1
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
2
|
Takeuchi H, Kurahashi T. Segregation of Ca2+ signaling in olfactory signal transduction. J Gen Physiol 2023; 155:213865. [PMID: 36787110 PMCID: PMC9960254 DOI: 10.1085/jgp.202213165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
Olfactory signal transduction is conducted through a cAMP-mediated second messenger cascade. The cytoplasmic Ca2+ concentration increases through the opening of CNG channels, a phenomenon that underlies two major functions, namely, signal boosting and olfactory adaptation. Signal boosting is achieved by an additional opening of the Ca2+-activated Cl- channel whereas adaptation is regulated by Ca2+ feedback to the CNG channel. Thus, the influx of Ca2+ and the resultant increase in cytoplasmic Ca2+ levels play seemingly opposing effects: increasing the current while reducing the current through adaptation. The two functions could be interpreted as compensating for each other. However, in real cells, both functions should be segregated. Ca2+ dynamics in olfactory cilia need to be directly measured, but technical difficulties accompanying the thin structure of olfactory cilia have prevented systematic analyses. In this study, using a combination of electrophysiology, local photolysis of caged cAMP, and Ca2+ imaging, we found that free Ca2+ in the local ciliary cytoplasm decreased along with a reduction in the current containing Ca2+-activated Cl- components returning to the basal level, whereas Ca2+-dependent adaptation persisted for a longer period. The activity of Cl- channels is highly likely to be regulated by the free Ca2+ that is present only immediately after the influx through the CNG channel, and an exclusive interaction between Ca2+ and Ca2+-binding proteins that mediate the adaptation may modulate the adaptation lifetime.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Correspondence to Hiroko Takeuchi:
| | - Takashi Kurahashi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Rich TC, Xin W, Leavesley SJ, Francis CM, Taylor M. Ion Channel-Based Reporters for cAMP Detection. Methods Mol Biol 2022; 2483:265-279. [PMID: 35286682 DOI: 10.1007/978-1-0716-2245-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last 20 years tremendous progress has been made in the development of single cell cAMP sensors. Sensors are based upon cAMP binding proteins that have been modified to transduce cAMP concentrations into electrical or fluorescent readouts that can be readily detected using patch clamp amplifiers, photomultiplier tubes, or cameras. Here, we describe two complementary approaches for the detection and measurement of cAMP signals near the plasma membrane of cells using cyclic nucleotide (CNG) channel-based probes. These probes take advantage of the ability of CNG channels to transduce small changes in cAMP concentration into ionic flux through channel pores that can be readily detected by measuring Ca2+ and/or Mn2+ influx or by measuring ionic currents.
Collapse
Affiliation(s)
- Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, AL, USA.
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.
| | - Wenkuan Xin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Silas J Leavesley
- Department of Pharmacology, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL, USA
| | - C Michael Francis
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
| | - Mark Taylor
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
4
|
Takeuchi H, Kurahashi T. Second messenger molecules have a limited spread in olfactory cilia. J Gen Physiol 2018; 150:1647-1659. [PMID: 30352795 PMCID: PMC6279364 DOI: 10.1085/jgp.201812126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/12/2018] [Accepted: 10/03/2018] [Indexed: 01/12/2023] Open
Abstract
Olfactory responses in the cilia of olfactory receptor cells last for longer than 10 s, which cannot be explained by free diffusion of second messengers. Takeuchi and Kurahashi show that these signaling molecules have a limited spread and remain at the site of generation for a long time. Odorants are detected by olfactory receptors on the sensory cilia of olfactory receptor cells (ORCs). These cylindrical cilia have a diameters of 100–200 nm, within which the components required for signal transduction by the adenylyl cyclase–cAMP system are located. The kinetics of odorant responses are determined by the lifetimes of active proteins as well as the production, diffusion, and extrusion/degradation of second messenger molecules (cAMP and Ca2+). However, there is limited information about the molecular kinetics of ORC responses, mostly because of the technical limitations involved in studying such narrow spaces and fine structures. In this study, using a combination of electrophysiology, photolysis of caged substances, and spot UV laser stimulation, we show that second messenger molecules work only in the vicinity of their site of generation in the olfactory cilia. Such limited spreading clearly explains a unique feature of ORCs, namely, the integer multiple of unitary events that they display in low Ca2+ conditions. Although the small ORC uses cAMP and Ca2+ for various functions in different regions of the cell, these substances seem to operate only in the compartment that has been activated by the appropriate stimulus. We also show that these substances remain in the same vicinity for a long time. This enables the ORC to amplify the odorant signal and extend the lifetime of Ca2+-dependent adaptation. Cytoplasmic buffers and extrusion/degradation systems seem to play a crucial role in limiting molecular spreading. In addition, binding sites on the cytoplasmic surface of the plasma membrane may limit molecular diffusion in such a narrow space because of the high surface/volume ratio. Such efficient energy conversion may also be broadly used in other biological systems that have not yet been subjected to systematic experiments.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takashi Kurahashi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Abstract
Olfactory sensory neurons are bipolar cells with a single thin dendrite that ends in a protuberance, the knob, from which several thin cilia emerge. The cilia are the site of olfactory transduction since they contain the molecular machinery necessary to initiate the olfactory response.The patch clamp technique is a powerful tool to investigate ion channels and receptor mediated currents in neurons. In this chapter, we describe the preparation of dissociated olfactory neurons and their use in patch clamp experiments for the functional characterization of their ionic conductances.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council, Genoa, Italy.
| |
Collapse
|
6
|
Abstract
In the last 15 years, tremendous progress has been made in the development of single-cell cAMP sensors. Sensors are based upon cAMP-binding proteins that have been modified to transduce cAMP concentrations into electrical or fluorescent readouts that can be readily detected using patch clamp amplifiers, photomultiplier tubes, or cameras. Here we describe two complementary approaches for the detection and measurement of cAMP signals near the plasma membrane of cells. These probes take advantage of the ability of cyclic nucleotide-gated (CNG) channels to transduce small changes in cAMP concentrations into ionic flux through channel pores that can be readily detected by measuring Ca(2+) and/or Mn(2+) influx or by measuring ionic currents.
Collapse
|
7
|
Osorio R, Schmachtenberg O. Calcium-activated chloride channels do not contribute to the odorant transduction current in the marine teleost Isacia conceptionis. JOURNAL OF FISH BIOLOGY 2013; 83:1468-1473. [PMID: 24580677 DOI: 10.1111/jfb.12253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 09/11/2013] [Indexed: 06/03/2023]
Abstract
This study compared the contribution of the Ca²⁺-activated Cl⁻ conductance to the electroolfactogram (EOG) evoked by different odorant classes between the marine Cabinza grunt Isacia conceptionis and rainbow trout Oncorhynchus mykiss. The Ca²⁺-activated Cl⁻ channel blocker niflumic acid significantly diminished odorant responses in O. mykiss, but had no effect on the EOG in I. conceptionis, supporting the notion that Ca²⁺-activated Cl⁻ channels may not operate as odorant transduction current amplifiers in this marine teleost.
Collapse
Affiliation(s)
- R Osorio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, 2360102, Valparaíso, Chile
| | | |
Collapse
|
8
|
Kavoi BM, Makanya AN, Plendl J, Johanna P, Kiama SG. Morphofunctional adaptations of the olfactory mucosa in postnatally developing rabbits. Anat Rec (Hoboken) 2012; 295:1352-63. [PMID: 22707244 DOI: 10.1002/ar.22520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/29/2012] [Indexed: 11/08/2022]
Abstract
Rabbits are born blind and deaf and receive unusually limited maternal care. Consequently, their suckling young heavily rely on the olfactory cue for nipple attachment. However, the postnatal morphofunctional adaptations of olfactory mucosa (OM) are not fully elucidated. To clarify on the extent and the pattern of refinement of the OM following birth in the rabbit, morphologic and morphometric analysis of the mucosa were done at neonatal (0-1 days), suckling (2 weeks), weanling (4 weeks), and adult (6-8 months) stages of postnatal development. In all the age groups, the basic components of the OM were present. However, proliferative activity of cells of the mucosal epithelium decreased with increasing age as revealed by Ki-67 immunostaining. Diameters of axon bundles, packing densities of olfactory cells, and cilia numbers per olfactory cell knob increased progressively with age being 5.5, 2.1, and 2.6 times, respectively, in the adult as compared with the neonate. Volume fraction values for the bundles increased by 5.3% from birth to suckling age and by 7.4% from weaning to adulthood and the bundle cores were infiltrated with blood capillaries in all ages except in the adult where such vessels were lacking. The pattern of cilia projection from olfactory cell knobs also showed age-related variations, that is, arose as a tuft from the tips of the knobs in neonates and sucklings and in a radial pattern from the knob bases in weanlings and adults. These morphological changes may be attributed to the high olfactory functional demand associated with postnatal development in the rabbit.
Collapse
Affiliation(s)
- Boniface M Kavoi
- Department of Veterinary Anatomy & Physiology, University of Nairobi, Nairobi, Kenya.
| | | | | | | | | |
Collapse
|
9
|
Odorant Detection and Discrimination in the Olfactory System. LECTURE NOTES IN ELECTRICAL ENGINEERING 2011. [DOI: 10.1007/978-94-007-1324-6_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Modelling and sensitivity analysis of the reactions involving receptor, G-protein and effector in vertebrate olfactory receptor neurons. J Comput Neurosci 2009; 27:471-91. [PMID: 19533315 DOI: 10.1007/s10827-009-0162-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 04/08/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
A biochemical model of the receptor, G-protein and effector (RGE) interactions during transduction in the cilia of vertebrate olfactory receptor neurons (ORNs) was developed and calibrated to experimental recordings of cAMP levels and the receptor current (RC). The model describes the steps from odorant binding to activation of the effector enzyme which catalyzes the conversion of ATP to cAMP, and shows how odorant stimulation is amplified and delayed by the RGE transduction cascade. A time-dependent sensitivity analysis was performed on the model. The model output-the cAMP production rate-is particularly sensitive to a few, dominant parameters. During odorant stimulation it depends mainly on the initial density of G-proteins and the catalytic constant for cAMP production.
Collapse
|
11
|
Takeuchi H, Ishida H, Hikichi S, Kurahashi T. Mechanism of olfactory masking in the sensory cilia. J Gen Physiol 2009; 133:583-601. [PMID: 19433623 PMCID: PMC2713142 DOI: 10.1085/jgp.200810085] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 04/22/2009] [Indexed: 12/02/2022] Open
Abstract
Olfactory masking has been used to erase the unpleasant sensation in human cultures for a long period of history. Here, we show a positive correlation between the human masking and the odorant suppression of the transduction current through the cyclic nucleotide-gated (CNG) and Ca2+-activated Cl- (Cl(Ca)) channels. Channels in the olfactory cilia were activated with the cytoplasmic photolysis of caged compounds, and their sensitiveness to odorant suppression was measured with the whole cell patch clamp. When 16 different types of chemicals were applied to cells, cyclic AMP (cAMP)-induced responses (a mixture of CNG and Cl(Ca) currents) were suppressed widely with these substances, but with different sensitivities. Using the same chemicals, in parallel, we measured human olfactory masking with 6-rate scoring tests and saw a correlation coefficient of 0.81 with the channel block. Ringer's solution that was just preexposed to the odorant-containing air affected the cAMP-induced current of the single cell, suggesting that odorant suppression occurs after the evaporation and air/water partition of the odorant chemicals at the olfactory mucus. To investigate the contribution of Cl(Ca), the current was exclusively activated by using the ultraviolet photolysis of caged Ca, DM-nitrophen. With chemical stimuli, it was confirmed that Cl(Ca) channels were less sensitive to the odorant suppression. It is interpreted, however, that in the natural odorant response the Cl(Ca) is affected by the reduction of Ca2+ influx through the CNG channels as a secondary effect. Because the signal transmission between CNG and Cl(Ca) channels includes nonlinear signal-boosting process, CNG channel blockage leads to an amplified reduction in the net current. In addition, we mapped the distribution of the Cl(Ca) channel in living olfactory single cilium using a submicron local [Ca2+]i elevation with the laser photolysis. Cl(Ca) channels are expressed broadly along the cilia. We conclude that odorants regulate CNG level to express masking, and Cl(Ca) in the cilia carries out the signal amplification and reduction evenly spanning the entire cilia. The present findings may serve possible molecular architectures to design effective masking agents, targeting olfactory manipulation at the nano-scale ciliary membrane.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 560-8531, Japan
| | - Hirohiko Ishida
- Perfumery Development Research Laboratories, Kao Corporation, Tokyo, 131-8501, Japan
| | - Satoshi Hikichi
- Perfumery Development Research Laboratories, Kao Corporation, Tokyo, 131-8501, Japan
| | - Takashi Kurahashi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|
12
|
Song HG, Young Kwon J, Soo Han H, Bae YC, Moon C. First Contact to Odors: Our Current Knowledge about Odorant Receptor. SENSORS 2008; 8:6303-6320. [PMID: 27873871 PMCID: PMC3707451 DOI: 10.3390/s8106303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
Abstract
Chemical senses – especially smell – are known to be important for the fundamental life events such as sensing predators, selecting mates, as well as finding food. The chemical senses are decoded in the olfactory system which is able to detect and differentiate thousands of odorous substances comprised of chemically divergent structures (i.e. odorants). The high selectivity of the olfactory system is heavily dependent on the receptors for each odorants (i.e. odorant receptors). Thus, studying odorant receptors may not only facilitate our understanding the initial events of olfaction but provide crucial knowledge for developing a novel, odorant receptor-based biosensor for chemical screening. Here we provide a review of recent advances in our understanding of odorant receptors.
Collapse
Affiliation(s)
- Hyoung-Gon Song
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Cheil Moon
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
13
|
Quantitative measurement of cAMP concentration using an exchange protein directly activated by a cAMP-based FRET-sensor. Biophys J 2008; 95:5412-23. [PMID: 18708470 DOI: 10.1529/biophysj.107.125666] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Förster resonance energy transfer (FRET)-based biosensors for the quantitative analysis of intracellular signaling, including sensors for monitoring cyclic adenosine monophosphate (cAMP), are of increasing interest. The measurement of the donor/acceptor emission ratio in tandem biosensors excited at the donor excitation wavelength is a commonly used technique. A general problem, however, is that this ratio varies not only with the changes in cAMP concentration but also with the changes of the ionic environment or other factors affecting the folding probability of the fluorophores. Here, we use a spectral FRET analysis on the basis of two excitation wavelengths to obtain a reliable measure of the absolute cAMP concentrations with high temporal and spatial resolution by using an "exchange protein directly activated by cAMP". In this approach, FRET analysis is simplified and does not require additional calibration routines. The change in FRET efficiency (E) of the biosensor caused by [cAMP] changes was determined as DeltaE = 15%, whereas E varies between 35% at low and 20% at high [cAMP], allowing quantitative measurement of cAMP concentration in the range from 150 nM to 15 microM. The method described is also suitable for other FRET-based biosensors with a 1:1 donor/acceptor stoichiometry. As a proof of principle, we measured the specially resolved cAMP concentration within living cells and determined the dynamic changes of cAMP levels after stimulation of the Gs-coupled serotonin receptor subtype 7 (5-HT7).
Collapse
|
14
|
Kleene SJ. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 2008; 33:839-59. [PMID: 18703537 DOI: 10.1093/chemse/bjn048] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Most vertebrate olfactory receptor neurons share a common G-protein-coupled pathway for transducing the binding of odorant into depolarization. The depolarization involves 2 currents: an influx of cations (including Ca2+) through cyclic nucleotide-gated channels and a secondary efflux of Cl- through Ca2+-gated Cl- channels. The relation between stimulus strength and receptor current shows positive cooperativity that is attributed to the channel properties. This cooperativity amplifies the responses to sufficiently strong stimuli but reduces sensitivity and dynamic range. The odor response is transient, and prolonged or repeated stimulation causes adaptation and desensitization. At least 10 mechanisms may contribute to termination of the response; several of these result from an increase in intraciliary Ca2+. It is not known to what extent regulation of ionic concentrations in the cilium depends on the dendrite and soma. Although many of the major mechanisms have been identified, odor transduction is not well understood at a quantitative level.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Cancer and Cell Biology, University of Cincinnati, PO Box 670667, 231 Albert Sabin Way, Cincinnati, OH 45267-0667, USA.
| |
Collapse
|
15
|
Gomez G, Celii A. The peripheral olfactory system of the domestic chicken: physiology and development. Brain Res Bull 2008; 76:208-16. [PMID: 18498933 DOI: 10.1016/j.brainresbull.2008.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/26/2007] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Olfaction is a ubiquitous sensory system found in all terrestrial vertebrates. Birds use olfaction for several important activities such as feeding and mating; thus, understanding bird biology would also require the systematic study olfaction. In addition, the olfactory system has several unique features that are useful for the study of nervous system function and development, including a large multigene family for olfactory receptor expression, peripheral neurons that regenerate, and a complex system for sensory innervation of the olfactory bulb. We focused on physiological, anatomical and behavioral approaches to study the chick olfactory neurons and the olfactory bulb. Chick olfactory neurons displayed some properties similar to those found in mature neurons of other vertebrate species, and other properties that were unique. Since information from these neurons is initially processed in the olfactory bulb, we also conducted preliminary studies on the developmental timeline of this structure and showed that glomerular structures are organized in ovo during a critical time period, during which embryonic chicks can form behavioral associations with odorants introduced in ovo. Lastly, we have shown that chick olfactory neurons can grow and mature in vitro, allowing their use in cell culture studies. These results collectively demonstrate some of the features of the olfactory system that are common to all vertebrates, and some that are unique to birds. These highlight the potential for the use of the physiology and development of the olfactory system as a model system for avian brain neurobiology.
Collapse
Affiliation(s)
- George Gomez
- Biology Department, University of Scranton, Scranton, PA 18510, USA.
| | | |
Collapse
|
16
|
Distribution, amplification, and summation of cyclic nucleotide sensitivities within single olfactory sensory cilia. J Neurosci 2008; 28:766-75. [PMID: 18199776 DOI: 10.1523/jneurosci.3531-07.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Submicron local cAMP elevation was used to map the distribution of transduction channels in single olfactory cilia. After the fine fluorescent visualization of the cilium with the laser-scanning confocal microscope, the intraciliary cAMP was jumped locally with the laser beam that photolyzes cytoplasmic caged compounds. Simultaneously, cells' responses were obtained with the whole-cell patch clamp. Responses were observed anywhere within the cilia, showing the broad distribution of transduction channels. For odor detection, such distribution would be useful for expanding the available responding area to increase the quantum efficiency. Also, the stimulus onto only 1 microm region induced >100 pA response operated by >700-2300 channels, although only 1 pA is sufficient for olfactory cells to generate action potentials. The large local response indicates a presence of strong amplification achieved with a high-density distribution of the transduction channels for the local ciliary excitation.
Collapse
|
17
|
Clemens S, Calin-Jageman R, Sakurai A, Katz PS. Altering cAMP levels within a central pattern generator modifies or disrupts rhythmic motor output. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:1265-71. [PMID: 17972082 DOI: 10.1007/s00359-007-0280-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/28/2022]
Abstract
Cyclic AMP is a second messenger that has been implicated in the neuromodulation of rhythmically active motor patterns. Here, we tested whether manipulating cAMP affects swim motor pattern generation in the mollusc, Tritonia diomedea. Inhibiting adenylyl cyclase (AC) with 9-cyclopentyladenine (9-CPA) slowed or stopped the swim motor pattern. Inhibiting phosphodiesterase with 3-isobutyl-1-methylxanthine (IBMX) or applying dibutyryl-cAMP (dB-cAMP) disrupted the swim motor pattern, as did iontophoresing cAMP into the central pattern generator neuron C2. Additionally, during wash-in, IBMX sometimes temporarily produced extended or spontaneous swim motor patterns. Photolysis of caged cAMP in C2 after initiation of the swim motor pattern inhibited subsequent bursting. These results suggest that cAMP levels can dynamically modulate swim motor pattern generation, possibly shaping the output of the central pattern generator on a cycle-by-cycle basis.
Collapse
Affiliation(s)
- Stefan Clemens
- Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, 313 Ferst Street, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
18
|
Castillo K, Delgado R, Bacigalupo J. Plasma membrane Ca(2+)-ATPase in the cilia of olfactory receptor neurons: possible role in Ca(2+) clearance. Eur J Neurosci 2007; 26:2524-31. [PMID: 17970729 DOI: 10.1111/j.1460-9568.2007.05863.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Olfactory sensory neurons respond to odorants increasing Ca(2+) concentrations in their chemosensory cilia. Calcium enters the cilia through cAMP-gated channels, activating Ca(2+)-dependent chloride or potassium channels. Calcium also has a fundamental role in odour adaptation, regulating cAMP turnover rate and the affinity of the cyclic nucleotide-gated channels for cAMP. It has been shown that a Na(+)/Ca(2+) exchanger (NCX) extrudes Ca(2+) from the cilia. Here we confirm previous evidence that olfactory cilia also express plasma membrane Ca(2+)-ATPase (PMCA), and show the first evidence supporting a role in Ca(2+) removal. Both transporters were detected by immunoblot of purified olfactory cilia membranes. The pump was also revealed by immunocytochemistry and immunohistochemistry. Inside-out cilia membrane vesicles transported Ca(2+) in an ATP-dependent fashion. PMCA activity was potentiated by luminal Ca(2+) (K(0.5) = 670 nm) and enhanced by calmodulin (CaM; K(0.5) = 31 nm). Both carboxyeosin (CE) and calmidazolium reduced Ca(2+) transport, as expected for a CaM-modulated PMCA. The relaxation time constant (tau) of the Ca(2+)-dependent Cl(-) current (272 +/- 78 ms), indicative of luminal Ca(2+) decline, was increased by CE (2181 +/- 437 ms), by omitting ATP (666 +/- 49 ms) and by raising pH (725 +/- 65 ms), suggesting a role of the pump on Ca(2+) clearance. Replacement of external Na(+) by Li(+) had a similar effect (tau = 442 +/- 8 ms), confirming the NCX involvement in Ca(2+) extrusion. The evidence suggests that both Ca(2+) transporters contribute to re-establish resting Ca(2+) levels in the cilia following olfactory responses.
Collapse
Affiliation(s)
- Karen Castillo
- Department of Biology, Faculty of Sciences and Millennium Institute for Cell Dynamics and Biotechnology, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
19
|
Boccaccio A, Menini A. Temporal development of cyclic nucleotide-gated and Ca2+ -activated Cl- currents in isolated mouse olfactory sensory neurons. J Neurophysiol 2007; 98:153-60. [PMID: 17460108 DOI: 10.1152/jn.00270.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A Ca(2+)-activated Cl(-) current constitutes a large part of the transduction current in olfactory sensory neurons. The binding of odorants to olfactory receptors in the cilia produces an increase in cAMP concentration; Ca(2+) enters into the cilia through CNG channels and activates a Cl(-) current. In intact mouse olfactory sensory neurons little is known about the kinetics of the Ca(2+)-activated Cl(-) current. Here, we directly activated CNG channels by flash photolysis of caged cAMP or 8-Br-cAMP and measured the current response with the whole cell voltage-clamp technique in mouse neurons. We measured multiphasic currents in the rising phase of the response at -50 mV. The current rising phase became monophasic in the absence of extracellular Ca(2+), at +50 mV, or when most of the intracellular Cl(-) was replaced by gluconate to shift the equilibrium potential for Cl(-) to -50 mV. These results show that the second phase of the current in mouse intact neurons is attributed to a Cl(-) current activated by Ca(2+), similarly to previous results on isolated frog cilia. The percentage of the total saturating current carried by Cl(-) was estimated in two ways: 1) by measuring the maximum secondary current and 2) by blocking the Cl(-) channel with niflumic acid. We estimated that in the presence of 1 mM extracellular Ca(2+) and in symmetrical Cl(-) concentrations the Cl(-) component can constitute up to 90% of the total current response. These data show how to unravel the CNG and Ca(2+)-activated Cl(-) component of the current rising phase.
Collapse
Affiliation(s)
- Anna Boccaccio
- International School for Advanced Studies, SISSA, Sector of Neurobiology, Basovizza, Trieste, Italy.
| | | |
Collapse
|
20
|
Boccaccio A, Lagostena L, Hagen V, Menini A. Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. ACTA ACUST UNITED AC 2006; 128:171-84. [PMID: 16880265 PMCID: PMC2151529 DOI: 10.1085/jgp.200609555] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vertebrate olfactory sensory neurons rapidly adapt to repetitive odorant stimuli. Previous studies have shown that the principal molecular mechanisms for odorant adaptation take place after the odorant-induced production of cAMP, and that one important mechanism is the negative feedback modulation by Ca2+-calmodulin (Ca2+-CaM) of the cyclic nucleotide-gated (CNG) channel. However, the physiological role of the Ca2+-dependent activity of phosphodiesterase (PDE) in adaptation has not been investigated yet. We used the whole-cell voltage-clamp technique to record currents in mouse olfactory sensory neurons elicited by photorelease of 8-Br-cAMP, an analogue of cAMP commonly used as a hydrolysis-resistant compound and known to be a potent agonist of the olfactory CNG channel. We measured currents in response to repetitive photoreleases of cAMP or of 8-Br-cAMP and we observed similar adaptation in response to the second stimulus. Control experiments were conducted in the presence of the PDE inhibitor IBMX, confirming that an increase in PDE activity was not involved in the response decrease. Since the total current activated by 8-Br-cAMP, as well as that physiologically induced by odorants, is composed not only of current carried by Na+ and Ca2+ through CNG channels, but also by a Ca2+-activated Cl− current, we performed control experiments in which the reversal potential of Cl− was set, by ion substitution, at the same value of the holding potential, −50 mV. Adaptation was measured also in these conditions of diminished Ca2+-activated Cl− current. Furthermore, by producing repetitive increases of ciliary's Ca2+ with flash photolysis of caged Ca2+, we showed that Ca2+-activated Cl− channels do not adapt and that there is no Cl− depletion in the cilia. All together, these results indicate that the activity of ciliary PDE is not required for fast adaptation to repetitive stimuli in mouse olfactory sensory neurons.
Collapse
Affiliation(s)
- Anna Boccaccio
- International School for Advanced Studies, S.I.S.S.A., Sector of Neurobiology, 34014 Trieste, Italy.
| | | | | | | |
Collapse
|
21
|
Abstract
Olfactory cilia contain the known components of olfactory signal transduction, including a high density of cyclic-nucleotide-gated (CNG) channels. CNG channels play an important role in mediating odor detection. The channels are activated by cAMP, which is formed by a G-protein-coupled transduction cascade. Frog olfactory cilia are 25-200 microm in length, so the spatial distribution of CNG channels along the length should be important in determining the sensitivity of odor detection. We have recorded from excised cilia and modeled diffusion of cAMP into a cilium to determine the spatial distribution of the CNG channels along the ciliary length. The proximal segment, which in frog is the first 20% of the cilium, appears to express a small fraction of the CNG channels, whereas the distal segment contains the majority, mostly clustered in one region.
Collapse
Affiliation(s)
- Richard J Flannery
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, Ohio 45267-0667, USA
| | | | | |
Collapse
|
22
|
Abstract
Molecular mechanisms underlying olfactory signal amplification were investigated by monitoring cAMP dynamics in the intact sensory cilia. We saw that [cAMP]i increased superlinearly with time during odorant stimuli for >1 s. This time course was remarkably different from that obtained with the rapid quench method previously applied to the in vitro preparation, in which [cAMP]i change has been reported to be transient. The superlinear increase of [cAMP]i was attributable to a gradual increase of cAMP production rate that was consistent with the thermodynamical interaction model between elemental molecules, as has been revealed on the rod photoreceptor cell. It thus seems likely that the fundamental mechanism for molecular interactions between olfactory transduction elements is similar to that of the rod. In olfaction, however, cAMP production was extremely small (approximately 200,000 molecules/s/cell at the maximum), in contrast to the cGMP hydrolysis in the rod (250,000 molecules/photon). The observed numbers indicate that the olfactory receptor cell has lower amplification at the enzymatic cascade. Seemingly, such low amplification is a disadvantage for the signal transduction, but this unique mechanism would be essential to reduce the loss of ATP that is broadly used for the activities of cells. Apparently, transduction by a smaller number of second-messenger formations would be achieved by the fine ciliary structure that has a high surface-volume ratio. In addition, it is speculated that this low amplification at their enzymatic processes may be the reason why the olfactory receptor cell has acquired high amplification at the final stage of transduction channels, using Ca2+ as a third messenger.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | |
Collapse
|
23
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|
24
|
El Meskini R, Cline LB, Eipper BA, Ronnett GV. The developmentally regulated expression of Menkes protein ATP7A suggests a role in axon extension and synaptogenesis. Dev Neurosci 2005; 27:333-48. [PMID: 16137991 DOI: 10.1159/000086713] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 02/09/2005] [Indexed: 11/19/2022] Open
Abstract
Menkes disease (MD) is a neurodegenerative disorder caused by mutation of the copper transporter ATP7A. While several enzymes expressed in mature neurons require copper, MD neurodegenerative changes cannot be explained by known requirements for ATP7A in neuronal development. To investigate additional roles for ATP7A during development, we characterized its pattern of expression using the olfactory system as a neurodevelopmental model. ATP7A expression in neurons was developmentally regulated rather than constitutively. Initially expressed in the cell bodies of developing neurons, ATP7A protein later shifted to extending axons, peaking prior to synaptogenesis. Similarly, after injury-stimulated neurogenesis, ATP7A expression increased in neurons and axons preceding synaptogenesis. Interestingly, copper-transport-deficient ATP7A still exhibits axonal localization. These results support a role for ATP7A in axon extension, which may contribute to the severe neurodegeneration characteristic of MD.
Collapse
Affiliation(s)
- Rajaâ El Meskini
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Conn., USA
| | | | | | | |
Collapse
|
25
|
Abstract
Calcium-activated chloride channels (CaCCs) play important roles in cellular physiology, including epithelial secretion of electrolytes and water, sensory transduction, regulation of neuronal and cardiac excitability, and regulation of vascular tone. This review discusses the physiological roles of these channels, their mechanisms of regulation and activation, and the mechanisms of anion selectivity and conduction. Despite the fact that CaCCs are so broadly expressed in cells and play such important functions, understanding these channels has been limited by the absence of specific blockers and the fact that the molecular identities of CaCCs remains in question. Recent status of the pharmacology and molecular identification of CaCCs is evaluated.
Collapse
Affiliation(s)
- Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
26
|
Madrid R, Delgado R, Bacigalupo J. Cyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons. J Neurophysiol 2005; 94:1781-8. [PMID: 15817646 DOI: 10.1152/jn.01253.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odor stimulation may excite or inhibit olfactory receptor neurons (ORNs). It is well established that the excitatory response involves a cyclic AMP (cAMP) transduction mechanism that activates a nonselective cationic cyclic nucleotide-gated (CNG) conductance, accompanied by the activation of a Ca2+-dependent Cl(-) conductance, both causing a depolarizing receptor potential. In contrast, odor inhibition is attributed to a hyperpolarizing receptor potential. It has been proposed that a Ca2+-dependent K+ (K(Ca)) conductance plays a key role in odor inhibition, both in toad and rat isolated olfactory neurons. The mechanism underlying odor inhibition has remained elusive. We assessed its study using various pharmacological agents and caged compounds for cAMP, Ca2+, and inositol 1,4,5-triphosphate (InsP3) on isolated toad ORNs. The odor-triggered K(Ca) current was reduced on exposing the cell either to the CNG channel blocker LY83583 (20 microM) or to the adenylyl cyclase inhibitor SQ22536 (100 microM). Photorelease of caged Ca2+ activated a Cl- current sensitive to niflumic acid (10 microM) and a K+ current blockable by charybdotoxin (20 nM) and iberiotoxin (20 nM). In contrast, photoreleased Ca2+ had no effect on cells missing their cilia, indicating that these conductances are confined to the cilia. Photorelease of cAMP induced a charybdotoxin-sensitive K+ current in intact ORNs. Photorelease of InsP3 did not increase the membrane conductance of olfactory neurons, arguing against a direct role of InsP3 in chemotransduction. We conclude that a cAMP cascade mediates the activation of the ciliary Ca2+-dependent K+ current and that the Ca2+ ions that activate the inhibitory current enter the cilia through CNG channels.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Department of Biology, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile
| | | | | |
Collapse
|
27
|
Trinh K, Storm DR. Detection of odorants through the main olfactory epithelium and vomeronasal organ of mice. Nutr Rev 2005; 62:S189-92; discussion S224-41. [PMID: 15630934 DOI: 10.1111/j.1753-4887.2004.tb00098.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous research has indicated that volatile odorants are detected through the main olfactory epithelium (MOE), whereas pheromones are detected via the vomeronasal organ (VNO). Gene disruption studies have established that olfactory signaling through the MOE is mediated through receptor stimulation of type 3 adenylyl cyclase (AC3). Mice lacking AC3 cannot detect odorants through the MOE. Recently, it was discovered using olfactory-based behavioral assays that AC3 mutant mice can detect some volatile odorants. An analysis of these mutant mice led to the surprising discovery that some odorants are detected through the VNO.
Collapse
Affiliation(s)
- Kien Trinh
- Department of Pharmacology, University of Washington, Seattle 98195-7280, USA
| | | |
Collapse
|
28
|
Tomaru A, Kurahashi T. Mechanisms determining the dynamic range of the bullfrog olfactory receptor cell. J Neurophysiol 2004; 93:1880-8. [PMID: 15548631 DOI: 10.1152/jn.00303.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spike discharges of single olfactory receptor cells (ORCs) were recorded with the whole cell patch-clamp method applied to slice preparation. In parallel, activities of transduction channels were measured under the voltage-clamp condition. When cells were stimulated by odorants, 54 out of 306 cells exhibited inward current responses (10 mM cineole in the puffer pipette). The amplitude of the inward current was dependent on the stimulus period, reflecting the time integration for the stimulus dose, and the relation could be fitted by the Hill equation. Under the current-clamp condition, current injection induced spike discharges. In cells showing repetitive firings, the firing frequency was dependent on the amount of injected current. The relation was fitted by the Michaelis-Menten equation showing saturation. When cells were responsive to the odorant and had abilities to discharge repetitive spikes, the depolarizing responses were accompanied by repetitive spikes. In those cells, the spike frequency was dose-dependent, expressing saturation similar to the result obtained by current injection. Since both transduction channel and spike generative steps expressed saturation in their dose dependences, we explored what step(s) actually determines saturation in ORC signaling processes. By examining dose-response relations of both the current and spikes in the same cells, saturating dose was found to be dependent largely on that of the transduction step. This suggests that the dynamic range is fundamentally determined by the transduction system. In addition, a simple model derived from the nonlinearity of the plasma membrane could explain that a critical level of dynamic range was, at least in part, modified by the membrane nonlinearity.
Collapse
Affiliation(s)
- Akihiro Tomaru
- Department of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | |
Collapse
|
29
|
Delay R, Restrepo D. Odorant responses of dual polarity are mediated by cAMP in mouse olfactory sensory neurons. J Neurophysiol 2004; 92:1312-9. [PMID: 15331642 DOI: 10.1152/jn.00140.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Some olfactory sensory neurons (OSNs) respond to odors with hyperpolarization. Although transduction for excitatory responses is mediated by opening of a cyclic nucleotide-gated (CNG) channel, there is controversy on the mechanism underlying inhibitory responses. We find that mouse OSNs respond to odorants by either depolarizing or hyperpolarizing responses in loose-patch measurements. In the perforated-patch configuration, OSNs not only responded with a current consistent with CNG channel-mediated excitation but also displayed enhancement of outward currents, consistent with inhibitory responses. Increasing cAMP levels pharmacologically elicited excitatory or inhibitory responses in different OSNs. In addition, OSNs from mice defective for the CNGA2 subunit of the CNG channel displayed neither excitatory nor inhibitory responses. Thus CNG channels mediate inhibitory olfactory responses.
Collapse
Affiliation(s)
- Rona Delay
- 104 Marsh Life Science, Biology Dept., University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
30
|
Takeuchi H, Kurahashi T. Identification of second messenger mediating signal transduction in the olfactory receptor cell. J Gen Physiol 2003; 122:557-67. [PMID: 14581582 PMCID: PMC2229575 DOI: 10.1085/jgp.200308911] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 09/22/2003] [Indexed: 12/30/2022] Open
Abstract
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed "InsP3 odorants"). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells ( approximately 2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | |
Collapse
|
31
|
Barry PH. The relative contributions of cAMP and InsP3 pathways to olfactory responses in vertebrate olfactory receptor neurons and the specificity of odorants for both pathways. J Gen Physiol 2003; 122:247-50. [PMID: 12939389 PMCID: PMC2234488 DOI: 10.1085/jgp.200308910] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Peter H Barry
- School of Medical Sciences, Univeristy of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Takeuchi H, Imanaka Y, Hirono J, Kurahashi T. Cross-adaptation between olfactory responses induced by two subgroups of odorant molecules. J Gen Physiol 2003; 122:255-64. [PMID: 12939391 PMCID: PMC2234484 DOI: 10.1085/jgp.200308867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It has long been believed that vertebrate olfactory signal transduction is mediated by independent multiple pathways (using cAMP and InsP3 as second messengers). However, the dual presence of parallel pathways in the olfactory receptor cell is still controversial, mainly because of the lack of information regarding the single-cell response induced by odorants that have been shown to produce InsP3 exclusively (but not cAMP) in the olfactory cilia. In this study, we recorded activities of transduction channels of single olfactory receptor cells to InsP3-producing odorants. When the membrane potential was held at -54 mV, application of InsP3-producing odorants to the ciliary region caused an inward current. The reversal potential was 0 +/- 7 mV (mean +/- SD, n = 10). Actually, InsP3-producing odorants generated responses in a smaller fraction of cells (lilial, 3.4%; lyral, 1.7%) than the cAMP-producing odorant (cineole, 26%). But, fundamental properties of responses were surprisingly homologous; namely, spatial distribution of the sensitivity, waveforms, I-V relation, and reversal potential, dose dependence, time integration of stimulus period, adaptation, and recovery. By applying both types of odorants alternatively to the same cell, furthermore, we observed cells to exhibit symmetrical cross-adaptation. It seems likely that even with odorants with different modalities adaptation occurs completely depending on the amount of current flow. The data will also provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | |
Collapse
|
33
|
Madrid R, Sanhueza M, Alvarez O, Bacigalupo J. Tonic and phasic receptor neurons in the vertebrate olfactory epithelium. Biophys J 2003; 84:4167-81. [PMID: 12770919 PMCID: PMC1302995 DOI: 10.1016/s0006-3495(03)75141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Olfactory receptor neurons (ORNs) respond to odorants with characteristic patterns of action potentials that are relevant for odor coding. Prolonged odorant exposures revealed three populations of dissociated toad ORNs, which were mimicked by depolarizing currents: tonic (TN, displaying sustained firing, 49% of 102 cells), phasic (PN, exhibiting brief action potential trains, 36%) and intermediate neurons (IN, generating trains longer than PN, 15%). We studied the biophysical properties underlying the differences between TNs and PNs, the most extreme cases among ORNs. TNs and PNs possessed similar membrane capacitances (approximately 4 pF), but they differed in resting potential (-82 versus -64 mV), input resistance (4.2 versus 2.9 G(Omega)) and unspecific current, I(u) (TNs: 0 < I(u) <or= 1 pA/pF; and PNs: I(u) > 1 pA/pF). Firing behavior did not correlate with differences in voltage-gated conductances. We developed a mathematical model that accurately simulates tonic and phasic patterns. Whole cell recordings from rat ORNs in fragments (approximately 4 mm(2)) of olfactory epithelium showed that such a tissue normally contains tonic and phasic receptor neurons, suggesting that this feature is common across a wide range of vertebrates. Our findings show that the individual passive electrical properties can govern the firing patterns of ORNs.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
34
|
Trinh K, Storm DR. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 2003; 6:519-25. [PMID: 12665798 DOI: 10.1038/nn1039] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 02/28/2003] [Indexed: 11/08/2022]
Abstract
It is commonly assumed that odorants are detected by the main olfactory epithelium (MOE) and pheromones are sensed through the vomeronasal organ (VNO). The complete loss of MOE-mediated olfaction in type-3 adenylyl cyclase knockout mice (AC3-/-) allowed us to examine chemosensory functions of the VNO in the absence of signaling through the MOE. Here we report that AC3-/- mice are able to detect certain volatile odorants via the VNO. These same odorants elicited electro-olfactogram transients in the VNO and MOE of wild-type mice, but only VNO responses in AC3-/- mice. This indicates that some odorants are detected through an AC3-independent pathway in the VNO.
Collapse
Affiliation(s)
- Kien Trinh
- Molecular and Cellular Biology Program and Department of Pharmacology, University of Washington, Box 357750, 1959 NE Pacific St., Seattle, Washington 98195, USA
| | | |
Collapse
|
35
|
Bigdai EV, Samoilov VO. Components of the intracellular cAMP system supporting the olfactory reception of amyl alcohol. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2003; 33:89-94. [PMID: 12617309 DOI: 10.1023/a:1021139617470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Experiments on isolated frog olfactory epithelium, using vital luminescent microscopy showed that the olfactory transduction of amyl alcohol is mediated by the intracellular cAMP signaling system. Increases in intracellular cAMP levels resulted from activation of adenylate cyclase type III via odorant-induced stimulation of G protein linked to it.
Collapse
Affiliation(s)
- E V Bigdai
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034 St. Petersburg, Russia
| | | |
Collapse
|
36
|
Abstract
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels first identified in retinal photoreceptors and olfactory sensory neurons (OSNs). They are opened by the direct binding of cyclic nucleotides, cAMP and cGMP. Although their activity shows very little voltage dependence, CNG channels belong to the superfamily of voltage-gated ion channels. Like their cousins the voltage-gated K+ channels, CNG channels form heterotetrameric complexes consisting of two or three different types of subunits. Six different genes encoding CNG channels, four A subunits (A1 to A4) and two B subunits (B1 and B3), give rise to three different channels in rod and cone photoreceptors and in OSNs. Important functional features of these channels, i.e., ligand sensitivity and selectivity, ion permeation, and gating, are determined by the subunit composition of the respective channel complex. The function of CNG channels has been firmly established in retinal photoreceptors and in OSNs. Studies on their presence in other sensory and nonsensory cells have produced mixed results, and their purported roles in neuronal pathfinding or synaptic plasticity are not as well understood as their role in sensory neurons. Similarly, the function of invertebrate homologs found in Caenorhabditis elegans, Drosophila, and Limulus is largely unknown, except for two subunits of C. elegans that play a role in chemosensation. CNG channels are nonselective cation channels that do not discriminate well between alkali ions and even pass divalent cations, in particular Ca2+. Ca2+ entry through CNG channels is important for both excitation and adaptation of sensory cells. CNG channel activity is modulated by Ca2+/calmodulin and by phosphorylation. Other factors may also be involved in channel regulation. Mutations in CNG channel genes give rise to retinal degeneration and color blindness. In particular, mutations in the A and B subunits of the CNG channel expressed in human cones cause various forms of complete and incomplete achromatopsia.
Collapse
Affiliation(s)
- U Benjamin Kaupp
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
37
|
Takeuchi H, Kurahashi T. Photolysis of caged cyclic AMP in the ciliary cytoplasm of the newt olfactory receptor cell. J Physiol 2002; 541:825-33. [PMID: 12068043 PMCID: PMC2290348 DOI: 10.1113/jphysiol.2002.016600] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/07/2002] [Accepted: 04/03/2002] [Indexed: 11/08/2022] Open
Abstract
The effects of cyclic nucleotide monophosphate (cNMP) in the ciliary cytoplasm of the olfactory receptor cell were examined by using photolysis of caged cNMP loaded from the whole-cell patch clamp pipette. Illumination of the cilia induced an inward current at -50 mV. The current amplitude was voltage dependent and the polarity was reversed at +10 mV. The amplitude of the light-induced current was dependent on both light intensity and duration. The intensity-response relation was fitted well by the Hill equation with a coefficient (n(H)) of 4.99 +/- 2.66 (mean +/- S.D., n = 19) and the duration-response relation with a coefficient of 4.03 +/- 1.43 (n = 17). The activation time course of adenylyl cyclase was estimated by comparing the light-induced response with the odorant-induced response. Adenylyl cyclase was activated approximately 260 ms later from the onset of the odorant-stimulation. The light-induced current developed very sharply. This could be explained by the sequential openings of cAMP-gated and Ca2+-activated Cl- channels. At +100 mV, where Ca2+ influx is expected to be very small, the current rising phase became less steep. When the cells were stimulated by long steps of either odour or light, the odorant-induced current showed stronger decay than the light-induced response. This observation suggests that the molecular system regulating desensitization is situated upstream of cAMP production.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Biophysical Engineering, Osaka University, Japan.
| | | |
Collapse
|
38
|
Abstract
Our sense of smell is based on a remarkable chemical-detection system that possesses high sensitivity, broad discriminability and plastic, yet stable, function. Understanding how olfactory stimuli translate into perception is a problem of daunting complexity. How do odour-coding events in single cells correlate with emergent properties from the ensemble, and with behaviour? For comprehensive descriptions of neural function, analysis must extend from examination of how elemental principles relate to the function of the whole. The tiger salamander has long been used as an experimental model in studies of olfaction, enabling general questions about olfactory function to be approached.
Collapse
Affiliation(s)
- John S Kauer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
39
|
Abstract
The olfactory system sits at the interface of the environment and the nervous system and is responsible for correctly coding sensory information from thousands of odorous stimuli. Many theories existed regarding the signal transduction mechanism that mediates this difficult task. The discovery that odorant transduction utilizes a unique variation (a novel family of G protein-coupled receptors) based upon a very common theme (the G protein-coupled adenylyl cyclase cascade) to accomplish its vital task emphasized the power and versatility of this motif. We now must understand the downstream consequences of this cascade that regulates multiple second messengers and perhaps even gene transcription in response to the initial interaction of ligand with G protein-coupled receptor.
Collapse
Affiliation(s)
- Gabriele V Ronnett
- Departments of Neuroscience and Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
40
|
Abstract
The main and accessory olfactory systems have received considerable attention on the part of scientists and clinicians during the last decade, largely because of (a) quantum advances in understanding their genetically expressed receptor mechanisms, (b) evidence that their receptor cells undergo neurogenesis and both programmed and induced cell death, and (c) important technical and practical developments in psychophysical measurement. The latter developments have led to the proliferation of standardized olfactory testing in laboratories and clinics, and to the discovery that smell loss is among the first signs of a number of neurodegenerative diseases, including Alzheimer's disease and idiopathic Parkinson's disease. Recent controversial claims that humans possess a functioning vomeronasal system responsive to "pheromones" has added further interest in intranasal chemoreception. This review focuses on recent progress made in understanding olfactory function, emphasizing transduction, measurement, and clinical findings.
Collapse
Affiliation(s)
- R L Doty
- Smell and Taste Center, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
41
|
Gomez G, Rawson NE, Cowart B, Lowry LD, Pribitkin EA, Restrepo D. Modulation of odor-induced increases in [Ca(2+)](i) by inhibitors of protein kinases A and C in rat and human olfactory receptor neurons. Neuroscience 2000; 98:181-9. [PMID: 10858624 DOI: 10.1016/s0306-4522(00)00112-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinases A and C have been postulated to exert multiple effects on different elements of signal transduction pathways in olfactory receptor neurons. However, little is known about the modulation of olfactory responses by protein kinases in intact olfactory receptor neurons. To further elucidate the details of the modulation of odorant responsiveness by these protein kinases, we investigated the action of two protein kinase inhibitors: H89, an inhibitor of protein kinase A, and N-myristoylated EGF receptor, an inhibitor of protein kinase C, on odorant responsiveness in intact olfactory neurons. We isolated individual olfactory neurons from the adult human and rat olfactory epithelium and measured responses of the isolated cells to odorants or biochemical activators that have been shown to initiate cyclic AMP or inositol 1,4,5-trisphospate production in biochemical preparations. We employed calcium imaging techniques to measure odor-elicited changes in intracellular calcium that occur over several seconds. In human olfactory receptor neurons, the protein kinase A and C inhibitors affected the responses to different sets of odorants. In rats, however, the protein kinase C inhibitor affected responses to all odorants, while the protein kinase A inhibitor had no effect. In both species, the effect of inhibition of protein kinases was to enhance the elevation and block termination of intracellular calcium levels elicited by odorants. Our results show that protein kinases A and C may modulate odorant responses of olfactory neurons by regulating calcium fluxes that occur several seconds after odorant stimulation. The effects of protein kinase C inhibition are different in rat and human olfactory neurons, indicating that species differences are an important consideration when applying data from animal studies to apply to humans.
Collapse
Affiliation(s)
- G Gomez
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Cadiou H, Sienaert I, Vanlingen S, Parys JB, Molle G, Duclohier H. Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia. Eur J Neurosci 2000; 12:2805-11. [PMID: 10971622 DOI: 10.1046/j.1460-9568.2000.00166.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to the activation of cAMP-dependent pathways, odorant binding to its receptor can lead to inositol 1,4,5-trisphosphate (InsP3) production that may induce the opening of plasma membrane channels. We therefore investigated the presence and nature of such channels in carp olfactory cilia. Functional analysis was performed by reconstitution of the olfactory cilia in planar lipid bilayers (tip-dip method). In the presence of InsP3 (10 microM) and Ca2+ (100 nM), a current of 1.6 +/- 0.1 pA (mean +/- SEM, n = 4) was measured, using Ba2+ as charge carrier. The I/V curve displayed a slope conductance of 45 +/- 5 pS and a reversal potential of -29 mV indicating a higher selectivity for divalent cations. This current was characterized by two mean open times (3.0 +/- 0.4 ms and 42.0 +/- 2.6 ms, n = 4) and was strongly inhibited by ruthenium red (30 microM) or heparin (10 microg/mL). Importantly, the channel activity was closely dependent on the Ca2+ concentration, with the highest open probability (Po) at 100 nM Ca2+ (Po = 0.50 +/- 0.02, n = 4). Po is lower at both higher and lower Ca2+ concentrations. A structural identification of the channel was attempted by using a large panel of antibodies, raised against several InsP3 receptor (InsP3R)/Ca2+ release channel isoforms. The type 1 InsP3R was detected in carp cerebellum and whole brain, while a lower molecular mass InsP3R, which may correspond to type 2 or 3, was detected in heart, whole brain and the soma of the olfactory neurons. None of the antibodies, however, cross-reacted with olfactory cilia. Taken together, these results indicate that in carp olfactory cilia an InsP3-dependent channel is present, distinct from the classical InsP3Rs localized on intracellular membranes.
Collapse
Affiliation(s)
- H Cadiou
- UMR 6522 CNRS, IFRMP 23,Université de Rouen, F-76821 Mont Saint Aignan, France
| | | | | | | | | | | |
Collapse
|
43
|
Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW. Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 2000; 116:147-61. [PMID: 10919863 PMCID: PMC2229499 DOI: 10.1085/jgp.116.2.147] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic AMP is a ubiquitous second messenger that coordinates diverse cellular functions. Current methods for measuring cAMP lack both temporal and spatial resolution, leading to the pervasive notion that, unlike Ca(2+), cAMP signals are simple and contain little information. Here we show the development of adenovirus-expressed cyclic nucleotide-gated channels as sensors for cAMP. Homomultimeric channels composed of the olfactory alpha subunit responded rapidly to jumps in cAMP concentration, and their cAMP sensitivity was measured to calibrate the sensor for intracellular measurements. We used these channels to detect cAMP, produced by either heterologously expressed or endogenous adenylyl cyclase, in both single cells and cell populations. After forskolin stimulation, the endogenous adenylyl cyclase in C6-2B glioma cells produced high concentrations of cAMP near the channels, yet the global cAMP concentration remained low. We found that rapid exchange of the bulk cytoplasm in whole-cell patch clamp experiments did not prevent the buildup of significant levels of cAMP near the channels in human embryonic kidney 293 (HEK-293) cells expressing an exogenous adenylyl cyclase. These results can be explained quantitatively by a cell compartment model in which cyclic nucleotide-gated channels colocalize with adenylyl cyclase in microdomains, and diffusion of cAMP between these domains and the bulk cytosol is significantly hindered. In agreement with the model, we measured a slow rate of cAMP diffusion from the whole-cell patch pipette to the channels (90% exchange in 194 s, compared with 22-56 s for substances that monitor exchange with the cytosol). Without a microdomain and restricted diffusional access to the cytosol, we are unable to account for all of the results. It is worth noting that in models of unrestricted diffusion, even in extreme proximity to adenylyl cyclase, cAMP does not reach high enough concentrations to substantially activate PKA or cyclic nucleotide-gated channels, unless the entire cell fills with cAMP. Thus, the microdomains should facilitate rapid and efficient activation of both PKA and cyclic nucleotide-gated channels, and allow for local feedback control of adenylyl cyclase. Localized cAMP signals should also facilitate the differential regulation of cellular targets.
Collapse
Affiliation(s)
- Thomas C. Rich
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Kent A. Fagan
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Hiroko Nakata
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Jerome Schaack
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Dermot M.F. Cooper
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Jeffrey W. Karpen
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262
| |
Collapse
|
44
|
Chen S, Lane AP, Bock R, Leinders-Zufall T, Zufall F. Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors". J Neurophysiol 2000; 84:575-80. [PMID: 10899229 DOI: 10.1152/jn.2000.84.1.575] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.
Collapse
Affiliation(s)
- S Chen
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
45
|
Nakamura T. Cellular and molecular constituents of olfactory sensation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2000; 126:17-32. [PMID: 10908849 DOI: 10.1016/s1095-6433(00)00191-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since the discovery of odorant-activated adenylate cyclase in the olfactory receptor cilia, research into the olfactory perception of vertebrates has rapidly expanded. Recent studies have shown how the odor discrimination starts at the receptor level: each of 700-1000 types of the olfactory neurons in the neural olfactory epithelium contains a single type of odor receptor protein. Although the receptors have relatively low specific affinities for odorants, excitation of different types of receptors forms an excitation pattern specific to each odorant in the glomerular layer of the olfactory bulb. It was demonstrated that adenosine 3',5'-cyclic monophosphate (cAMP) is very likely the sole second messenger for olfactory transduction. It was also demonstrated that the affinity of the cyclic nucleotide-gated channel for cAMP regulated by Ca(2+)/calmodulin is solely responsible for the adaptation of the cell. However, many other regulatory components were found in the transduction cascade. Regulated by Ca(2+) and/or the protein-phosphorylation, many of them may serve for the adaptation of the cell, probably on a longer time scale. It may be important to consider the resensitization as a part of this adaptation, as well as to collect kinetic data of each reaction to gain further insight into the olfactory mechanism.
Collapse
Affiliation(s)
- T Nakamura
- Department of Applied Physics and Chemistry, Division of Bio-Informatics, Faculty of Electro-Communications, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
46
|
Kashiwayanagi M, Tatani K, Shuto S, Matsuda A. Inositol 1,4,5-trisphosphate and adenophostin analogues induce responses in turtle olfactory sensory neurons. Eur J Neurosci 2000; 12:606-12. [PMID: 10712640 DOI: 10.1046/j.1460-9568.2000.00948.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using the whole-cell mode of the patch-clamp technique, we recorded inward currents in response to inositol-1,4,5-trisphosphate (IP3) and adenophostin analogues in turtle olfactory sensory neurons. Dialysis of IP3 into the neurons induced inward currents with an increase in membrane conductance in a dose-dependent manner under the voltage-clamp conditions (holding potential -70 mV). The application of Ca2+-free Ringer solution to neurons previously dialysed with IP3 induced inward currents that were reversibly inhibited by application of Na+, Ca2+-free Ringer solution, normal Ringer solution or 10 microM ruthenium red. Dialysis of the adenophostin analogues, novel IP3 receptor ligands, also induced inward currents with an increase in membrane conductance. The magnitude of the responses to the adenophostin analogues varied among these derivatives. The application of Ca2+-free Ringer solution to neurons previously dialysed with the adenophostin analogues induced inward currents that were inhibited by the application of normal Ringer solution. The reversal potential of inward currents induced by an adenophostin analogue was similar to that induced by IP3, suggesting that inward currents induced by the adenophostin analogue were generated by a similar ionic mechanism to that induced by IP3. The present study demonstrated that IP3-mediated transduction pathways exist in turtle olfactory receptor neurons and that adenophostin analogues act as agonists of IP3.
Collapse
Affiliation(s)
- M Kashiwayanagi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | | | | | | |
Collapse
|
47
|
Hagen V, Bendig J, Frings S, Wiesner B, Schade B, Helm S, Lorenz D, Kaupp UB. Synthesis, photochemistry and application of (7-methoxycoumarin-4-yl)methyl-caged 8-bromoadenosine cyclic 3',5'-monophosphate and 8-bromoguanosine cyclic 3',5'-monophosphate photolyzed in the nanosecond time region. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1999; 53:91-102. [PMID: 10672534 DOI: 10.1016/s1011-1344(99)00131-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
New caged derivatives of hydrolysis-resistant 8-bromoadenosine cyclic 3',5'-monophosphate (8-Br-cAMP) and 8-bromoguanosine cyclic 3',5'-monophosphate (8-Br-cGMP) are described. The compounds are the axial and equatorial isomers of the (7-methoxycoumarin-4-yl)methyl (MCM) esters of cyclic nucleotides. Synthesis is accomplished by treatment of 4-bromomethyl-7-methoxycoumarin with the tetra-n-butylammonium salts of the 8-bromo-substituted cyclic nucleotides or with the free acids of 8-Br-cAMP and 8-Br-cGMP in the presence of silver(I) oxide. MCM-caged 8-Br-cAMP and MCM-caged 8-Br-cGMP liberate 8-Br-cAMP and 8-Br-cGMP during irradiation with ultraviolet light within a few nanoseconds. They show favorable absorption properties and quantum yields and are resistant to hydrolysis in aqueous buffer solutions. The moderate fluorescence properties of the caged compounds in comparison with the strongly fluorescent 4-hydroxymethyl-7-methoxycoumarin (MCM-OH) photoproduct allow the indirect estimation of the amount of photolytically released cyclic nucleotides in aqueous buffer solutions using fluorescence measurements. Their usefulness for physiological studies has been examined in a mammalian cell line expressing the cyclic nucleotide-gated ion channel of bovine olfactory sensory neurons using the patch-clamp technique and confocal laser scanning microscopy. The caged compounds serve as efficient and rapid intracellular sources of 8-Br-cAMP and 8-Br-cGMP. However, at least in HEK 293 cells, fluorescence signals cannot be used to monitor the photolysis of MCM-caged 8-Br-cAMP and 8-Br-cGMP, due to quenching of the fluorescence of MCM-OH.
Collapse
Affiliation(s)
- V Hagen
- Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The odorant-induced Ca(2+) increase inside the cilia of vertebrate olfactory sensory neurons controls both excitation and adaptation. The increase in the internal concentration of Ca(2+) in the cilia has recently been visualized directly and has been attributed to Ca(2+) entry through cAMP-gated channels. These recent results have made it possible to further characterize Ca(2+)'s activities in olfactory neurons. Ca(2+) exerts its excitatory role by directly activating Cl(-) channels. Given the unusually high concentration of ciliary Cl(-), Ca(2+)'s activation of Cl(-) channels causes an efflux of Cl(-) from the cilia, contributing high-gain and low-noise amplification to the olfactory neuron depolarization. Moreover, in combination with calmodulin, Ca(2+) mediates odorant adaptation by desensitizing cAMP-gated channels. The restoration of the Ca(2+) concentration to basal levels occurs via a Na(+)/Ca(2+) exchanger, which extrudes Ca(2+) from the olfactory cilia.
Collapse
Affiliation(s)
- A Menini
- Istituto di Cibernetica e Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149, Genova, Italy.
| |
Collapse
|
49
|
Abstract
Cyclic AMP (cAMP) is one of the intracellular messengers that mediate odorant signal transduction in vertebrate olfactory cilia. Therefore, the diffusion coefficient of cAMP in olfactory cilia is an important factor in the transduction of the odorous signal. We have employed the excised cilium preparation from the grass frog (Rana pipiens) to measure the cAMP diffusion coefficient. In this preparation an olfactory cilium is drawn into a patch pipette and a gigaseal is formed at the base of the cilium. Subsequently the cilium is excised, allowing bath cAMP to diffuse into the cilium and activate the cyclic nucleotide-gated channels on the plasma membrane. In order to estimate the cAMP diffusion coefficient, we analyzed the kinetics of the currents elicited by step changes in the bath cAMP concentration in the absence of cAMP hydrolysis. Under such conditions, the kinetics of the cAMP-activated currents has a simple dependence on the diffusion coefficient. From the analysis we have obtained a cAMP diffusion coefficient of 2.7 +/- 0.2. 10(-6) cm2 s-1 for frog olfactory cilia. This value is similar to the expected value in aqueous solution, suggesting that there are no significant diffusional barriers inside olfactory cilia. At cAMP concentrations higher than 5 microM, diffusion slowed considerably, suggesting the presence of buffering by immobile cAMP binding sites. A plausible physiological function of such buffering sites would be to prolong the response of the cell to strong stimuli.
Collapse
Affiliation(s)
- C Chen
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
50
|
Abstract
Communication with the environment and other animals through chemical cues is an essential process for the survival of many multicellular organisms. Specialized signal transduction pathways are employed in chemodetection and the transformation of information into the electrical signals that elicit behaviors. In organisms as diverse as mice and nematodes, similar molecules are involved in the odorant signaling pathways. Studying the mechanisms of signal transduction in these two systems using biochemical, molecular and genetic approaches has elucidated pathways for odor perception and the roles of specific proteins and second messenger molecules in the signaling cascades.
Collapse
Affiliation(s)
- B C Prasad
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, PCTB 800, Baltimore, MD 21205,
| | | |
Collapse
|