1
|
Bæch‐Laursen C, Ehrenreich RK, Modvig IM, Veedfald S, Holst JJ. Glucose absorption by isolated, vascularly perfused rat intestine: A significant paracellular contribution augmented by SGLT1 inhibition. Acta Physiol (Oxf) 2025; 241:e70033. [PMID: 40186371 PMCID: PMC11971594 DOI: 10.1111/apha.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
AIM Intestinal glucose transport involves SGLT1 in the apical membrane of enterocytes and GLUT2 in the basolateral membrane. In vivo studies have shown that absorption rates appear to exceed the theoretical capacity of these transporters, suggesting that glucose transport may occur via additional pathways, which could include passive mechanisms. The aim of the study was to investigate glucose absorption in an in vitro model, which has proven useful for endocrine studies. METHODS We studied both transcellular and paracellular glucose absorption in the isolated vascularly perfused rat small intestine. Glucose absorbed from the lumen was traced with 14C-d-glucose, allowing sensitive and accurate quantification. SGLT1 and GLUT2 activities were blocked with phlorizin and phloretin. 14C-d-mannitol was used as an indicator of paracellular absorption. RESULTS Our results indicate that glucose absorption in this model involves two transport mechanisms: transport mediated by SGLT1/GLUT2 and a paracellular transport mechanism. Glucose absorption was reduced by 60% when SGLT1 transport was blocked and by 80% when GLUT2 was blocked. After combined luminal SGLT1 and GLUT2 blockade, ~30% of glucose absorption remained. d-mannitol absorption was greater in the proximal small intestine compared to the distal small intestine. Unexpectedly, mannitol absorption increased markedly when SGLT1 transport was blocked. CONCLUSION In this model, glucose absorption occurs via both active transcellular and passive paracellular transport, particularly in the proximal intestine, which is important for the understanding of, for example, hormone secretion related to glucose absorption. Interference with SGLT1 activity may lead to enhanced paracellular transport, pointing to a role in the regulation of the latter.
Collapse
Affiliation(s)
- Cecilie Bæch‐Laursen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Physical Activity ResearchRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Rune Kuhre Ehrenreich
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Obesity Pharmacology, Global Drug DiscoveryNovo NordiskMåløvDenmark
| | - Ida Marie Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Transplantation and Digestive DiseasesRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Wongon M, Limpeanchob N. Artocarpus lacucha Extract and Oxyresveratrol Inhibit Glucose Transporters in Human Intestinal Caco-2 Cells. PLANTA MEDICA 2021; 87:709-715. [PMID: 33511623 DOI: 10.1055/a-1324-3570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reduction of intestinal glucose absorption might result from either delayed carbohydrate digestion or blockage of glucose transporters. Previously, oxyresveratrol was shown to inhibit α-glucosidase, but its effect on glucose transporters has not been explored. The present study aimed to assess oxyresveratrol-induced inhibition of the facilitative glucose transporter 2 and the active sodium-dependent glucose transporter 1. An aqueous extract of Artocarpus lacucha, Puag Haad, which is oxyresveratrol-enriched, was also investigated. Glucose transport was measured by uptake into Caco-2 cells through either glucose transporter 2 or sodium-dependent glucose transporter 1 according to the culture conditions. Oxyresveratrol (40 to 800 µM) dose-dependently reduced glucose transport, which appeared to inhibit both glucose transporter 2 and sodium-dependent glucose transporter 1. Puag Haad at similar concentrations also inhibited these transporters but with greater efficacy. Oxyresveratrol and Puag Haad could help reduce postprandial hyperglycemic peaks, which are considered to be most damaging in diabetics.
Collapse
Affiliation(s)
- Matusorn Wongon
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Nanteetip Limpeanchob
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
4
|
Kuhre RE, Christiansen CB, Saltiel MY, Wewer Albrechtsen NJ, Holst JJ. On the relationship between glucose absorption and glucose-stimulated secretion of GLP-1, neurotensin, and PYY from different intestinal segments in the rat. Physiol Rep 2018; 5. [PMID: 29199179 PMCID: PMC5727272 DOI: 10.14814/phy2.13507] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/13/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Ingested glucose powerfully stimulates the secretion of appetite‐ and metabolism‐regulating peptide hormones from the gut – including glucagon‐like peptide‐1 (GLP‐1), neurotensin (NT), and polypeptide YY (PYY). However, the regional origin of these secretions after glucose stimulation is not well characterized, and it remains uncertain how their secretion is related to glucose absorption. We isolated and perfused either the upper (USI) or the lower (LSI) small intestine or the colon from rats and investigated concomitant glucose absorption and secretory profiles of GLP‐1, NT, and PYY. In the USI and LSI luminal glucose (20%, w/v) increased GLP‐1 and NT secretion five to eightfold compared to basal secretion. Compared to the USI, basal and stimulated GLP‐1 secretion from the colon was 8–10 times lower and no NT secretion was detected. Luminal glucose stimulated secretion of PYY four to fivefold from the LSI and from the USI and colon, but the responses in the USI and colon were 5‐ to 15‐fold lower than in the LSI. Glucose was absorbed to a comparable extent in the USI and LSI by mechanisms that partly depended on both SGLT1 and GLUT2 activity, whereas the absorption in the colon was 80–90% lower. The absorption rates were, however, similar when adjusted for segmental length. Glucose absorption rates and NT, PYY and in particular GLP‐1 secretion were strongly correlated (P < 0.05). Our results indicate that the rate of secretion of GLP‐1, NT, and PYY in response to glucose, regardless of the involved molecular machinery, is predominantly regulated by the rate of glucose absorption.
Collapse
Affiliation(s)
- Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte B Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika Y Saltiel
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Kuhre RE, Bechmann LE, Wewer Albrechtsen NJ, Hartmann B, Holst JJ. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2, leading to cell depolarization and calcium influx. Am J Physiol Endocrinol Metab 2015; 308:E1123-30. [PMID: 25898949 DOI: 10.1152/ajpendo.00012.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/20/2015] [Indexed: 01/11/2023]
Abstract
Neurotensin (NT) is a neurohormone produced in the central nervous system and in the gut epithelium by the enteroendocrine N cell. NT may play a role in appetite regulation and may have potential in obesity treatment. Glucose ingestion stimulates NT secretion in healthy young humans, but the mechanisms involved are not well understood. Here, we show that rats express NT in the gut and that glucose gavage stimulates secretion similarly to oral glucose in humans. Therefore, we conducted experiments on isolated perfused rat small intestine with a view to characterize the cellular pathways of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide, which causes hyperpolarization, eliminated the response. Luminal inhibition of the sodium-glucose cotransporter 1 (SGLT1) (by phloridzin) eliminated glucose-stimulated release as well as secretion stimulated by luminal methyl-α-D-glucopyranoside (20% wt/vol), a metabolically inactive SGLT1 substrate, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose stimulates NT secretion by uptake through SGLT1 and GLUT2, both causing depolarization either as a consequence of sodium-coupled uptake (SGLT1) or by closure of KATP channels (GLUT2 and SGLT1) secondary to the ATP-generating metabolism of glucose.
Collapse
Affiliation(s)
- Rune Ehrenreich Kuhre
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Ellegaard Bechmann
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Mikami N, Tsujimura J, Sato A, Narasada A, Shigeta M, Kato M, Hata S, Hitomi E. Green Rooibos Extract from Aspalathus linearis, and its Component, Aspalathin, Suppress Elevation of Blood Glucose Levels in Mice and Inhibit α-amylase and α-glucosidase Activities in vitro. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nana Mikami
- Faculty of Nursing and Nutrition, Yamaguchi Prefectural University
- Department of Biomedical Engineering, Sapporo Medical University School of Medicine
| | - Junko Tsujimura
- Faculty of Nursing and Nutrition, Yamaguchi Prefectural University
| | - Ayumi Sato
- Faculty of Nursing and Nutrition, Yamaguchi Prefectural University
| | - Akiko Narasada
- Faculty of Nursing and Nutrition, Yamaguchi Prefectural University
| | - Mayumi Shigeta
- Faculty of Nursing and Nutrition, Yamaguchi Prefectural University
| | - Motoshi Kato
- Faculty of Nursing and Nutrition, Yamaguchi Prefectural University
| | | | - Eri Hitomi
- Faculty of Nursing and Nutrition, Yamaguchi Prefectural University
| |
Collapse
|
7
|
Abstract
It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations.
Collapse
Affiliation(s)
- Richard J Naftalin
- Department of Physiology and BHF Centre of Research Excellence, King's College London, School of Medicine, London, SE1 9HN, UK
| |
Collapse
|
8
|
Hanamura T, Mayama C, Aoki H, Hirayama Y, Shimizu M. Antihyperglycemic Effect of Polyphenols from Acerola (Malpighia emarginataDC.) Fruit. Biosci Biotechnol Biochem 2014; 70:1813-20. [PMID: 16926491 DOI: 10.1271/bbb.50592] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A crude acerola polyphenol fraction (C-AP) was prepared by subjecting an acerola extract to a C18 cartridge column, and eluting the adsorbed fraction with ethanol containing 10% of acetic acid. C-AP appeared in a previous study to have an inhibitory effect on alpha-glucosidase and particularly on maltase activities. To elucidate the antihyperglycemic effect of C-AP further, we examined the regulation by C-AP of glucose uptake in Caco-2 cell; this resulted in the inhibition of glucose uptake. We next conducted single administration tests of glucose and maltose to ICR mice to investigate whether C-AP really controlled the intestinal glucose absorption in an animal body. The results showed that C-AP significantly suppressed the plasma glucose level after administering both glucose and maltose, suggesting that C-AP had a preventive effect on hyperglycemia in the postprandial state. The mechanism for this effect is considered to have been both suppression of the intestinal glucose transport and the inhibition of alpha-glucosidase. Despite such a preventive effect, the therapeutic effect of C-AP on hyperglycemia appeared to be low from the experiment with KKAy mice.
Collapse
Affiliation(s)
- Takayuki Hanamura
- Research and Development Division, Nichirei Foods Inc., Chiba, Japan.
| | | | | | | | | |
Collapse
|
9
|
K⁺-dependent ³H-D-glucose transport by hepatopancreatic brush border membrane vesicles of a marine shrimp. J Comp Physiol B 2012; 183:61-9. [PMID: 22752676 DOI: 10.1007/s00360-012-0684-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/03/2012] [Accepted: 06/09/2012] [Indexed: 01/15/2023]
Abstract
The effects of sodium, potassium, sugar inhibitors, and membrane potential on ³H-D-glucose uptake by hepatopancreatic epithelial brush border membrane vesicles (BBMV) of the Atlantic marine shrimp, Litopenaeus setiferus, were investigated. Brush border membrane vesicles were prepared using a MgCl₂/EGTA precipitation method and uptake experiments were conducted using a high speed filtration technique. ³H-D-Glucose uptake was stimulated by both sodium and potassium and these transport rates were almost doubled in the presence of an inside-negative-induced membrane potential. Kinetics of ³H-D-glucose influx were hyperbolic functions of both external Na⁺ or K⁺, and an induced membrane potential increased influx J(max) and lowered K(m) in both salts. ³H-D-Glucose influx versus [glucose] in both Na⁺ or K⁺ media also displayed Michaelis-Menten properties that were only slightly affected by induced membrane potential. Phloridzin was a poor inhibitor of 0.5 mM ³H-D-glucose influx, requiring at least 5 mM in NaCl and 10 mM in KCl to significantly reduce hexose transport. Several sugars (D-galactose, α-methyl-D-gluco-pyranoside, unlabeled D-glucose, D-fructose, and D-mannose) were used at 75 mM as potential inhibitors of 0.1 mM ³H-D-glucose influx. Only unlabeled D-glucose, D-fructose, and D-mannose significantly (p < 0.05) reduced labeled glucose transport. An additional experiment using increasing concentrations of D-mannose (0, 10, 25, 75, and 100 mM) showed this hexose to be an effective inhibitor of 0.1 mM ³H-D-glucose uptake at concentrations of 75 mM and higher. As a whole these results suggest that ³H-D-glucose transport by hepatopancreatic BBMV occurs by a carrier system that is able to use both Na⁺ and K⁺ as drivers, is enhanced by membrane potential, is relatively refractory to phloridzin, and is only inhibited by itself, D-fructose, and D-mannose. These properties are similar to those exhibited by the mammalian SLC5A9/SGLT4 transporter, suggesting that an invertebrate analogue of this protein may occur in shrimp.
Collapse
|
10
|
Mace OJ, Schindler M, Patel S. The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J Physiol 2012; 590:2917-36. [PMID: 22495587 DOI: 10.1113/jphysiol.2011.223800] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intestinal enteroendocrine cells (IECs) secrete gut peptides in response to both nutrients and non-nutrients. Glucose and amino acids both stimulate gut peptide secretion. Our hypothesis was that the facilitative glucose transporter, GLUT2, could act as a glucose sensor and the calcium-sensing receptor, CasR, could detect amino acids in the intestine to modify gut peptide secretion. We used isolated loops of rat small intestine to study the secretion of gluco-insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) secretion stimulated by luminal perfusion of nutrients or bile acid. Inhibition of the sodium-dependent glucose cotransporter 1 (SGLT1) with phloridzin partially inhibited GIP, GLP-1 and PYY secretion by 45%, suggesting another glucose sensor might be involved in modulating peptide secretion. The response was completely abolished in the presence of the GLUT2 inhibitors phloretin or cytochalasin B. Given that GLUT2 modified gut peptide secretion stimulated by glucose, we investigated whether it was involved in the secretion of gut peptide by other gut peptide secretagogues. Phloretin completely abolished gut peptide secretion stimulated by artificial sweetener (sucralose), dipeptide (glycylsarcosine), lipid (oleoylethanolamine), short chain fatty acid (propionate) and major rat bile acid (taurocholate) indicating a fundamental position for GLUT2 in the gut peptide secretory mechanism. We investigated how GLUT2 was able to influence gut peptide secretion mediated by a diverse range of stimulators and discovered that GLUT2 affected membrane depolarisation through the closure of K+(ATP)-sensitive channels. In the absence of SGLT1 activity (or presence of phloridzin), the secretion of GIP, GLP-1 and PYY was sensitive to K+(ATP)-sensitive channel modulators tolbutamide and diazoxide. L-amino acids phenylalanine (Phe), tryptophan (Trp), asparagine (Asn), arginine (Arg) and glutamine (Gln) also stimulated GIP, GLP-1 and PYY secretion, which was completely abolished when extracellular Ca2+ was absent. The gut peptide response stimulated by the amino acids was also blocked by the CasR inhibitor Calhex 231 and augmented by the CasR agonist NPS-R568. GLUT2 and CasR regulate K- and L-cell activity in response to nutrient and non-nutrient stimuli.
Collapse
|
11
|
Chaudhry RM, Scow JS, Madhavan S, Duenes JA, Sarr MG. Acute enterocyte adaptation to luminal glucose: a posttranslational mechanism for rapid apical recruitment of the transporter GLUT2. J Gastrointest Surg 2012; 16:312-9; discussion 319. [PMID: 22068967 PMCID: PMC3265642 DOI: 10.1007/s11605-011-1752-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 10/13/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Glucose absorption postprandially increases markedly to levels far greater than possible by the classic glucose transporter sodium-glucose cotransporter 1 (SGLT1). HYPOTHESIS Luminal concentrations of glucose >50 mM lead to rapid, phenotypic, non-genomic adaptations by the enterocyte to recruit another transporter, glucose transporter 2 (GLUT2), to the apical membrane to increase glucose absorption. METHODS Isolated segments of jejunum were perfused in vivo with glucose-containing solutions in anesthetized rats. Carrier-mediated glucose uptake was measured in 10 and 100 mM glucose solutions (n = 6 rats each) with and without selective inhibitors of SGLT1 and GLUT2. RESULTS The mean rate of carrier-mediated glucose uptake increased in rats perfused with 100 mM versus 10 mM glucose to 13.9 ± 2.9 μmol from 2.1 ± 0.1 μmol, respectively (p < 0.0001). Using selective inhibitors, the relative contribution of GLUT2 to glucose absorption was 56% in the 100 mM concentration of glucose compared to the 10 mM concentration (27%; p < 0.01). Passive absorption accounted for 6% of total glucose absorption at 100 mM glucose. CONCLUSION A small amount of GLUT2 is active at the lesser luminal concentrations of glucose, but when exposed to concentrations of 100 mM, the enterocyte presumably changes its phenotype by recruiting GLUT2 apically to markedly augment glucose absorption.
Collapse
Affiliation(s)
- Rizwan M Chaudhry
- Department of Surgery and Gastroenterology Research Unit, Mayo Clinic (GU 10-01), 200 1st Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
12
|
Obi IE, Sterling KM, Ahearn GA. Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine. ACTA ACUST UNITED AC 2011; 214:2337-44. [PMID: 21697425 DOI: 10.1242/jeb.055095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transepithelial transport of dietary D-glucose and d-fructose was examined in the lobster Homarus americanus intestine using D-[(3)H]glucose and D-[(3)H]fructose. Lobster intestines were mounted in a perfusion chamber to determine transepithelial mucosal to serosal (MS) and serosal to mucosal (SM) transport mechanisms of glucose and fructose. Both MS glucose and fructose transport, as functions of luminal sugar concentration, increased in a hyperbolic manner, suggesting the presence of mucosal transport proteins. Phloridizin inhibited the MS flux of glucose, but not that of fructose, suggesting the presence of a sodium-dependent (SGLT1)-like glucose co-transporter. Immunohistochemical analysis, using a goat anti-rabbit GLUT5 polyclonal antibody, revealed the localization of a brush border GLUT5-like fructose transport protein. MS fructose transport was decreased in the presence of mucosal phloretin in warm spring/summer animals, but the same effect was not observed in cold autumn/winter animals, suggesting a seasonal regulation of sugar transporters. Mucosal phloretin had no effect on MS glucose transport. Both SM glucose and SM fructose transport were decreased in the presence of increasing concentrations of serosal phloretin, providing evidence for the presence of a shared serosal GLUT2 transport protein for the two sugars. The transport of d-glucose and d-fructose across lobster intestine is similar to sugar uptake in mammalian intestine, suggesting evolutionarily conserved absorption processes for these solutes.
Collapse
Affiliation(s)
- Ijeoma E Obi
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
13
|
Serhan MF, Kreydiyyeh SI. Insulin targets the Na(+)/K(+) ATPase in enterocytes via PI3K, PKC, and MAPKS. J Recept Signal Transduct Res 2011; 31:299-306. [PMID: 21682666 DOI: 10.3109/10799893.2011.587821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of insulin on intestinal Na(+)/K(+) ATPase is till now undetermined, and it is still unclear whether insulin exerts any modulatory effect on glucose absorption by targeting the ATPase. This work attempted to address this question and to unravel the signaling pathway involved using Caco-2 cells as a model. After an overnight starvation, cells were treated with insulin in presence and absence of specific inhibitors of some known mediators. The activity of the pump was assayed by measuring the ouabain-inhibitable inorganic phosphate (P(i)) released, whereas changes in its abundance were determined by western blot analysis. Insulin decreased the activity and abundance of the ATPase in a crude membrane homogenate. This effect disappeared completely upon inhibition of either phosphotidylinositol-3 kinase (PI3K) or protein kinase C (PKC), but was partially abolished when p38MAPK or MEK/ERK were inhibited separately. Activation of PKC with phorbol-12-myristate-13-acetate (PMA) imitated the effect of insulin and was not affected by inhibition of PI3K. The data suggest that PI3K and PKC are along the same pathway that branches into two separate ones involving each either p38MAP kinase or MEK/ERK. This hypothesis was confirmed by the data obtained from the treatment of Caco-2 cells with PMA, when p38MAPK and MEK/ERK were inhibited simultaneously. Concomitant inhibition of p38MAPK and MEK/ERK abrogated fully the effect of insulin, indicating that no other pathways are present in addition to the ones proposed above.
Collapse
Affiliation(s)
- Maya F Serhan
- Department of Biology, American University of Beirut, Lebanon
| | | |
Collapse
|
14
|
Jones HF, Butler RN, Brooks DA. Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol 2011; 300:G202-6. [PMID: 21148401 DOI: 10.1152/ajpgi.00457.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fructose is a hexose sugar that is being increasingly consumed in its monosaccharide form. Patients who exhibit fructose malabsorption can present with gastrointestinal symptoms that include chronic diarrhea and abdominal pain. However, with no clearly established gastrointestinal mechanism for fructose malabsorption, patient analysis by the proxy of a breath hydrogen test (BHT) is controversial. The major transporter for fructose in intestinal epithelial cells is thought to be the facilitative transporter GLUT5. Consistent with a facilitative transport system, we show here by analysis of past studies on healthy adults that there is a significant relationship between fructose malabsorption and fructose dose (r = 0.86, P < 0.001). Thus there is a dose-dependent and limited absorption capacity even in healthy individuals. Changes in fructose malabsorption with age have been observed in human infants, and this may parallel the developmental regulation of GLUT5 expression. Moreover, a GLUT5 knockout mouse has displayed the hallmarks associated with profound fructose malabsorption. Fructose malabsorption appears to be partially modulated by the amount of glucose ingested. Although solvent drag and passive diffusion have been proposed to explain the effect of glucose on fructose malabsorption, this could possibly be a result of the facilitative transporter GLUT2. GLUT5 and GLUT2 mRNA have been shown to be rapidly upregulated by the presence of fructose and GLUT2 mRNA is also upregulated by glucose, but in humans the distribution and role of GLUT2 in the brush border membrane are yet to be definitively decided. Understanding the relative roles of these transporters in humans will be crucial for establishing a mechanistic basis for fructose malabsorption in gastrointestinal patients.
Collapse
Affiliation(s)
- Hilary F Jones
- Mechanisms in Cell Biology and Disease Research Group, Sansom Institute for Health Research, Univ. of South Australia, South Australia 5001, Australia
| | | | | |
Collapse
|
15
|
Malinowski M, Martus P, Lock JF, Neuhaus P, Stockmann M. Systemic influence of immunosuppressive drugs on small and large bowel transport and barrier function. Transpl Int 2010; 24:184-93. [DOI: 10.1111/j.1432-2277.2010.01167.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Zeuthen T. Water-Transporting Proteins. J Membr Biol 2009; 234:57-73. [DOI: 10.1007/s00232-009-9216-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/20/2009] [Indexed: 12/17/2022]
|
17
|
Qandeel HG, Alonso F, Hernandez DJ, Duenes JA, Zheng Y, Scow JS, Sarr MG. Role of vagal innervation in diurnal rhythm of intestinal peptide transporter 1 (PEPT1). J Gastrointest Surg 2009; 13:1976-85. [PMID: 19707837 PMCID: PMC2830643 DOI: 10.1007/s11605-009-0984-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/24/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND Protein is absorbed predominantly as di/tripeptides via H(+)/peptide cotransporter-1 (PEPT1). We demonstrated previously diurnal variations in expression and function of duodenal and jejunal but not ileal PEPT1; neural regulation of this pattern is unexplored. HYPOTHESIS Complete abdominal vagotomy abolishes diurnal variations in gene expression and transport function of PEPT1. METHODS Twenty-four rats maintained in a 12-h light/dark room [6AM-6PM] underwent abdominal vagotomy; 24 other rats were controls. Four weeks later, mucosal levels of mRNA and protein were measured at 9AM, 3PM, 9PM, and 3AM (n = 6 each) by quantitative real-time PCR and Western blots, respectively; transporter-mediated uptake of dipeptide (Gly-Sar) was measured by the everted-sleeve technique. RESULTS Diurnal variation in mRNA, as in controls, was retained post-vagotomy in duodenum and jejunum (peak at 3PM, p < 0.05) but not in ileum. Diurnal variations in expression of protein and Gly-Sar uptake, however, were absent post-vagotomy (p > 0.3). Similar to controls, maximal uptake was in jejunum after vagotomy (V (max), nmol/cm/min: jejunum vs. duodenum and ileum; 163 vs. 88 and 71 at 3AM; p < 0.04); K (m) remained unchanged. CONCLUSIONS Vagal innervation appears to mediate in part diurnal variations in protein expression and transport function of PEPT1, but not diurnal variation in mRNA expression of PEPT1.
Collapse
Affiliation(s)
- Hisham G Qandeel
- Gastrointestinal Research Unit and Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Chlup R, Zapletalova J, Peterson K, Poljakova I, Lenhartova E, Tancred A, Perera R, Smital J. IMPACT OF BUCCAL GLUCOSE SPRAY, LIQUID SUGARS AND DEXTROSE TABLETS ON THE EVOLUTION OF PLASMA GLUCOSE CONCENTRATION IN HEALTHY PERSONS. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153:205-9. [DOI: 10.5507/bp.2009.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 2008; 28:35-54. [PMID: 18393659 DOI: 10.1146/annurev.nutr.28.061807.155518] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intestinal glucose absorption comprises two components. One is classical active absorption mediated by the Na+/glucose cotransporter. The other is a diffusive component, formerly attributed to paracellular flow. Recent evidence, however, indicates that the diffusive component is mediated by the transient insertion of glucose transporter type 2 (GLUT2) into the apical membrane. This apical GLUT2 pathway of intestinal sugar absorption is present in species from insect to human, providing a major route at high sugar concentrations. The pathway is regulated by rapid trafficking of GLUT2 to the apical membrane induced by glucose during assimilation of a meal. Apical GLUT2 is therefore a target for multiple short-term and long-term nutrient-sensing mechanisms. These include regulation by a newly recognized pathway of calcium absorption through the nonclassical neuroendocrine l-type channel Cav1.3 operating during digestion, activation of intestinal sweet taste receptors by natural sugars and artificial sweeteners, paracrine and endocrine hormones, especially insulin and GLP-2, and stress. Permanent apical GLUT2, resulting in increased sugar absorption, is a characteristic of experimental diabetes and of insulin-resistant states induced by fructose and fat. The nutritional consequences of apical and basolateral GLUT2 regulation are discussed in the context of Western diet, processed foods containing artificial sweeteners, obesity, and diabetes.
Collapse
Affiliation(s)
- George L Kellett
- Department of Biology (Area 3), The University of York, York YO10 5YW, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Iñigo C, Patel N, Kellett GL, Barber A, Lostao MP. Luminal leptin inhibits intestinal sugar absorption in vivo. Acta Physiol (Oxf) 2007; 190:303-10. [PMID: 17488247 DOI: 10.1111/j.1748-1716.2007.01707.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM We have previously demonstrated that leptin inhibits galactose absorption in rat intestinal everted rings and that leptin receptors are present in the apical membrane of the enterocytes. This adipocyte-derived hormone is also secreted by gastric mucosal cells and is able to reach the intestinal lumen. The goal of the present study was to prove whether luminal leptin acts on intestinal sugar absorption in vivo both at low (basal state) and high sugar concentration (post-prandial state). METHODS In vivo intestinal sugar absorption in rat was measured with recirculating and single-pass perfusion systems. Sugar disappearance in the perfusate was measured by radioactivity and biochemical methods. Luminal leptin effect on intestinal absorption mediated by sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) as well as intestinal permeability (mannitol absorption) was determined. RESULTS Luminal leptin inhibited intestinal sugar absorption at low galactose concentrations, which indicates that leptin regulates SGLT1 activity in vivo. The inhibition was reversed in the absence of hormone in the intestinal lumen, suggesting that it was produced by post-translational regulation processes. At high luminal glucose concentrations, leptin also inhibited the phloretin-insensitive component of sugar absorption mediated by SGLT1. There was no significant effect on the apical GLUT2 component of absorption. Leptin did not modify in vivo intestinal permeability determined with (14)C-mannitol. CONCLUSION These observations support the view that gastric leptin exerts a regulatory role on intestinal sugar absorption in the postprandial state by modifying the active component of absorption.
Collapse
Affiliation(s)
- C Iñigo
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
21
|
Mace OJ, Affleck J, Patel N, Kellett GL. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 2007; 582:379-92. [PMID: 17495045 PMCID: PMC2075289 DOI: 10.1113/jphysiol.2007.130906] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural sugars and artificial sweeteners are sensed by receptors in taste buds. T2R bitter and T1R sweet taste receptors are coupled through G-proteins, alpha-gustducin and transducin, to activate phospholipase C beta2 and increase intracellular calcium concentration. Intestinal brush cells or solitary chemosensory cells (SCCs) have a structure similar to lingual taste cells and strongly express alpha-gustducin. It has therefore been suggested over the last decade that brush cells may participate in sugar sensing by a mechanism analogous to that in taste buds. We provide here functional evidence for an intestinal sensing system based on lingual taste receptors. Western blotting and immunocytochemistry revealed that all T1R members are expressed in rat jejunum at strategic locations including Paneth cells, SCCs or the apical membrane of enterocytes; T1Rs are colocalized with each other and with alpha-gustducin, transducin or phospholipase C beta2 to different extents. Intestinal glucose absorption consists of two components: one is classical active Na+-glucose cotransport, the other is the diffusive apical GLUT2 pathway. Artificial sweeteners increase glucose absorption in the order acesulfame potassium approximately sucralose > saccharin, in parallel with their ability to increase intracellular calcium concentration. Stimulation occurs within minutes by an increase in apical GLUT2, which correlates with reciprocal regulation of T1R2, T1R3 and alpha-gustducin versus T1R1, transducin and phospholipase C beta2. Our observation that artificial sweeteners are nutritionally active, because they can signal to a functional taste reception system to increase sugar absorption during a meal, has wide implications for nutrient sensing and nutrition in the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Oliver J Mace
- Department of Biology (Area 3), University of York, York YO10 5YW, UK
| | | | | | | |
Collapse
|
22
|
|
23
|
Morgan EL, Mace OJ, Affleck J, Kellett GL. Apical GLUT2 and Cav1.3: regulation of rat intestinal glucose and calcium absorption. J Physiol 2007; 580:593-604. [PMID: 17272350 PMCID: PMC2075547 DOI: 10.1113/jphysiol.2006.124768] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have proposed a model of intestinal glucose absorption in which transport by SGLT1 induces rapid insertion and activation of GLUT2 in the apical membrane by a PKC betaII-dependent mechanism. Since PKC betaII requires Ca(2+) and glucose is depolarizing, we have investigated whether glucose absorption is regulated by the entry of dietary Ca(2+) through Ca(v)1.3 in the apical membrane. When rat jejunum was perfused with 75 mM glucose, Ca(2+)-deplete conditions, or perfusion with the L-type antagonists nifedipine and verapamil strongly diminished the phloretin-sensitive apical GLUT2, but not the phloretin-insensitive SGLT1 component of glucose absorption. Western blotting showed that in each case there was a significant decrease in apical GLUT2 level, but no change in SGLT1 level. Inhibition of apical GLUT2 absorption coincided with inhibition of unidirectional (45)Ca(2+) entry by nifedipine and verapamil. At 10 mM luminal Ca(2+), (45)Ca(2+) absorption in the presence of 75 mM glucose was 2- to 3-fold that in the presence of 75 mM mannitol. The glucose-induced component was SGLT1-dependent and nifedipine-sensitive. RT-PCR revealed the presence of Ca(v)beta(3) in jejunal mucosa; Western blotting and immunocytochemistry localized Ca(v)beta(3) to the apical membrane, together with Ca(v)1.3. We conclude that in times of dietary sufficiency Ca(v)1.3 may mediate a significant pathway of glucose-stimulated Ca(2+) entry into the body and that luminal supply of Ca(2+) is necessary for GLUT2-mediated glucose absorption. The integration of glucose and Ca(2+) absorption represents a complex nutrient-sensing system, which allows both absorptive pathways to be regulated rapidly and precisely to match dietary intake.
Collapse
Affiliation(s)
- Emma L Morgan
- Department of Biology, The University of York, York YO10 5YW, UK
| | | | | | | |
Collapse
|
24
|
Mace OJ, Morgan EL, Affleck JA, Lister N, Kellett GL. Calcium absorption by Cav1.3 induces terminal web myosin II phosphorylation and apical GLUT2 insertion in rat intestine. J Physiol 2007; 580:605-16. [PMID: 17272349 PMCID: PMC2075544 DOI: 10.1113/jphysiol.2006.124784] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucose absorption in rat jejunum involves Ca(2+)- and PKC betaII-dependent insertion of GLUT2 into the apical membrane. Ca(2+)-induced rearrangement of the enterocyte cytoskeleton is thought to enhance paracellular flow. We have therefore investigated the relationships between myosin II regulatory light chain phosphorylation (RLC(20)), absorption of glucose, water and calcium, and mannitol clearance. ML-7, an inhibitor of myosin light chain kinase, diminished the phloretin-sensitive apical GLUT2 but not the phloretin-insensitive SGLT1 component of glucose absorption in rat jejunum perfused with 75 mM glucose. Western blotting and immunocytochemistry revealed marked decreases in RLC(20) phosphorylation in the terminal web and in the levels of apical GLUT2 and PKC betaII, but not SGLT1. Perfusion with phloridzin or 75 mM mannitol, removal of luminal Ca(2+), or inhibition of unidirectional (45)Ca(2+) absorption by nifedipine exerted similar effects. ML-7 had no effect on the absorption of 10 mM Ca(2+), nor clearance of [(14)C]-mannitol, which was less than 0.7% of the rate of glucose absorption. Water absorption did not correlate with (45)Ca(2+) absorption or mannitol clearance. We conclude that the Ca(2+) necessary for contraction of myosin II in the terminal web enters via an L-type channel, most likely Ca(v)1.3, and is dependent on SGLT1. Moreover, terminal web RLC(20) phosphorylation is necessary for apical GLUT2 insertion. The data confirm that glucose absorption by paracellular flow is negligible, and show further that paracellular flow makes no more than a minimal contribution to jejunal Ca(2+) absorption at luminal concentrations prevailing after a meal.
Collapse
Affiliation(s)
- Oliver J Mace
- Department of Biology, The University of York, York YO10 5YW, UK
| | | | | | | | | |
Collapse
|
25
|
Kwon O, Eck P, Chen S, Corpe CP, Lee JH, Kruhlak M, Levine M. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 2006; 21:366-77. [PMID: 17172639 DOI: 10.1096/fj.06-6620com] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We tested whether the dominant intestinal sugar transporter GLUT2 was inhibited by intestinal luminal compounds that are inefficiently absorbed and naturally present in foods. Because of their abundance in fruits and vegetables, flavonoids were selected as model compounds. Robust inhibition of glucose and fructose transport by GLUT2 expressed in Xenopus laevis oocytes was produced by the flavonols myricetin, fisetin, the widely consumed flavonoid quercetin, and its glucoside precursor isoquercitrin [corrected]. IC50s for quercetin, myricetin, and isoquercitirin [corrected]were approximately 200- to 1000-fold less than glucose or fructose concentrations, and noncompetitive inhibition was observed. The two other major intestinal sugar transporters, GLUT5 and SGLT1, were unaffected by flavonoids. Sugar transport by GLUT2 overexpressed in pituitary cells and naturally present in Caco-2E intestinal cells was similarly inhibited by quercetin. GLUT2 was detected on the apical side of Caco-2E cells, indicating that GLUT2 was in the correct orientation to be inhibited by luminal compounds. Quercetin itself was not transported by the three major intestinal glucose transporters. Because the flavonoid quercetin, a food component with an excellent pharmacology safety profile, might act as a potent luminal inhibitor of sugar absorption independent of its own transport, flavonols show promise as new pharmacologic agents in the obesity epidemic.
Collapse
Affiliation(s)
- Oran Kwon
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Abstract
Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucrase-isomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine.
Collapse
Affiliation(s)
- Laurie A Drozdowski
- Division of Gastroenterology, Department of Medicine, University of Alberta, 5150 Dentistry Pharmacy Building, Edmonton, Alberta T6G 2N8, Canada.
| | | |
Collapse
|
28
|
Nakagiri A, Fukushima K, Kato S, Takeuchi K. Less irritative action of wine and Japanese sake in rat stomachs: a comparative study with ethanol. Dig Dis Sci 2006; 51:289-97. [PMID: 16534671 DOI: 10.1007/s10620-006-3127-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 12/03/2004] [Indexed: 12/09/2022]
Abstract
The ingestion of alcohol, especially in excess, causes acute gastric lesions and gastritis in humans, yet the mucosal irritative action of alcoholic beverages remains largely unknown. We examined the mucosal irritative action of whiskey, wine and Japanese sake in the rat stomach both ex vivo and in vitro, in comparison with ethanol. Under urethane anesthesia, a rat stomach was mounted in an ex vivo chamber, then superfused with saline, and the transmucosal potential difference (PD) was measured. After the basal PD had stabilized, the mucosa was exposed for 30 min to 2 ml of 15% ethanol, whiskey (containing 15% ethanol), white wine, or Japanese sake (the ethanol concentration of the latter two is 12-15%). In the in vitro study, rat epithelial cells (RGM1) were treated with the alcoholic beverages for 5 min, and the cell viability was determined with crystal violet. Ethanol or whiskey applied to the chamber caused a decrease in PD, while wine or Japanese sake did not. Histologically, surface epithelial damage was observed after exposure to both ethanol and whiskey, yet no damage was induced by white wine and Japanese sake. Likewise, both ethanol and whiskey markedly reduced the viability of RGM1 cells after 5 min of incubation, while neither white wine nor Japanese sake had any effect. In addition, supplementation of glucose significantly prevented the reduction in both PD and cell viability caused by ethanol. These results suggest that the mucosal irritative action of Japanese sake and white wine is much less pronounced than that of ethanol or whiskey and that the less damaging action of Japanese sake and white wine may be, at least partly, accounted for by the glucose contained in these alcoholic beverages.
Collapse
Affiliation(s)
- Akari Nakagiri
- Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Japan
| | | | | | | |
Collapse
|
29
|
Kristan DM, Hammond KA. Effects of three simultaneous demands on glucose transport, resting metabolism and morphology of laboratory mice. J Comp Physiol B 2006; 176:139-51. [PMID: 16416287 DOI: 10.1007/s00360-005-0036-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/11/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
In nature, animals must successfully respond to many simultaneous demands from their environment in order to survive and reproduce. We examined physiological and morphological responses of mice given three demands: intestinal parasite infection with Heligmosomoides polygyrus followed by caloric restriction (70% of ad libitum food intake versus ad libitum for 10 days) and/or cold exposure (5 degrees C vs. 23 degrees C for 10 days). We found significant interactions between these demands as well as independent effects. Small intestine structure and function changed with demands in both independent and interactive ways. Body mass decreased during caloric restriction and this decrease was greater for cold-exposed than warm-exposed mice. In ad libitum fed mice, body mass did not change with either cold exposure or parasite infection but body composition (fat versus lean mass of whole body or organs) changed with both demands. Generally, organ masses decreased with caloric restriction (even after accounting for body mass effects) and increased with cold exposure and parasite infection whereas fat mass decreased with both caloric restriction and parasite infection. Mass adjusted resting metabolic rate (RMR) increased with cold exposure, decreased with caloric restriction but, unlike previous studies with laboratory mice, did not change with parasite infection. Our results demonstrate that the ability of mice to respond to a demand is influenced by other concurrent demands and that mice show phenotypic plasticity of morphological and physiological features ranging from the tissue level to the level of the whole organism when given three simultaneous demands.
Collapse
Affiliation(s)
- Deborah M Kristan
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
30
|
Abstract
Understanding the mechanisms that determine postprandial fluctuations in blood glucose concentration is central for effective glycemic control in the management of diabetes. Intestinal sugar absorption is one such mechanism, and studies on its increase in experimental diabetes led us to propose a new model of sugar absorption. In the apical GLUT2 model, the glucose transported by the Na(+)/glucose cotransporter SGLT1 promotes insertion of GLUT2 into the apical membrane within minutes, so that the mechanism operates during assimilation of a meal containing high-glycemic index carbohydrate to provide a facilitated component of absorption up to three times greater than by SGLT1. Here we review the evidence for the apical GLUT2 model and describe how apical GLUT2 is a target for multiple short-term nutrient-sensing mechanisms by dietary sugars, local and endocrine hormones, cellular energy status, stress, and diabetes. These mechanisms suggest that apical GLUT2 is a potential therapeutic target for novel dietary or pharmacological approaches to control intestinal sugar delivery and thereby improve glycemic control.
Collapse
Affiliation(s)
- George L Kellett
- The University of York, Department of Biology, York YO10 5YW, UK.
| | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW It has become clear during the past few years that the intestine is more than a digestive tract. In addition to its role as a subtle endocrine organ, its participation in endogenous glucose production, a property so far believed to be restricted to the liver and kidney, has been emphasized. RECENT FINDINGS The role of the gut in the regulation of glucose homeostasis has received further experimental accreditation from both animal and human studies. In relation to the molecular mechanisms of control of glucose production the potential regulatory role of glutaminase and glycerokinase has been suggested from studies of fasting, and the transcription of the glucose-6 phosphatase gene has been specified in an intestinal context. Furthermore, two newly described metabolic pathways accounting for the transepithelial transport of glucose have received further support: from the intestinal lumen to inside the enterocyte, involving a translocation of the glucose transporter Glut2 to the apical membrane, and from inside the enterocyte into the blood, involving glucose 6-phosphatase and independent of Glut2. SUMMARY The new knowledge regarding the control of glucose, glutamine, and glycerol metabolisms in the small intestine should be of interest to those who care for diabetic or septic patients, or are involved in nutrition research in humans. They should also be of importance in the knowledge of inherited genetic deficiencies, such as glycogen storage disease type 1 (Von Gierke disease) and the Fanconi-Bickel and glucose-galactose malabsorption syndromes.
Collapse
|
32
|
Shepherd EJ, Helliwell PA, Mace OJ, Morgan EL, Patel N, Kellett GL. Stress and glucocorticoid inhibit apical GLUT2-trafficking and intestinal glucose absorption in rat small intestine. J Physiol 2004; 560:281-90. [PMID: 15297580 PMCID: PMC1665211 DOI: 10.1113/jphysiol.2004.072447] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have proposed a new model of rat intestinal sugar absorption in which high glucose concentrations promote rapid insertion of GLUT2 into the apical membrane, so that absorptive capacity is precisely regulated to match dietary intake. Construction and building work during expansion and refurbishment of our department permitted opportunistic experiments on the effects of building-induced stress on the GLUT2 component of absorption. In fed rats perfused with 75 mM glucose in vivo, stress rapidly inhibited glucose absorption 36.4 +/- 3.0% compared with control rats. Selective inhibition of the GLUT2 component with phloretin demonstrated that stress inhibited the GLUT2 component by 42.8 +/- 3.8%, which correlated with a corresponding diminution in apical GLUT2 levels: the SGLT1 component and its level were unaltered by stress. Effects of stress were reversed by the administration in drinking water of metyrapone, which inhibits 11-beta-hydroxylase. Injection of dexamethasone into control rats 60 min before perfusion resulted in absorption and transporter properties indistinguishable from stressed rats. Our data are consistent with the view that stress activates the hypothalamus-pituitary-adrenal (HPA) axis, causing release of glucocorticoid. The ensuing inhibition of GLUT2 trafficking and absorption seems necessary to prevent enhanced intestinal delivery of glucose to the circulation from antagonizing the essential stress response of glucorticoid in mobilizing peripheral energy stores for emergency purposes.
Collapse
Affiliation(s)
- Emma J Shepherd
- Department of Biology, University of York, York YO10 5YW, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Affleck JA, Helliwell PA, Kellett GL. Immunocytochemical detection of GLUT2 at the rat intestinal brush-border membrane. J Histochem Cytochem 2003; 51:1567-74. [PMID: 14566028 PMCID: PMC3957565 DOI: 10.1177/002215540305101116] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have proposed a new model of intestinal sugar absorption in which high sugar concentrations promote rapid insertion of the facilitative transporter GLUT2 into the brush-border membrane so that absorptive capacity is precisely regulated to match dietary intake during the assimilation of a meal. However, location of GLUT2 at the brush border by immunocytochemistry has been problematical. We report that control of rapid GLUT2 trafficking and the use of an antibody to a sequence within the large extracellular loop of GLUT2 permits localization of GLUT2 at the brush border. To reveal brush-border GLUT2 fully, it is necessary to digest the sugar chain at the glycosylation site close to the antigenic site. In this way, we have demonstrated by immunocytochemistry PKC-dependent changes in the regulation of brush-border GLUT2 in rat jejunum that correspond to those seen by Western blotting. The functional and immunocytochemical data are now reconciled.
Collapse
Affiliation(s)
| | | | - George L. Kellett
- Department of Biology, University of York, York, United Kingdom
- Correspondence to: George L. Kellett, Dept. of Biology (Area 3), University of York, York YO10 5YW, UK. E-mail:
| |
Collapse
|
34
|
Liu LH, Ludewig U, Gassert B, Frommer WB, von Wirén N. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1220-8. [PMID: 14576283 PMCID: PMC281617 DOI: 10.1104/pp.103.027409] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 06/30/2003] [Accepted: 08/14/2003] [Indexed: 05/18/2023]
Abstract
Urea is the major nitrogen (N) form supplied as fertilizer in agricultural plant production and also an important N metabolite in plants. Because urea transport in plants is not well understood, the aim of the present study was to isolate urea transporter genes from the model plant Arabidopsis. Using heterologous complementation of a urea uptake-defective yeast (Saccharomyces cerevisiae) mutant allowed to isolate AtTIP1;1, AtTIP1;2, AtTIP2;1, and AtTIP4;1 from a cDNA library of Arabidopsis. These cDNAs encode channel-like tonoplast intrinsic proteins (TIPs) that belong to the superfamily of major intrinsic proteins (or aquaporins). All four genes conferred growth of a urea uptake-defective yeast mutant on 2 mm urea in a phloretin-sensitive and pH-independent manner. Uptake studies using 14C-labeled urea into AtTIP2;1-expressing Xenopus laevis oocytes demonstrated that AtTIP2;1 facilitated urea transport also in a pH-independent manner and with linear concentration dependency. Expression studies showed that AtTIP1;2, AtTIP2;1, and AtTIP4;1 genes were up-regulated during early germination and under N deficiency in roots but constitutively expressed in shoots. Subcellular localization of green fluorescent protein-fused AtTIPs indicated that AtTIP1;2, AtTIP2;1, and AtTIP4;1 were targeted mainly to the tonoplast and other endomembranes. Thus, in addition to their role as water channels, TIP transporters may play a role in equilibrating urea concentrations between different cellular compartments.
Collapse
Affiliation(s)
- Lai-Hua Liu
- Institut für Pflanzenernährung, Universität Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
35
|
Helliwell PA, Rumsby MG, Kellett GL. Intestinal sugar absorption is regulated by phosphorylation and turnover of protein kinase C betaII mediated by phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent pathways. J Biol Chem 2003; 278:28644-50. [PMID: 12766174 DOI: 10.1074/jbc.m301479200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of intestinal fructose absorption by phorbol 12-myristate 13-acetate (PMA) results from rapid insertion of GLUT2 into the brush-border membrane and correlates with protein kinase C (PKC) betaII activation. We have therefore investigated the role of phosphatidylinositol 3 (PI3)-kinase and mammalian target of rapamycin in the regulation of fructose absorption by PKC betaII phosphorylation. In isolated jejunal loops, stimulation of fructose absorption by PMA was inhibited by preperfusion with wortmannin or rapamycin, which blocked GLUT2 activation and insertion into the brush-border membrane. Antibodies to the last 18 and last 10 residues of the C-terminal region of PKC betaII recognized several species differentially in Western blots. Extensive cleavage of native enzyme (80/78 kDa) to a catalytic domain product of 49 kDa occurred. PMA and sugars provoked turnover and degradation of PKC betaII by dephosphorylation to a 42-kDa species, which was converted to polyubiquitylated species detected at 180 and 250+ kDa. PMA increased the level of the PKC betaII 49-kDa species, which correlates with the GLUT2 level; wortmannin and rapamycin blocked these effects of PMA. Rapamycin and wortmannin inhibited PKC betaII turnover. PI3-kinase, PDK-1, and protein kinase B were present in the brush-border membrane, where their levels were increased by PMA and blocked by the inhibitors. We conclude that GLUT2-mediated fructose absorption is regulated through PI3-kinase and mammalian target of rapamycin-dependent pathways, which control phosphorylation of PKC betaII and its substrate-induced turnover and ubiquitin-dependent degradation. These findings suggest possible mechanisms for short term control of intestinal sugar absorption by insulin and amino acids.
Collapse
Affiliation(s)
- Philip A Helliwell
- Department of Biology (Area 3), University of York, York YO10 5YW, United Kingdom
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Chris I Cheeseman
- Membrane Protein Group, Department of Physiology, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| |
Collapse
|