp techniques. 2. The reducing agent dithiothreitol (DTT) reversibly potentiated GABA-activated responses (IGABA) of alpha1beta1 or alpha1beta2 receptors while the oxidizing reagent 5, 5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) caused inhibition. Redox modulation of IGABA was independent of GABA concentration, membrane potential and the receptor agonist and did not affect the GABA EC50 or Hill coefficient. The endogenous antioxidant reduced glutathione (GSH) also potentiated IGABA in alpha1beta2 receptors, while both the oxidized form of DTT and glutathione (GSSG) caused small inhibitory effects. 3. Recombinant receptors composed of alpha1beta1gamma2S or alpha1beta2gamma2S were considerably less sensitive to DTT and DTNB. 4. For neuronal GABAA receptors, IGABA was enhanced by flurazepam and relatively unaffected by redox reagents. However, in cultured sympathetic neurones, nicotinic acetylcholine-activated responses were inhibited by DTT whilst in cerebellar granule neurones, NMDA-activated currents were potentiated by DTT and inhibited by DTNB. 5. Single GABA-activated ion channel currents exhibited a conductance of 16 pS for alpha1beta1 constructs. DTT did not affect the conductance or individual open time constants determined from dwell time histograms, but increased the mean open time by affecting the channel open probability without increasing the number of cell surface receptors. 6. A kinetic model of the effects of DTT and DTNB suggested that the receptor existed in equilibrium between oxidized and reduced forms. DTT increased the rate of entry into reduced receptor forms and also into desensitized states. DTNB reversed these kinetic effects. 7. Our results indicate that GABAA receptors formed by alpha and beta subunits are susceptible to regulation by redox agents. Inclusion of the gamma2 subunit in the receptor, or recording from some neuronal GABAA receptors, resulted in reduced sensitivity to DTT and DTNB. Given the suggested existence of alphabeta subunit complexes in some areas of the central nervous system together with the generation and release of endogenous redox compounds, native GABAA receptors may be subject to regulation by redox mechanisms.
Collapse
Affiliation(s)
- A Amato
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | |
Collapse
|