1
|
Shan Y, Zhang D, Luo Z, Li T, Qu H, Duan X, Jiang Y. Advances in chilling injury of postharvest fruit and vegetable: Extracellular ATP aspects. Compr Rev Food Sci Food Saf 2022; 21:4251-4273. [PMID: 35876655 DOI: 10.1111/1541-4337.13003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.
Collapse
Affiliation(s)
- Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Sabirov RZ, Islam MR, Okada T, Merzlyak PG, Kurbannazarova RS, Tsiferova NA, Okada Y. The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners and Physiological/Pathophysiological Implications. Life (Basel) 2021; 11:life11060509. [PMID: 34073084 PMCID: PMC8229958 DOI: 10.3390/life11060509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large-conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300-400 pS, linear current-to-voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Maxi-Cl channel. Its identification as a complex with SLCO2A1 as a core pore-forming component and two auxiliary regulatory proteins, annexin A2 and S100A10 (p11), explains the activation mechanism as Tyr23 dephosphorylation at ANXA2 in parallel with calcium binding at S100A10. In the resting state, SLCO2A1 functions as a prostaglandin transporter whereas upon activation it turns to an anion channel. As an efficient pathway for chloride, Maxi-Cl is implicated in a number of physiologically and pathophysiologically important processes, such as cell volume regulation, fluid secretion, apoptosis, and charge transfer. Maxi-Cl is permeable for ATP and other small signaling molecules serving as an electrogenic pathway in cell-to-cell signal transduction. Mutations at the SLCO2A1 gene cause inherited bone and gut pathologies and malignancies, signifying the Maxi-Cl channel as a perspective pharmacological target.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| | - Md. Rafiqul Islam
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Toshiaki Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Veneno Technologies Co. Ltd., Tsukuba 305-0031, Japan
| | - Petr G. Merzlyak
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Ranokhon S. Kurbannazarova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Nargiza A. Tsiferova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Yasunobu Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| |
Collapse
|
3
|
Wang S, Ye L, Wang L. Protective mechanism of shenmai on myocardial ischemia-reperfusion through the energy metabolism pathway. Am J Transl Res 2019; 11:4046-4062. [PMID: 31396317 PMCID: PMC6684917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Shenmai (SM) injection has been reported to attenuate ischemia-reperfusion (I/R) injury, but its effect on energy metabolism during I/R and the underlying mechanism remain unknown. To explore the protective mechanism of SM on ischemic cardiomyopathy, primary cardiomyocytes from SD rats were treated with SM, total saponins of Panax ginseng (TSPG), L-carnitine (LC) and trimetazidine (TMZ). Changes in glucose, free fatty acids (FFAs), pyruvic acid (PA), lactic acid (LA) and intracellular ATP capacity were observed with the appropriate assays. For each treatment group, the key enzymes and transporters of myocardial energy metabolism were detected and compared via Western blot. Furthermore, impairments after I/R were assessed by examining cardiomyocyte apoptosis and LDH and PK activity in the culture medium. Our results indicated that SM and TSPG markedly alleviated the decrease in key enzymes and transporters and the utilization of metabolic substrates following I/R, while SM prevented aberrant apoptosis and restored the depleted ATP resulting from I/R. Notably, the effects of SM were superior to those of its main components TSPG, LC and TMZ. Thus, the protective effect of SM in ischemic cardiomyopathy may be mediated by the upregulation of key enzymes and restoration of the depleted ATP content in the energy metabolism process.
Collapse
Affiliation(s)
- Shaomei Wang
- Bengbu Medical CollegeDonghai Road, Bengbu 233030, Anhui, PR China
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Lifang Ye
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Lihong Wang
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| |
Collapse
|
4
|
Jia LY, Bai JY, Sun K, Wang RF, Feng HQ. Extracellular ATP released by copper stress could act as diffusible signal in alleviating the copper stress-induced cell death. PROTOPLASMA 2019; 256:491-501. [PMID: 30251212 DOI: 10.1007/s00709-018-1309-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
In the present work, by using tobacco cell suspension and wheat seedlings, we studied that eATP (extracellular ATP) released by copper (Cu) stress could act as diffusible signal in alleviating the Cu stress-induced cell death. A semipermeable membrane was fixed in the middle of a plastic box to divide the box into two equal compartments (A and B, respectively). This semipermeable membrane can prevent direct cell-to-cell (or seedling-to-seedling) contact and the diffusion of the macromolecules [such as ATPase (adenosine 5'-triphosphatase)] between these two compartments. The cell suspension directly stressed with CuCl2 was placed in compartment A and was incubated with the untreated cell suspension in compartment B. Such treatment significantly increased the levels of cell death and eATP content of the cell suspension in these two compartments. In contrast, addition of ATPase into the cell suspension directly stressed with CuCl2 decreased the eATP level in these two compartments but further increased the level of cell death in compartment B, compared to no addition of ATPase. Similar results were obtained when tobacco cell suspension was replaced by wheat seedlings. These observations indicate that when Cu stress from compartment A induced the plant cell death in compartment B, ATP transferred from compartment A could play a role in alleviating this cell death. Thus, it is suggested that eATP released by copper stress could act as diffusible signal in alleviating the Cu stress-induced cell death.
Collapse
Affiliation(s)
- Ling-Yun Jia
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Jing-Yue Bai
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Kun Sun
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Rong-Fang Wang
- Institute of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Han-Qing Feng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
7
|
Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. CURRENT TOPICS IN MEMBRANES 2018; 81:125-176. [PMID: 30243431 DOI: 10.1016/bs.ctm.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An elaborate volume regulation system based on interplay of ion channels and transporters was evolved to cope with constant osmotic challenges caused by intensive metabolism, transport and other physiological/pathophysiological events. In animal cells, two types of anion channels are directly activated by cell swelling and involved in the regulatory volume decrease (RVD): volume-sensitive outwardly rectifying anion channel (VSOR), also called volume-regulated anion channel (VRAC), and Maxi-Cl which is the most major type of maxi-anion channel (MAC). These two channels have very different biophysical profiles and exhibit opposite dependence on intracellular ATP. After several decades of verifying many false-positive candidates for VSOR and Maxi-Cl, LRRC8 family proteins emerged as major VSOR components, and SLCO2A1 protein as a core of Maxi-Cl. Still, neither of these proteins alone can fully reproduce the native channel phenotypes suggesting existence of missing components. Although both VSOR and Maxi-Cl have pores wide enough to accommodate bulky ATP4- and MgATP2- anions, evidence accumulated hitherto, based on pharmacological and gene silencing experiments, suggests that Maxi-Cl, but not VSOR, serves as one of the major pathways for the release of ATP from swollen and ischemic/hypoxic cells. Relations of VSOR and Maxi-Cl with diseases and their selective pharmacology are the topics promoted by recent advance in molecular identification of the two volume-activated, volume-regulatory anion channels.
Collapse
|
8
|
Hou QZ, Sun K, Zhang H, Su X, Fan BQ, Feng HQ. The responses of photosystem II and intracellular ATP production of Arabidopsis leaves to salt stress are affected by extracellular ATP. JOURNAL OF PLANT RESEARCH 2018; 131:331-339. [PMID: 29098479 DOI: 10.1007/s10265-017-0990-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/28/2017] [Indexed: 05/16/2023]
Abstract
Hypertonic salt stress with different concentrations of NaCl increased the levels of extracellular ATP of Arabidopsis leaves. And, hypertonic salt stress decreased the levels of F v /F m (the maximal efficiency of photosystem II), Φ PSII (the photosystem II operating efficiency), qP (photochemical quenching), and intracellular ATP (iATP) production. The treatment with β,γ-methyleneadenosine 5'-triphosphate (AMP-PCP), which can exclude extracellular ATP from its binding sites of extracellular ATP receptors, caused a further decrease in the levels of F v /F m , Φ PSII, qP, and iATP production of the salt-stressed Arabidopsis leaves, while the addition of exogenous ATP rescued the inhibitory effects of AMP-PCP on Φ PSII , qP, and iATP production under hypertonic salt stress. Under hypertonic salt stress, the values of F v /F m , Φ PSII , qP, and iATP production were lower in the dorn 1-3 mutant than in the wild-type plants. These results indicate that the responses of photosystem II and intracellular ATP production to salt stress could be affected by extracellular ATP.
Collapse
Affiliation(s)
- Qin-Zheng Hou
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Kun Sun
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Hui Zhang
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Xue Su
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Bao-Qiang Fan
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Han-Qing Feng
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
9
|
Wang Y, Zhao Y, Jiang W, Zhao X, Fan G, Zhang H, Shen P, He J, Fan X. iTRAQ-Based Proteomic Analysis Reveals Recovery of Impaired Mitochondrial Function in Ischemic Myocardium by Shenmai Formula. J Proteome Res 2018; 17:794-803. [PMID: 29300489 DOI: 10.1021/acs.jproteome.7b00450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shenmai formula (SM) has been a traditional medicinal remedy for treating cardiovascular diseases in China for 800 years; however, its mechanism of action remains unclear. To explore the mechanism underlying cardioprotective effects of SM, iTRAQ-based proteomic approach was applied to analyze protein of myocardium in rats with myocardial ischemic injury. Upon treatment with SM and its two major components Red ginseng (RG) and Radix Ophiopogonis (OP), 101 differentially expressed proteins were filtered from a total of 712 detected and annotated proteins. They can be classified according to their locations and functions, while most of them are located in intracellular organelle, participating in cellular metabolic process. The functions of them are mostly associated with mitochondrial oxidative phosphorylation/respiration. The differentially expressed proteins were validated by liquid chromatography-tandem mass spectrometry and Western blotting (ATP5D, NDUFB10, TNNC1). Further in vitro experiments found that SM could attenuate hypoxia induced impairment of mitochondrial membrane potential and cellular ATP concentration in neonatal rat ventricular myocytes. Interestingly, the result of quantitative mitochondrial biogenesis assays revealed that SM had dominant positive effects on the maximum respiration, ATP-coupled respiration, and spare capacity of mitochondria in response to hypoxia. Hence, our findings suggest that SM promotes mitochondrial function to protect cardiomyocytes against hypoxia, which provides a possible illustration for conventional botanical therapy on a molecular level.
Collapse
Affiliation(s)
- Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P.R. China
| | - Yu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P.R. China
| | - Wei Jiang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P.R. China
| | - Xiaoping Zhao
- College of Preclinical Medicine, Zhejiang Chinese Medical University , Hangzhou 310053, P.R. China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193, P.R. China
| | - Han Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193, P.R. China
| | - Peiqiang Shen
- Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou 310023, P.R. China
| | - Jiangmin He
- Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou 310023, P.R. China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P.R. China
| |
Collapse
|
10
|
Li Z, Chakraborty S, Xu G. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa. Acta Crystallogr F Struct Biol Commun 2016; 72:782-787. [PMID: 27710944 PMCID: PMC5053164 DOI: 10.1107/s2053230x16014278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022] Open
Abstract
Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses in Arabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein, Camelina sativa lectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space group C222 or C2221, with unit-cell parameters a = 94.7, b = 191.5, c = 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.
Collapse
Affiliation(s)
- Zhijie Li
- Department of Molecular and Structural Biochemistry, North Carolina State University, 26 Polk Hall, Raleigh, NC 27695, USA
| | - Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, 26 Polk Hall, Raleigh, NC 27695, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, 26 Polk Hall, Raleigh, NC 27695, USA
| |
Collapse
|
11
|
Sabirov RZ, Merzlyak PG, Islam MR, Okada T, Okada Y. The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Arch 2016; 468:405-20. [PMID: 26733413 DOI: 10.1007/s00424-015-1774-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
|
12
|
Feng H, Guan D, Bai J, Sun K, Jia L. Extracellular ATP: a potential regulator of plant cell death. MOLECULAR PLANT PATHOLOGY 2015; 16:633-9. [PMID: 25395168 PMCID: PMC6638322 DOI: 10.1111/mpp.12219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Adenosine 5'-triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane-associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area.
Collapse
Affiliation(s)
- Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Dongdong Guan
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Jingyue Bai
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Kun Sun
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Lingyun Jia
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
13
|
Chi Y, Gao K, Zhang H, Takeda M, Yao J. Suppression of cell membrane permeability by suramin: involvement of its inhibitory actions on connexin 43 hemichannels. Br J Pharmacol 2015; 171:3448-62. [PMID: 24641330 DOI: 10.1111/bph.12693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Suramin is a clinically prescribed drug for treatment of human African trypanosomiasis, cancer and infection. It is also a well-known pharmacological antagonist of P2 purinoceptors. Despite its clinical use and use in research, the biological actions of this molecule are still incompletely understood. Here, we investigated the effects of suramin on membrane channels, as exemplified by its actions on non-junctional connexin43 (Cx43) hemichannels, pore-forming α-haemolysin and channels involved in ATP release under hypotonic conditions. EXPERIMENTAL APPROACH Hemichannels were activated by removing extracellular Ca(2+) . The influences of suramin on hemichannel activities were evaluated by its effects on influx of fluorescent dyes and efflux of ATP. The membrane permeability and integrity were assessed through cellular retention of preloaded calcein and LDH release. KEY RESULTS Suramin blocked Cx43 hemichannel permeability induced by removal of extracellular Ca(2+) without much effect on Cx43 expression and gap junctional intercellular communication. This action of suramin was mimicked by its analogue NF023 and NF449 but not by another P2 purinoceptor antagonist PPADS. Besides hemichannels, suramin also significantly blocked intracellular and extracellular exchanges of small molecules caused by α-haemolysin from Staphylococcus aureus and by exposure of cells to hypotonic solution. Furthermore, it prevented α-haemolysin- and hypotonic stress-elicited cell injury. CONCLUSION AND IMPLICATIONS Suramin blocked membrane channels and protected cells against toxin- and hypotonic stress-elicited injury. Our finding provides novel mechanistic insights into the pharmacological actions of suramin. Suramin might be therapeutically exploited to protect membrane integrity under certain pathological situations.
Collapse
Affiliation(s)
- Yuan Chi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
14
|
Lourenço AL, Saito MS, Dorneles LEG, Viana GM, Sathler PC, Aguiar LCDS, de Pádula M, Domingos TFS, Fraga AGM, Rodrigues CR, de Sousa VP, Castro HC, Cabral LM. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies. Molecules 2015; 20:7174-200. [PMID: 25903367 PMCID: PMC6272548 DOI: 10.3390/molecules20047174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022] Open
Abstract
The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p) displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Max Seidy Saito
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Luís Eduardo Gomes Dorneles
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Gil Mendes Viana
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Plínio Cunha Sathler
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | | | - Marcelo de Pádula
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | | | - Aline Guerra Manssour Fraga
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Carlos Rangel Rodrigues
- ModMolQSAR, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Valeria Pereira de Sousa
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Helena Carla Castro
- LABiEMOL, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Lucio Mendes Cabral
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| |
Collapse
|
15
|
Seegmiller AC. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: biochemical mechanisms and clinical implications. Int J Mol Sci 2014; 15:16083-99. [PMID: 25216340 PMCID: PMC4200767 DOI: 10.3390/ijms150916083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying biochemical mechanism for some of these changes, namely increased expression and activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate to arachidonate. Increased desaturase expression appears to be linked to cystic fibrosis mutations via stimulation of the AMP-activated protein kinase in the absence of functional CFTR protein. There is evidence that these abnormalities may contribute to disease pathophysiology by increasing production of eicosanoids, such as prostaglandins and leukotrienes, of which arachidonate is a key substrate. Understanding these underlying mechanisms provides key insights that could potentially impact the diagnosis, clinical monitoring, nutrition, and therapy of patients suffering from this deadly disease.
Collapse
Affiliation(s)
- Adam C Seegmiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 4918B TVC, 1301 Medical Center Dr., Nashville, TN 37027, USA.
| |
Collapse
|
16
|
Skals M, Bjaelde RG, Reinholdt J, Poulsen K, Vad BS, Otzen DE, Leipziger J, Praetorius HA. Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore. J Biol Chem 2014; 289:19098-109. [PMID: 24860098 DOI: 10.1074/jbc.m114.571414] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
ATP is as an extracellular signaling molecule able to amplify the cell lysis inflicted by certain bacterial toxins including the two RTX toxins α-hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans. Inhibition of P2X receptors completely blocks the RTX toxin-induced hemolysis over a larger concentration range. It is, however, at present not known how the ATP that provides the amplification is released from the attacked cells. Here we show that both HlyA and LtxA trigger acute release of ATP from human erythrocytes that preceded and were not caused by cell lysis. This early ATP release did not occur via previously described ATP-release pathways in the erythrocyte. Both HlyA and LtxA were capable of triggering ATP release in the presence of the pannexin 1 blockers carbenoxolone and probenecid, and the HlyA-induced ATP release was found to be similar in erythrocytes from pannexin 1 wild type and knock-out mice. Moreover, the voltage-dependent anion channel antagonist TRO19622 had no effect on ATP release by either of the toxins. Finally, we showed that both HlyA and LtxA were able to release ATP from ATP-loaded lipid (1-palmitoyl-2-oleoyl-phosphatidylcholine) vesicles devoid of any erythrocyte channels or transporters. Again we were able to show that this happened in a non-lytic fashion, using calcein-containing vesicles as controls. These data show that both toxins incorporate into lipid vesicles and allow ATP to be released. We suggest that both toxins cause acute ATP release by letting ATP pass the toxin pores in both human erythrocytes and artificial membranes.
Collapse
Affiliation(s)
| | | | | | | | - Brian S Vad
- the Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Center for Insoluble Proteins (inSPIN), Aarhus University, Aarhus C 8000, Denmark
| | - Daniel E Otzen
- the Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Center for Insoluble Proteins (inSPIN), Aarhus University, Aarhus C 8000, Denmark
| | | | | |
Collapse
|
17
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 2013; 170:1607-51. [PMID: 24528239 PMCID: PMC3892289 DOI: 10.1111/bph.12447] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
- *
Author for correspondence;
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - William A Catterall
- University of Washington, School of Medicine, Department of PharmacologyBox 357280, Seattle, WA 98195-7280, USA
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
18
|
Islam MR, Uramoto H, Okada T, Sabirov RZ, Okada Y. Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells. Am J Physiol Cell Physiol 2012; 303:C924-35. [PMID: 22785119 DOI: 10.1152/ajpcell.00459.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The maxi-anion channel plays a classically recognized role in controlling the membrane potential through the chloride conductance. It also has novel functions as a regulated pathway for the release of the anionic signaling molecules ATP and excitatory amino acids from cells subjected to osmotic perturbation, ischemia, or hypoxia. Because hemichannels formed by pannexins and connexins have been reported to mediate ATP release from a number of cell types, these hemichannels may represent the molecular correlate of the maxi-anion channel. Here, we found that L929 fibrosarcoma cells express functional maxi-anion channels which mediate a major portion of swelling-induced ATP release, and that ATP released via maxi-anion channels facilitates the regulatory volume decrease after osmotic swelling. Also, it was found that the cells express the mRNA for pannexin 1, pannexin 2, and connexin 43. Hypotonicity-induced ATP release was partially suppressed not only by known blockers of the maxi-anion channel but also by several blockers of pannexins including the pannexin 1-specific blocking peptide (10)Panx1 and small interfering (si)RNA against pannexin 1 but not pannexin 2. The inhibitory effects of maxi-anion channel blockers and pannexin 1 antagonists were additive. In contrast, maxi-anion channel activity was not affected by pannexin 1 antagonists and siRNAs against pannexins 1 and 2. Although a connexin 43-specific blocking peptide, Gap27, slightly suppressed hypotonicity-induced ATP release, maxi-anion channel activity was not affected by Gap27 or connexin 43-specific siRNA. Thus, it is concluded that the maxi-anion channel is a molecular entity distinct from pannexin 1, pannexin 2, and connexin 43, and that the maxi-anion channel and the hemichannels constitute separate pathways for swelling-induced ATP release in L929 cells.
Collapse
Affiliation(s)
- Md Rafiqul Islam
- Dept. of Cell Physiology, National Institute for Physiological Sciences, Myodaiji-cho, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
19
|
Akopova I, Tatur S, Grygorczyk M, Luchowski R, Gryczynski I, Gryczynski Z, Borejdo J, Grygorczyk R. Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells. Purinergic Signal 2012; 8:59-70. [PMID: 21881960 PMCID: PMC3286538 DOI: 10.1007/s11302-011-9259-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022] Open
Abstract
Nucleotide release constitutes the first step of the purinergic signaling cascade, but its underlying mechanisms remain incompletely understood. In alveolar A549 cells much of the experimental data is consistent with Ca(2+)-regulated vesicular exocytosis, but definitive evidence for such a release mechanism is missing, and alternative pathways have been proposed. In this study, we examined ATP secretion from A549 cells by total internal reflection fluorescence microscopy to directly visualize ATP-loaded vesicles and their fusion with the plasma membrane. A549 cells were labeled with quinacrine or Bodipy-ATP, fluorescent markers of intracellular ATP storage sites, and time-lapse imaging of vesicles present in the evanescent field was undertaken. Under basal conditions, individual vesicles showed occasional quasi-instantaneous loss of fluorescence, as expected from spontaneous vesicle fusion with the plasma membrane and dispersal of its fluorescent cargo. Hypo-osmotic stress stimulation (osmolality reduction from 316 to 160 mOsm) resulted in a transient, several-fold increment of exocytotic event frequency. Lowering the temperature from 37°C to 20°C dramatically diminished the fraction of vesicles that underwent exocytosis during the 2-min stimulation, from ~40% to ≤1%, respectively. Parallel ATP efflux experiments with luciferase bioluminescence assay revealed that pharmacological interference with vesicular transport (brefeldin, monensin), or disruption of the cytoskeleton (nocodazole, cytochalasin), significantly suppressed ATP release (by up to ~80%), whereas it was completely blocked by N-ethylmaleimide. Collectively, our data demonstrate that regulated exocytosis of ATP-loaded vesicles likely constitutes a major pathway of hypotonic stress-induced ATP secretion from A549 cells.
Collapse
Affiliation(s)
- Irina Akopova
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
| | - Sabina Tatur
- Research Centre, Centre hospitalier de l’Université de Montréal (CRCHUM)—Hôtel-Dieu, 3850 St. Urbain St., Montreal, QC Canada H2W 1T7
| | - Mariusz Grygorczyk
- Research Centre, Centre hospitalier de l’Université de Montréal (CRCHUM)—Hôtel-Dieu, 3850 St. Urbain St., Montreal, QC Canada H2W 1T7
| | - Rafał Luchowski
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
| | - Ignacy Gryczynski
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
- Department of Cell Biology and Anatomy, University of North Texas, Fort Worth, TX USA
| | - Zygmunt Gryczynski
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX USA
| | - Julian Borejdo
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, TX USA
| | - Ryszard Grygorczyk
- Research Centre, Centre hospitalier de l’Université de Montréal (CRCHUM)—Hôtel-Dieu, 3850 St. Urbain St., Montreal, QC Canada H2W 1T7
- Department of Medicine, Université de Montréal, Montreal, Quebec Canada
| |
Collapse
|
20
|
Swelling-activated anion channels are essential for volume regulation of mouse thymocytes. Int J Mol Sci 2011; 12:9125-37. [PMID: 22272123 PMCID: PMC3257120 DOI: 10.3390/ijms12129125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/10/2011] [Accepted: 11/24/2011] [Indexed: 11/16/2022] Open
Abstract
Channel-mediated trans-membrane chloride movement is a key process in the active cell volume regulation under osmotic stress in most cells. However, thymocytes were hypothesized to regulate their volume by activating a coupled K-Cl cotransport mechanism. Under the patch-clamp, we found that osmotic swelling activates two types of macroscopic anion conductance with different voltage-dependence and pharmacology. At the single-channel level, we identified two types of events: one corresponded to the maxi-anion channel, and the other one had characteristics of the volume-sensitive outwardly rectifying (VSOR) chloride channel of intermediate conductance. A VSOR inhibitor, phloretin, significantly suppressed both macroscopic VSOR-type conductance and single-channel activity of intermediate amplitude. The maxi-anion channel activity was largely suppressed by Gd(3+) ions but not by phloretin. Surprisingly, [(dihydroindenyl)oxy] alkanoic acid (DIOA), a known antagonist of K-Cl cotransporter, was found to significantly suppress the activity of the VSOR-type single-channel events with no effect on the maxi-anion channels at 10 μM. The regulatory volume decrease (RVD) phase of cellular response to hypotonicity was mildly suppressed by Gd(3+) ions and was completely abolished by phloretin suggesting a major impact of the VSOR chloride channel and modulatory role of the maxi-anion channel. The inhibitory effect of DIOA was also strong, and, most likely, it occurred via blocking the VSOR Cl(-) channels.
Collapse
|
21
|
Haferkamp I, Fernie AR, Neuhaus HE. Adenine nucleotide transport in plants: much more than a mitochondrial issue. TRENDS IN PLANT SCIENCE 2011; 16:507-15. [PMID: 21622019 DOI: 10.1016/j.tplants.2011.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 05/03/2023]
Abstract
Adenine nucleotides play a vital role in plant metabolism and physiology, essentially representing the major energy currency of the cell. Heterotrophic cells regenerate most of the ATP in mitochondria, whereas autotrophic cells also possess chloroplasts, representing a second powerhouse for ATP regeneration. Even though the synthesis of these nucleotides is restricted to a few locations, their use is nearly ubiquitous across the cell and thereby highly efficient systems are required to transport these molecules into and out of different compartments. Here, we discuss the location, biochemical characterization and evolution of corresponding transport systems in plants. We include recent scientific findings concerning organellar transporters from plants and algae and also focus on the physiological importance of adenine nucleotide exchange in these cells.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
22
|
Rieder B, Neuhaus HE. Identification of an Arabidopsis plasma membrane-located ATP transporter important for anther development. THE PLANT CELL 2011; 23:1932-44. [PMID: 21540435 PMCID: PMC3123944 DOI: 10.1105/tpc.111.084574] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ATP acts as an extracellular signal molecule in plants. However, the nature of the mechanisms that export this compound into the apoplast are under debate. We identified the protein PM-ANT1 as a candidate transporter able to mediate ATP export. PM-ANT1 joins the mitochondrial carrier family, lacks an N-terminal amino acid extension required for organelle localization, and locates to the plasma membrane. Recombinant PM-ANT1 transports ATP, and the gene is substantially expressed in mature pollen grains. Artificial microRNA (amiRNA) mutants show reduced silique length and less seeds per silique but increased seed weight associated with unchanged pollen viability. Anthers from amiRNA mutants exhibited a normal early development, but stomium breakage is inhibited, leading to impaired anther dehiscence. This results in reduced self-pollination and thus decreased fertilization efficiency. amiRNA pollen grains showed increased intracellular ATP levels but decreased extracellular ATP levels. The latter effects are in line with transport properties of recombinant PM-ANT1, supporting in planta that functional PM-ANT1 resides in the plasma membrane and concur with the PM-ANT1 expression pattern. We assume that PM-ANT1 contributes to ATP export during pollen maturation. ATP export may serve as an extracellular signal required for anther dehiscence and is a novel factor critical for pollination and autogamy.
Collapse
|
23
|
Takai E, Tsukimoto M, Harada H, Kojima S. Involvement of P2Y6 receptor in p38 MAPK-mediated COX-2 expression in response to UVB irradiation of human keratinocytes. Radiat Res 2010; 175:358-66. [PMID: 21388279 DOI: 10.1667/rr2375.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ultraviolet B (UVB) radiation induces inflammation in human skin. Extracellular nucleotides are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. In this study, we investigated the involvement of extracellular nucleotides and P2 receptors in UVB-radiation-induced inflammation using human keratinocyte-derived HaCaT cells. UVB radiation induced rapid ATP release from HaCaT cells; this was inhibited by pretreatment with anion transporter blockers or maxi-anion channel blockers. In addition, the radiation-induced activation of p38 MAPK was significantly blocked by pretreatment with ecto-nucleotidase (apyrase) or P2Y6 receptor antagonist (MRS2578). Expression of COX-2, mediated by activation of p38 MAPK, was also induced by UVB radiation. Both pretreatment with MRS2578 and knockdown of the P2Y6 receptor by siRNA transfection attenuated the induction of COX-2 in HaCaT cells exposed to UVB radiation. Our results indicate that UVB radiation evokes ATP release from human keratinocytes and also that activation of P2Y6 receptor mediates the UVB-radiation-induced activation of p38 MAPK and expression of COX-2. Thus P2Y6 receptor is a mediator of UVB-radiation-induced inflammatory responses in keratinocytes.
Collapse
Affiliation(s)
- Erina Takai
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi Chiba, Japan
| | | | | | | |
Collapse
|
24
|
Tanaka K, Gilroy S, Jones AM, Stacey G. Extracellular ATP signaling in plants. Trends Cell Biol 2010; 20:601-8. [PMID: 20817461 DOI: 10.1016/j.tcb.2010.07.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/06/2023]
Abstract
Extracellular adenosine-5'-triphosphate (ATP) induces a number of cellular responses in plants and animals. Some of the molecular components for purinergic signaling in animal cells appear to be lacking in plant cells, although some cellular responses are similar in both systems [e.g. increased levels of cytosolic free calcium, nitric oxide (NO), and reactive oxygen species (ROS)]. The purpose of this review is to compare and contrast purinergic signaling mechanisms in animal and plant cells. This comparison will aid our overall understanding of plant physiology and also provide details of the general fundamentals of extracellular ATP signaling in eukaryotes.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
25
|
Chivasa S, Simon WJ, Murphy AM, Lindsey K, Carr JP, Slabas AR. The effects of extracellular adenosine 5'-triphosphate on the tobacco proteome. Proteomics 2010; 10:235-44. [PMID: 19899079 DOI: 10.1002/pmic.200900454] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extracellular adenosine 5'-triphosphate (eATP) is emerging as an important plant signalling compound capable of mobilising intracellular second messengers such as Ca(2+), nitric oxide, and reactive oxygen species. However, the downstream molecular targets and the spectrum of physiological processes that eATP regulates are largely unknown. We used exogenous ATP and a non-hydrolysable analogue as probes to identify the molecular and physiological effects of eATP-mediated signalling in tobacco. 2-DE coupled with MS/MS analysis revealed differential protein expression in response to perturbation of eATP signalling. These proteins are in several functional classes that included photosynthesis, mitochondrial ATP synthesis, and defence against oxidative stress, but the biggest response was in the pathogen defence-related proteins. Consistent with this, impairment of eATP signalling induced resistance against the bacterial pathogen Erwinia carotovora subsp. carotovora. In addition, disease resistance activated by a fungal pathogen elicitor (xylanase from Trichoderma viride) was concomitant with eATP depletion. These results reveal several previously unknown putative molecular targets of eATP signalling, which pinpoint eATP as an important hub at which regulatory signals of some major primary metabolic pathways and defence responses are integrated.
Collapse
Affiliation(s)
- Stephen Chivasa
- Creative Gene Technology Ltd., The Integrative Cell Biology Laboratory, Durham, UK
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
|
28
|
Chivasa S, Murphy AM, Hamilton JM, Lindsey K, Carr JP, Slabas AR. Extracellular ATP is a regulator of pathogen defence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:436-48. [PMID: 19594709 DOI: 10.1111/j.1365-313x.2009.03968.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In healthy plants extracellular ATP (eATP) regulates the balance between cell viability and death. Here we show an unexpected critical regulatory role of eATP in disease resistance and defensive signalling. In tobacco, enzymatic depletion of eATP or competition with non-hydrolysable ATP analogues induced pathogenesis-related (PR) gene expression and enhanced resistance to tobacco mosaic virus and Pseudomonas syringae pv. tabaci. Artificially increasing eATP concentrations triggered a drop in levels of the important defensive signal chemical salicylic acid (SA) and compromised basal resistance to viral and bacterial infection. Inoculating tobacco leaf tissues with bacterial pathogens capable of activating PR gene expression triggered a rapid decline in eATP. Conversely, inoculations with mutant bacteria unable to induce defence gene expression failed to deplete eATP. Furthermore, a collapse in eATP concentration immediately preceded PR gene induction by SA. Our study reveals a previously unsuspected role for eATP as a negative regulator of defensive signal transduction and demonstrates its importance as a key signal integrating defence and cell viability in plants.
Collapse
Affiliation(s)
- Stephen Chivasa
- Creative Gene Technology Ltd, The Integrative Cell Biology Laboratory, Durham University, Durham DH1 3LE, UK
| | | | | | | | | | | |
Collapse
|
29
|
Ohshima Y, Tsukimoto M, Takenouchi T, Harada H, Suzuki A, Sato M, Kitani H, Kojima S. gamma-Irradiation induces P2X(7) receptor-dependent ATP release from B16 melanoma cells. Biochim Biophys Acta Gen Subj 2009; 1800:40-6. [PMID: 19854240 DOI: 10.1016/j.bbagen.2009.10.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ionizing irradiation causes not only growth arrest and cell death, but also release of growth factors or signal transmitters, which promote cancer malignancy. Extracellular ATP controls cancer growth through activation of purinoceptors. However, there is no report of radiation-induced ATP release from cancer cells. Here, we examined gamma-irradiation-induced ATP release and its mechanism in B16 melanoma. METHODS Extracellular ATP was measured by luciferin-luciferase assay. To investigate mechanism of radiation-induced ATP release, we pharmacologically inhibited the ATP release and established stable P2X(7) receptor-knockdown B16 melanoma cells using two short hairpin RNAs targeting P2X(7) receptor. RESULTS Cells were exposed to 0.5-8 Gy of gamma-rays. Extracellular ATP was increased, peaking at 5 min after 0.5 Gy irradiation. A selective P2X(7) receptor channel antagonist, but not anion transporter inhibitors, blocked the release of ATP. Further, radiation-induced ATP release was significantly decreased in P2X(7) receptor-knockdown cells. Our results indicate that gamma-irradiation evokes ATP release from melanoma cells, and P2X(7) receptor channel plays a significant role in mediating the ATP release. GENERAL SIGNIFICANCE We suggest that extracellular ATP could be a novel intercellular signaling molecule released from cancer cells when cells are exposed to ionizing radiation.
Collapse
Affiliation(s)
- Yasuhiro Ohshima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Toychiev AH, Sabirov RZ, Takahashi N, Ando-Akatsuka Y, Liu H, Shintani T, Noda M, Okada Y. Activation of maxi-anion channel by protein tyrosine dephosphorylation. Am J Physiol Cell Physiol 2009; 297:C990-1000. [PMID: 19657061 DOI: 10.1152/ajpcell.00131.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The maxi-anion channel with a large single-channel conductance of >300 pS, and unknown molecular identity, is functionally expressed in a large variety of cell types. The channel is activated by a number of experimental maneuvers such as exposing cells to hypotonic or ischemic stress. The most effective and consistent method of activating it is patch membrane excision. However, the activation mechanism of the maxi-anion channel remains poorly understood at present. In the present study, involvement of phosphorylation/dephosphorylation in excision-induced activation was examined. In mouse mammary fibroblastic C127 cells, activity of the channel was suppressed by intracellular application of Mg-ATP, but not Mg-5'-adenylylimidodiphosphate (AMP-PNP), in a concentration-dependent manner. When a cocktail of broad-spectrum tyrosine phosphatase inhibitors was applied, channel activation was completely abolished, whereas inhibitors of serine/threonine protein phosphatases had no effect. On the other hand, protein tyrosine kinase inhibitors brought the channel out of an inactivated state. In mouse adult skin fibroblasts (MAFs) in primary culture, similar maxi-anion channels were found to be activated on membrane excision, in a manner sensitive to tyrosine phosphatase inhibitors. In MAFs isolated from animals deficient in receptor protein tyrosine phosphatase (RPTP)zeta, activation of the maxi-anion channel was significantly slower and less prominent compared with that observed in wild-type MAFs; however, channel activation was restored by transfection of the RPTPzeta gene. Thus it is concluded that activation of the maxi-anion channel involves protein dephosphorylation mediated by protein tyrosine phosphatases that include RPTPzeta in mouse fibroblasts, but not in C127 cells.
Collapse
Affiliation(s)
- Abduqodir H Toychiev
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Praetorius HA, Leipziger J. ATP release from non-excitable cells. Purinergic Signal 2009; 5:433-46. [PMID: 19301146 DOI: 10.1007/s11302-009-9146-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Accepted: 03/03/2008] [Indexed: 02/06/2023] Open
Abstract
All cells release nucleotides and are in one way or another involved in local autocrine and paracrine regulation of organ function via stimulation of purinergic receptors. Significant technical advances have been made in recent years to quantify more precisely resting and stimulated adenosine triphosphate (ATP) concentrations in close proximity to the plasma membrane. These technical advances are reviewed here. However, the mechanisms by which cells release ATP continue to be enigmatic. The current state of knowledge on different suggested mechanisms is also reviewed. Current evidence suggests that two separate regulated modes of ATP release co-exist in non-excitable cells: (1) a conductive pore which in several systems has been found to be the channel pannexin 1 and (2) vesicular release. Modes of stimulation of ATP release are reviewed and indicate that both subtle mechanical stimulation and agonist-triggered release play pivotal roles. The mechano-sensor for ATP release is not yet defined.
Collapse
Affiliation(s)
- Helle A Praetorius
- Department of Physiology and Biophysics, Aarhus University, Ole Worms Alle 160, 8000, Aarhus, Denmark
| | | |
Collapse
|
32
|
Sabirov RZ, Okada Y. The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci 2009; 59:3-21. [PMID: 19340557 PMCID: PMC10717152 DOI: 10.1007/s12576-008-0008-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/05/2008] [Indexed: 10/20/2022]
Abstract
The maxi-anion channel is widely expressed and found in almost every part of the body. The channel is activated in response to osmotic cell swelling, to excision of the membrane patch, and also to some other physiologically and pathophysiologically relevant stimuli, such as salt stress in kidney macula densa as well as ischemia/hypoxia in heart and brain. Biophysically, the maxi-anion channel is characterized by a large single-channel conductance of 300-400 pS, which saturates at 580-640 pS with increasing the Cl(-) concentration. The channel discriminates well between Na(+) and Cl(-), but is poorly selective to other halides exhibiting weak electric-field selectivity with an Eisenman's selectivity sequence I. The maxi-anion channel has a wide pore with an effective radius of approximately 1.3 nm and permits passage not only of Cl(-) but also of some intracellular large organic anions, thereby releasing major extracellular signals and gliotransmitters such as glutamate(-) and ATP(4-). The channel-mediated efflux of these signaling molecules is associated with kidney tubuloglomerular feedback, cardiac ischemia/hypoxia, as well as brain ischemia/hypoxia and excitotoxic neurodegeneration. Despite the ubiquitous expression, well-defined properties and physiological/pathophysiological significance of this classical channel, the molecular entity has not been identified. Molecular identification of the maxi-anion channel is an urgent task that would greatly promote investigation in the fields not only of anion channel but also of physiological/pathophysiological signaling in the brain, heart and kidney.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
- Laboratory of Molecular Physiology, Institute of Physiology and Biophysics, Tashkent, 100095 Uzbekistan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (Sokendai), Okazaki, 444-8585 Japan
| |
Collapse
|
33
|
Isoya E, Toyoda F, Imai S, Okumura N, Kumagai K, Omatsu-Kanbe M, Kubo M, Matsuura H, Matsusue Y. Swelling-Activated Cl− Current in Isolated Rabbit Articular Chondrocytes: Inhibition by Arachidonic Acid. J Pharmacol Sci 2009; 109:293-304. [DOI: 10.1254/jphs.08278fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Zheng H, Nam JH, Nguen YH, Kang TM, Kim TJ, Earm YE, Kim SJ. Arachidonic acid-induced activation of large-conductance potassium channels and membrane hyperpolarization in mouse B cells. Pflugers Arch 2008; 456:867-81. [PMID: 18214524 DOI: 10.1007/s00424-008-0445-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 12/13/2007] [Accepted: 01/02/2008] [Indexed: 12/31/2022]
Abstract
Lymphocytes express voltage-gated (Kv) and Ca(2+)-activated (IKCa1) K(+) channels. Recently, we found that WEHI-231, an immature B cell line, expresses voltage-independent K(+) channels called large-conductance background K( + ) channels (LK(bg)). Arachidonic acid (AA) has attracted attention because of its potential regulatory roles in the apoptosis of immature B cells. To elucidate the functional targets of AA, we investigated the effects of AA on membrane currents, voltages, and cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) of WEHI-231 and Bal-17 cells that represent immature and mature mouse B cells, respectively. In whole-cell patch clamp, both Kv and IKCa1 were inhibited by AA. On the other hand, AA activated LK(bg) current and non-selective cationic (NSC) current in WEHI-231 while only NSC current in Bal-17. Inside-out patch clamp study showed that AA directly activates LK(bg). AA induced hyperpolarization of WEHI-231 and depolarization of Bal-17 cells, respectively. The selective functional expression of LK(bg) and their activation by AA were also confirmed in the immature B cells (B220(+)/AA4.1(+)) freshly isolated from mouse spleen. In fura-2 spectrofluorimetry, AA induced persistent increase in [Ca(2+)](c) of WEHI-231 cells, which was attenuated by KCl-induced depolarization. In Bal-17 cell, however, AA induced only a transient increase of [Ca(2+)](c). In summary, the novel type of background K(+) channels (LK(bg)) in immature B cells is strongly activated while the other K(+) channels (Kv and IKCa1) commonly expressed in lymphocytes are inhibited by AA. The hyperpolarization and augmentation of Ca(2+) influx by LK(bg) activation might play a role in the response of immature B cells to AA.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul, 110-799, South Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch technique. Biophys J 2007; 94:1646-55. [PMID: 18024498 DOI: 10.1529/biophysj.107.117820] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatial distribution of maxi-anion channels in rat cardiomyocytes were studied by applying the recently developed patch clamp technique under scanning ion conductance microscopy, called the "smart-patch" technique. In primary-cultured neonatal cells, the channel was found to be unevenly distributed over the cell surface with significantly lower channel activity in cellular extensions compared with the other parts. Local ATP release, detected using a PC12 cell-based biosensor technique, also exhibited a similar pattern. The maxi-anion channel activity could not be detected in freshly isolated adult cardiomyocytes by the conventional patch-clamp with 2-MOmega pipettes. However, when fine-tipped 15-20 MOmega pipettes were targeted to only Z-line areas, we observed, for the first time, the maxi-anion events. Smart-patching different regions of the cell surface, we found that the channel activity was maximal at the openings of T-tubules and along Z-lines, but was significantly decreased in the scallop crest area. Thus, it is concluded that maxi-anion channels are concentrated at the openings of T-tubules and along Z-lines in adult cardiomyocytes. This study showed that the smart-patch technique provides a powerful method to detect a unitary event of channels that are localized at some specific site in the narrow region.
Collapse
|
36
|
Zhou JJ, Linsdell P. Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel. Eur J Pharmacol 2007; 563:88-91. [PMID: 17397825 DOI: 10.1016/j.ejphar.2007.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 02/07/2023]
Abstract
Arachidonic acid inhibits the activity of a number of different Cl- channels, however its molecular mechanism of action is not known. Here we show that inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels by arachidonic acid is weakened following mutagenesis of two positively charged pore-lining amino acids. Charge-neutralizing mutants K95Q and R303Q both increased the Kd for inhibition from approximately 3.5 microM in wild type to approximately 17 microM. At both sites, the effects of mutagenesis were dependent of the charge of the substituted side chain. We suggest that arachidonic acid interacts electrostatically with positively charged amino acid side chains in the cytoplasmic vestibule of the CFTR channel pore to block Cl- permeation.
Collapse
Affiliation(s)
- Jing-Jun Zhou
- Department of Physiology & Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | |
Collapse
|
37
|
Hoa NT, Zhang JG, Delgado CL, Myers MP, Callahan LL, Vandeusen G, Schiltz PM, Wepsic HT, Jadus MR. Human monocytes kill M-CSF-expressing glioma cells by BK channel activation. J Transl Med 2007; 87:115-29. [PMID: 17318194 DOI: 10.1038/labinvest.3700506] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this study, human monocytes/macrophages were observed to kill human U251 glioma cells expressing membrane macrophage colony-stimulating factor (mM-CSF) via a swelling and vacuolization process called paraptosis. Human monocytes responded to the mM-CSF-transduced U251 glioma cells, but not to viral vector control U251 glioma cells (U251-VV), by producing a respiratory burst within 20 min. Using patch clamp techniques, functional big potassium (BK) channels were observed on the membrane of the U251 glioma cell. It has been previously reported that oxygen indirectly regulates BK channel function. In this study, it was demonstrated that prolonged BK channel activation in response to the respiratory burst induced by monocytes initiates paraptosis in selected glioma cells. Forced BK channel opening within the glioma cells by BK channel activators (phloretin or pimaric acid) induced U251 glioma cell swelling and vacuolization occurred within 30 min. U251 glioma cell cytotoxicity, induced by using BK channel activators, required between 8 and 12 h. Swelling and vacuolization induced by phloretin and pimaric acid was prevented by iberiotoxin, a specific BK channel inhibitor. Confocal fluorescence microscopy demonstrated BK channels co-localized with the endoplasmic reticulum and mitochondria, the two targeted organelles affected in paraptosis. Iberiotoxin prevented monocytes from producing death in mM-CSF-expressing U251glioma cells in a 24 h assay. This study demonstrates a novel mechanism whereby monocytes can induce paraptosis via the disruption of internal potassium ion homeostasis.
Collapse
Affiliation(s)
- Neil T Hoa
- Department of Diagnostic and Molecular Medicine, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Castrop H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol (Oxf) 2007; 189:3-14. [PMID: 17280552 DOI: 10.1111/j.1748-1716.2006.01610.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the juxtaglomerular apparatus of the kidney the loop of Henle gets into close contact to its parent glomerulus. This anatomical link between the tubular system and the vasculature of the afferent and efferent arteriole enables specialized tubular cells, the macula densa (MD) cells, to establish an intra-nephron feedback loop designed to control preglomerular resistance and thereby single nephron glomerular filtration rate. This review focuses on the signalling mechanisms which link salt-sensing MD cells and the regulation of preglomerular resistance, a feedback loop known as tubuloglomerular feedback (TGF). Two purinergic molecules, ATP and adenosine, have emerged over the years as most likely candidates to serve as mediators of TGF. Data will be reviewed supporting a role of either ATP or adenosine as mediators of TGF. In addition, a concept will be discussed that integrates both ATP and adenosine into one signalling cascade that includes (i) release of ATP from MD cells upon increases in tubular salt concentration, (ii) extracellular degradation of ATP to form adenosine, and (iii) adenosine-mediated vasoconstriction of the afferent arteriole.
Collapse
Affiliation(s)
- H Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
39
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 999] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ. Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 2006; 54:343-57. [PMID: 16883573 DOI: 10.1002/glia.20400] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Astrocytes release glutamate upon hyperexcitation in the normal brain, and in response to pathologic insults such as ischemia and trauma. In our experiments, both hypotonic and ischemic stimuli caused the release of glutamate from cultured mouse astrocytes, which occurred with little or no contribution of gap junction hemichannels, vesicle-mediated exocytosis, or reversed operation of the Na-dependent glutamate transporter. Cell swelling and chemical ischemia activated, in cell-attached membrane patches, anionic channels with large unitary conductance (approximately 400 pS) and inactivation kinetics at potentials more positive than +20 mV or more negative than -20 mV. These properties are different from those of volume-sensitive outwardly rectifying (VSOR) Cl- channels, which were also expressed in these cells and exhibited intermediate unitary conductance (approximately 80 pS) and inactivation kinetics at large positive potentials of more than +40 mV. Both maxi-anion channels and VSOR Cl- channels were permeable to glutamate with permeability ratios of glutamate to chloride of 0.21 +/- 0.07 and 0.15 +/- 0.01, respectively. However, the release of glutamate was significantly more sensitive to Gd3+, a blocker of maxi-anion channels, than to phloretin, a blocker of VSOR Cl- channels. We conclude that these two channels jointly represent a major conductive pathway for the release of glutamate from swollen and ischemia-challenged astrocytes, with the contribution of maxi-anion channels being predominant.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
42
|
Sabirov RZ, Okada Y. ATP release via anion channels. Purinergic Signal 2005; 1:311-28. [PMID: 18404516 PMCID: PMC2096548 DOI: 10.1007/s11302-005-1557-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 11/30/2022] Open
Abstract
ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| |
Collapse
|
43
|
Sabirov RZ, Sheiko T, Liu H, Deng D, Okada Y, Craigen WJ. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins. J Biol Chem 2005; 281:1897-904. [PMID: 16291750 DOI: 10.1074/jbc.m509482200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maxianion channel is widely expressed in many cell types, where it fulfills a general physiological function as an ATP-conductive gate for cell-to-cell purinergic signaling. Establishing the molecular identity of this channel is crucial to understanding the mechanisms of regulated ATP release. A mitochondrial porin (voltage-dependent anion channel (VDAC)) located in the plasma membrane has long been considered as the molecule underlying the maxianion channel activity, based upon similarities in the biophysical properties of these two channels and the purported presence of VDAC protein in the plasma membrane. We have deleted each of the three genes encoding the VDAC isoforms individually and collectively and demonstrate that maxianion channel (approximately 400 picosiemens) activity in VDAC-deficient mouse fibroblasts is unaltered. The channel activity is similar in VDAC1/VDAC3-double-deficient cells and in double-deficient cells with the VDAC2 protein depleted by RNA interference. VDAC deletion slightly down-regulated, but never abolished, the swelling-induced ATP release. The lack of correlation between VDAC protein expression and maxianion channel activity strongly argues against the long held hypothesis of plasmalemmal VDAC being the maxianion channel.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas AR. Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. THE PLANT CELL 2005; 17:3019-34. [PMID: 16199612 PMCID: PMC1276027 DOI: 10.1105/tpc.105.036806] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 08/05/2005] [Accepted: 09/06/2005] [Indexed: 05/04/2023]
Abstract
ATP is a vital molecule used by living organisms as a universal source of energy required to drive the cogwheels of intracellular biochemical reactions necessary for growth and development. Animal cells release ATP to the extracellular milieu, where it functions as the primary signaling cue at the epicenter of a diverse range of physiological processes. Although recent findings revealed that intact plant tissues release ATP as well, there is no clearly defined physiological function of extracellular ATP in plants. Here, we show that extracellular ATP is essential for maintaining plant cell viability. Its removal by the cell-impermeant traps glucose-hexokinase and apyrase triggered death in both cell cultures and whole plants. Competitive exclusion of extracellular ATP from its binding sites by treatment with beta,gamma-methyleneadenosine 5'-triphosphate, a nonhydrolyzable analog of ATP, also resulted in death. The death response was observed in Arabidopsis thaliana, maize (Zea mays), bean (Phaseolus vulgaris), and tobacco (Nicotiana tabacum). Significantly, we discovered that fumonisin B1 (FB1) treatment of Arabidopsis triggered the depletion of extracellular ATP that preceded cell death and that exogenous ATP rescues Arabidopsis from FB1-induced death. These observations suggest that extracellular ATP suppresses a default death pathway in plants and that some forms of pathogen-induced cell death are mediated by the depletion of extracellular ATP.
Collapse
Affiliation(s)
- Stephen Chivasa
- Creative Gene Technology, Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Abstract
Numerous Cl- channels have been identified in the kidney using physiological approaches and thus are thought to be involved in a range of physiological processes, including vectorial transepithelial Cl- transport, cell volume regulation, and vesicular acidification. In addition, expression of genes from several Cl- channel gene families has also been observed. However, the molecular characteristics of a number of Cl- channels within the kidney are still unknown, and the physiological roles of Cl- channels identified by molecular means remain to be determined. A gene knockout approach using mice might shed further light on the characteristics of these various Cl- channels. In addition, study of diseases involving Cl- channels (channelopathies) might clarify the physiological role of specific Cl- channels. To date, more is known about CLC Cl- channels than any other Cl- channels within the kidney. This review focuses on the physiological roles of CLC Cl- channels within the kidney, particularly kidney-specific ClC-K Cl- channels, as well as the recently identified maxi anion channel in macula densa, which is involved in tubulo-glomerular feedback.
Collapse
Affiliation(s)
- Shinichi Uchida
- Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | |
Collapse
|
46
|
Sabirov RZ, Okada Y. Wide nanoscopic pore of maxi-anion channel suits its function as an ATP-conductive pathway. Biophys J 2005; 87:1672-85. [PMID: 15345546 PMCID: PMC1304572 DOI: 10.1529/biophysj.104.043174] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The newly proposed function of the maxi-anion channel as a conductive pathway for ATP release requires that its pore is sufficiently large to permit passage of a bulky ATP(4-) anion. We found a linear relationship between relative permeability of organic anions of different size and their relative ionic mobility (measured as the ratio of ionic conductance) with a slope close to 1, suggesting that organic anions tested with radii up to 0.49 nm (lactobionate) move inside the channel by free diffusion. In the second approach, we, for the first time, succeeded in pore sizing by the nonelectrolyte exclusion method in single-channel patch-clamp experiments. The cutoff radii of PEG molecules that could access the channel from intracellular (1.16 nm) and extracellular (1.42 nm) sides indicated an asymmetry of the two entrances to the channel pore. Measurements by symmetrical two-sided application of PEG molecules yielded an average functional pore radius of approximately 1.3 nm. These three estimates are considerably larger than the radius of ATP(4-) (0.57-0.65 nm) and MgATP(2-) (approximately 0.60 nm). We therefore conclude that the nanoscopic maxi-anion channel pore provides sufficient room to accommodate ATP and is well suited to its function as a conductive pathway for ATP release in cell-to-cell communication.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
| | | |
Collapse
|
47
|
Takemura H, Takamura Y, Isono K, Tamaoki J, Nagai A, Kawahara K. Hypotonicity-induced ATP release is potentiated by intracellular Ca2+ and cyclic AMP in cultured human bronchial cells. ACTA ACUST UNITED AC 2005; 53:319-26. [PMID: 14975177 DOI: 10.2170/jjphysiol.53.319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have examined the cultured human bronchial epithelial cells (16HBE) to learn if changes in Cl(-) concentration or osmolality stimulate the cells to release ATP and to determine whether its release is cyclic AMP (cAMP)- and/or Ca(2+)-dependent by using the luciferin-luciferase luminometric assay. In a control solution (290 mosmol kg H(2)O(-1)), the external ATP concentration and the rate of ATP release were 0.52 +/- 0.20 nM and 0.036 +/- 0.034 pmol min(-1), respectively. Upon hypotonicity (205 mosmol kg H(2)O(-1)), they increased to 7.0 +/- 1.3 nM and 3.1 +/- 0.6 pmol min(-1), respectively, at 6 min, then decreased. At the peak, the rate of ATP release is estimated to be 6.2x10(4) ATP molecules s(-1) per cell. An accumulation of the released ATP for the initial 10 min increased significantly (p < 0.005) by 71.5% in the presence of forskolin (10 microM), adenylyl cyclase activator, however, it was abolished (p < 0.001) by pretreatment with BAPTA-AM (25 microM), a membrane permeable Ca(2+) chelator. On the other hand, neither low Cl(2-) (75 mM, isotonic) nor hypertonicity (+NaCl or +mannitol, 500 mosmol kg H(2)O(-1)) could significantly increase the ATP release. Further, forskolin or ionomycin (a Ca(2+) ionophore) or, both, failed to stimulate ATP release under the isotonic condition. In conclusion, first, hypertonicity and changes in Cl(-) concentrations are not effective signals for the ATP release; second, hypotonicity-induced ATP release is potentiated by the level of intracellular Ca(2+) and cAMP; and third, a biphasic increase in ATP release and its low rate at the peak support the hypothesis that ATP is released through a non-conducting pathway model, such as exocytosis, or through a volume-dependent, ATP-conductive anion channel.
Collapse
Affiliation(s)
- Hisashi Takemura
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, 228-8555 Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Sabirov RZ, Okada Y. ATP-conducting maxi-anion channel: a new player in stress-sensory transduction. ACTA ACUST UNITED AC 2004; 54:7-14. [PMID: 15040843 DOI: 10.2170/jjphysiol.54.7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The regulated release of ATP is a fundamental process in cell-to-cell signaling. The electrogenic translocation of ATP via an anion channel has been suggested as one possible mechanism of the release. In this review, we survey possible candidate channels for this pathway. The maxi-anion channel characterized by an exceedingly large unitary conductance has been a stray channel with regard to its function. A newly discovered property, its ATP conductivity and its activation in response to stress signals, indicates that this channel has a central role in stress-sensory transduction for cell volume regulation and tubuloglomerular feedback.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan.
| | | |
Collapse
|
49
|
Abstract
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.
Collapse
Affiliation(s)
- Ian Henry Lambert
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, DK-2100, Copenhagen O, Denmark.
| |
Collapse
|
50
|
Dutta AK, Sabirov RZ, Uramoto H, Okada Y. Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions. J Physiol 2004; 559:799-812. [PMID: 15272030 PMCID: PMC1665184 DOI: 10.1113/jphysiol.2004.069245] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It is known that the level of ATP in the interstitial spaces within the heart during ischaemia or hypoxia is elevated due to its release from a number of cell types, including cardiomyocytes. However, the mechanism by which ATP is released from these myocytes is not known. In this study, we examined a possible involvement of the ATP-conductive maxi-anion channel in ATP release from neonatal rat cardiomyocytes in primary culture upon ischaemic, hypoxic or hypotonic stimulation. Using a luciferin-luciferase assay, it was found that ATP was released into the bulk solution when the cells were subjected to chemical ischaemia, hypoxia or hypotonic stress. The swelling-induced ATP release was inhibited by the carboxylate- and stilbene-derivative anion channel blockers, arachidonic acid and Gd3+, but not by glibenclamide. The local concentration of ATP released near the cell surface of a single cardiomyocyte, measured by a biosensor technique, was found to exceed the micromolar level. Patch-clamp studies showed that ischaemia, hypoxia or hypotonic stimulation induced the activation of single-channel events with a large unitary conductance (approximately 390 pS). The channel was selective to anions and showed significant permeability to ATP4- (PATP/PCl approximately 0.1) and MgATP2- (PATP/PCl approximately 0.16). The channel activity exhibited pharmacological properties essentially identical to those of ATP release. These results indicate that neonatal rat cardiomyocytes respond to ischaemia, hypoxia or hypotonic stimulation with ATP release via maxi-anion channels.
Collapse
Affiliation(s)
- Amal K Dutta
- Department of Cell Physiology, National Institute for Physiological Sciences, Myodaiji-cho, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|