1
|
Miller TM, Navara KJ. Prenatal Corticosterone Impacts Nestling Condition and Immunity in Eastern Bluebirds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:427-437. [PMID: 39831630 PMCID: PMC11874072 DOI: 10.1002/jez.2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/04/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Exposure of avian mothers to stressful conditions permanently alters offspring behavior and physiology. Yet, the effects of maternal stress on the development of offspring immunity in birds remain unclear, particularly in wild species. We injected Eastern bluebird (Sialia sialis) eggs with either a corticosterone or control solution, then measured the impacts on nestling morphology and two measures of immunity, bactericidal capacity and swelling responses to phytohemagglutinin. Nestlings from corticosterone-treated eggs had lower condition indices at hatch but quickly caught up to their control counterparts by Day 5 posthatch and until fledging. Corticosterone-exposed nestlings also mounted smaller swelling responses to phytohemagglutinin, whereas there were no effects on bactericidal capacity. These results indicate that maternal stress can impact offspring immunocompetence, fitness prospects, and potentially their ability to fend off parasites and pathogens.
Collapse
Affiliation(s)
- Taylor M. Miller
- Department of Poultry ScienceThe University of GeorgiaAthensGeorgiaUSA
| | - Kristen J. Navara
- Department of Poultry ScienceThe University of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Lardenoije R, Smulders MNCA, Morin EL, Howell BR, Guzman D, Meyer JS, Ressler KJ, Sánchez M, Klengel T. A Cross-Generational Methylomic Signature of Infant Maltreatment in Newborn Rhesus Macaques. Biol Psychiatry 2025:S0006-3223(25)01015-7. [PMID: 40054762 DOI: 10.1016/j.biopsych.2025.02.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/31/2025] [Accepted: 02/23/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Early-life adversity (ELA) results in detrimental physical and mental health outcomes. The impact of ELA can reverberate across generations, with epigenetic modifications being one of the proposed biological correlates of exposure to ELA. Here, we bridge the translational gap between rodent models and clinical studies by utilizing a nonhuman primate model to study the cross-generational epigenetic and functional footprints of physical maltreatment and neglect. METHODS Methylomic profiling was performed using the Illumina MethylationEPIC array platform, adapted for rhesus macaques. A total of 339,081 individual methylation sites were compared between newborn offspring of maltreated (n = 14, 8 female) and nonmaltreated (n = 12, 5 female) mothers. RESULTS We identified 409 differentially methylated positions (DMPs) and 7 differentially methylated regions associated with the cross-generational impact of infant maltreatment. A subsequent pathway enrichment analysis revealed 78 enriched pathways. Neonatal blood cortisol levels were significantly lower in animals with a maltreated mother (maltreated n = 13, 7 female; control n = 9, 4 female). Of the 409 DMPs, 46 showed an association with blood cortisol levels, 19 of which were found to potentially mediate the association between ancestral infant maltreatment and decreased blood cortisol levels. Finally, 137 of the DMPs were associated with a human trait in the EWAS Atlas, including child abuse and glucocorticoid exposure. CONCLUSIONS These findings provide deeper insight into the role of epigenetic alterations across generations after environmental insults and how this may impact the development of phenotypic alterations in offspring of individuals exposed to maltreatment.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michelle N C A Smulders
- McLean Hospital, Harvard Medical School, Boston, Massachusetts; Department of Biomedical Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Elyse L Morin
- Department of Psychiatry & Behavioral Sciences, Emory School of Medicine, Atlanta, Georgia; Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory School of Medicine, Atlanta, Georgia; Emory National Primate Research Center, Emory University, Atlanta, Georgia; University of Minnesota, Institute of Child Development, Minneapolis, Minnesota
| | - Dora Guzman
- Department of Psychiatry & Behavioral Sciences, Emory School of Medicine, Atlanta, Georgia; Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Jerrold S Meyer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Kerry J Ressler
- McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mar Sánchez
- Department of Psychiatry & Behavioral Sciences, Emory School of Medicine, Atlanta, Georgia; Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Torsten Klengel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; McLean Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Romaniuk AC, Barnard S, Shreyer T, Croney C. Effects of dam fear and stress on metrics of puppy welfare in commercial breeding kennels. Sci Rep 2025; 15:2820. [PMID: 39843634 PMCID: PMC11754604 DOI: 10.1038/s41598-025-85936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
It is well established that maternal factors can affect the abilities of offspring to cope with stressors and can influence their overall welfare states. However, maternal effects have not been extensively explored in US commercial breeding kennels (CBKs). Therefore, the objective of this study was to identify if fear and stress in dams affected puppy welfare metrics in CBKs. Bitches (n = 90) were tested at 6 weeks prepartum (6 W Pre), and again with their puppies (n = 390) at 4 (4 W Post) and 8 weeks (8 W Post) postpartum. Dams and puppies underwent stranger approach and isolation tests, and their feces were collected to measure fecal glucocorticoid metabolite (FGM) and secretory immunoglobulin A concentrations. Further, dams' hair cortisol concentrations (HCC) were analyzed at the previously mentioned time points and at 1 week prepartum. Finally, birth and weekly weights were collected from puppies, and litter health metrics were recorded. Data were analyzed using mixed-effects and simple linear regression models. There were significant positive associations between dams' exploration and stationary durations and puppies' durations of the same respective behaviors during the isolation tests (exploration: [Formula: see text]2(1) = 9.472, p = 0.002; stationary: [Formula: see text]2(1) = 5.226, p = 0.022), 8 W Post dam FGMs and 8 W Post puppy FGMs (estimate: 0.0003, SE = 0.0001, p = 0.002), and 4 W Post dam HCCs and 4 W Post litter FGMs (estimate: 0.052, SE = 0.025, p = 0.053). Significant negative associations between 6 W Pre dam HCCs and 8 W Post puppy FGMs (estimate: -0.021, SE = 0.007, p = 0.007), puppies' birth weights ([Formula: see text]2(1) = 3.908, p = 0.048), and puppies' average weekly weight gains ([Formula: see text]2(1) = 0.111, p = 0.739) were also found. These findings suggest that indicators of dam fear and stress may be associated with potential indicators of puppies' welfare states in CBKs. Findings provide new knowledge on fear and stress-related factors that may be used to support the welfare of dams and puppies in CBKs and other populations.
Collapse
Affiliation(s)
- Aynsley C Romaniuk
- Department of Comparative Pathobiology, Purdue University, 725 Harrison Street, West Lafayette, IN, 47906, USA
| | - Shanis Barnard
- Department of Comparative Pathobiology, Purdue University, 725 Harrison Street, West Lafayette, IN, 47906, USA
| | - Traci Shreyer
- Department of Comparative Pathobiology, Purdue University, 725 Harrison Street, West Lafayette, IN, 47906, USA
| | - Candace Croney
- Center for Animal Welfare Science, Departments of Comparative Pathobiology and Animal Science, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Graf MD, Murgueitio N, Vogel SC, Hicks L, Carlson AL, Propper CB, Kimmel M. Maternal Prenatal Stress and the Offspring Gut Microbiome: A Cross-Species Systematic Review. Dev Psychobiol 2025; 67:e70005. [PMID: 39636074 PMCID: PMC12010507 DOI: 10.1002/dev.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The prenatal period is a critical developmental juncture with enduring effects on offspring health trajectories. An individual's gut microbiome is associated with health and developmental outcomes across the lifespan. Prenatal stress can disrupt an infant's microbiome, thereby increasing susceptibility to adverse outcomes. This cross-species systematic review investigates whether maternal prenatal stress affects the offspring's gut microbiome. The study analyzes 19 empirical, peer-reviewed research articles, including humans, rodents, and non-human primates, that included prenatal stress as a primary independent variable and offspring gut microbiome characteristics as an outcome variable. Prenatal stress appeared to correlate with differences in beta diversity and specific microbial taxa, but not alpha diversity. Prenatal stress is positively correlated with Proteobacteria, Bacteroidaceae, Lachnospiraceae, Prevotellaceae, Bacteroides, and Serratia. Negative correlations were observed for Actinobacteria, Enterobacteriaceae, Streptococcaceae, Bifidobacteria, Eggerthella, Parabacteroides, and Streptococcus. Evidence for the direction of association between prenatal stress and Lactobacillus was mixed. The synthesis of findings was limited by differences in study design, operationalization and timing of prenatal stress, timing of infant microbiome sampling, and microbiome analysis methods.
Collapse
Affiliation(s)
- Michelle D. Graf
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicolas Murgueitio
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah C. Vogel
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Lauren Hicks
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander L. Carlson
- Pediatric Physician Scientist Training Program, Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, California, USA
| | - Cathi B. Propper
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mary Kimmel
- Department of Psychiatry, Washington University in St. Louis., St. Louis, Missouri, USA
| |
Collapse
|
5
|
Hamaoui J, Ocklenburg S, Segond H. Perinatal adversities as a common factor underlying the association between atypical laterality and neurodevelopmental disorders: A developmental perspective. Psychophysiology 2024; 61:e14676. [PMID: 39198978 PMCID: PMC11579235 DOI: 10.1111/psyp.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Several neurodevelopmental disorders are associated with a higher prevalence of atypical laterality (e.g., left-handedness). Both genetic and non-genetic factors play a role in this association, yet the underlying neurobiological mechanisms are largely unclear. Recent studies have found that stress, mediated by the hypothalamic-pituitary-adrenal (HPA) axis, could be linked to laterality development. These findings provide an opportunity to explore new theoretical perspectives on the association between atypical laterality and neurodevelopmental disorders. This article aims to provide a theoretical framework demonstrating how perinatal adversities could disrupt the typical developmental trajectories of both laterality and neurodevelopment, potentially impacting both the HPA axis and the vestibular system. Additionally, we argue that the relationship between atypical laterality and neurodevelopmental disorders cannot be understood by simply linking genetic and non-genetic factors to a diagnosis, but the developmental trajectories must be considered. Based on these ideas, several perspectives for future research are proposed.
Collapse
Affiliation(s)
- Jad Hamaoui
- Azrieli Research Center of Sainte‐Justine University HospitalMontrealQuebecCanada
- School of PsychoeducationUniversity of MontrealMontrealQuebecCanada
| | - Sebastian Ocklenburg
- Department of PsychologyMSH Medical School HamburgHamburgGermany
- ICAN Institute for Cognitive and Affective NeuroscienceMSH Medical School HamburgHamburgGermany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Hervé Segond
- Laboratoire de Psychologie des Cognitions, Department and faculty of PsychologyUniversity of StrasbourgStrasbourgFrance
| |
Collapse
|
6
|
Udino E, Pessato A, Addison B, Crino OL, Buchanan KL, Mariette MM. Prenatal Acoustic Signals Influence Nestling Heat Shock Protein Response to Heat and Heterophil-to-Lymphocyte Ratio in a Desert Bird. Int J Mol Sci 2024; 25:12194. [PMID: 39596260 PMCID: PMC11595141 DOI: 10.3390/ijms252212194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Heat shock proteins (HSPs) are essential to cellular protection against heat stress. However, the causes of inter-individual variation in HSP regulation remain unclear. This study aimed to test the impact of early-life conditions on the HSP response to heat in zebra finches. In this arid-adapted bird, incubating parents emit "heat-calls" at high temperatures, which adaptively alter offspring's phenotypes. Embryos were exposed to heat-calls or control-calls, and at 13 days post-hatch nestlings were separated into two different experiments to test responses to either chronic nest temperature ("in-nest" experiment) or an acute "heat-challenge". Blood samples were collected to measure levels of heat shock cognate 70, heat shock protein 90α, corticosterone and the heterophil-to-lymphocyte (H/L) ratio. In the in-nest experiment, both HSPs were upregulated in response to increasing nest temperatures only in control-calls nestlings (HSC70: p = 0.010, HSP90α: p = 0.050), which also had a marginally higher H/L ratio overall than heat-call birds (p = 0.066). These results point to a higher heat sensitivity in control-call nestlings. Furthermore, comparing across experiments, only the H/L ratio differed, being higher in heat-challenged than in in-nest nestlings (p = 0.009). Overall, this study shows for the first time that a prenatal acoustic signal of heat affects the nestling HSP response to postnatal temperature.
Collapse
Affiliation(s)
- Eve Udino
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Anaïs Pessato
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Centre d’Écologie et des Sciences de la Conservation (CESCO), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 rue Cuvier, 75005 Paris, France
| | - BriAnne Addison
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Ondi L. Crino
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Katherine L. Buchanan
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Mylene M. Mariette
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Doñana Biological Station EBC-CSIC, Calle Américo-Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|
7
|
Mundorf A, Merklein SA, Rice LC, Desmond JE, Peterburs J. Early Adversity Affects Cerebellar Structure and Function-A Systematic Review of Human and Animal Studies. Dev Psychobiol 2024; 66:e22556. [PMID: 39378310 DOI: 10.1002/dev.22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Recent research has highlighted cerebellar involvement in cognition and several psychiatric conditions such as mood and anxiety disorders and schizophrenia. Attention-deficit/hyperactivity disorder and autism spectrum disorder have been linked to reduced cerebellar volume as well. Cerebellar alterations are frequently present after early adversity in humans and animals, but a systematic integration of results is lacking. To this end, a systematic literature search was conducted in PubMed, Web of Science, and EBSCO databases using the keywords "early adversity OR early life stress" AND "cerebellum OR cerebellar." A total of 45 publications met the inclusion criteria: 25 studies investigated human subjects and 20 reported results from animal models. Findings in healthy subjects show bilateral volume reduction and decreased functional connectivity within the cerebellum and between the cerebellum and frontal regions after adversity throughout life, especially when adversity was assessed with the Childhood Trauma Questionnaire. In clinical populations, adults demonstrate increased cerebellar volume and functional connectivity after adversity, whereas pediatric patients show reduced cerebellar volume. Animal findings reveal cerebellar alterations without necessarily co-occurring pathological behavior, highlighting alterations in stress hormone receptor levels, cell density, and neuroinflammation markers. Cerebellar alterations after early adversity are robust findings across human and animal studies and occur independent of clinical symptoms.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sarah A Merklein
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Laura C Rice
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Seker A, Qirko-Gurakuqi A, Tabaku M, Javate KRP, Rathwell I. Maternal atopic conditions and autism spectrum disorder: a systematic review. Eur Child Adolesc Psychiatry 2024; 33:3727-3737. [PMID: 37661216 PMCID: PMC11588786 DOI: 10.1007/s00787-023-02285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Autism spectrum disorder (ASD) is a disabling neurodevelopmental condition with complex etiology. Emerging evidence has pointed to maternal atopy as a possible risk factor. It is hypothesized that maternal atopic disease during pregnancy can lead to increased levels of inflammatory cytokines in fetal circulation via placental transfer or increased production. These cytokines can then pass through the immature blood-brain barrier, causing aberrant neurodevelopment via mechanisms including premature microglial activation. The objective of this study is to systematically review observational studies that investigate whether a maternal history of atopic disease (asthma, allergy, or eczema/atopic dermatitis) is associated with a diagnosis of ASD in offspring. A search was conducted in Ovid MEDLINE, PsycINFO, and Embase databases for relevant articles up to November 2021; this was later updated in January 2022. Observational studies published in peer-reviewed journals were included. Data were synthesized and qualitatively analyzed according to the specific atopic condition. Quality assessment was done using the Newcastle-Ottawa Scale. Nine articles were identified, with all including asthma as an exposure, alongside four each for allergy and eczema. Findings were inconsistent regarding the association between a maternal diagnosis of either asthma, allergy, or eczema, and ASD in offspring, with variations in methodology contributing to the inconclusiveness. More consistent associations were demonstrated regarding maternal asthma that was treated or diagnosed during pregnancy. Evidence suggests that symptomatic maternal asthma during pregnancy could be associated with ASD in offspring, underscoring the importance of effective management of atopic conditions during pregnancy. Further research is needed, particularly longitudinal studies that use gold-standard assessment tools and correlate clinical outcomes with laboratory and treatment data.PROSPERO Registration Number and Date: CRD42018116656, 26.11.2018.
Collapse
Affiliation(s)
- Asilay Seker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Anxhela Qirko-Gurakuqi
- Department of Biomedical and Experimental Subjects, University of Medicine, Tirana, Albania
| | - Mirela Tabaku
- Paediatric Department, University of Medicine, Tirana, Albania
| | - Kenneth Ross P Javate
- Department of Psychiatry, The Medical City Hospital, Manila, Philippines
- School of Medicine and Public Health, Ateneo de Manila University, Manila, Philippines
| | - Iris Rathwell
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Collins JM, Keane JM, Deady C, Khashan AS, McCarthy FP, O'Keeffe GW, Clarke G, Cryan JF, Caputi V, O'Mahony SM. Prenatal stress impacts foetal neurodevelopment: Temporal windows of gestational vulnerability. Neurosci Biobehav Rev 2024; 164:105793. [PMID: 38971516 DOI: 10.1016/j.neubiorev.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Prenatal maternal stressors ranging in severity from everyday occurrences/hassles to the experience of traumatic events negatively impact neurodevelopment, increasing the risk for the onset of psychopathology in the offspring. Notably, the timing of prenatal stress exposure plays a critical role in determining the nature and severity of subsequent neurodevelopmental outcomes. In this review, we evaluate the empirical evidence regarding temporal windows of heightened vulnerability to prenatal stress with respect to motor, cognitive, language, and behavioural development in both human and animal studies. We also explore potential temporal windows whereby several mechanisms may mediate prenatal stress-induced neurodevelopmental effects, namely, excessive hypothalamic-pituitary-adrenal axis activity, altered serotonin signalling and sympathetic-adrenal-medullary system, changes in placental function, immune system dysregulation, and alterations of the gut microbiota. While broadly defined developmental windows are apparent for specific psychopathological outcomes, inconsistencies arise when more complex cognitive and behavioural outcomes are considered. Novel approaches to track molecular markers reflective of the underlying aetiologies throughout gestation to identify tractable biomolecular signatures corresponding to critical vulnerability periods are urgently required.
Collapse
Affiliation(s)
- James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - James M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
10
|
Vos S, Van den Bergh BRH, Martens DS, Bijnens E, Shkedy Z, Kindermans H, Platzer M, Schwab M, Nawrot TS. Maternal perceived stress and green spaces during pregnancy are associated with adult offspring gene (NR3C1 and IGF2/H19) methylation patterns in adulthood: A pilot study. Psychoneuroendocrinology 2024; 167:107088. [PMID: 38924829 DOI: 10.1016/j.psyneuen.2024.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in NR3C1 and IGF2/H19 methylation patterns have been associated with behavioural and psychiatric outcomes. Maternal mental state has been associated with offspring NR3C1 promotor and IGF2/H19 imprinting control region (ICR) methylation patterns. However, there is a lack of prospective studies with long-term follow-up. METHODS 52 mother-offspring pairs were studied from 12 to 22 weeks of pregnancy and offspring was followed-up until 28-29 years-of-age. During pregnancy, mothers filled in a Life Event Scale and a Daily Hassles Scale measuring perceived stress; i.e., appraisal or subjectively experienced severity of impact of important life events and of daily hassles in several life domains during pregnancy, respectively. Green space was quantified around the residence, using high-resolution (1 m2) map data. Saliva and blood samples were obtained from the adult offspring. Absolute DNA methylation levels were determined in blood and saliva on four NR3C1 amplicons, and one IGF2/H19 ICR amplicon using a bisulfite PCR and sequencing method. Linear mixed effect models were used to test the associations between perceived stress and green spaces during pregnancy, and adult offspring methylation patterns. RESULTS We found associations between maternal perceived stress during pregnancy and methylation patterns on two out of the four NR3C1 amplicons, measured in blood, from offspring in adulthood, but not with IGF2/H19 methylation. For an interquartile-range (IQR) increase in maternal perceived life event or daily hassles stress scores, absolute methylation levels on several NR3C1 CpG sites were significantly changed (-1.62 % to +5.89 %, p<0.05). Maternal perceived stress scores were not associated with IGF2/H19 methylation, neither in blood nor in saliva. Maternal exposure to green spaces surrounding the residence during the pregnancy was associated with IGF2/H19 ICR methylation (-0.80 % to -1.04 %, p<0.05) in saliva, but not with NR3C1 promotor methylation. CONCLUSION We observed significant long-term effects of maternal perceived stress during pregnancy on the methylation patterns of the NR3C1 promotor in offspring well into adulthood. This may imply that maternal psychological distress during pregnancy may influence the regulation of the HPA-axis well into adulthood. Additionally, maternal proximity to green spaces was associated with IGF2/H19 ICR methylation patterns, which is a novel finding.
Collapse
Affiliation(s)
- Stijn Vos
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bea R H Van den Bergh
- Health Psychology Research Group and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Environmental Sciences, Open University, Heerlen, the Netherlands
| | - Ziv Shkedy
- Data Science Institute, Centre for Statistics, Hasselt University, Hasselt, Belgium
| | - Hanne Kindermans
- Research Group Healthcare & ethics, Hasselt University, Hasselt, Belgium
| | - Matthias Platzer
- Genome Analysis Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, KU Leuven, Belgium
| |
Collapse
|
11
|
Guadagnin AR, Peñagaricano F, Dahl GE, Laporta J. Programming effects of intrauterine hyperthermia on adrenal gland development. J Dairy Sci 2024; 107:6308-6321. [PMID: 38580145 DOI: 10.3168/jds.2023-24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Maternal heat stress during late pregnancy can lead to intrauterine hyperthermia and affect fetal hypothalamic-pituitary-adrenal axis development and function. Herein, we investigated the effects of chronic environmental heat stress exposure of Holstein cows in the last 2 mo of gestation on their offspring's adrenal gland histomorphology and transcriptome. Cows in their last 54 ± 5 d of gestation were either heat stressed (housed under the shade of a freestall barn) or provided heat stress abatement via active cooling (via water soakers and fans) during a subtropical summer (temperature-humidity index >68). Respiration rate (RR) and skin temperature (ST) were elevated in heat-stressed dams relative to the cows with access to heat abatement (23 breaths/min and 2°C higher for RR and ST, respectively). Heifers born to heat-stressed cows experienced heat stress in utero (HS), whereas heifers born to actively cooled cows did not (CL). The adrenal gland was harvested from 6 heifers per group that were euthanized at birth (d 0; n = 12) or 1 wk after weaning (d 63; n = 12). Circulating cortisol was measured from blood samples collected weekly throughout the preweaning period. At d 63, heifers that experienced HS while developing in utero had heavier adrenal glands, with a greater total tissue surface area and thickness of the zona glomerulosa (ZG), fasciculata (ZF), and reticularis (ZR), compared with CL heifers. In addition, the adrenal gland of HS heifers had fewer cells in the ZG, more and larger cells in the ZF, and larger cells in the ZR, relative to CL heifers. Although no changes in circulating cortisol were observed through the preweaning period, the transcriptomic profile of the adrenal tissue was altered by fetal exposure to hyperthermia. Both at birth and on d 63, approximately 30 pathways were differentially expressed in the adrenal glands of HS heifers relative to CL. These pathways were associated with immune function, inflammation, prolactin signaling, cell function, and calcium transport. Upstream regulators significantly activated or inhibited in the adrenal glands of heifers exposed to intrauterine hyperthermia were identified. Maternal exposure to heat stress during late gestation caused an enlargement of their offspring's adrenal glands by inducing ZG and ZF cell hypertrophy, and caused gene expression changes. These phenotypic, histological, and molecular changes in the adrenal gland might lead to alterations in stress, immune, and metabolic responses later in life.
Collapse
Affiliation(s)
- Anne R Guadagnin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
12
|
Hu YY, Souza R, Muthuraman A, Knapp L, McIntyre C, Dussor G. Glucocorticoid signaling mediates stress-induced migraine-like behaviors in a preclinical mouse model. Cephalalgia 2024; 44:3331024241277941. [PMID: 39211943 PMCID: PMC11578425 DOI: 10.1177/03331024241277941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Stress is one of the most common precipitating factors in migraine and is identified as a trigger in nearly 70% of patients. Responses to stress include release of glucocorticoids as an adaptive mechanism, but this may also contribute to migraine attacks. Here, we investigated the role of glucocorticoids on stress-induced migraine-like behaviors. METHODS We have shown previously that repeated stress in mice evokes migraine-like behavioral responses and priming to a nitric oxide donor. Metyrapone, mifepristone, and corticosterone (CORT) were used to investigate whether CORT contributes to the stress-induced effects. Facial mechanical hypersensitivity was evaluated by von Frey testing and grimace scoring assessed the presence of non-evoked pain. We also measured serum CORT levels in control, stress, and daily CORT injected groups of both male and female mice. RESULTS Metyrapone blocked stress-induced responses and priming in male and female mice. However, repeated CORT injections in the absence of stress only led to migraine-like behaviors in females. Both female and male mice showed similar patterns of serum CORT in response to stress or exogenous administration. Finally, administration of mifepristone, the glucocorticoid receptor antagonist, prior to each stress session blocked stress-induced behavioral responses in male and female mice. CONCLUSIONS These findings demonstrate that while CORT synthesis and receptor activation is necessary for the behavioral responses triggered by repeated stress, it is only sufficient in females. Better understanding of how glucocorticoids contribute to migraine may lead to new therapeutic opportunities.
Collapse
Affiliation(s)
- Ya-Yu Hu
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| | - Rimenez Souza
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Athithyaa Muthuraman
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX, USA
| | - Leela Knapp
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
- Department of Chemistry and Biochemistry, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX, USA
| | - Christa McIntyre
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
13
|
Harvey-Carroll J, Stevenson TJ, Bussière LF, Spencer KA. Pre-natal exposure to glucocorticoids causes changes in developmental circadian clock gene expression and post-natal behaviour in the Japanese quail. Horm Behav 2024; 163:105562. [PMID: 38810363 DOI: 10.1016/j.yhbeh.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The embryonic environment is critical in shaping developmental trajectories and consequently post-natal phenotypes. Exposure to elevated stress hormones during this developmental stage is known to alter a variety of post-natal phenotypic traits, and it has been suggested that pre-natal stress can have long term effects on the circadian rhythm of glucocorticoid hormone production. Despite the importance of the circadian system, the potential impact of developmental glucocorticoid exposure on circadian clock genes, has not yet been fully explored. Here, we showed that pre-natal exposure to corticosterone (CORT, a key glucocorticoid) resulted in a significant upregulation of two key hypothalamic circadian clock genes during the embryonic period in the Japanese quail (Coturnix japonica). Altered expression was still present 10 days into post-natal life for both genes, but then disappeared by post-natal day 28. At post-natal day 28, however, diel rhythms of eating and resting were influenced by exposure to pre-natal CORT. Males exposed to pre-natal CORT featured an earlier acrophase, alongside spending a higher proportion of time feeding. Females exposed to pre-natal CORT featured a less pronounced shift in acrophase and spent less time eating. Both males and females exposed to pre-natal CORT spent less time inactive during the day. Pre-natal CORT males appeared to feature a delay in peak activity levels. Our novel data suggest that these circadian clock genes and aspects of diurnal behaviours are highly susceptible to glucocorticoid disruption during embryonic development, and these effects are persistent across developmental stages, at least into early post-natal life.
Collapse
Affiliation(s)
- Jessica Harvey-Carroll
- School of Psychology and Neuroscience, University of St Andrews, Scotland; Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden.
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland
| | - Luc F Bussière
- Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, Scotland
| |
Collapse
|
14
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
15
|
Lipschutz R, Kulesz PA, Elgbeili G, Biekman B, Laplante DP, Olson DM, King S, Bick J. Maternal mental health mediates the effect of prenatal stress on infant temperament: The Harvey Mom Study. Dev Psychopathol 2024; 36:893-907. [PMID: 37078447 DOI: 10.1017/s0954579423000160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Prenatal maternal stress and mental health problems are known to increase risk for developmental psychopathology in offspring, yet pathways leading to risk or resiliency are poorly understood. In a quasi-experimental design, we prospectively examined associations between disaster-related prenatal stress, maternal mental health symptoms, and infant temperament outcomes. Mothers who were pregnant during Hurricane Harvey (N = 527) reported on objective hardships (e.g., loss of belongings or income, evacuation, home flooding) related to the storm and subsequent mental health symptoms (anxiety/depression, posttraumatic stress) across time. At a postpartum assessment, mothers reported on their infant's temperament (negative affect, positive affect, orienting/regulatory capacity). Greater objective hardship indirectly predicted higher levels of infant orienting/regulatory capacity through its association with increased maternal posttraumatic stress symptoms. Greater objective hardship also indirectly predicted higher levels of infant negative affect through its association with increased maternal anxiety/depression symptoms across time. Our findings suggest a psychological mechanism linking prenatal stress with specific temperamental characteristics via maternal mental health symptoms. Findings point to the importance of high-quality assessment and mental health services for vulnerable women and young children.
Collapse
Affiliation(s)
| | - Paulina A Kulesz
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | - Brian Biekman
- Department of Psychology, University of Houston, Houston, TX, USA
| | - David P Laplante
- Lady Davis Institute - Jewish General Hospital, Montreal, Canada
| | | | - Suzanne King
- Psychosocial Research Unit, Douglas Research Centre, Verdun, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Johanna Bick
- Department of Psychology, University of Houston, Houston, TX, USA
| |
Collapse
|
16
|
Siller Wilks SJ, Heidinger BJ, Westneat DF, Solomon J, Rubenstein DR. The impact of parental and developmental stress on DNA methylation in the avian hypothalamic-pituitary-adrenal axis. Mol Ecol 2024; 33:e17291. [PMID: 38343177 DOI: 10.1111/mec.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post-natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis. Here, we manipulated stressors in the parental and post-natal environments in a population of house sparrows (Passer domesticus) to assess their impact on changes in DNA methylation (and corresponding gene expression) in a suite of genes within the HPA axis. We found that nestlings that experienced early life stress across both life-history periods had higher DNA methylation in a critical HPA axis gene, the glucocorticoid receptor (NR3C1). In addition, we found that the life-history stage when stress was encountered impacted some genes (HSD11B1, NR3C1 and NR3C2) differently. We also found evidence for the mitigation of parental stress by post-natal stress (in HSD11B1 and NR3C2). Finally, by assessing DNA methylation in both the brain and blood, we were able to evaluate cross-tissue patterns. While some differentially methylated regions were tissue-specific, we found cross-tissue changes in NR3C2 and NR3C1, suggesting that blood is a suitable tissue for assessing DNA methylation as a biomarker of early life stress. Our results provide a crucial first step in understanding the mechanisms by which early life stress in different life-history periods contributes to changes in the epigenome of the HPA axis.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, North Dakota, USA
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Ninan K, Liyanage SK, Murphy KE, Asztalos EV, McDonald SD. Long-Term Outcomes of Multiple versus a Single Course of Antenatal Steroids: A Systematic Review. Am J Perinatol 2024; 41:395-404. [PMID: 36724821 DOI: 10.1055/s-0042-1760386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple courses versus a single course of antenatal corticosteroids (ACS) have been associated with mild respiratory benefits but also adverse outcomes like smaller head circumference and birth weight. Long-term effects warrant study. We systematically reviewed long-term outcomes (≥1 year) in both preterm and term birth after exposure to preterm multiple courses (including a rescue dose or course) versus a single course. We searched seven databases from January 2000 to October 2021. We included follow-up studies of randomized controlled trials (RCTs) and cohort studies with births occurring in/after the year 2000, given advances in perinatal care. Two reviewers assessed titles/abstracts, articles, quality, and outcomes including psychological disorders, neurodevelopment, and anthropometry. Six follow-up studies of three RCTs and two cohort studies (over 2,860 children total) met inclusion criteria. Among children born preterm, randomization to multiple courses versus a single course of ACS was not associated with adjusted beneficial or adverse neurodevelopmental/psychological or other outcomes, but data are scant after a rescue dose (120 and 139 children, respectively, low certainty) and nonexistent after a rescue course. For children born at term (i.e., 27% of the multiple courses of ACS 5-year follow-up study of 1,728 preterm/term born children), preterm randomization to multiple courses (at least one additional course) versus a single course was significantly associated with elevated odds of neurosensory impairment (adjusted odds ratio = 3.70, 95% confidence interval: 1.57-8.75; 212 and 247 children, respectively, moderate certainty). In this systematic review of long-term outcomes after multiple courses versus a single course of ACS, there were no significant benefits or risks regarding neurodevelopment in children born preterm but little data after one rescue dose and none after a rescue course. However, multiple courses (i.e., at least one additional course) should be considered cautiously: after term birth, there are no long-term benefits but neurosensory harms. KEY POINTS: · We systematically reviewed the long-term impact of multiple versus a single course of ACS.. · Long-term follow-up data were scant after a rescue dose and absent after one rescue course of ACS.. · In children born preterm, multiple courses of ACS were not associated with long-term benefits/harms.. · In children born at term, multiple courses of ACS were associated with neurosensory impairment.. · Preterm administration of multiple courses of ACS should be considered cautiously..
Collapse
Affiliation(s)
- Kiran Ninan
- Department of Obstetrics and Gynecology, McMaster University, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Ontario, Canada
| | - Sugee K Liyanage
- Department of Obstetrics and Gynecology, McMaster University, Ontario, Canada
| | - Kellie E Murphy
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth V Asztalos
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sarah D McDonald
- Department of Obstetrics and Gynecology, McMaster University, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Ontario, Canada
- Department of Radiology, McMaster University, Ontario, Canada
- Division of Maternal-Fetal Medicine, McMaster University, Ontario, Canada
| |
Collapse
|
18
|
Coker SJ, Berry MJ, Vissers MCM, Dyson RM. Maternal Vitamin C Intake during Pregnancy Influences Long-Term Offspring Growth with Timing- and Sex-Specific Effects in Guinea Pigs. Nutrients 2024; 16:369. [PMID: 38337653 PMCID: PMC10857109 DOI: 10.3390/nu16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Our previous work in guinea pigs revealed that low vitamin C intake during preconception and pregnancy adversely affects fertility, pregnancy outcomes, and foetal and neonatal growth in a sex-dependent manner. To investigate the long-term impact on offspring, we monitored their growth from birth to adolescence (four months), recorded organ weights at childhood equivalence (28 days) and adolescence, and assessed physiological parameters like oral glucose tolerance and basal cortisol concentrations. We also investigated the effects of the timing of maternal vitamin C restriction (early vs. late gestation) on pregnancy outcomes and the health consequences for offspring. Dunkin Hartley guinea pigs were fed an optimal (900 mg/kg feed) or low (100 mg/kg feed) vitamin C diet ad libitum during preconception. Pregnant dams were then randomised into four feeding regimens: consistently optimal, consistently low, low during early pregnancy, or low during late pregnancy. We found that low maternal vitamin C intake during early pregnancy accelerated foetal and neonatal growth in female offspring and altered glucose homeostasis in the offspring of both sexes at an age equivalent to early childhood. Conversely, low maternal vitamin C intake during late pregnancy resulted in foetal growth restriction and reduced weight gain in male offspring throughout their lifespan. We conclude that altered vitamin C during development has long-lasting, sex-specific consequences for offspring and that the timing of vitamin C depletion is also critical, with low levels during early development being associated with the development of a metabolic syndrome-related phenotype, while later deprivation appears to be linked to a growth-faltering phenotype.
Collapse
Affiliation(s)
- Sharna J. Coker
- Perinatal and Developmental Physiology Group, Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand; (M.J.B.); (R.M.D.)
| | - Mary J. Berry
- Perinatal and Developmental Physiology Group, Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand; (M.J.B.); (R.M.D.)
| | - Margreet C. M. Vissers
- Mātai Hāora-Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| | - Rebecca M. Dyson
- Perinatal and Developmental Physiology Group, Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand; (M.J.B.); (R.M.D.)
| |
Collapse
|
19
|
Maxwell JR, DiDomenico J, Roberts MH, Marquez LE, Rai R, Weinberg J, Jacobson SW, Stephen J, Bakhireva LN. Impact of low-level prenatal alcohol exposure and maternal stress on autonomic regulation. Pediatr Res 2024; 95:350-358. [PMID: 37674025 PMCID: PMC11089775 DOI: 10.1038/s41390-023-02799-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) impacts the neurodevelopment of the fetus, including the infant's ability to self-regulate. Heart rate variability (HRV), that is, the beat-to-beat variability in heart rate, is a non-invasive measurement that can indicate autonomic nervous system (ANS) function/dysfunction. METHODS The study consisted of a subset of our ENRICH-2 cohort: 80 participants (32 PAE and 48 Controls) who had completed three visits during pregnancy. The participants completed a comprehensive assessment of PAE and other substances throughout pregnancy and assessments for stress, anxiety, and depression in the third trimester. At 24 h of age, infant HRV was assessed in the hospital during the clinically indicated heel lance; 3- to 5-min HRV epochs were obtained during baseline, heel lancing, and recovery episodes. RESULTS Parameters of HRV differed in infants with PAE compared to Controls during the recovery phase of the heel lance (respiratory sinus arrhythmia (RSA) and high-frequency (HF), p < 0.05). Increased maternal stress was also strongly associated with abnormalities in RSA, HF, and low-frequency / high-frequency (LF/HF, p's < 0.05). CONCLUSIONS Alterations in ANS regulation associated with PAE and maternal stress may reflect abnormal development of the hypothalamic-pituitary-adrenal axis and have long term implications for infant responsiveness and self-regulation. IMPACT Previous studies have focused on effects of moderate to heavy prenatal alcohol exposure (PAE) on autonomic dysregulation, but little is known about the effects of lower levels of PAE on infant self-regulation and heart rate variability (HRV). Prenatal stress is another risk factor for autonomic dysregulation. Mild PAE impacts infant self-regulation, which can be assessed using HRV. However, the effect of prenatal stress is stronger than that of mild PAE or other mental health variables on autonomic dysregulation.
Collapse
Affiliation(s)
- Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, Mexico.
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, Mexico.
| | - Jared DiDomenico
- Substance Use Research and Education (SURE) Center, College of Pharmacy, University of New Mexico, Albuquerque, NM, Mexico
| | - Melissa H Roberts
- Substance Use Research and Education (SURE) Center, College of Pharmacy, University of New Mexico, Albuquerque, NM, Mexico
| | - Lidia Enriquez Marquez
- Substance Use Research and Education (SURE) Center, College of Pharmacy, University of New Mexico, Albuquerque, NM, Mexico
| | - Rajani Rai
- Substance Use Research and Education (SURE) Center, College of Pharmacy, University of New Mexico, Albuquerque, NM, Mexico
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julia Stephen
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, University of New Mexico, Albuquerque, NM, Mexico
| | - Ludmila N Bakhireva
- Substance Use Research and Education (SURE) Center, College of Pharmacy, University of New Mexico, Albuquerque, NM, Mexico
| |
Collapse
|
20
|
Briceño-Pérez C, Briceño-Sanabria L, Briceño-Sanabria C, Reyna-Villasmil E. Early life corticosteroid overexposure: Epigenetic and fetal origins of adult diseases. Int J Gynaecol Obstet 2024; 164:40-46. [PMID: 37318113 DOI: 10.1002/ijgo.14914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
The relationship between events occurring during intrauterine development and later-life predisposition to long-term disease, has been described. The fetus responds to excess intrauterine exposure to high levels of corticosteroids, modifying their physiological development and stopping their growth. Fetal exposure to elevated levels of either endogenous (alterations in fetal hypothalamic-pituitary-adrenal axis) or synthetic corticosteroids, is one model of early-life adversity; to developing adult disease. At the molecular level, there are transcriptional changes in metabolic and growth pathways. Epigenetic mechanisms participate in transgenerational inheritance, not genomic. Exposures that change 11β-hydroxysteroid dehydrogenase type 2 enzyme methylation status in the placenta can result in transcriptional repression of the gene, causing the fetus to be exposed to higher levels of cortisol. More precise diagnosis and management of antenatal corticosteroids for preterm birth, would potentially decrease the risk of long-term adverse outcomes. More studies are needed to understand the potential roles of factors to alter fetal corticosteroid exposure. Long-term infant follow-up is required to determine whether methylation changes in placenta may represent useful biomarkers of later disease risk. This review, summarize recent advances in the programming of fetal effects of corticosteroid exposure, the role of corticosteroids in epigenetic gene regulation of placental 11β-hydroxysteroid dehydrogenase type 2 enzyme expression and transgenerational effects.
Collapse
Affiliation(s)
- Carlos Briceño-Pérez
- Department of Obstetrics and Gynecology, University of Zulia, Maracaibo, Venezuela
| | | | | | | |
Collapse
|
21
|
McCarthy JJ, Finnegan LP. Methadone and neonatal abstinence syndrome (NAS): what we think we know, but do not. Front Pediatr 2023; 11:1316583. [PMID: 38188918 PMCID: PMC10768019 DOI: 10.3389/fped.2023.1316583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Since the first use of methadone to treat OUD in pregnancy in the 1970s, there has been a long, controversial, and confusing history of studies, regulatory actions, and practice changes that have clouded an accurate perception of methadone's use in pregnancy. This review will trace this history with a focus on the effect of methadone exposure during pregnancy on neonatal abstinence syndrome (NAS). A new laboratory measure, the serum methadone/metabolite ratio (MMR), has provided a tool for documenting the profoundly dynamic nature of perinatal metabolism. Continuous induction of metabolic enzymes during pregnancy requires dose adjustments and dose frequency changes. The concept of "fetal methadone dosing" emphasizes that relative stability of methadone levels in the fetus is an important consideration for methadone dosing in pregnancy. Finally, the effects of the societal "war on drugs" on pediatric management of neonatal withdrawal risks will be discussed, as well as the importance of comprehensive services for mother and child including the "rooming-in" approach of neonatal care which has considerably replaced the older NICU care model of maternal/infant separation.
Collapse
Affiliation(s)
- John J. McCarthy
- Department of Psychiatry, University of California, Davis, CA, United States
| | | |
Collapse
|
22
|
Volqvartz T, Andersen HHB, Pedersen LH, Larsen A. Obesity in pregnancy-Long-term effects on offspring hypothalamic-pituitary-adrenal axis and associations with placental cortisol metabolism: A systematic review. Eur J Neurosci 2023; 58:4393-4422. [PMID: 37974556 DOI: 10.1111/ejn.16184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Obesity, affecting one in three pregnant women worldwide, is not only a major obstetric risk factor. The resulting low-grade inflammation may have a long-term impact on the offspring's HPA axis through dysregulation of maternal, placental and fetal corticosteroid metabolism, and children born of obese mothers have increased risk of diabetes and cardiovascular disease. The long-term effects of maternal obesity on offspring neurodevelopment are, however, undetermined and could depend on the specific effects on placental and fetal cortisol metabolism. This systematic review evaluates how maternal obesity affects placental cortisol metabolism and the offspring's HPA axis. Pubmed, Embase and Scopus were searched for original studies on maternal BMI, obesity, and cortisol metabolism and transfer. Fifteen studies were included after the screening of 4556 identified records. Studies were small with heterogeneous exposures and outcomes. Two studies found that maternal obesity reduced placental HSD11β2 activity. In one study, umbilical cord blood cortisol levels were affected by maternal BMI. In three studies, an altered cortisol response was consistently seen among offspring in childhood (n = 2) or adulthood (n = 1). Maternal BMI was not associated with placental HSD11β1 or HSD11β2 mRNA expression, or placental HSD11β2 methylation. In conclusion, high maternal BMI is associated with reduced placental HSD11β2 activity and a dampened cortisol level among offspring, but the data is sparse. Further investigations are needed to clarify whether the HPA axis is affected by prenatal factors including maternal obesity and investigate if adverse effects can be ameliorated by optimising the intrauterine environment.
Collapse
Affiliation(s)
- Tabia Volqvartz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lars Henning Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Ambrozio-Marques D, Gagnon M, Radcliff AB, Meza AL, Baker TL, Watters JJ, Kinkead R. Gestational intermittent hypoxia increases FosB-immunoreactive perikaryas in the paraventricular nucleus of the hypothalamus of adult male (but not female) rats. Exp Physiol 2023; 108:1376-1385. [PMID: 37642495 PMCID: PMC10841242 DOI: 10.1113/ep091343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O2 ) alternating with normoxia. Control rats were exposed to intermittent normoxia over the same period (GNX). At adulthood (10-15 weeks), the brains of male and female rats were harvested for FosB immunohistochemistry. In males, GIH augmented PVN FosB labelling density by 30%. Conversely, PVN FosB density in GIH females was 28% lower than that of GNX females. We conclude that GIH has persistent and sex-specific impacts on the development of stress pathways, thereby offering a plausible mechanism by which GIH can disturb neural development and blood pressure homeostasis in adulthood. NEW FINDINGS: What is the central question of this study? In pregnant women, sleep apnoea increases the risk of disease for the offspring at various life stages. Given that gestational stress disrupts the programming of the stress pathways, we determined whether exposing female rats to gestational intermittent hypoxia (GIH) activates hypothalamic neurons regulating the stress response in adult rats. What is the main finding and its importance? Using FosB immunolabelling as a marker of marker of neuronal activation, we showed that GIH augmented basal activation of the paraventricular nucleus of the hypothalamus in males, but not females. Disruption of the stress pathways is a new hypothesis to explain the persistent and sex-specific impacts of GIH on offspring health.
Collapse
Affiliation(s)
- Danuzia Ambrozio-Marques
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Marianne Gagnon
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Abigail B Radcliff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Armand L Meza
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Kinkead
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
24
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Di Lauro M, Guerriero C, Cornali K, Albanese M, Costacurta M, Mercuri NB, Di Daniele N, Noce A. Linking Migraine to Gut Dysbiosis and Chronic Non-Communicable Diseases. Nutrients 2023; 15:4327. [PMID: 37892403 PMCID: PMC10609600 DOI: 10.3390/nu15204327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
In the world, migraine is one of the most common causes of disability in adults. To date, there is no a single cause for this disorder, but rather a set of physio-pathogenic triggers in combination with a genetic predisposition. Among the factors related to migraine onset, a crucial role seems to be played by gut dysbiosis. In fact, it has been demonstrated how the intestine is able to modulate the central nervous system activities, through the gut-brain axis, and how gut dysbiosis can influence neurological pathologies, including migraine attacks. In this context, in addition to conventional pharmacological treatments for migraine, attention has been paid to an adjuvant therapeutic strategy based on different nutritional approaches and lifestyle changes able to positively modulate the gut microbiota composition. In fact, the restoration of the balance between the different gut bacterial species, the reconstruction of the gut barrier integrity, and the control of the release of gut-derived inflammatory neuropeptides, obtained through specific nutritional patterns and lifestyle changes, represent a possible beneficial additive therapy for many migraine subtypes. Herein, this review explores the bi-directional correlation between migraine and the main chronic non-communicable diseases, such as diabetes mellitus, arterial hypertension, obesity, cancer, and chronic kidney diseases, whose link is represented by gut dysbiosis.
Collapse
Affiliation(s)
- Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Cristina Guerriero
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Maria Albanese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Neurology Unit, Headache Center, Tor Vergata University Hospital, 00133 Rome, RM, Italy
| | - Micaela Costacurta
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, RM, Italy;
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Neurology Unit, Headache Center, Tor Vergata University Hospital, 00133 Rome, RM, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Fondazione Leonardo per le Scienze Mediche Onlus, Policlinico Abano, 35031 Abano Terme, PD, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, RM, Italy
| |
Collapse
|
26
|
Herzberg MP, Triplett R, McCarthy R, Kaplan S, Alexopoulos D, Meyer D, Arora J, Miller JP, Smyser TA, Herzog ED, England SK, Zhao P, Barch DM, Rogers CE, Warner BB, Smyser CD, Luby J. The Association Between Maternal Cortisol and Infant Amygdala Volume Is Moderated by Socioeconomic Status. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:837-846. [PMID: 37881545 PMCID: PMC10593881 DOI: 10.1016/j.bpsgos.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 10/27/2023] Open
Abstract
Background It has been well established that socioeconomic status is associated with mental and physical health as well as brain development, with emerging data suggesting that these relationships begin in utero. However, less is known about how prenatal socioeconomic environments interact with the gestational environment to affect neonatal brain volume. Methods Maternal cortisol output measured at each trimester of pregnancy and neonatal brain structure were assessed in 241 mother-infant dyads. We examined associations between the trajectory of maternal cortisol output across pregnancy and volumes of cortisol receptor-rich regions of the brain, including the amygdala, hippocampus, medial prefrontal cortex, and caudate. Given the known effects of poverty on infant brain structure, socioeconomic disadvantage was included as a moderating variable. Results Neonatal amygdala volume was predicted by an interaction between maternal cortisol output across pregnancy and socioeconomic disadvantage (standardized β = -0.31, p < .001), controlling for postmenstrual age at scan, infant sex, and total gray matter volume. Notably, amygdala volumes were positively associated with maternal cortisol for infants with maternal disadvantage scores 1 standard deviation below the mean (i.e., less disadvantage) (simple slope = 123.36, p < .01), while the association was negative in infants with maternal disadvantage 1 standard deviation above the mean (i.e., more disadvantage) (simple slope = -82.70, p = .02). Individuals with disadvantage scores at the mean showed no association, and there were no significant interactions in the other brain regions examined. Conclusions These data suggest that fetal development of the amygdala is differentially affected by maternal cortisol production at varying levels of socioeconomic advantage.
Collapse
Affiliation(s)
- Max P. Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Regina Triplett
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Sydney Kaplan
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | | | - Dominique Meyer
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Jyoti Arora
- Department of Biostatistics, Washington University in St. Louis, St. Louis, Missouri
| | - J. Philip Miller
- Department of Biostatistics, Washington University in St. Louis, St. Louis, Missouri
| | - Tara A. Smyser
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Deanna M. Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Barbara B. Warner
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Christopher D. Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
27
|
Hukkanen M, Hsu B, Cossin‐Sevrin N, Crombecque M, Delaunay A, Hollmen L, Kaukonen R, Konki M, Lund R, Marciau C, Stier A, Ruuskanen S. From maternal glucocorticoid and thyroid hormones to epigenetic regulation of offspring gene expression: An experimental study in a wild bird species. Evol Appl 2023; 16:1753-1769. [PMID: 38020869 PMCID: PMC10660793 DOI: 10.1111/eva.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Offspring phenotype at birth is determined by its genotype and the prenatal environment including exposure to maternal hormones. Variation in both maternal glucocorticoids and thyroid hormones can affect offspring phenotype, but the underlying molecular mechanisms, especially those contributing to long-lasting effects, remain unclear. Epigenetic changes (such as DNA methylation) have been postulated as mediators of long-lasting effects of early-life environment. In this study, we determined the effects of elevated prenatal glucocorticoid and thyroid hormones on handling stress response (breath rate) as well as DNA methylation and gene expression of glucocorticoid receptor (GR) and thyroid hormone receptor (THR) in great tits (Parus major). Eggs were injected before incubation onset with corticosterone (the main avian glucocorticoid) and/or thyroid hormones (thyroxine and triiodothyronine) to simulate variation in maternal hormone deposition. Breath rate during handling and gene expression of GR and THR were evaluated 14 days after hatching. Methylation status of GR and THR genes was analyzed from the longitudinal blood cells sampled 7 and 14 days after hatching, as well as the following autumn. Elevated prenatal corticosterone level significantly increased the breath rate during handling, indicating an enhanced metabolic stress response. Prenatal corticosterone manipulation had CpG-site-specific effects on DNA methylation at the GR putative promoter region, while it did not significantly affect GR gene expression. GR expression was negatively associated with earlier hatching date and chick size. THR methylation or expression did not exhibit any significant relationship with the hormonal treatments or the examined covariates, suggesting that TH signaling may be more robust due to its crucial role in development. This study provides some support to the hypothesis suggesting that maternal corticosterone may influence offspring metabolic stress response via epigenetic alterations, yet their possible adaptive role in optimizing offspring phenotype to the prevailing conditions, context-dependency, and the underlying molecular interplay needs further research.
Collapse
Affiliation(s)
- Mikaela Hukkanen
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Bin‐Yan Hsu
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | | | - Axelle Delaunay
- Institut des Sciences de l'Evolution de Montpellier (ISEM)Université de Montpellier, CNRS, IRD, EPHEMontpellierFrance
| | - Lotta Hollmen
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Riina Kaukonen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Mikko Konki
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Turku Doctoral Programme of Molecular MedicineUniversity of TurkuTurkuFinland
| | - Riikka Lund
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Coline Marciau
- Department of BiologyUniversity of TurkuTurkuFinland
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Antoine Stier
- Department of BiologyUniversity of TurkuTurkuFinland
- Institut Pluridisciplinaire Hubert Curien, UMR 7178University of Strasbourg, CNRSStrasbourgFrance
| | - Suvi Ruuskanen
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
28
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Sajdel-Sulkowska EM. The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut-Brain Axis Development and Life-Long Health Outcomes. Microorganisms 2023; 11:2199. [PMID: 37764043 PMCID: PMC10538154 DOI: 10.3390/microorganisms11092199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota plays a critical role in physiological regulation throughout life and is specifically modified to meet the demands of individual life stages and during pregnancy. Maternal gut microbiota is uniquely adapted to the pregnancy demands of the mother and the developing fetus. Both animal studies in pregnant germ-free rodents and human studies have supported a critical association between the composition of maternal microbiota during pregnancy and fetal development. Gut microbiota may also contribute to the development of the fetal gut-brain axis (GBA), which is increasingly recognized for its critical role in health and disease. Most studies consider birth as the time of GBA activation and focus on postnatal GBA development. This review focuses on GBA development during the prenatal period and the impact of maternal gut microbiota on fetal GBA development. It is hypothesized that adaptation of maternal gut microbiota to pregnancy is critical for the GBA prenatal development and maturation of GBA postnatally. Consequently, factors affecting maternal gut microbiota during pregnancy, such as maternal obesity, diet, stress and depression, infection, and medication, also affect fetal GBA development and are critical for GBA activity postnatally. Altered maternal gut microbiota during gestation has been shown to have long-term impact postnatally and multigenerational effects. Thus, understanding the impact of maternal gut microbiota during pregnancy on fetal GBA development is crucial for managing fetal, neonatal, and adult health, and should be included among public health priorities.
Collapse
|
31
|
Bilder DA, Worsham W, Sullivan S, Esplin MS, Burghardt P, Fraser A, Bakian AV. Sex-specific and sex-independent steroid-related biomarkers in early second trimester maternal serum associated with autism. Mol Autism 2023; 14:30. [PMID: 37573326 PMCID: PMC10422808 DOI: 10.1186/s13229-023-00562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Prenatal exposure to maternal metabolic conditions associated with inflammation and steroid dysregulation has previously been linked to increased autism risk. Steroid-related maternal serum biomarkers have also provided insight into the in utero steroid environment for offspring who develop autism. OBJECTIVE This study examines the link between autism among offspring and early second trimester maternal steroid-related serum biomarkers from pregnancies enriched for prenatal metabolic syndrome (PNMS) exposure. STUDY DESIGN Early second trimester maternal steroid-related serum biomarkers (i.e., estradiol, free testosterone, total testosterone, and sex hormone binding globulin) were compared between pregnancies corresponding to offspring with (N = 68) and without (N = 68) autism. Multiple logistic regression analyses were stratified by sex and gestational duration. One-way ANCOVA with post hoc tests was performed for groups defined by autism status and PNMS exposure. RESULTS Increased estradiol was significantly associated with autism only in males (AOR = 1.13 per 100 pg/ml, 95% CI 1.01-1.27, p = 0.036) and only term pregnancies (AOR = 1.17 per 100 pg/ml, 95% CI 1.04-1.32, p = 0.010). Autism status was significantly associated with decreased sex hormone binding globulin (AOR = 0.65 per 50 nmol/L, 95% CI 0.55-0.78, p < 0.001) overall and when stratified by sex and term pregnancy status. The inverse association between sex hormone binding globulin and autism was independent of PNMS exposure. LIMITATIONS The relative racial and ethnic homogeneity of Utah's population limits the generalizability of study results. Although significant differences by autism status were identified in concentrations of sex hormone binding globulin overall and of estradiol in participant subgroups, differences by PNMS exposure failed to reach statistical significance, which may reflect insufficient statistical power. CONCLUSION Both elevated maternal serum estradiol in males only and low maternal serum sex hormone binding globulin in both sexes are associated with increased autism risk. Further investigation is merited to identify how steroid, metabolic, and inflammatory processes can interact to influence neurodevelopment in early second trimester.
Collapse
Affiliation(s)
- Deborah A Bilder
- University of Utah Huntsman Mental Health Institute, 383 Colorow Drive, Room 360, Salt Lake City, UT, 84108, USA.
| | - Whitney Worsham
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - M Sean Esplin
- University of Utah School of Medicine, Salt Lake City, UT, USA
- Intermountain Healthcare, Salt Lake City, UT, USA
| | | | - Alison Fraser
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Amanda V Bakian
- University of Utah Huntsman Mental Health Institute, 383 Colorow Drive, Room 360, Salt Lake City, UT, 84108, USA
| |
Collapse
|
32
|
Fleck L, Fuchs A, Sele S, Moehler E, Koenig J, Resch F, Kaess M. Prenatal stress and child externalizing behavior: effects of maternal perceived stress and cortisol are moderated by child sex. Child Adolesc Psychiatry Ment Health 2023; 17:94. [PMID: 37550728 PMCID: PMC10408175 DOI: 10.1186/s13034-023-00639-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Externalizing behavior problems are related to social maladjustment. Evidence indicates associations between prenatal stress and child behavioral outcomes. It remains unclear how psychological distress vs. biological correlates of stress (cortisol) differentially predict externalizing behavior, and how their effects might differ as a function of child sex. METHOD 108 pregnant women from the community collected salivary cortisol and reported their perceived stress during each trimester of pregnancy. At child age 9 years (M = 9.01, SD = 0.55), 70 mothers and children reported on child behavior. Structural equation modelling was used to analyze how cortisol levels and perceived stress during pregnancy predicted current child externalizing behavior, considering the moderating effect of child sex. RESULTS Perceived stress predicted higher externalizing behavior in boys (β = 0.42, p = 0.009) and lower externalizing behavior in girls (β = - 0.56, p = 0.014). Cortisol predicted lower externalizing behavior in boys (β = - 0.81, p < .001) and was not related to girls' externalizing behavior (β = 0.37, p = 0.200). DISCUSSION/CONCLUSION Prenatal stress affected externalizing behavior differently in girls vs. boys. These response patters in turn differed for indicators of psychological vs. biological maternal stress, encouraging an integrated approach. Findings indicate that perceived stress and cortisol may affect child development via different trajectories.
Collapse
Affiliation(s)
- Leonie Fleck
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Fuchs
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Silvano Sele
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Eva Moehler
- Department of Child and Adolescent Psychiatry, Saarland University Medical Center, Homburg, Germany
| | - Julian Koenig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Franz Resch
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Kaess
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
33
|
Galatis D, Benekos C, Karachalios PK, Strongylos A, Anifantaki F, Dalivigkas I, Monastiriotis A, Kiriakopoulos N. Stress Response Assessment between First and Second Elective Caesarean Sections by Comparing Cortisol Levels. Acta Med Acad 2023; 52:112-118. [PMID: 37933508 DOI: 10.5644/ama2006-124.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVES The aim of this study was to compare the stress response produced during elective CS for the first and second time. For that goal, cortisol blood levels before, during and after childbirth were measured. MATERIALS AND METHODS We performed this prospective observational study during the period of September 2020 to September 2021. Blood samples were taken from all participants at three different stages. A statistical analysis was performed to compare the CS1 (first elective Caesarean) and CS2 (second elective Caesarean) groups. RESULTS At every stage, the levels of cortisol were statistically higher in the CS1 group than in the CS2 group. Therefore, CS2 generates a significantly less stressful response than CS1. Between stages, in CS2 cortisol was lowered at a faster rate than in CS1, meaning the stress response initiated was present for a longer time period in the CS1 group. CONCLUSION A second elective caesarean section is a safe procedure that does not place an unnecessary burden upon the mother. This is an important fact that practitioners can rely upon while designing the ideal management of a pregnant woman for the stressful environment of birth.
Collapse
Affiliation(s)
- Dionysios Galatis
- V' Department of Ob/Gyn, Helena Venizelou, General and Maternity Hospital of Athens, Greece.
| | - Christos Benekos
- V' Department of Ob/Gyn, Helena Venizelou, General and Maternity Hospital of Athens, Greece
| | | | - Antonios Strongylos
- V' Department of Ob/Gyn, Helena Venizelou, General and Maternity Hospital of Athens, Greece
| | - Foteini Anifantaki
- V' Department of Ob/Gyn, Helena Venizelou, General and Maternity Hospital of Athens, Greece
| | - Ioannis Dalivigkas
- V' Department of Ob/Gyn, Helena Venizelou, General and Maternity Hospital of Athens, Greece
| | - Argyrios Monastiriotis
- V' Department of Ob/Gyn, Helena Venizelou, General and Maternity Hospital of Athens, Greece
| | - Nikolaos Kiriakopoulos
- V' Department of Ob/Gyn, Helena Venizelou, General and Maternity Hospital of Athens, Greece
| |
Collapse
|
34
|
Sato S, Watanabe S, Saito Y, Takanashi A, Ikeda H, Sakurai Y, Koshinami S, Kumagai Y, Usuda H, Hanita T, Kikuchi A, Saito M. High Expression of Adrenal Cortisol Synthases Is Acquired After Intrauterine Inflammation in Periviable Sheep Fetuses. J Endocr Soc 2023; 7:bvad100. [PMID: 37564887 PMCID: PMC10410294 DOI: 10.1210/jendso/bvad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 08/12/2023] Open
Abstract
Context Intrauterine inflammation, a representative stressor for the fetus, has been shown to alter the hypothalamus-pituitary-adrenal (HPA) axis reactivity in preterm fetuses and increase postnatal cortisol production. However, the mechanism of this alteration has not yet been elucidated. Objective We aimed to clarify the effects of endotoxin-induced intrauterine inflammation on the HPA axis of periviable sheep fetuses. Methods Fetal sheep (0.63 term) were divided into 2 groups: (1) the endotoxin group, in which the endotoxin was injected into the amniotic fluid; and (2) the control group, in which the saline solution was injected instead. A corticotropin-releasing hormone (CRH) challenge test was performed on the third day after injection to evaluate the cortisol-producing capacity of each group. Gene expression levels in the fetal adrenal glands of each group were analyzed by RNA-seq. Results The cortisol levels were significantly higher in the endotoxin group than in the control group after CRH challenge (P = .02). There were no significant differences in the responsiveness of adrenocorticotropin and cortisone between the 2 groups. Gene expression levels of the following enzymes involved in cortisol synthesis were significantly elevated in the endotoxin group: cytochrome P450 family (CYP) 11 subfamily A member 1 (log2FC 1.75), CYP 17 subfamily A member 1 (log2FC 3.41), 3β-hydroxysteroid dehydrogenase type I (log2FC 1.13), steroidogenic acute regulatory protein (log2FC 1.09), and CYP 21 (log2FC 0.89). Conclusion Periviable fetuses exposed to inflammation in utero have altered the responsiveness of the HPA axis with increased expression of enzymes involved in cortisol synthesis in the adrenal gland.
Collapse
Affiliation(s)
- Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Yuya Saito
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Aika Takanashi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Hideyuki Ikeda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Yoshie Sakurai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Shouta Koshinami
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Yusaku Kumagai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Haruo Usuda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- School of Women's and Infants’ Health, University of Western Australia, Perth, Western Australia, Australia
| | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Masatoshi Saito
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
35
|
Lagoda ME, O’Driscoll K, Galli MC, Cerón JJ, Ortín-Bustillo A, Marchewka J, Boyle LA. Indicators of improved gestation housing of sows. Part II: Effects on physiological measures, reproductive performance and health of the offspring. Anim Welf 2023; 32:e52. [PMID: 38487422 PMCID: PMC10936399 DOI: 10.1017/awf.2023.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 03/17/2024]
Abstract
Prenatal stress is the mechanism through which poor welfare of pregnant sows has detrimental effects on the health and resilience of their piglets. We compared two gestation housing systems (IMPROVED versus [conventional] CONTROL) in terms of sow stress and welfare indicators and sought to determine whether potential benefits to the sows would translate into improved offspring health. Sows were mixed into 12 stable groups (six groups per treatment, 20 sows per group) 29 days post-service in pens with free-access, full-length individual feeding/lying-stalls. CONTROL pens had fully slatted concrete floors, with two blocks of wood and two chains suspended in the group area. IMPROVED pens were the same but with rubber mats and manila rope in each stall, and straw provided in three racks in the group area. Saliva was collected from each sow on day 80 of pregnancy and analysed for haptoglobin. Hair cortisol was measured in late gestation. Sows' right and left eyes were scored for tear staining in mid lactation and at weaning. Numbers of piglets born alive, dead, mummified, and total born were recorded. Piglets were weighed and scored for vitality and intra-uterine growth restriction (IUGR) at birth. Presence of diarrhoea in farrowing pens was scored every second day throughout the suckling period. IMPROVED sows had lower haptoglobin levels and tear-stain scores during lactation. IMPROVED sows produced fewer mummified piglets, and these had significantly lower IUGR scores, and scored lower for diarrhoea than piglets of CONTROL sows. Hence, improving sow welfare during gestation improved the health and performance of their offspring.
Collapse
Affiliation(s)
- Martyna E Lagoda
- Pig Development Department, Animal & Grassland Research & Innovation Centre, Teagasc Moorepark, Fermoy, Co Cork, Ireland
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Department of Animal Behaviour, ul. Postępu 36A, Jastrzębiec 05-552
| | - Keelin O’Driscoll
- Pig Development Department, Animal & Grassland Research & Innovation Centre, Teagasc Moorepark, Fermoy, Co Cork, Ireland
| | - Maria C Galli
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020, Legnaro (PD), Italy
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100Murcia, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100Murcia, Spain
| | - Joanna Marchewka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Department of Animal Behaviour, ul. Postępu 36A, Jastrzębiec 05-552
| | - Laura A Boyle
- Pig Development Department, Animal & Grassland Research & Innovation Centre, Teagasc Moorepark, Fermoy, Co Cork, Ireland
| |
Collapse
|
36
|
Impact of maternal emotional state during pregnancy on fetal heart rate variability. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 14:100181. [PMID: 36911250 PMCID: PMC9995932 DOI: 10.1016/j.cpnec.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Background The fetal autonomic nervous system (ANS) is believed to be negatively affected by maternal adverse emotional states. In this study, we evaluated how depression, anxiety and stress during pregnancy are related to fetal heart rate variability (HRV) as recorded with magnetocardiography (MCG). We also considered metabolic factors such as maternal adiposity and circulating levels of cortisol during gestation. Furthermore, we followed up these fetuses after birth, recording HRV and saliva levels of cortisol in these infants to establish any effects postpartum. Methods We calculated HRV in spontaneous MCG recordings from 32 healthy fetuses between 32 and 38 weeks of gestational age. Maternal emotional state was assessed using standardized questionnaires about anxiety, depression and stress. An overall indicator of maternal well-being was calculated by z-scoring each individual questionnaire and summation. We used a median split to divide the group into high and low z-scores (HZS and LZS), respectively. Standard HRV measures were determined in the time and frequency domain. T-test analyses were performed between LZS and HZS, with the HRV and the metabolic measures as the dependent variables. Results We found an impaired HRV in the HZS group both during pregnancy and after birth. No differences were observed between LZS and HZS for metabolic factors. Depression and anxiety symptoms seem to affect HRV differently. No relationship was found between maternal and infant cortisol levels. Conclusions On the basis of our results on different HRV parameters, we propose that maternal emotional state might affect the development of the fetal nervous system in utero.
Collapse
|
37
|
Majer AD, Paitz RT, Tricola GM, Geduldig JE, Litwa HP, Farmer JL, Prevelige BR, McMahon EK, McNeely T, Sisson ZR, Frenz BJ, Ziur AD, Clay EJ, Eames BD, McCollum SE, Haussmann MF. The response to stressors in adulthood depends on the interaction between prenatal exposure to glucocorticoids and environmental context. Sci Rep 2023; 13:6180. [PMID: 37061562 PMCID: PMC10105737 DOI: 10.1038/s41598-023-33447-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Maternal stress during reproduction can influence how offspring respond to stress later in life. Greater lifetime exposure to glucocorticoid hormones released during stress is linked to greater risks of behavioral disorders, disease susceptibility, and mortality. The immense variation in individual's stress responses is explained, in part, by prenatal glucocorticoid exposure. To explore the long-term effects of embryonic glucocorticoid exposure, we injected Japanese quail (Coturnix japonica) eggs with corticosterone. We characterized the endocrine stress response in offspring and measured experienced aggression at three different ages. We found that prenatal glucocorticoid exposure affected (1) the speed at which the stress response was terminated suggesting dysregulated negative feedback, (2) baseline corticosterone levels in a manner dependent on current environmental conditions with higher levels of experienced aggression associated with higher levels of baseline corticosterone, (3) the magnitude of an acute stress response based on baseline concentrations. We finish by proposing a framework that can be used to test these findings in future work. Overall, our findings suggest that the potential adaptive nature of prenatal glucocorticoid exposure is likely dependent on environmental context and may also be tempered by the negative effects of longer exposure to glucocorticoids each time an animal faces a stressor.
Collapse
Affiliation(s)
- Ariana D Majer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Gianna M Tricola
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jack E Geduldig
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Hannah P Litwa
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jenna L Farmer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Elyse K McMahon
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Taylor McNeely
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Zach R Sisson
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brian J Frenz
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Alexis D Ziur
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Emily J Clay
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brad D Eames
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA.
| |
Collapse
|
38
|
Protein-caloric restriction induced HPA axis activation and altered the milk composition imprint metabolism of weaned rat offspring. Nutrition 2023; 108:111945. [PMID: 36696704 DOI: 10.1016/j.nut.2022.111945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Maternal protein-caloric restriction during lactation can malprogram offspring into having a lean phenotype associated with metabolic dysfunction in early life and adulthood. The aim of this study was to investigate the relationships between nutritional stress, maternal behavior and metabolism, milk composition, and offspring parameters. Additionally, we focused on the role of hypothalamus-pituitary-adrenal axis hyperactivation during lactation. METHODS Dams were fed a low-protein diet (4% protein) during the first 2 wk of lactation or a normal-protein diet (20% protein) during all lactation. Analyses of dams, milk, and offspring were conducted on postnatal days (PD) 7, 14, and 21. RESULTS Body weight and food intake decreased in dams, which was associated with reduced fat pad stores and increased corticosterone levels at PD 14. The stressed low-protein diet dams demonstrated alterations in behavior and offspring care. Despite nutritional deprivation, dams adapted their metabolism to provide adequate energy supply through milk; however, we demonstrated elevated corticosterone and total fat levels in milk at PD 14. Male offspring also showed increased corticosterone at PD 7, associated with a lean phenotype and alterations in white and brown adipose tissue morphology at PD 21. CONCLUSION Exposure to protein-caloric restriction diet of dams during lactation increased the glucocorticoid levels in dams, milk, and offspring, which is associated with alterations in maternal behavior and milk composition. Thus, glucocorticoids and milk composition may play an important role in metabolic programming induced by maternal undernutrition.
Collapse
|
39
|
Rasmussen JM, Tuulari JJ, Nolvi S, Thompson PM, Merisaari H, Lavonius M, Karlsson L, Entringer S, Wadhwa PD, Karlsson H, Buss C. Maternal pre-pregnancy body mass index is associated with newborn offspring hypothalamic mean diffusivity: a prospective dual-cohort study. BMC Med 2023; 21:57. [PMID: 36788536 PMCID: PMC9930241 DOI: 10.1186/s12916-023-02743-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND An extensive body of animal literature supports the premise that maternal obesity during pregnancy can alter the development of the fetal hypothalamus (HTH, a critical regulator of energy balance) with implications for offspring obesity risk (i.e., long-term energy imbalance). Yet, the relationship in humans between maternal overweight/obesity during pregnancy and fetal hypothalamic development remains largely unknown. Here, using an international (Finland and California, USA) multi-site diffusion tensor imaging (DTI) dataset, we test the hypothesis that maternal pre-pregnancy BMI is associated with newborn offspring HTH mean diffusivity (HTH MD, a replicable neural correlate of BMI in adults). METHODS HTH MD was independently quantified in two separate BMI-matched cohorts (up to class II obesity; BMIRange = 17-35) using a high-resolution atlas-based definition of HTH. A total of n = 231 mother-child dyads were available for this analysis (nSite,1 = 152, age at MRI = 26.7 ± 8.1 days, gestational age at birth = 39.9 ± 1.2 weeks, nM/F = 82/70, BMI = 24.2 ± 3.8; nSite,2 = 79, age at MRI = 25.6 ± 12.5 days, gestational age at birth = 39.3 ± 1.5 weeks, nM/F = 45/34, BMI = 25.1 ± 4.0). The association between maternal pre-pregnancy BMI and newborn offspring HTH MD was examined separately in each cohort using linear regression adjusting for gestational age at birth, postnatal age at scan, sex, whole white matter mean diffusivity, and DTI quality control criteria. In post hoc analyses, additional potentially confounding factors including socioeconomic status, ethnicity, and obstetric risk were adjusted where appropriate. RESULTS The distribution of maternal pre-pregnancy BMI was comparable across sites but differed by ethnicity and socioeconomic status. A positive linear association between maternal pre-pregnancy BMI and newborn offspring HTH MD was observed at both sites ([Formula: see text]Site,1 = 0.17, pSite,1 = 0.01; [Formula: see text]Site,2 = 0.22, pSite,2 = 0.03) and remained significant after adjusting for cohort-relevant covariates. CONCLUSIONS These findings translate the preclinically established association between maternal obesity during pregnancy and offspring hypothalamic microstructure to the human context. In addition to further replication/generalization, future efforts to identify biological mediators of the association between maternal obesity and fetal HTH development are warranted to develop targeted strategies for the primary prevention of childhood obesity.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA.
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA.
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Turku Collegium for Science Technology and Medicine (TCSMT), University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Oxford (Sigrid Juselius Fellowship), Oxford, UK
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Turku Institute for Advanced Studies, Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Maria Lavonius
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92697, USA
- Department of Obstetrics & Gynecology, University of California, Irvine, CA, 92697, USA
- Department of Epidemiology, University of California, Irvine, CA, 92697, USA
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
40
|
Lopes NA, Ambeskovic M, King SE, Faraji J, Soltanpour N, Falkenberg EA, Scheidl T, Patel M, Fang X, Metz GAS, Olson DM. Environmental Enrichment Promotes Transgenerational Programming of Uterine Inflammatory and Stress Markers Comparable to Gestational Chronic Variable Stress. Int J Mol Sci 2023; 24:ijms24043734. [PMID: 36835144 PMCID: PMC9962069 DOI: 10.3390/ijms24043734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Prenatal maternal stress is linked to adverse pregnancy and infant outcomes, including shortened gestation lengths, low birth weights, cardio-metabolic dysfunction, and cognitive and behavioural problems. Stress disrupts the homeostatic milieu of pregnancy by altering inflammatory and neuroendocrine mediators. These stress-induced phenotypic changes can be passed on to the offspring epigenetically. We investigated the effects of gestational chronic variable stress (CVS) in rats using restraint and social isolation stress in the parental F0 generation and its transgenerational transmission across three generations of female offspring (F1-F3). A subset of F1 rats was housed in an enriched environment (EE) to mitigate the adverse effects of CVS. We found that CVS is transmitted across generations and induces inflammatory changes in the uterus. CVS did not alter any gestational lengths or birth weights. However, inflammatory and endocrine markers changed in the uterine tissues of stressed mothers and their offspring, suggesting that stress is transgenerationally transmitted. The F2 offspring reared in EE had increased birth weights, but their uterine gene expression patterns remained comparable to those of stressed animals. Thus, ancestral CVS induced changes transgenerationally in fetal programming of uterine stress markers over three generations of offspring, and EE housing did not mitigate these effects.
Collapse
Affiliation(s)
- Nayara A. Lopes
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mirela Ambeskovic
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie E. King
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamshid Faraji
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nasrin Soltanpour
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Erin A. Falkenberg
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Taylor Scheidl
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mansi Patel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Xin Fang
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gerlinde A. S. Metz
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| | - David M. Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| |
Collapse
|
41
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
42
|
Sex-Dependent Effect of Chronic Piromelatine Treatment on Prenatal Stress-Induced Memory Deficits in Rats. Int J Mol Sci 2023; 24:ijms24021271. [PMID: 36674787 PMCID: PMC9864968 DOI: 10.3390/ijms24021271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Prenatal stress impairs cognitive function in rats, while Piromelatine treatment corrects memory decline in male rats with chronic mild stress. In the present study, we aimed to evaluate the effect of chronic treatment with the melatonin analogue Piromelatine on the associative and spatial hippocampus-dependent memory of male and female offspring with a history of prenatal stress (PNS). We report that male and female young adult offspring with PNS treated with a vehicle had reduced memory responses in an object recognition test (ORT). However, the cognitive performance in the radial arm maze test (RAM) was worsened only in the male offspring. The 32-day treatment with Piromelatine (20 mg/kg, i.p.) of male and female offspring with PNS attenuated the impaired responses in the ORT task. Furthermore, the melatonin analogue corrected the disturbed spatial memory in the male offspring. While the ratio of phosphorylated and nonphosphorylated adenosine monophosphate response element binding protein (pCREB/CREB) was reduced in the two sexes with PNS and treated with a vehicle, the melatonin analogue elevated the ratio of these signaling molecules in the hippocampus of the male rats only. Our results suggest that Piromelatine exerts a beneficial effect on PNS-induced spatial memory impairment in a sex-dependent manner that might be mediated via the pCREB/CREB pathway.
Collapse
|
43
|
Mlili NE, Ahabrach H, Cauli O. Hair Cortisol Concentration as a Biomarker of Symptoms of Depression in the Perinatal Period. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:71-83. [PMID: 35297354 DOI: 10.2174/1871527321666220316122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
Pregnancy is a sensitive period when women experience major hormonal and psychological changes. A high prevalence of the symptoms of depression and manifested major depression rates have been reported during this period, leading to negative outcomes both for mothers and the offspring. Despite its prevalence, the aetiology of depression is not yet fully understood. Nonetheless, alterations in cortisol levels have been proposed as a reliable biomarker to identify pregnant women at risk of perinatal depression. Hair cortisol has recently been extensively used in bio-psychological studies as a suitable non-invasive biomarker for several neuropsychiatric disorders. Various studies have published evidence regarding the relationship between cortisol fluctuations during the perinatal period, measured both in hair and in other substrates, and the onset of perinatal symptoms of depression. This current review provides an overview of cortisol level changes measured in women's hair during pregnancy or the postpartum period and its association with perinatal symptoms of depression. Further studies, including repetitive measurement of both hair cortisol and depression throughout the prenatal period, must be performed to clarify the relationship between cortisol levels and perinatal symptoms of depression.
Collapse
Affiliation(s)
- Nisrin El Mlili
- Institut Supérieur des Professions Infirmières et Techniques de Santé (ISPITS), Tetouan, Morocco
- Department of Physiology and Physiopathology, Faculty of Sciences, University Abdelmalek Essâadi, Tetouan, Morocco
| | - Hanan Ahabrach
- Institut Supérieur des Professions Infirmières et Techniques de Santé (ISPITS), Tetouan, Morocco
- Department of Physiology and Physiopathology, Faculty of Sciences, University Abdelmalek Essâadi, Tetouan, Morocco
| | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia 46010, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, Valencia 46010, Spain
| |
Collapse
|
44
|
Dioli C, Papadimitriou G, Megalokonomou A, Marques C, Sousa N, Sotiropoulos I. Chronic Stress, Depression, and Alzheimer's Disease: The Triangle of Oblivion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:303-315. [PMID: 37525058 DOI: 10.1007/978-3-031-31978-5_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Chronic stress and high levels of the main stress hormones, and glucocorticoids (GC), are implicated in susceptibility to brain pathologies such as depression and Alzheimer's disease (AD), as they promote neural plasticity damage and glial reactivity, which can lead to dendritic/synaptic loss, reduced neurogenesis, mood deficits, and impaired cognition. Moreover, depression is implicated in the development of AD with chronic stress being a potential link between both disorders via common neurobiological underpinnings. Hereby, we summarize and discuss the clinical and preclinical evidence related to the detrimental effect of chronic stress as a precipitator of AD through the activation of pathological mechanisms leading to the accumulation of amyloid β (Aβ) and Tau protein. Given that the modern lifestyle increasingly exposes individuals to high stress loads, it is clear that understanding the mechanistic link(s) between chronic stress, depression, and AD pathogenesis may facilitate the treatment of AD and other stress-related disorders.
Collapse
Affiliation(s)
- Chrysoula Dioli
- Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Carlos Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
45
|
Dubey H, Sharma RK, Krishnan S, Knickmeyer R. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Front Neurosci 2022; 16:1021721. [PMID: 36590303 PMCID: PMC9800937 DOI: 10.3389/fnins.2022.1021721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Pregnant women constitute one of the most vulnerable populations to be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019. SARS-CoV-2 infection during pregnancy could negatively impact fetal brain development via multiple mechanisms. Accumulating evidence indicates that mother to fetus transmission of SARS-CoV-2 does occur, albeit rarely. When it does occur, there is a potential for neuroinvasion via immune cells, retrograde axonal transport, and olfactory bulb and lymphatic pathways. In the absence of maternal to fetal transmission, there is still the potential for negative neurodevelopmental outcomes as a consequence of disrupted placental development and function leading to preeclampsia, preterm birth, and intrauterine growth restriction. In addition, maternal immune activation may lead to hypomyelination, microglial activation, white matter damage, and reduced neurogenesis in the developing fetus. Moreover, maternal immune activation can disrupt the maternal or fetal hypothalamic-pituitary-adrenal (HPA) axis leading to altered neurodevelopment. Finally, pro-inflammatory cytokines can potentially alter epigenetic processes within the developing brain. In this review, we address each of these potential mechanisms. We propose that SARS-CoV-2 could lead to neurodevelopmental disorders in a subset of pregnant women and that long-term studies are warranted.
Collapse
Affiliation(s)
- Harikesh Dubey
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ravindra K. Sharma
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suraj Krishnan
- Jacobi Medical Center, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Rebecca Knickmeyer
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States,Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States,*Correspondence: Rebecca Knickmeyer,
| |
Collapse
|
46
|
Hanafi S, Zulkifli I, Ramiah S, Chung E, Kamil R, Awad E. Prenatal auditory stimulation induces physiological stress responses in developing embryos and newly hatched chicks. Poult Sci 2022; 102:102390. [PMID: 36608455 PMCID: PMC9826867 DOI: 10.1016/j.psj.2022.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Prenatal stress may evoke considerable physiological consequences on the developing poultry embryos and neonates. The present study aimed to determine prenatal auditory stimulation effects on serum levels of ceruloplasmin (CPN), alpha-1-acid glycoprotein (AGP), corticosterone (CORT), and heat shock protein 70 (Hsp70) regulations in developing chicken embryos and newly hatched chicks. Hatching eggs were subjected to the following auditory treatments; 1) control (no additional sound treatment other than the background sound of the incubator's compressors at 40 dB), 2) noise exposure (eggs were exposed to pre-recorded traffic noise at 90 dB) (NOISE), and 3) music exposure (eggs were exposed to Mozart's Sonata for Two Pianos in D Major, K 488 at 90 dB) (MUSIC). The NOISE and MUSIC treatments were for 20 min/h for 24 h (a total of 8 h/d), starting from embryonic days (ED) 12 to hatching. The MUSIC (1.37 ± 0.1 ng/mL) and NOISE (1.49 ± 0.2 ng/mL) treatments significantly elevated CPN at ED 15 compared to the Control (0.82 ± 0.04 ng/mL) group and post-hatch day 1 (Control, 1.86 ± 0.2 ng/mL; MUSIC, 2.84 ± 0.4 ng/mL; NOISE, 3.04 ± 0.3 ng/mL), AGP at ED 15 (Control, 39.1 ± 7.1 mg/mL; MUSIC, 85.5 ± 12.9 mg/mL; NOISE, 85.4 ± 15.1 mg/mL) and post-hatch day 1 (Control, 20.4 ± 2.2 mg/mL; MUSIC, 30.5 ± 4.7 mg/mL; NOISE, 30.3 ± 1.4 mg/mL). CORT significantly increased at ED 15 in both MUSIC (9.024 ± 1.4 ng/mL) and NOISE (12.15 ± 1.6 ng/mL) compared to the Control (4.39 ± 0.7 ng/mL) group. On the other hand, MUSIC exposed embryos had significantly higher Hsp70 expression than their Control and NOISE counterparts at ED 18 (Control, 12.9 ± 1.2 ng/mL; MUSIC, 129.6 ± 26.4 ng/mL; NOISE, 13.3 ± 2.3 ng/mL) and post-hatch day 1 (Control, 15.2 ± 1.7 ng/mL; MUSIC, 195.5 ± 68.5 ng/mL; NOISE, 13.2 ± 2.7 ng/mL). In conclusion, developing chicken embryos respond to auditory stimulation by altering CPN, AGP, CORT, and Hsp70. The alterations of these analytes could be important in developing embryos and newly hatched chicks to cope with stress attributed to auditory stimulation.
Collapse
Affiliation(s)
- S.A. Hanafi
- School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Terengganu, Malaysia,Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - I. Zulkifli
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Animal Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Corresponding author:
| | - S.K. Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - E.L.T. Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Animal Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - R. Kamil
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Laboratory of Computational Statistics and Operations Research, Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - E.A. Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Poultry Production, University of Khartoum, Khartoum North 13314, Sudan
| |
Collapse
|
47
|
Salimi M, Eskandari F, Khodagholi F, Abdollahifar MA, Hedayati M, Zardooz H, Keyhanmanesh R. Perinatal stress exposure induced oxidative stress, metabolism disorder, and reduced GLUT-2 in adult offspring of rats. Hormones (Athens) 2022; 21:625-640. [PMID: 35843978 DOI: 10.1007/s42000-022-00383-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Growing evidence has demonstrated that adversity in early life, especially in the prenatal and postnatal period, may change the programming of numerous body systems and cause the incidence of various disorders in later life. Accordingly, this experimental animal study aimed to investigate the effect of stress exposure during perinatal (prenatal and/or postnatal) on the induction of oxidative stress in the pancreas and its effect on glucose metabolism in adult rat offspring. METHODS In this experimental study based on maternal exposure to variable stress throughout the perinatal period, the pups were divided into eight groups, as follows: control group (C); prepregnancy, pregnancy, lactation stress group (PPPLS); prepregnancy stress group (PPS); pregnancy stress group (PS); lactation stress group (LS); prepregnancy, pregnancy stress group (PPPS); pregnancy, lactation stress group (PLS); and prepregnancy, lactation stress group (PPLS). Following an overnight fast on postnatal day (PND) 64, plasma glucose, insulin, leptin levels, and lipid profiles were evaluated in the offspring groups. GLUT-2 protein levels, lipid peroxidation, antioxidant status, and number of beta-cells in the pancreatic islets of Langerhans as well as the weights of intra-abdominal fat and adrenal glands were assessed. Levels of plasma corticosterone were determined in the different groups of mothers and offspring. RESULTS The levels of plasma corticosterone, insulin, and HOMA-B index increased, whereas glucose level and QUICKI index were reduced in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Plasma triglyceride, LDL, and cholesterol level rose significantly, but HDL level decreased in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Perinatal stress raised MDA concentrations and reduced the activities of antioxidant enzymes in plasma and pancreas compared to C group (p < 0.001 to p < 0.05). GLUT-2 protein levels and number of beta-cells in the stress groups declined compared to C group (p < 0.001 to p < 0.05). Intra-abdominal fat weight decreased in the PPS, PS, and LS groups compared to C group (p < 0.001 to p < 0.01), but adrenal gland weight remained unchanged. CONCLUSION Our results showed that long-term exposure to elevated levels of corticosterone during critical development induces metabolic syndrome in adult male rats.
Collapse
Affiliation(s)
- Mina Salimi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, PO Box: 5166614756, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box: 19615-1178, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box: 19615-1178, Tehran, Iran.
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Maternal stress induced endoplasmic reticulum stress and impaired pancreatic islets’ insulin secretion via glucocorticoid receptor upregulation in adult male rat offspring. Sci Rep 2022; 12:12552. [PMID: 35869151 PMCID: PMC9307850 DOI: 10.1038/s41598-022-16621-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Exposure to perinatal (prenatal and/or postnatal) stress is considered as a risk factor for metabolic disorders in later life. Accordingly, this study aimed to investigate the perinatal stress effects on the pancreatic endoplasmic reticulum (ER) stress induction, insulin secretion impairment and WFS1 (wolframin ER transmembrane Glycoprotein, which is involved in ER homeostasis and insulin secretion) expression changes, in rat offspring. According to the dams’ period of exposure to variable stress, their male offspring were divided into, control (CTRL); pre-pregnancy, pregnancy, lactation stress (PPPLS); pre-pregnancy stress (PPS); pregnancy stress (PS); lactation stress (LS); pre-pregnancy, pregnancy stress (PPPS); pregnancy, lactation stress (PLS); pre-pregnancy, lactation stress (PPLS) groups. Offspring pancreases were removed for ER extraction and the assessment of ER stress biomarkers, WFS1 gene DNA methylation, and isolated islets’ insulin secretion. Glucose tolerance was also tested. In the stressed groups, maternal stress significantly increased plasma corticosterone levels. In PPS, PS, and PPPS groups, maternal stress increased Bip (Hsp70; heat shock protein family A member 4), Chop (Ddit3; DNA- damage inducible transcript3), and WFS1 protein levels in pancreatic extracted ER. Moreover, the islets’ insulin secretion and content along with glucose tolerance were impaired in these groups. In PPS, PS, LS and PPPS groups, the pancreatic glucocorticoid receptor (GR) expression increased. Maternal stress did not affect pancreatic WFS1 DNA methylation. Thus, maternal stress, during prenatal period, impaired the islets’ insulin secretion and glucose homeostasis in adult male offspring, possibly through the induction of ER stress and GR expression in the pancreas, in this regard the role of WFS1 protein alteration in pancreatic ER should also be considered.
Collapse
|
49
|
Yang J, Xu A, Zhang Y, Deng J, Lin X, Xie L, Deng X, Liu H, Chen P, Huang Y. Promoter methylation changes in the placenta involved in the relationship between prenatal depression and small for gestational age. BMC Pregnancy Childbirth 2022; 22:741. [PMID: 36184597 PMCID: PMC9528156 DOI: 10.1186/s12884-022-05066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recent studies suggest that the incidence of small for gestational age (SGA) birth related to maternal depression, but the mechanism is unclear. The aim of this study was to explore the changes of promoter methylation in the placenta which may be involved in the relationship between prenatal depression and SGA. METHODS Three hundred forty-five pregnant women were enrolled in this prospective cohort study. Perinatal emotion and sleep quality in the second and third trimesters were assessed using self-rating depression scale, self-rating anxiety scale, and Pittsburgh sleep quality index. According to the exposure (depressed emotion of mother) and outcome (SGA), the placentas were divided into four groups. Methylation of the promoter regions of the placental CRH, HSD11β2, SLA16A10, DIO3, and MTNR1B genes was determined using next generation sequencing based on bisulfite sequencing PCR. RESULTS There were 97 (28.1%) and 95 (27.5%) pregnant women who had depression in the second trimester and third trimester, respectively. Thirty-five pregnant women had an SGA birth. The incidence of SGA births in this prospective cohort was 10.1%. The risk factors of SGA birth were low BMI of pregnancy women (RR = 0.71, 95%CI = 0.54 ~ 0.92), hypertensive disorder complicating pregnancy (HDCP, RR = 4.7, 95%CI = 1.18 ~ 18.72), and maternal depression in the second trimester (RR = 3.71, 95%CI = 1.31 ~ 12.16). We found that the CRH and HSD11β2 methylation levels were higher in the depression group than those in the non-depression group. Methylation levels of DIO3 were higher in SGA group than that in the non-SGA group. Higher methylation levels of CRH correlated with higher methylation levels of DIO3 in the placenta. CONCLUSIONS Maternal depression in the second trimester may lead to the changes of methylation levels in the promoter region of CRH and HSD11β2 gene, while the changes of methylation of DIO3 in subsequent could related to SGA. This study suggests that maternal depressed emotion during pregnancy may result in SGA due to the epigenetic changes of placenta.
Collapse
Affiliation(s)
- Jianhui Yang
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
- Huizhou Central People's Hospital, North Erling Road, Huizhou, 516003, Guangdong, China
| | - Aitong Xu
- Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China
| | - YuMin Zhang
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Jiahui Deng
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Xuemei Lin
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Lili Xie
- Department of Obstetrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Xiaochun Deng
- Department of Obstetrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Honglin Liu
- Department of Obstetrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Peishan Chen
- Department of Obstetrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Yuejun Huang
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| |
Collapse
|
50
|
Aoki M, Urakami T, Nagano N, Aoki R, Morioka I. Association of Plasma Cortisol Levels with Gestational Age and Anthropometric Values at Birth in Preterm Infants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11448. [PMID: 36141720 PMCID: PMC9517663 DOI: 10.3390/ijerph191811448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
There are no study reports to clarify the association between gestational age (GA) or anthropometric values at birth, and plasma cortisol levels in the blood of preterm infants at birth and at one month of age. This hospital-based retrospective cohort study included infants born at <37 weeks' gestation between 2019 and 2021. First, the association between plasma cortisol level and GA or anthropometric values at birth (birth weight standard deviation score [SDS], birth length SDS, and birth head circumference SDS) was identified by regression and multiple regression analyses. Second, plasma cortisol levels in the umbilical cord at birth and at one month of age were compared between small-for-gestational age (SGA) and non-SGA infants. Sixty-one preterm infants were enrolled (SGA: 24 and non-SGA: 37). Plasma cortisol levels at birth were significantly associated with GA. Plasma cortisol levels at one month of age were associated with GA and birth head circumference SDS. Plasma cortisol levels at birth were significantly higher in SGA than non-SGA (p = 0.010). GA was an independent determinant of plasma cortisol levels at birth. SGA infants had a high plasma cortisol level at birth; resulting in speculation that a high plasma cortisol level at birth may predict abnormal neurological outcomes.
Collapse
|