1
|
Desai SA. Novel Ion Channel Genes in Malaria Parasites. Genes (Basel) 2024; 15:296. [PMID: 38540355 PMCID: PMC10970509 DOI: 10.3390/genes15030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Ion channels serve many cellular functions including ion homeostasis, volume regulation, signaling, nutrient acquisition, and developmental progression. Although the complex life cycles of malaria parasites necessitate ion and solute flux across membranes, the whole-genome sequencing of the human pathogen Plasmodium falciparum revealed remarkably few orthologs of known ion channel genes. Contrasting with this, biochemical studies have implicated the channel-mediated flux of ions and nutritive solutes across several membranes in infected erythrocytes. Here, I review advances in the cellular and molecular biology of ion channels in malaria parasites. These studies have implicated novel parasite genes in the formation of at least two ion channels, with additional ion channels likely present in various membranes and parasite stages. Computational approaches that rely on homology to known channel genes from higher organisms will not be very helpful in identifying the molecular determinants of these activities. Given their unusual properties, novel molecular and structural features, and essential roles in pathogen survival and development, parasite channels should be promising targets for therapy development.
Collapse
Affiliation(s)
- Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
2
|
Hatem A, Esperti S, Murciano N, Qiao M, Giustina Rotordam M, Becker N, Nader E, Maurer F, Pérès L, Bouyer G, Kaestner L, Connes P, Egée S. Adverse effects of delta-9-tetrahydrocannabinol on sickle red blood cells. Am J Hematol 2023; 98:E383-E386. [PMID: 37800361 DOI: 10.1002/ajh.27109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 10/07/2023]
Abstract
THC triggers a pronounced entry of Ca2+ , which may be deleterious, into sickle cell red blood cells via activation of the TRPV2 channel.
Collapse
Affiliation(s)
- Aline Hatem
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sofia Esperti
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Nicoletta Murciano
- Research and Development, Nanion Technologies, Munich, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Min Qiao
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Nadine Becker
- Research and Development, Nanion Technologies, Munich, Germany
| | - Elie Nader
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Felix Maurer
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Laurent Pérès
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Guillaume Bouyer
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Philippe Connes
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Stéphane Egée
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
- Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
3
|
Hertz L, Flormann D, Birnbaumer L, Wagner C, Laschke MW, Kaestner L. Evidence of in vivo exogen protein uptake by red blood cells: a putative therapeutic concept. Blood Adv 2023; 7:1033-1039. [PMID: 36490356 PMCID: PMC10036505 DOI: 10.1182/bloodadvances.2022008404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
For some molecular players in red blood cells (RBCs), the functional indications and molecular evidence are discrepant. One such protein is transient receptor potential channel of canonical subfamily, member 6 (TRPC6). Transcriptome analysis of reticulocytes revealed the presence of TRPC6 in mouse RBCs and its absence in human RBCs. We transfused TRPC6 knockout RBCs into wild-type mice and performed functional tests. We observed the "rescue" of TRPC6 within 10 days; however, the "rescue" was slower in splenectomized mice. The latter finding led us to mimic the mechanical challenge with the cantilever of an atomic force microscope and simultaneously carry out imaging by confocal (3D) microscopy. We observed the strong interaction of RBCs with the opposed surface at around 200 pN and the formation of tethers. The results of both the transfusion experiments and the atomic force spectroscopy suggest mechanically stimulated protein transfer to RBCs as a protein source in the absence of the translational machinery. This protein transfer mechanism has the potential to be utilized in therapeutic contexts, especially for hereditary diseases involving RBCs, such as hereditary xerocytosis or Gárdos channelopathy.
Collapse
Affiliation(s)
- Laura Hertz
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Daniel Flormann
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Christian Wagner
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | - Matthias W. Laschke
- Medical Faculty, Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| |
Collapse
|
4
|
von Lindern M, Egée S, Bianchi P, Kaestner L. The Function of Ion Channels and Membrane Potential in Red Blood Cells: Toward a Systematic Analysis of the Erythroid Channelome. Front Physiol 2022; 13:824478. [PMID: 35177994 PMCID: PMC8844196 DOI: 10.3389/fphys.2022.824478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 01/14/2023] Open
Abstract
Erythrocytes represent at least 60% of all cells in the human body. During circulation, they experience a huge variety of physical and chemical stimulations, such as pressure, shear stress, hormones or osmolarity changes. These signals are translated into cellular responses through ion channels that modulate erythrocyte function. Ion channels in erythrocytes are only recently recognized as utmost important players in physiology and pathophysiology. Despite this awareness, their signaling, interactions and concerted regulation, such as the generation and effects of “pseudo action potentials”, remain elusive. We propose a systematic, conjoined approach using molecular biology, in vitro erythropoiesis, state-of-the-art electrophysiological techniques, and channelopathy patient samples to decipher the role of ion channel functions in health and disease. We need to overcome challenges such as the heterogeneity of the cell population (120 days lifespan without protein renewal) or the access to large cohorts of patients. Thereto we will use genetic manipulation of progenitors, cell differentiation into erythrocytes, and statistically efficient electrophysiological recordings of ion channel activity.
Collapse
Affiliation(s)
- Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Stéphane Egée
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, UMR 8227, Sorbonne Université, Roscoff Cedex, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Paola Bianchi
- Pathophysiology of Anemia Unit, Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan, Milan, Italy
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- *Correspondence: Lars Kaestner,
| |
Collapse
|
5
|
Monedero Alonso D, Pérès L, Hatem A, Bouyer G, Egée S. The Chloride Conductance Inhibitor NS3623 Enhances the Activity of a Non-selective Cation Channel in Hyperpolarizing Conditions. Front Physiol 2021; 12:743094. [PMID: 34707512 PMCID: PMC8543036 DOI: 10.3389/fphys.2021.743094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Handbooks of physiology state that the strategy adopted by red blood cells (RBCs) to preserve cell volume is to maintain membrane permeability for cations at its minimum. However, enhanced cation permeability can be measured and observed in specific physiological and pathophysiological situations such as in vivo senescence, storage at low temperature, sickle cell anemia and many other genetic defects affecting transporters, membrane or cytoskeletal proteins. Among cation pathways, cation channels are able to dissipate rapidly the gradients that are built and maintained by the sodium and calcium pumps. These situations are very well-documented but a mechanistic understanding of complex electrophysiological events underlying ion transports is still lacking. In addition, non-selective cation (NSC) channels present in the RBC membrane have proven difficult to molecular identification and functional characterization. For instance, NSC channel activity can be elicited by Low Ionic Strength conditions (LIS): the associated change in membrane potential triggers its opening in a voltage dependent manner. But, whereas this depolarizing media produces a spectacular activation of NSC channel, Gárdos channel-evoked hyperpolarization's have been shown to induce sodium entry through a pathway thought to be conductive and termed Pcat. Using the CCCP method, which allows to follow fast changes in membrane potential, we show here (i) that hyperpolarization elicited by Gárdos channel activation triggers sodium entry through a conductive pathway, (ii) that chloride conductance inhibition unveils such conductive cationic conductance, (iii) that the use of the specific chloride conductance inhibitor NS3623 (a derivative of Neurosearch compound NS1652), at concentrations above what is needed for full anion channel block, potentiates the non-selective cation conductance. These results indicate that a non-selective cation channel is likely activated by the changes in the driving force for cations rather than a voltage dependence mechanism per se.
Collapse
Affiliation(s)
- David Monedero Alonso
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, Roscoff, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Laurent Pérès
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, Roscoff, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Aline Hatem
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, Roscoff, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Guillaume Bouyer
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, Roscoff, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Stéphane Egée
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, Roscoff, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
6
|
Sharma J, Baumeister S, Przyborski JM, Lingelbach K. Babesia divergens-infected red blood cells take up glutamate via an EAAT3 independent mechanism. Int J Med Microbiol 2017; 308:148-154. [PMID: 29089241 DOI: 10.1016/j.ijmm.2017.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022] Open
Abstract
Human red blood cells infected with the malaria parasite Plasmodium falciparum show an increased permeability to a number of solutes. We have previously demonstrated that such infected cells take up glutamate via a member of the excitatory amino acid transporter protein family (EAAT), namely EAAT3. Babesia divergens is a parasite that also infects human erythrocytes, and also induces increased solute permeability, including for glutamate. Here we have investigated whether glutamate uptake in B. divergens infected human red blood cells is also dependent on EAAT3 activity. We find that, although B. divergens infected cells do take up glutamate, this uptake is independent on EAAT3. Thus, though infecting the same host cell, two related parasites have developed distinct pathways to obtain access to nutrients from the extracellular milieu.
Collapse
Affiliation(s)
- Jyotsna Sharma
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Stefan Baumeister
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany.
| | - Jude M Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany; Parasitology, Centre for Infectious Diseases, INF324, 69120 Heidelberg, Germany.
| | - Klaus Lingelbach
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Ferraz R, Pinheiro M, Gomes A, Teixeira C, Prudêncio C, Reis S, Gomes P. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models. Bioorg Med Chem Lett 2017; 27:4190-4193. [PMID: 28733082 DOI: 10.1016/j.bmcl.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 11/17/2022]
Abstract
Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids.
Collapse
Affiliation(s)
- Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Marina Pinheiro
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Prudêncio
- ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal.
| |
Collapse
|
8
|
Abstract
Some hours after invading the erythrocytes of its human host, the malaria parasite Plasmodium falciparum induces an increase in the permeability of the erythrocyte membrane to monovalent ions. The resulting net influx of Na(+) and net efflux of K(+), down their respective concentration gradients, converts the erythrocyte cytosol from an initially high-K(+), low-Na(+) solution to a high-Na(+), low-K(+) solution. The intraerythrocytic parasite itself exerts tight control over its internal Na(+), K(+), Cl(-), and Ca(2+) concentrations and its intracellular pH through the combined actions of a range of membrane transport proteins. The molecular mechanisms underpinning ion regulation in the parasite are receiving increasing attention, not least because PfATP4, a P-type ATPase postulated to be involved in Na(+) regulation, has emerged as a potential antimalarial drug target, susceptible to inhibition by a wide range of chemically unrelated compounds.
Collapse
Affiliation(s)
- Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
9
|
Kaestner L. Channelizing the red blood cell: molecular biology competes with patch-clamp. Front Mol Biosci 2015; 2:46. [PMID: 26322315 PMCID: PMC4531249 DOI: 10.3389/fmolb.2015.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/24/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lars Kaestner
- Research Center for Molecular Imaging and Screening, Medical School, Saarland University Homburg, Germany
| |
Collapse
|
10
|
Spillman NJ, Beck JR, Goldberg DE. Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu Rev Biochem 2015; 84:813-41. [PMID: 25621510 DOI: 10.1146/annurev-biochem-060614-034157] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylum Apicomplexa comprises a large group of obligate intracellular parasites of high medical and veterinary importance. These organisms succeed intracellularly by effecting remarkable changes in a broad range of diverse host cells. The transformation of the host erythrocyte is particularly striking in the case of the malaria parasite Plasmodium falciparum. P. falciparum exports hundreds of proteins that mediate a complex cellular renovation marked by changes in the permeability, rigidity, and cytoadherence properties of the host erythrocyte. The past decade has seen enormous progress in understanding the identity and function of these exported effectors, as well as the mechanisms by which they are trafficked into the host cell. Here we review these advances, place them in the context of host manipulation by related apicomplexans, and propose key directions for future research.
Collapse
|
11
|
Alvarez CL, Schachter J, de Sá Pinheiro AA, Silva LDS, Verstraeten SV, Persechini PM, Schwarzbaum PJ. Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum. PLoS One 2014; 9:e96216. [PMID: 24858837 PMCID: PMC4032238 DOI: 10.1371/journal.pone.0096216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 11/18/2022] Open
Abstract
In human erythrocytes (h-RBCs) various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics) depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages). A "3V" mixture containing isoproterenol (β-adrenergic agonist), forskolin (adenylate kinase activator) and papaverine (phosphodiesterase inhibitor) was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs), t-RBCs (trophozoite-infected RBCs) and s-RBCs (schizont-infected RBCs) showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ΔATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe]) increased nonlinearly with parasitemia (from 2 to 12.5%). Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs) showed 3.8-fold higher ΔATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ΔATP1 to 83-87% for h-RBCs and 63-74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300-900 nM) and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO) was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ΔATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation: an upregulated ATPe degradation, an enhanced NO production, and a decreased intracellular ATP concentration.
Collapse
Affiliation(s)
- Cora Lilia Alvarez
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Julieta Schachter
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Ana Acacia de Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leandro de Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sandra Viviana Verstraeten
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Muanis Persechini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Abstract
As it grows and replicates within the erythrocytes of its host the malaria parasite takes up nutrients from the extracellular medium, exports metabolites and maintains a tight control over its internal ionic composition. These functions are achieved via membrane transport proteins, integral membrane proteins that mediate the passage of solutes across the various membranes that separate the biochemical machinery of the parasite from the extracellular environment. Proteins of this type play a key role in antimalarial drug resistance, as well as being candidate drug targets in their own right. This review provides an overview of recent work on the membrane transport biology of the malaria parasite-infected erythrocyte, encompassing both the parasite-induced changes in the membrane transport properties of the host erythrocyte and the cell physiology of the intracellular parasite itself.
Collapse
|
13
|
Minetti G, Egée S, Mörsdorf D, Steffen P, Makhro A, Achilli C, Ciana A, Wang J, Bouyer G, Bernhardt I, Wagner C, Thomas S, Bogdanova A, Kaestner L. Red cell investigations: Art and artefacts. Blood Rev 2013; 27:91-101. [DOI: 10.1016/j.blre.2013.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Decreased redox-sensitive erythrocyte cation channel activity in aquaporin 9-deficient mice. J Membr Biol 2012; 245:797-805. [PMID: 22836670 DOI: 10.1007/s00232-012-9482-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/30/2012] [Indexed: 02/02/2023]
Abstract
Survival of the malaria pathogen Plasmodium falciparum in host erythrocytes requires the opening of new permeability pathways (NPPs) in the host cell membrane, accomplishing entry of nutrients, exit of metabolic waste products such as lactate and movement of inorganic ions such as Cl⁻, Na⁺ and Ca²⁺. The molecular identity of NPPs has remained largely elusive but presumably involves several channels, which partially can be activated by oxidative stress in uninfected erythrocytes. One NPP candidate is aquaporin 9 (AQP9), a glycerol-permeable water channel expressed in erythrocytes. Gene-targeted mice lacking functional AQP9 (aqp⁻/⁻) survive infection with the malaria pathogen Plasmodium berghei better than their wild-type littermates (aqp9⁺/⁺). In the present study whole-cell patch-clamp recordings were performed to explore whether ion channel activity is different in erythrocytes from aqp⁻/⁻ and aqp9⁺/⁺ mice. As a result, the cation conductance (K⁺ > Na⁺ > Ca²⁺ ≫ NMDG⁺) was significantly lower in erythrocytes from aqp⁻/⁻ than in erythrocytes from aqp9⁺/⁺ mice. Oxidative stress by exposure for 15-30 min to 1 mM H₂O₂ or 1 mM tert-butyl-hydroperoxide enhanced the cation conductance and increased cytosolic Ca²⁺ concentration, effects significantly less pronounced in erythrocytes from aqp⁻/⁻ than in erythrocytes from aqp9⁺/⁺ mice. In conclusion, lack of AQP9 decreases the cation conductance of erythrocytes, an effect that possibly participates in the altered susceptibility of AQP9-deficient mice to infection with P. berghei.
Collapse
|
15
|
Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect 2012; 14:779-86. [PMID: 22580091 DOI: 10.1016/j.micinf.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/25/2023]
Abstract
Human erythrocytes are endowed with ATP release pathways and metabotropic and ionotropic purinoceptors. This review summarizes the pivotal function of purinergic signaling in erythrocyte control of vascular tone, in hemolytic septicemia, and in malaria. In malaria, the intraerythrocytic parasite exploits the purinergic signaling of its host to adapt the erythrocyte to its requirements.
Collapse
|
16
|
Chemical activation of a high-affinity glutamate transporter in human erythrocytes and its implications for malaria-parasite–induced glutamate uptake. Blood 2012; 119:3604-12. [DOI: 10.1182/blood-2011-10-386003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human erythrocytes have a low basal permeability to L-glutamate and are not known to have a functional glutamate transporter. Here, treatment of human erythrocytes with arsenite was shown to induce the uptake of L-glutamate and D-aspartate, but not that of D-glutamate or L-alanine. The majority of the arsenite-induced L-glutamate influx was via a high-affinity, Na+-dependent system showing characteristics of members of the “excitatory amino acid transporter” (EAAT) family. Western blots and immunofluorescence assays revealed the presence of a member of this family, EAAT3, on the erythrocyte membrane. Erythrocytes infected with the malaria parasite Plasmodium falciparum take up glutamate from the extracellular environment. Although the majority of uptake is via a low-affinity Na+-independent pathway there is, in addition, a high-affinity uptake component, raising the possibility that the parasite activates the host cell glutamate transporter.
Collapse
|
17
|
Biswas A, Bhattacharya A, Das PK. Role of cAMP Signaling in the Survival and Infectivity of the Protozoan Parasite, Leishmania donovani. Mol Biol Int 2011; 2011:782971. [PMID: 22091412 PMCID: PMC3200087 DOI: 10.4061/2011/782971] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/01/2011] [Indexed: 11/21/2022] Open
Abstract
Leishmania donovani, while invading macrophages, encounters striking shift in temperature and pH (from 22°C and pH 7.2 to 37°C and pH 5.5), which act as the key environmental trigger for differentiation, and increases cAMP level and cAMP-mediated responses. For comprehensive understanding of cAMP signaling, we studied the enzymes related to cAMP metabolism. A stage-specific and developmentally regulated isoform of receptor adenylate cyclase (LdRACA) showed to regulate differentiation-coupled induction of cAMP. The soluble acidocalcisomal pyrophosphatase, Ldvsp1, was the major isoform regulating cAMP level in association with LdRACA. A differentially expressed soluble cytosolic cAMP phosphodiesterase (LdPDEA) might be related to infection establishment by shifting trypanothione pool utilization bias toward antioxidant defense. We identified and cloned a functional cAMP-binding effector molecule from L. donovani (a regulatory subunit of cAMP-dependent protein kinase, LdPKAR) that may modulate metacyclogenesis through induction of autophagy. This study reveals the significance of cAMP signaling in parasite survival and infectivity.
Collapse
Affiliation(s)
- Arunima Biswas
- Molecular Cell Biology Laboratory, Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | |
Collapse
|
18
|
Thomas SL, Bouyer G, Cueff A, Egée S, Glogowska E, Ollivaux C. Ion channels in human red blood cell membrane: Actors or relics? Blood Cells Mol Dis 2011; 46:261-5. [DOI: 10.1016/j.bcmd.2011.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
19
|
Abstract
Cyclic nucleotides are so-called intracellular second messenger molecules used by all cells to transform environmental signals into an appropriate response. Interest in the cyclic nucleotides cAMP and cGMP in malaria parasites followed early observations that both molecules might be involved in distinct differentiation events within the sexual phase of the life cycle that is required for transmission of parasites to the mosquito vector. Completed genome sequences combined with biochemical and genetic studies have confirmed the presence of the main enzymatic components of cyclic nucleotide signalling in the parasite. Dissection of their functions is underway and is giving initial insights into some of the cellular processes, which are regulated by these signalling pathways. Malaria parasites occupy terminally differentiated red blood cells for a significant proportion of their life cycle, but although there is some evidence of potential roles for the residual host cell signalling machinery in parasite development, details are few. A major gap in our knowledge is the nature of the cell surface receptors, which might trigger cyclic nucleotide signalling in the parasite.
Collapse
Affiliation(s)
- David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK.
| |
Collapse
|
20
|
Delgado-Ramírez M, Pottosin II, Melnikov V, Dobrovinskaya OR. Infection by Trypanosoma cruzi enhances anion conductance in rat neonatal ventricular cardiomyocytes. J Membr Biol 2010; 238:51-61. [PMID: 21085939 DOI: 10.1007/s00232-010-9318-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
Recent studies on malaria-infected erythrocytes have shown increased anion channel activity in the host cell membrane, increasing the exchange of solutes between the cytoplasm and exterior. In the present work, we addressed the question of whether another intracellular protozoan parasite, Trypanosoma cruzi, alters membrane transport systems in the host cardiac cell. Neonatal rat cardiomyocytes were cultured and infected with T. cruzi in vitro. Ion currents were measured by patch-clamp technique in the whole-cell configuration. Two small-magnitude instantaneous anion currents, outward- and inward-rectifying, were recorded in all noninfected cardiomyocytes. In addition, ~10% of cardiomyocytes expressed a large anion-preferable, time-dependent current activated at positive membrane potentials. Hypotonic (230 mOsm) treatment resulted in the disappearance of the time-dependent current but provoked a dramatic increase of the instantaneous outward-rectifying one. Both instantaneous currents were suppressed by intracellular Mg(2+). T. cruzi infection did not provoke new anion currents in the host cells but caused an increase of the density of intrinsic swelling-activated outward current, up to twice in heavily infected cells. The occurrence of a time-dependent current dramatically increased in infected cells in the presence of Mg(2+) in the intracellular solution, from ~10 to ~80%, without a significant change of the current density. Our findings represent one further, besides the known Plasmodium falciparum, example of an intracellular parasite which upregulates the anionic currents expressed in the host cell.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045, Colima, México
| | | | | | | |
Collapse
|
21
|
Abstract
One of the most important public health problems in the world today is the emergence and dissemination of drug-resistant malaria parasites. Plasmodium falciparum is the causative agent of the most lethal form of human malaria. New anti-malarial strategies are urgently required, and their design and development require the identification of potential therapeutic targets. However, the molecular mechanisms controlling the life cycle of the malaria parasite are still poorly understood. The published genome sequence of P. falciparum and previous studies have revealed that several homologues of eukaryotic signalling proteins, such as protein kinases, are relatively conserved. Protein kinases are now widely recognized as important drug targets in protozoan parasites. Cyclic AMP-dependent protein kinase (PKA) is implicated in numerous processes in mammalian cells, and the regulatory mechanisms of the cAMP pathway have been characterized. P. falciparum cAMP-dependent protein kinase plays an important role in the parasite's life cycle and thus represents an attractive target for the development of anti-malarial drugs. In this review, we focus on the P. falciparum cAMP/PKA pathway to provide new insights and an improved understanding of this signalling cascade.
Collapse
|
22
|
Baumeister S, Winterberg M, Przyborski JM, Lingelbach K. The malaria parasite Plasmodium falciparum: cell biological peculiarities and nutritional consequences. PROTOPLASMA 2010; 240:3-12. [PMID: 19949823 DOI: 10.1007/s00709-009-0090-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
Apicomplexan parasites obligatorily invade and multiply within eukaryotic cells. Phylogenetically, they are related to a group of algae which, during their evolution, have acquired a secondary endosymbiont. This organelle, which in the parasite is called the apicoplast, is highly reduced compared to the endosymbionts of algae, but still contains many plant-specific biosynthetic pathways. The malaria parasite Plasmodium falciparum infects mammalian erythrocytes which are devoid of intracellular compartments and which largely lack biosynthetic pathways. Despite the limited resources of nutrition, the parasite grows and generates up to 32 merozoites which are the infectious stages of the complex life cycle. A large part of the intra-erythrocytic development takes place in the so-called parasitophorous vacuole, a compartment which forms an interface between the parasite and the cytoplasm of the host cell. In the course of parasite growth, the host cell undergoes dramatic alterations which on one hand contribute directly to the symptoms of severe malaria and which, on the other hand, are also required for parasite survival. Some of these alterations facilitate the acquisition of nutrients from the extracellular environment which are not provided by the host cell. Here, we describe the cell biologically unique interactions between an intracellular eukaryotic pathogen and its metabolically highly reduced host cell. We further discuss current models to explain the appearance of pathogen-induced novel physiological properties in a host cell which has lost its genetic programme.
Collapse
Affiliation(s)
- Stefan Baumeister
- Department of Parasitology, Faculty of Biology, Philipps Universität, Marburg, Germany
| | | | | | | |
Collapse
|
23
|
Glogowska E, Dyrda A, Cueff A, Bouyer G, Egée S, Bennekou P, Thomas SLY. Anion conductance of the human red cell is carried by a maxi-anion channel. Blood Cells Mol Dis 2010; 44:243-51. [PMID: 20226698 DOI: 10.1016/j.bcmd.2010.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.
Collapse
Affiliation(s)
- Edyta Glogowska
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie Paris6, UMR 7150, Station Biologique, B. P. 74, 29682 Roscoff cedex, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Dyrda A, Cytlak U, Ciuraszkiewicz A, Lipinska A, Cueff A, Bouyer G, Egée S, Bennekou P, Lew VL, Thomas SLY. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells. PLoS One 2010; 5:e9447. [PMID: 20195477 PMCID: PMC2829085 DOI: 10.1371/journal.pone.0009447] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. Methodology/Principal Findings The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K+ and Cl− currents were strictly dependent on the presence of Ca2+. The Ca2+-dependent currents were transient, with typical decay half-times of about 5–10 min, suggesting the spontaneous inactivation of a stretch-activated Ca2+ permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca2+ permeability pathway leading to increased [Ca2+]i, secondary activation of Ca2+-sensitive K+ channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. Conclusions/Significance The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca2+-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca2+ content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Agnieszka Dyrda
- Centre National de la Recherche Scientifique-Université Pierre et Marie Curie Paris6, UMR 7150, Roscoff, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hill DA, Desai SA. Malaria parasite mutants with altered erythrocyte permeability: a new drug resistance mechanism and important molecular tool. Future Microbiol 2010; 5:81-97. [PMID: 20020831 DOI: 10.2217/fmb.09.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane.
Collapse
Affiliation(s)
- David A Hill
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
26
|
Acid-sensitive outwardly rectifying anion channels in human erythrocytes. J Membr Biol 2009; 230:1-10. [PMID: 19572091 DOI: 10.1007/s00232-009-9179-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/22/2009] [Indexed: 12/14/2022]
Abstract
Acid-sensitive outwardly rectifying anion channels (ASOR) have been described in several mammalian cell types. The present whole-cell patch-clamp study elucidated whether those channels are expressed in erythrocytes. To this end whole-cell recordings were made in human erythrocytes from healthy donors treated with low pH and high osmotic pressure. When the pipette solution had a reduced Cl(-) concentration, treatment of the cells with Cl(-)-containing normal and hyperosmotic (addition of sucrose and polyethelene glycol 1000 [PEG-1000] to the Ringer) media with low pH significantly increased the conductance of the cells at positive voltages. Channel activity was highest in the PEG-1000 media (95 and 300 mM PEG-1000, pH 4.5 and 4.3, respectively) where the current-voltage curves demonstrated strong outward rectification and reversed at -40 mV. Substitution of the Cl(-)-containing medium with Cl(-)-free medium resulted in a decrease of the conductance at hyperpolarizing voltages, a shift in reversal potential (to 0 mV) and loss of outward rectification. The chloride currents were inhibited by chloride channels blockers DIDS and NPPB (IC(50) for both was approximately 1 mM) but not with niflumic acid and amiloride. The observations reveal expression of ASOR in erythrocytes.
Collapse
|
27
|
Merckx A, Bouyer G, Thomas SLY, Langsley G, Egée S. Anion channels in Plasmodium-falciparum-infected erythrocytes and protein kinase A. Trends Parasitol 2009; 25:139-44. [PMID: 19200784 DOI: 10.1016/j.pt.2008.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 01/09/2023]
Abstract
By replicating within red blood cells, malaria parasites are largely hidden from immune recognition; however, in the cells, nutrients are limiting and hazardous metabolic end products can rapidly accumulate. Therefore, to survive within erythrocytes, parasites alter the permeability of the host plasma membrane, either by upregulating existing transporters or by creating new permeation pathways. Recent electrophysiological studies of Plasmodium-infected erythrocytes have demonstrated that membrane permeability is mediated by transmembrane transport through ion channels in the infected erythrocyte. This article discusses the evidence and controversies concerning the nature of these channels and surveys the potential role of phosphorylation in activating anion channels that could be important in developing novel strategies for future malarial chemotherapies.
Collapse
Affiliation(s)
- Anaïs Merckx
- Institut Cochin, INSERM U567, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | |
Collapse
|
28
|
Bokhari AAB, Solomon T, Desai SA. Two distinct mechanisms of transport through the plasmodial surface anion channel. J Membr Biol 2008; 226:27-34. [PMID: 19050955 DOI: 10.1007/s00232-008-9136-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/15/2008] [Indexed: 12/26/2022]
Abstract
The plasmodial surface anion channel (PSAC) is a voltage-dependent ion channel on erythrocytes infected with malaria parasites. To fulfill its presumed function in parasite nutrient acquisition, PSAC is permeant to a broad range of charged and uncharged solutes; it nevertheless excludes Na(+) as required to maintain erythrocyte osmotic stability in plasma. Another surprising property of PSAC is its small single-channel conductance (<3 pS in isotonic Cl(-)) in spite of broad permeability to bulky solutes. While exploring the mechanisms underlying these properties, we recently identified interactions between permeating solutes and PSAC inhibitors that suggest the channel has more than one route for passage of solutes. Here, we explored this possibility with 22 structurally diverse solutes and found that each could be classified into one of two categories based on effects on inhibitor affinity, the temperature dependence of these effects and a clear pattern of behavior in permeant solute mixtures. The clear separation of these solutes into two discrete categories suggests two distinct mechanisms of transport through this channel. In contrast to most other broad-permeability channels, selectivity in PSAC appears to be complex and cannot be adequately explained by simple models that invoke sieving through rigid, noninteracting pores.
Collapse
Affiliation(s)
- Abdullah A B Bokhari
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852-8132, USA
| | | | | |
Collapse
|
29
|
Huber SM, Lang C, Lang F, Duranton C. Organic osmolyte channels in malaria-infected erythrocytes. Biochem Biophys Res Commun 2008; 376:514-8. [DOI: 10.1016/j.bbrc.2008.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 01/04/2023]
|
30
|
Akkaya C, Shumilina E, Bobballa D, Brand VB, Mahmud H, Lang F, Huber SM. The Plasmodium falciparum-induced anion channel of human erythrocytes is an ATP-release pathway. Pflugers Arch 2008; 457:1035-47. [PMID: 18696103 DOI: 10.1007/s00424-008-0572-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/31/2008] [Indexed: 01/25/2023]
Abstract
Infection with the malaria parasite Plasmodium falciparum induces osmolyte and anion channels in the host erythrocyte membrane involving ATP release and autocrine purinergic signaling. P. falciparum-parasitized but not unstimulated uninfected erythrocytes released ATP in a 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB; 7 microM)-sensitive and serum album (SA; 0.5% w/v)-stimulated manner. Since Plasmodium infection of human erythrocytes induces SA-dependent outwardly (OR) and SA-independent inwardly rectifying (IR) anion conductances, we tested whether the infection-induced OR channels directly generate an ATP release pathway. P. falciparum-parasitized erythrocytes were recorded in whole-cell mode with either Cl(-) or ATP as the only anion in the bath or pipette. In parasitized cells with predominant OR activity, replacement of bath NaCl by Na-ATP (NMDG-Cl pipette solution) shifted the current reversal potential (V (rev)) from -2 +/- 1 to +51 +/- 3 mV (n = 15). In cells with predominant IR activity, in contrast, the same maneuver induced a shift of V (rev) to significantly larger (p < or = 0.05, two-tailed t test) values (from -3 +/- 1 to +66 +/- 8 mV; n = 5) and an almost complete inhibition of outward current. The anion channel blocker NPPB reversibly decreased the ATP-generated OR currents from 1.1 +/- 0.1 nS to 0.2 +/- 0.05 nS and further shifted V (rev) to +87 +/- 7 mV (n = 12). The NPPB-sensitive fraction of the OR reversed at +48 +/- 4 mV suggesting a relative permeability of P (ATP)/P (Cl) approximately 0.01. Together, these data raise the possibility that the OR might be the electrophysiological correlate of an erythrocyte ATP release pathway.
Collapse
Affiliation(s)
- Canan Akkaya
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Merckx A, Nivez MP, Bouyer G, Alano P, Langsley G, Deitsch K, Thomas S, Doerig C, Egée S. Plasmodium falciparum regulatory subunit of cAMP-dependent PKA and anion channel conductance. PLoS Pathog 2008; 4:e19. [PMID: 18248092 PMCID: PMC2222956 DOI: 10.1371/journal.ppat.0040019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/17/2007] [Indexed: 11/18/2022] Open
Abstract
Malaria symptoms occur during Plasmodium falciparum development into red blood cells. During this process, the parasites make substantial modifications to the host cell in order to facilitate nutrient uptake and aid in parasite metabolism. One significant alteration that is required for parasite development is the establishment of an anion channel, as part of the establishment of New Permeation Pathways (NPPs) in the red blood cell plasma membrane, and we have shown previously that one channel can be activated in uninfected cells by exogenous protein kinase A. Here, we present evidence that in P. falciparum-infected red blood cells, a cAMP pathway modulates anion conductance of the erythrocyte membrane. In patch-clamp experiments on infected erythrocytes, addition of recombinant PfPKA-R to the pipette in vitro, or overexpression of PfPKA-R in transgenic parasites lead to down-regulation of anion conductance. Moreover, this overexpressing PfPKA-R strain has a growth defect that can be restored by increasing the levels of intracellular cAMP. Our data demonstrate that the anion channel is indeed regulated by a cAMP-dependent pathway in P. falciparum-infected red blood cells. The discovery of a parasite regulatory pathway responsible for modulating anion channel activity in the membranes of P. falciparum-infected red blood cells represents an important insight into how parasites modify host cell permeation pathways. These findings may also provide an avenue for the development of new intervention strategies targeting this important anion channel and its regulation. By replicating within red blood cells malaria parasites are largely hidden from immune recognition, but within mature erythrocytes nutrients are limiting and accumulation of potentially hazardous metabolic end products can rapidly become critical. In order to survive within red blood cells malaria parasites, therefore, alter the permeability of the erythrocyte plasma membrane either by up-regulating existing carriers, or by creating new permeation pathways. Recent electrophysiological studies of Plasmodium-infected erythrocytes have demonstrated that these changes reflect trans-membrane transport through ion channels in the infected erythrocyte plasma membrane. Protein phosphorylation has been documented in protozoan parasites for a number of years and is implicated in key processes of both parasites and parasitized host cells. It has been established that cAMP-dependent regulated pathways are able to activate ion channels in the red cell membrane and a better understanding of how the parasite manipulates cAMP-dependent signaling to activate anion channels could be important in developing novel strategies for future anti-malarial chemotherapies.
Collapse
Affiliation(s)
- Anaïs Merckx
- INSERM U609, Wellcome Center for Molecular Parasitology, Glasgow Biomedical Research Centre, Glasgow, Scotland, United Kingdom
- Institut Cochin, INSERM U567, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | - Marie-Paule Nivez
- INSERM U609, Wellcome Center for Molecular Parasitology, Glasgow Biomedical Research Centre, Glasgow, Scotland, United Kingdom
| | - Guillaume Bouyer
- Université Pierre et Marie Curie – CNRS UMR 7150, Roscoff, France
| | | | - Gordon Langsley
- Institut Cochin, INSERM U567, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | - Kirk Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Serge Thomas
- Université Pierre et Marie Curie – CNRS UMR 7150, Roscoff, France
| | - Christian Doerig
- INSERM U609, Wellcome Center for Molecular Parasitology, Glasgow Biomedical Research Centre, Glasgow, Scotland, United Kingdom
| | - Stéphane Egée
- Université Pierre et Marie Curie – CNRS UMR 7150, Roscoff, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Ellory JC, Robinson HC, Browning JA, Stewart GW, Gehl KA, Gibson JS. Abnormal permeability pathways in human red blood cells. Blood Cells Mol Dis 2007; 39:1-6. [PMID: 17434766 DOI: 10.1016/j.bcmd.2007.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/19/2007] [Indexed: 01/29/2023]
Abstract
A number of situations that result in abnormal permeability pathways in human red blood cells (RBCs) have been investigated. In sickle cell disease (SCD), RBCs contain HbS, rather than the normal HbA. When deoxygenated, an abnormal conductance pathway, termed P(sickle), is activated, which contributes to cell dehydration, largely through allowing Ca(2+) entry and subsequent activation of the Gardos channel. Whole-cell patch-clamp recordings from sickle RBCs show a deoxygenated-induced conductance, absent from normal RBCs, which shares some of the properties of P(sickle): equivalent Na(+) and K(+) permeability, significant Ca(2+) conductance, partial inhibition by DIDS and also Zn(2+). Gd(3+) markedly attenuates conductance in both normal and sickle RBCs. In addition, deoxygenated sickle cells, but not oxygenated ones or normal RBCs regardless of the oxygen tension, undergo haemolysis in isosmotic non-electrolyte solutions. Non-electrolyte entry was confirmed radioisotopically whilst haemolysis was inhibited by DIDS. These findings suggest that under certain circumstances P(sickle) may also be permeable to non-electrolytes. Finally, RBCs from certain patients with hereditary stomatocytosis have a mutated band 3, which appears able to act as a conductance pathway for univalent cations. These results extend our understanding of the abnormal permeability pathways of RBCs.
Collapse
Affiliation(s)
- J C Ellory
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
34
|
Decherf G, Bouyer G, Egée S, Thomas SLY. Chloride channels in normal and cystic fibrosis human erythrocyte membrane. Blood Cells Mol Dis 2007; 39:24-34. [PMID: 17434769 DOI: 10.1016/j.bcmd.2007.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Electrophysiological studies on human RBCs have been difficult due to fragility and small size of cells, and little is known of ionic conductive pathways present in the RBC membrane in health and disease. We report on anionic channels in cells of healthy donors (control) and cystic fibrosis (CF) patients. Anion channel activity (8-12 pS, linear) was induced in cell-attached configuration by forskolin (50 microM) and in excised inside-out configuration by PKA (100 nM) and ATP (1 mM) but control and CF RBCs differed by their respective kinetics and gating properties. These channels were permeable to ATP (100 mM, symmetrical Tris-ATP). These data suggest either the existence of two different anionic channel types or regulation of a single channel type either by the CFTR (cystic fibrosis transmembrane regulator) protein or by different cytosolic factors. Another anionic channel type displaying outward rectification (approximately 80 pS, outward conductance) was present in 30% of CF cell patches but was not observed in normal cell patches. The frequently recorded activity of this channel in CF patches suggests a down-regulation in normal RBCs.
Collapse
Affiliation(s)
- Gaëtan Decherf
- Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, UMR 7150, Station Biologique, BP 74, 29682 Roscoff cedex, France
| | | | | | | |
Collapse
|
35
|
Bouyer G, Egée S, Thomas SLY. Toward a unifying model of malaria-induced channel activity. Proc Natl Acad Sci U S A 2007; 104:11044-9. [PMID: 17576926 PMCID: PMC1904111 DOI: 10.1073/pnas.0704582104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Infection of RBC by the malaria parasite Plasmodium falciparum activates, at the trophozoite stage, a membrane current 100- to 150-fold larger than in uninfected RBC. This current is carried by small anion channels initially described in supraphysiological ion concentrations (1.115 M Cl(-)) and named plasmodial surface anion channels (PSAC), suggesting their plasmodial origin. Our results obtained with physiological ion concentrations (0.145 M Cl(-)) support the notion that the parasite-induced channels represent enhanced activity versions of anion channels already present in uninfected RBCs. Among them, an 18-pS inwardly rectifying anion channel (IRC) and a 4- to 5-pS small conductance anion channel (SCC) were present in most single-channel recordings of infected membranes. The aim of this study was to clarify disparities in the reported electrophysiological data and to investigate possible technical reasons why these discrepancies have arisen. We demonstrate that PSAC is the supraphysiological correlate of the SCC and is inhibited by Zn(2+), suggesting that it is a ClC-2 channel. We show that in physiological solutions 80% of the membrane conductance in infected cells can be accounted for by IRC and 20% can be accounted for by SCC whereas in supraphysiological conditions the membrane conductance is almost exclusively carried by SCC (PSAC) because the IRC is functionally turned off.
Collapse
Affiliation(s)
- Guillaume Bouyer
- Laboratory of Cell Physiology of Erythrocytes, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Unité Mixte de Recherche 7150, Station Biologique, B.P. 74, 29682 Roscoff Cedex, France
| | - Stéphane Egée
- Laboratory of Cell Physiology of Erythrocytes, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Unité Mixte de Recherche 7150, Station Biologique, B.P. 74, 29682 Roscoff Cedex, France
| | | |
Collapse
|
36
|
Parker MD, Young MT, Daly CM, Meech RW, Boron WF, Tanner MJA. A conductive pathway generated from fragments of the human red cell anion exchanger AE1. J Physiol 2007; 581:33-50. [PMID: 17317744 PMCID: PMC2075216 DOI: 10.1113/jphysiol.2007.128389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/20/2007] [Indexed: 11/08/2022] Open
Abstract
Human red cell anion exchanger AE1 (band 3) is an electroneutral Cl-HCO3- exchanger with 12-14 transmembrane spans (TMs). Previous work using Xenopus oocytes has shown that two co-expressed fragments of AE1 lacking TMs 6 and 7 are capable of forming a stilbene disulphonate-sensitive (36)Cl-influx pathway, reminiscent of intact AE1. In the present study, we create a single construct, AE1Delta(6: 7), representing the intact protein lacking TMs 6 and 7. We expressed this construct in Xenopus oocytes and evaluated it employing a combination of two-electrode voltage clamp and pH-sensitive microelectrodes. We found that, whereas AE1Delta(6: 7) has some electroneutral Cl-base exchange activity, the protein also forms a novel anion-conductive pathway that is blocked by DIDS. The mutation Lys(539)Ala at the covalent DIDS-reaction site of AE1 reduced the DIDS sensitivity, demonstrating that (1) the conductive pathway is intrinsic to AE1Delta(6: 7) and (2) the conductive pathway has some commonality with the electroneutral anion-exchange pathway. The conductance has an anion-permeability sequence: NO3- approximately I- > NO2- > Br- > Cl- > SO4(2-) approximately HCO3- approximately gluconate- approximately aspartate- approximately cyclamate-. It may also have a limited permeability to Na+ and the zwitterion taurine. Although this conductive pathway is not a usual feature of intact mammalian AE1, it shares many properties with the anion-conductive pathways intrinsic to two other Cl-HCO3- exchangers, trout AE1 and mammalian SLC26A7.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Desai SA. Open and closed states of the plasmodial surface anion channel. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 1:58-66. [PMID: 17292059 DOI: 10.1016/j.nano.2004.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 11/18/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND The malaria parasite, Plasmodium falciparum, causes most of its clinical sequelae through its intracellular growth and multiplication in human red blood cells (RBCs). During this intracellular cycle, the parasite markedly alters the membrane transport properties of the host RBC through the induction of an unusual ion channel known as the plasmodial surface anion channel (PSAC). In addition to its unusual selectivity and pharmacology, PSAC exhibits atypical voltage-dependent gating; single-channel recordings reveal fast-flickering behavior interspersed with periods of inactivity. Detailed study of its gating properties have been complicated by the technical difficulty of obtaining single PSAC recordings, its small conductance, and various sources of error important for fast-flickering channels. METHODS Here, we developed an automated algorithm to analyze large amounts of single-channel data with particular emphasis on these sources of error. This algorithm was evaluated with high-quality single-channel and multichannel recordings obtained in the presence and absence of furosemide, a well-known PSAC antagonist. RESULTS AND CONCLUSIONS Our analysis reveals that the adequate description of PSAC gating requires only one exponentially decaying open state, but at least three closed channel states. This model was further supported by single-channel recordings in the presence of furosemide, which inhibits PSAC with moderate affinity through an allosteric mechanism.
Collapse
Affiliation(s)
- Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Duranton C, Akkaya C, Brand VB, Tanneur V, Lang F, Huber SM. Artemisinin inhibits cation currents in malaria-infected human erythrocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 1:143-9. [PMID: 17292071 DOI: 10.1016/j.nano.2005.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Previous patch-clamp studies have demonstrated inwardly and outwardly rectifying anion currents, ClC-2 Cl- currents, and nonselective Ca(++)-permeable cation currents in Plasmodium falciparum-infected human erythrocytes. METHODS The current work studied the effect of the potent antimalarial drug artemisinin on the P falciparum infection-induced whole cell currents in human erythrocyte. RESULTS Artemisinin had no significant effect on the outwardly rectifying anion currents but inhibited the cation-selective currents with an apparent half-maximal inhibitory concentration of < or =10 micromol/L. CONCLUSION Because artemisinin reportedly inhibits the asexual parasite amplification with much higher potency, the antimalarial action of the drug cannot be attributed to the artemisinin effect on the cation currents. However, artemisinin may be used as a pharmacologic tool to dissect different current fractions in P falciparum-infected erythrocytes.
Collapse
|
39
|
Staines HM, Alkhalil A, Allen RJ, De Jonge HR, Derbyshire E, Egée S, Ginsburg H, Hill DA, Huber SM, Kirk K, Lang F, Lisk G, Oteng E, Pillai AD, Rayavara K, Rouhani S, Saliba KJ, Shen C, Solomon T, Thomas SLY, Verloo P, Desai SA. Electrophysiological studies of malaria parasite-infected erythrocytes: current status. Int J Parasitol 2007; 37:475-82. [PMID: 17292372 PMCID: PMC2746352 DOI: 10.1016/j.ijpara.2006.12.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/28/2022]
Abstract
The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding.
Collapse
Affiliation(s)
- Henry M Staines
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, London SW17 0RE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Alkhalil A, Hill DA, Desai SA. Babesia and plasmodia increase host erythrocyte permeability through distinct mechanisms. Cell Microbiol 2006; 9:851-60. [PMID: 17087736 DOI: 10.1111/j.1462-5822.2006.00834.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human erythrocytes infected with Plasmodium falciparum have markedly increased permeability to diverse solutes, many of which may be mediated by an unusual small conductance ion channel, the plasmodial surface anion channel (PSAC). Because these increases may be essential for parasite survival in the bloodstream, an important question is whether other intraerythrocytic parasites induce similar ion channels. Here, we examined this question using human erythrocytes infected with Babesia divergens, a distantly related apicomplexan parasite that can cause severe disease in immunocompromised humans. Osmotic lysis experiments after enrichment of infected erythrocytes with a new method revealed that these parasites also increase host permeability to various organic solutes. These permeability changes differed significantly from those induced by P. falciparum in transport rates, selectivity profiles and temperature dependence. Cell-attached and whole-cell patch-clamp experiments confirmed and extended these differences because neither PSAC-like channels nor significant increases in whole-cell anion conductance were seen after B. divergens infection. While both babesia and plasmodia increase host erythrocyte permeability to a diverse collection of organic solutes, they utilize fundamentally different mechanisms.
Collapse
Affiliation(s)
- Abdulnaser Alkhalil
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | | | | |
Collapse
|
41
|
Lisk G, Kang M, Cohn JV, Desai SA. Specific inhibition of the plasmodial surface anion channel by dantrolene. EUKARYOTIC CELL 2006; 5:1882-93. [PMID: 16950925 PMCID: PMC1694800 DOI: 10.1128/ec.00212-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 08/22/2006] [Indexed: 01/03/2023]
Abstract
The plasmodial surface anion channel (PSAC), induced on human erythrocytes by the malaria parasite Plasmodium falciparum, is an important target for antimalarial drug development because it may contribute to parasite nutrient acquisition. However, known antagonists of this channel are quite nonspecific, inhibiting many other channels and carriers. This lack of specificity not only complicates drug development but also raises doubts about the exact role of PSAC in the well-known parasite-induced permeability changes. We recently identified a family of new PSAC antagonists structurally related to dantrolene, an antagonist of muscle Ca++ release channels. Here, we explored the mechanism of dantrolene's actions on parasite-induced permeability changes. We found that dantrolene inhibits the increased permeabilities of sorbitol, two amino acids, an organic cation, and hypoxanthine, suggesting a common pathway shared by these diverse solutes. It also produced parallel reductions in PSAC single-channel and whole-cell Cl- currents. In contrast to its effect on parasite-induced permeabilities, dantrolene had no measurable effect on five other classes of anion channels, allaying concerns of poor specificity inherent to other known antagonists. Our studies indicate that dantrolene binds PSAC at an extracellular site distinct from the pore, where it inhibits the conformational changes required for channel gating. Its affinity for this site depends on ionic strength, implicating electrostatic interactions in dantrolene binding. In addition to the potential therapeutic applications of its derivatives, dantrolene's specificity and its defined mechanism of action on PSAC make it a useful tool for transport studies of infected erythrocytes.
Collapse
Affiliation(s)
- Godfrey Lisk
- Laboratory of Malaria and Vector Research, NIAID/NIH, Room 3W-01, 12735 Twinbrook Parkway, Rockville, Maryland 20852-8132, USA
| | | | | | | |
Collapse
|
42
|
Martin RE, Kirk K. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood 2006; 109:2217-24. [PMID: 17047158 DOI: 10.1182/blood-2005-11-026963] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intraerythrocytic malaria parasite derives much of its requirement for amino acids from the digestion of the hemoglobin of its host cell. However, one amino acid, isoleucine, is absent from adult human hemoglobin and must therefore be obtained from the extracellular medium. In this study we have characterized the mechanisms involved in the uptake of isoleucine by the intraerythrocytic parasite. Under physiologic conditions the rate of transport of isoleucine into human erythrocytes infected with mature trophozoite-stage Plasmodium falciparum parasites is increased to approximately 5-fold that in uninfected cells, with the increased flux being via the new permeability pathways (NPPs) induced by the parasite in the host cell membrane. Transport via the NPPs ensures that protein synthesis is not rate limited by the flux of isoleucine across the erythrocyte membrane. On entering the infected erythrocyte, isoleucine is taken up into the parasite via a saturable, ATP-, Na+-, and H+-independent system which has the capacity to mediate the influx of isoleucine in exchange for leucine (liberated from hemoglobin). The accumulation of radiolabeled isoleucine within the parasite is mediated by a second (high-affinity, ATP-dependent) mechanism, perhaps involving metabolism and/or the concentration of isoleucine within an intracellular organelle.
Collapse
Affiliation(s)
- Rowena E Martin
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | |
Collapse
|
43
|
Staines HM, Ashmore S, Felgate H, Moore J, Powell T, Ellory JC. Solute transport via the new permeability pathways in Plasmodium falciparum-infected human red blood cells is not consistent with a simple single-channel model. Blood 2006; 108:3187-94. [PMID: 16840735 PMCID: PMC2805950 DOI: 10.1182/blood-2006-02-001693] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After infection of a red blood cell (RBC), the malaria parasite, Plasmodium falciparum, increases the permeability of the host's plasma membrane by inducing new permeability pathways (NPPs). Single-channel patch-clamp experiments have shown the presence in infected RBCs of novel anion-selective channel types with low open-state probabilities at positive membrane potentials. These channels have been postulated to form the NPPs. Here, we have used a range of transport techniques to study whether electroneutral solutes use these channels or altered/separate pathways. Transport of the electroneutral solute sorbitol via the NPPs was found to increase by a small but significant amount after gross membrane depolarization. This is inconsistent with transport via a channel with a reduced open-state probability at positive membrane potentials. As has been demonstrated previously for parasite-induced anion currents, sorbitol transport in infected RBCs was found to be sensitive to the presence of bovine serum albumin (BSA). However, it remains to be shown whether the effect is due to serum/BSA altering a single channel type or activating a new pathway. In addition, the study highlights problems that can occur when using different transport techniques to study the NPPs.
Collapse
Affiliation(s)
- Henry M Staines
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, London SW17 0RE, United Kingdom.
| | | | | | | | | | | |
Collapse
|
44
|
Baumeister S, Winterberg M, Duranton C, Huber SM, Lang F, Kirk K, Lingelbach K. Evidence for the involvement of Plasmodium falciparum proteins in the formation of new permeability pathways in the erythrocyte membrane. Mol Microbiol 2006; 60:493-504. [PMID: 16573697 DOI: 10.1111/j.1365-2958.2006.05112.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intraerythrocytic developmental stages of the malaria parasite Plasmodium falciparum are responsible for the clinical symptoms associated with malaria tropica. The non-infected human erythrocyte is a terminally differentiated cell that is unable to synthesize proteins and lipids de novo, and it is incapable of importing a number of solutes that are essential for parasite proliferation. Approximately 12-15 h after invasion the parasitized cell undergoes a marked increase in its permeability to a variety of different solutes present in the extracellular milieu. The increase is due to the induction in the erythrocyte membrane of 'new permeability pathways' which have been characterized in some detail in terms of their transport and electrophysiological properties, but which are yet to be defined at a molecular level. Here we show that these pathways are resistant to trypsin but are abolished by treatment of intact infected erythrocytes with chymotrypsin. On resuspension of chymotrypsinized cells in chymotrypsin-free medium the pathways progressively reappear, a process that can be inhibited by cytotoxic agents, and by brefeldin A which inhibits protein secretion. Our results provide evidence for the involvement of parasite encoded proteins in the generation of the pathways, either as components of the pathways themselves or as auxiliary factors.
Collapse
Affiliation(s)
- Stefan Baumeister
- Department of Biology, Philipps-University of Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Lisk G, Desai SA. Improved perfusion conditions for patch-clamp recordings on human erythrocytes. Biochem Biophys Res Commun 2006; 347:158-65. [PMID: 16806068 PMCID: PMC1808333 DOI: 10.1016/j.bbrc.2006.06.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/12/2006] [Indexed: 12/25/2022]
Abstract
Various configurations of the patch-clamp method are powerful tools for examining the transport of charged solutes across biological membranes. Originally developed for the study of relatively large cells which adhere to solid surfaces under in vitro culture, these methods have been increasingly applied to small cells or organelles in suspension. Under these conditions, a number of significant technical problems may arise as a result of the smaller geometry. Here, we examined these problems using human erythrocytes infected with the malaria parasite, Plasmodium falciparum, a system where experimental differences and the technical difficulty of erythrocyte patch-clamp have hindered universal agreement on the properties of the induced ion channels. We found that patch-clamp recordings on infected erythrocytes are especially susceptible to artifacts from mechanical perturbations due to solution flow around the cell. To minimize these artifacts, we designed a new perfusion chamber whose geometry allows controlled solution flow around the fragile erythrocyte. Not only were recordings acquired in this chamber significantly less susceptible to perfusion artifacts, but the chamber permitted rapid and reversible application of known inhibitors with negligible mechanical agitation. Electrophysiological recordings then faithfully reproduced several findings made with more traditional methods. The new perfusion chamber should also be useful for patch-clamp recordings on blood cells, protoplasts, and organelles.
Collapse
Affiliation(s)
- Godfrey Lisk
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
46
|
Puljak L, Kilic G. Emerging roles of chloride channels in human diseases. Biochim Biophys Acta Mol Basis Dis 2006; 1762:404-13. [PMID: 16457993 DOI: 10.1016/j.bbadis.2005.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/18/2005] [Accepted: 12/12/2005] [Indexed: 01/22/2023]
Abstract
In the past decade, there has been remarkable progress in understanding of the roles of Cl(-) channels in the development of human diseases. Genetic studies in humans have identified mutations in the genes encoding Cl(-) channels which lead to a loss of Cl(-) channel activity. These mutations are responsible for the development of a variety of deleterious diseases in muscle, kidney, bone and brain including myotonia congenita, dystrophia myotonica, cystic fibrosis, osteopetrosis and epilepsy. Recent studies indicate that some diseases may develop as a result of Cl(-) channel activation. There is growing evidence that the progression of glioma in the brain and the growth of the malaria parasite in red blood cells may be mediated through Cl(-) channel activation. These findings suggest that Cl(-) channels may be novel targets for the pharmacological treatment of a broad spectrum of diseases. This review discusses the proposed roles of abnormal Cl(-) channel activity in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Livia Puljak
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8887, USA
| | | |
Collapse
|
47
|
Bouyer G, Egée S, Thomas SL. Three types of spontaneously active anionic channels in malaria-infected human red blood cells. Blood Cells Mol Dis 2006; 36:248-54. [PMID: 16510298 DOI: 10.1016/j.bcmd.2006.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 11/20/2022]
Abstract
The electrophysiological study of red blood cells (RBCs), using the patch-clamp technique, has been going through a renaissance with the recent discovery of novel channel activity in the host plasma membrane of Plasmodium falciparum-infected human RBCs (S.A. Desai et al., Nature 406, 1001-1005, 2000; S.M. Huber et al., EMBO J. 21 (2002) 22-30; S. Egee et al., J. Physiol. 542 (2002) 795-801). This arose from the finding that malaria-infected RBCs have altered permeability characteristics due to the induction of new permeation pathways (NPPs) (H. Ginsburg, Novartis Foundation Symposium 226 (1999) 99-108; K. Kirk, Physiol. Rev. 81 (2001) 495-537), which are defined, using non-electrophysiological techniques, as having the general characteristics of anion channels (i.e. high anion permeability, linear concentration dependence, inability to distinguish between stereo-isomers of permeant solutes). Discovering potent and specific inhibitors of the NPPs is an important therapeutic challenge, but too many questions remain unanswered: do the NPPs correspond to a single path or multiple pathways? Are they parasite-derived proteins? Are they up-regulated or modified endogenous quiescent red blood cell proteins? This article concerns the identification of different types of anionic channels that are expressed in malaria-infected human RBCs. Implications regarding the presence of these different types of channels in infected RBCs and their functional significance are discussed.
Collapse
Affiliation(s)
- Guillaume Bouyer
- CNRS, UMR 7150, Station Biologique, Place G. Teissier, BP 74, 29682 Roscoff cedex, France
| | | | | |
Collapse
|
48
|
Kirk K, Martin RE, Bröer S, Howitt SM, Saliba KJ. Plasmodium permeomics: membrane transport proteins in the malaria parasite. Curr Top Microbiol Immunol 2005; 295:325-56. [PMID: 16265897 DOI: 10.1007/3-540-29088-5_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane transport proteins are integral membrane proteins that mediate the passage across the membrane bilayer of specific molecules and/or ions. Such proteins serve a diverse range of physiological roles, mediating the uptake of nutrients into cells, the removal of metabolic wastes and xenobiotics (including drugs), and the generation and maintenance of transmembrane electrochemical gradients. In this chapter we review the present state of knowledge of the membrane transport mechanisms underlying the cell physiology of the intraerythrocytic malaria parasite and its host cell, considering in particular physiological measurements on the parasite and parasitized erythrocyte, the annotation of transport proteins in the Plasmodium genome, and molecular methods used to analyze transport protein function.
Collapse
Affiliation(s)
- K Kirk
- School of Biochemistry and Molecular Biology, The Australian National University, 0200 Canberra, ACT, Australia.
| | | | | | | | | |
Collapse
|
49
|
Lisk G, Desai SA. The plasmodial surface anion channel is functionally conserved in divergent malaria parasites. EUKARYOTIC CELL 2005; 4:2153-9. [PMID: 16339732 PMCID: PMC1317498 DOI: 10.1128/ec.4.12.2153-2159.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Accepted: 09/27/2005] [Indexed: 11/20/2022]
Abstract
The plasmodial surface anion channel (PSAC), a novel ion channel induced on human erythrocytes infected with Plasmodium falciparum, mediates increased permeability to nutrients and presumably supports intracellular parasite growth. Isotope flux studies indicate that other malaria parasites also increase the permeability of their host erythrocytes, but the precise mechanisms are unknown. Channels similar to PSAC or alternative mechanisms, such as the upregulation of endogenous host transporters, might fulfill parasite nutrient demands. Here we evaluated these possibilities with rhesus monkey erythrocytes infected with Plasmodium knowlesi, a parasite phylogenetically distant from P. falciparum. Tracer flux and osmotic fragility studies revealed dramatically increased permeabilities paralleling changes seen after P. falciparum infection. Patch-clamp of P. knowlesi-infected rhesus erythrocytes revealed an anion channel with striking similarities to PSAC: its conductance, voltage-dependent gating, pharmacology, selectivity, and copy number per infected cell were nearly identical. Our findings implicate a family of unusual anion channels highly conserved on erythrocytes infected with various malaria parasites. Together with PSAC's exposed location on the host cell surface and its central role in transport changes after infection, this conservation supports development of antimalarial drugs against the PSAC family.
Collapse
Affiliation(s)
- Godfrey Lisk
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
50
|
Tanneur V, Duranton C, Brand VB, Sandu CD, Akkaya C, Kasinathan RS, Gachet C, Sluyter R, Barden JA, Wiley JS, Lang F, Huber SM. Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB J 2005; 20:133-5. [PMID: 16267125 DOI: 10.1096/fj.04-3371fje] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In human erythrocytes, infection by the malaria parasite Plasmodium falciparum or oxidative stress induces a new organic osmolyte and anion permeability. To examine a role for autocrine purinoceptor signaling during this induction process, erythrocytic purinoceptor expression, and ATP release were determined. Furthermore, using pharmacological and genetic approaches the dependence on purinoceptor signaling of osmolyte permeability and Plasmodium development, both in vitro and in vivo, were assessed. Extracellular ATP did not induce an osmolyte permeability in non-infected or non-oxidized erythrocytes. ATP and other purinoceptor agonists increased the induction of osmolyte permeability during infection or oxidation as measured by isosmotic hemolysis and patch-clamp recording. Purinoceptor antagonists and apyrase decreased the induced permeability. The observed pharmacology suggested the involvement of P2Y purinoceptors. Accordingly, human erythrocytes expressed P2Y1 protein. Moreover, P2Y1-deficient mouse erythrocytes exhibited a delayed appearance of the osmolyte permeability during P. berghei infection- or oxidation compared with wild-type erythrocytes. Furthermore, the nonspecific purinoceptor antagonist suramin decreased in vitro growth and DNA/RNA amplification of P. falciparum in human erythrocytes and decreased in vivo growth of P. berghei. P. berghei developed slower in P2Y1-deficient mice in vivo compared with wild-type animals. In conclusion, induction of the osmolyte permeability in Plasmodium-infected erythrocytes involves autocrine purinoceptor signaling.
Collapse
Affiliation(s)
- Valérie Tanneur
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|