1
|
Peng X, Khan Z, Liu XM, Deng SL, Fang YG, Zhang M, Su XH, Xing LX, Yan XR. Embryonic Development of Parthenogenetic and Sexual Eggs in Lower Termites. INSECTS 2023; 14:640. [PMID: 37504646 PMCID: PMC10380263 DOI: 10.3390/insects14070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Worldwide, termites are one of few social insects. In this research, the stages of embryonic development in the parthenogenetic and sexual eggs of Reticulitermes aculabialis and R. flaviceps were observed and described. In R. flaviceps, the egg development of the FF and FM groups happened during the early phases of development, whereas in R. aculabialis, this appeared mainly during the late phase of development. The variance in the number of micropyles between the R. flaviceps FF colony type and the R. aculabialis FF colony type was statistically significant. Five stages of egg development were found in both types of R. aculabialis but only the sexual eggs of R. flaviceps. In R. flaviceps, 86% of the parthenogenetic eggs stopped growing during the blastoderm development, with the yolk cell assembling frequently in the center of the egg. According to the results of the single-cell transcriptome sequencing, we investigated the egg-to-larval expression level of genes (pka, map2k1, mapk1/3, hgk, mkp, and pax6) and indicated that the levels of essential gene expression in RaFF were considerably higher than in RfFF (p < 0.05). We also discovered that the oocyte cleavage rate in the FF colony type was considerably lower in R. flaviceps compared to R. aculabialis, which gave rise to a smaller number of mature oocytes in R. flaviceps. During ovulation in both species, oocytes underwent activation and one or two cleavage events, but the development of unfertilized eggs ceased in R. flaviceps. It was shown that termite oocyte and embryonic development were heavily influenced by genes with significant expressions. Results from the databases KEGG, COG, and GO unigenes revealed the control of numerous biological processes. This study is the first to complete a database of parthenogenetic and sexual eggs of R. flaviceps and R. aculabialis.
Collapse
Affiliation(s)
- Xin Peng
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
| | - Zahid Khan
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
- Zoology Department, University of Swabi, Swabi 23561, Khyber Pakhtunkhwa, Pakistan
| | - Xiao-Min Liu
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
| | - Shi-Lin Deng
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
| | - Yong-Gang Fang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
| | - Min Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
| | - Xiao-Hong Su
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Xi’an Brand of Chinese Academy of Sciences, Xi’an 710043, China
| | - Lian-Xi Xing
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Xi’an Brand of Chinese Academy of Sciences, Xi’an 710043, China
| | - Xing-Rong Yan
- College of Life Sciences, Northwest University, Xi’an 710069, China; (X.P.); (Z.K.); (X.-M.L.); (S.-L.D.); (Y.-G.F.); (M.Z.); (X.-H.S.)
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Xi’an Brand of Chinese Academy of Sciences, Xi’an 710043, China
| |
Collapse
|
2
|
Titus-McQuillan JE, Nanni AV, McIntyre LM, Rogers RL. Estimating transcriptome complexities across eukaryotes. BMC Genomics 2023; 24:254. [PMID: 37170194 PMCID: PMC10173493 DOI: 10.1186/s12864-023-09326-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary analyses in model and emerging non-model systems. Understanding complexity and the functional components of the genome is an untapped wealth of knowledge ripe for exploration. With the "remarkable lack of correspondence" between genome size and complexity, there needs to be a way to quantify complexity across organisms. In this study, we use a set of complexity metrics that allow for evaluating changes in complexity using TranD. RESULTS We ascertain if complexity is increasing or decreasing across transcriptomes and at what structural level, as complexity varies. In this study, we define three metrics - TpG, EpT, and EpG- to quantify the transcriptome's complexity that encapsulates the dynamics of alternative splicing. Here we compare complexity metrics across 1) whole genome annotations, 2) a filtered subset of orthologs, and 3) novel genes to elucidate the impacts of orthologs and novel genes in transcript model analysis. Effective Exon Number (EEN) issued to compare the distribution of exon sizes within transcripts against random expectations of uniform exon placement. EEN accounts for differences in exon size, which is important because novel gene differences in complexity for orthologs and whole-transcriptome analyses are biased towards low-complexity genes with few exons and few alternative transcripts. CONCLUSIONS With our metric analyses, we are able to quantify changes in complexity across diverse lineages with greater precision and accuracy than previous cross-species comparisons under ortholog conditioning. These analyses represent a step toward whole-transcriptome analysis in the emerging field of non-model evolutionary genomics, with key insights for evolutionary inference of complexity changes on deep timescales across the tree of life. We suggest a means to quantify biases generated in ortholog calling and correct complexity analysis for lineage-specific effects. With these metrics, we directly assay the quantitative properties of newly formed lineage-specific genes as they lower complexity.
Collapse
Affiliation(s)
- James E Titus-McQuillan
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Adalena V Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Rebekah L Rogers
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
3
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
4
|
Wu D, Liu Y, Chen W, Shao J, Zhuoma P, Zhao D, Yu Y, Liu T, Yu R, Gan Y, Yuzheng B, Huang Y, Zhang H, Bi X, Tao C, Lai S, Luo Q, Zhang D, Wang H, Zhaxi P, Zhang J, Qiao J, Zeng C. How placenta promotes the successful reproduction in high-altitude populations: a transcriptome comparison between adaptation and acclimatization. Mol Biol Evol 2022; 39:6596365. [PMID: 35642306 PMCID: PMC9206416 DOI: 10.1093/molbev/msac120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.
Collapse
Affiliation(s)
- Deng Wu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Yunao Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jianming Shao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Pubu Zhuoma
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dexiong Zhao
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianzi Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongna Gan
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Baima Yuzheng
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Yongshu Huang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Haikun Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoman Bi
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Tao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Shujuan Lai
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxia Luo
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dake Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pingcuo Zhaxi
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jianqing Zhang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Changqing Zeng
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Kakuk B, Tombácz D, Balázs Z, Moldován N, Csabai Z, Torma G, Megyeri K, Snyder M, Boldogkői Z. Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome. Sci Rep 2021; 11:14487. [PMID: 34262076 PMCID: PMC8280142 DOI: 10.1038/s41598-021-93593-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Long-read sequencing (LRS), a powerful novel approach, is able to read full-length transcripts and confers a major advantage over the earlier gold standard short-read sequencing in the efficiency of identifying for example polycistronic transcripts and transcript isoforms, including transcript length- and splice variants. In this work, we profile the human cytomegalovirus transcriptome using two third-generation LRS platforms: the Sequel from Pacific BioSciences, and MinION from Oxford Nanopore Technologies. We carried out both cDNA and direct RNA sequencing, and applied the LoRTIA software, developed in our laboratory, for the transcript annotations. This study identified a large number of novel transcript variants, including splice isoforms and transcript start and end site isoforms, as well as putative mRNAs with truncated in-frame ORFs (located within the larger ORFs of the canonical mRNAs), which potentially encode N-terminally truncated polypeptides. Our work also disclosed a highly complex meshwork of transcriptional read-throughs and overlaps.
Collapse
Affiliation(s)
- Balázs Kakuk
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
- MTA-SZTE Momentum GeMiNI Research Group, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr, Stanford, CA, USA
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr, Stanford, CA, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary.
| |
Collapse
|
6
|
Differences between common endothelial cell models (primary human aortic endothelial cells and EA.hy926 cells) revealed through transcriptomics, bioinformatics, and functional analysis. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
7
|
Ji X, Li P, Fuscoe JC, Chen G, Xiao W, Shi L, Ning B, Liu Z, Hong H, Wu J, Liu J, Guo L, Kreil DP, Łabaj PP, Zhong L, Bao W, Huang Y, He J, Zhao Y, Tong W, Shi T. A comprehensive rat transcriptome built from large scale RNA-seq-based annotation. Nucleic Acids Res 2020; 48:8320-8331. [PMID: 32749457 PMCID: PMC7470976 DOI: 10.1093/nar/gkaa638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
The rat is an important model organism in biomedical research for studying human disease mechanisms and treatments, but its annotated transcriptome is far from complete. We constructed a Rat Transcriptome Re-annotation named RTR using RNA-seq data from 320 samples in 11 different organs generated by the SEQC consortium. Totally, there are 52 807 genes and 114 152 transcripts in RTR. Transcribed regions and exons in RTR account for ∼42% and ∼6.5% of the genome, respectively. Of all 73 074 newly annotated transcripts in RTR, 34 213 were annotated as high confident coding transcripts and 24 728 as high confident long noncoding transcripts. Different tissues rather than different stages have a significant influence on the expression patterns of transcripts. We also found that 11 715 genes and 15 852 transcripts were expressed in all 11 tissues and that 849 house-keeping genes expressed different isoforms among tissues. This comprehensive transcriptome is freely available at http://www.unimd.org/rtr/. Our new rat transcriptome provides essential reference for genetics and gene expression studies in rat disease and toxicity models.
Collapse
Affiliation(s)
- Xiangjun Ji
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Li
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | - James C Fuscoe
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenzhong Xiao
- Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | - Leming Shi
- Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Baitang Ning
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Zhichao Liu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jinghua Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lei Guo
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - David P Kreil
- Department of Biotechnology, Boku University Vienna, 1190 Muthgasse 18, Austria
| | - Paweł P Łabaj
- Department of Biotechnology, Boku University Vienna, 1190 Muthgasse 18, Austria.,Małopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
| | - Liping Zhong
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Wenjun Bao
- SAS Institute Inc., Cary, NC, 27513, USA
| | - Yong Huang
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Jian He
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Yongxiang Zhao
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China
| |
Collapse
|
8
|
Oikonomopoulos S, Bayega A, Fahiminiya S, Djambazian H, Berube P, Ragoussis J. Methodologies for Transcript Profiling Using Long-Read Technologies. Front Genet 2020; 11:606. [PMID: 32733532 PMCID: PMC7358353 DOI: 10.3389/fgene.2020.00606] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.
Collapse
Affiliation(s)
- Spyros Oikonomopoulos
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Anthony Bayega
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Somayyeh Fahiminiya
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Haig Djambazian
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Pierre Berube
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Haack F, Trakooljul N, Gley K, Murani E, Hadlich F, Wimmers K, Ponsuksili S. Deep sequencing of small non-coding RNA highlights brain-specific expression patterns and RNA cleavage. RNA Biol 2019; 16:1764-1774. [PMID: 31432767 DOI: 10.1080/15476286.2019.1657743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the advance of high-throughput sequencing technology numerous new regulatory small RNAs have been identified, that broaden the variety of processing mechanisms and functions of non-coding RNA. Here we explore small non-coding RNA (sncRNA) expression in central parts of the physiological stress and anxiety response system. Therefore, we characterize the sncRNA profile of tissue samples from Amygdala, Hippocampus, Hypothalamus and Adrenal Gland, obtained from 20 pigs. Our analysis reveals that all tissues but Amygdala and Hippocampus possess distinct, tissue-specific expression pattern of miRNA that are associated with Hypoxia, stress responses as well as memory and fear conditioning. In particular, we observe marked differences in the expression profile of limbic tissues compared to those associated to the HPA/stress axis, with a surprisingly high aggregation of 3´-tRNA halves in Amygdala and Hippocampus. Since regulation of sncRNA and RNA cleavage plays a pivotal role in the central nervous system, our work provides seminal insights in the role/involvement of sncRNA in the transcriptional and post-transcriptional regulation of negative emotion, stress and coping behaviour in pigs, and mammals in general.
Collapse
Affiliation(s)
- Fiete Haack
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Kevin Gley
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
10
|
Tanti GK, Srivastava R, Kalluri SR, Nowak C, Hemmer B. Isolation, Culture and Functional Characterization of Glia and Endothelial Cells From Adult Pig Brain. Front Cell Neurosci 2019; 13:333. [PMID: 31474831 PMCID: PMC6705213 DOI: 10.3389/fncel.2019.00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 02/02/2023] Open
Abstract
Primary cultures of glial and endothelial cells are important tools for basic and translational neuroscience research. Primary cell cultures are usually generated from rodent brain although considerable differences exist between human and rodent glia and endothelial cells. Because many translational research projects aim to identify mechanisms that eventually lead to diagnostic and therapeutic approaches to target human diseases, glia, and endothelial cultures are needed that better reflect the human central nervous system (CNS). Pig brain is easily accessible and, in many aspects, close to the human brain. We established an easy and cost-effective method to isolate and culture different primary glial and endothelial cells from adult pig brain. Oligodendrocyte, microglia, astrocyte, and endothelial primary cell cultures were generated from the same brain tissue and grown for up to 8 weeks. Primary cells showed lineage-specific morphology and expressed specific markers with a purity ranging from 60 to 95%. Cultured oligodendrocytes myelinated neurons and microglia secreted tumor necrosis factor alpha when induced with lipopolysaccharide. Endothelial cells showed typical tube formation when grown on Matrigel. Astrocytes enhanced survival of co-cultured neurons and were killed by Aquaporin-4 antibody positive sera from patients with Neuromyelitis optica. In summary, we established a new method for primary oligodendrocyte, microglia, endothelial and astrocyte cell cultures from pig brain that provide a tool for translational research on human CNS diseases.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rajneesh Srivastava
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carina Nowak
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
11
|
MiR-34 and MiR-200: Regulator of Cell Fate Plasticity and Neural Development. Neuromolecular Med 2019; 21:97-109. [DOI: 10.1007/s12017-019-08535-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023]
|
12
|
Bayega A, Wang YC, Oikonomopoulos S, Djambazian H, Fahiminiya S, Ragoussis J. Transcript Profiling Using Long-Read Sequencing Technologies. Methods Mol Biol 2018; 1783:121-147. [PMID: 29767360 DOI: 10.1007/978-1-4939-7834-2_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA sequencing using next-generation sequencing (NGS, RNA-Seq) technologies is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise short-read RNA-Seq (dominated by Illumina) and long-read RNA-Seq technologies provided by Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT). Although short-read sequencing technologies are the most widely used, long-read technologies are increasingly becoming the standard approach for de novo transcriptome assembly and isoform expression quantification due to the complex nature of the transcriptome which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes. In this chapter, we describe experimental procedures for library preparation, sequencing, and associated data analysis approaches for PacBio and ONT with a major focus on full length cDNA synthesis, de novo transcriptome assembly, and isoform quantification.
Collapse
Affiliation(s)
- Anthony Bayega
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Yu Chang Wang
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Spyros Oikonomopoulos
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Haig Djambazian
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Somayyeh Fahiminiya
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada.
- Department of Bioengineering, McGill University, Montréal, QC, Canada.
- Cancer and Mutagen Unit, King Fahd Center for Medical Research, Department of Biochemistry, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Transcriptional Complexity and Distinct Expression Patterns of auts2 Paralogs in Danio rerio. G3-GENES GENOMES GENETICS 2017. [PMID: 28626003 PMCID: PMC5555464 DOI: 10.1534/g3.117.042622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several genes that have been implicated in autism spectrum disorders (ASDs) have multiple transcripts. Therefore, comprehensive transcript annotation is critical for determining the respective gene function. The autism susceptibility candidate 2 (AUTS2) gene is associated with various neurological disorders, including autism and brain malformation. AUTS2 is important for activation of transcription of neural specific genes, neuronal migration, and neurite outgrowth. Here, we present evidence for significant transcriptional complexity in the auts2 gene locus in the zebrafish genome, as well as in genomic loci of auts2 paralogous genes fbrsl1 and fbrs. Several genes that have been implicated in ASDs are large and have multiple transcripts. Neurons are especially enriched with longer transcripts compared to nonneural cell types. The human autism susceptibility candidate 2 (AUTS2) gene is ∼1.2 Mb long and is implicated in a number of neurological disorders including autism, intellectual disability, addiction, and developmental delay. Recent studies show AUTS2 to be important for activation of transcription of neural specific genes, neuronal migration, and neurite outgrowth. However, much remains to be understood regarding the transcriptional complexity and the functional roles of AUTS2 in neurodevelopment. Zebrafish provide an excellent model system for studying both these questions. We undertook genomic identification and characterization of auts2 and its paralogous genes in zebrafish. There are four auts2 family genes in zebrafish: auts2a, auts2b, fbrsl1, and fbrs. The absence of complete annotation of their structures hampers functional studies. We present evidence for transcriptional complexity of these four genes mediated by alternative splicing and alternative promoter usage. Furthermore, the expression of the various paralogs is tightly regulated both spatially and developmentally. Our findings suggest that auts2 paralogs serve distinct functions in the development and functioning of target tissues.
Collapse
|
14
|
Lussier AA, Weinberg J, Kobor MS. Epigenetics studies of fetal alcohol spectrum disorder: where are we now? Epigenomics 2017; 9:291-311. [PMID: 28234026 PMCID: PMC5549650 DOI: 10.2217/epi-2016-0163] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Human Early Learning Partnership, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Trivellin G, Bjelobaba I, Daly AF, Larco DO, Palmeira L, Faucz FR, Thiry A, Leal LF, Rostomyan L, Quezado M, Schernthaner-Reiter MH, Janjic MM, Villa C, Wu TJ, Stojilkovic SS, Beckers A, Feldman B, Stratakis CA. Characterization of GPR101 transcript structure and expression patterns. J Mol Endocrinol 2016; 57:97-111. [PMID: 27282544 PMCID: PMC4959428 DOI: 10.1530/jme-16-0045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022]
Abstract
We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. In this work, GPR101 transcripts were characterized in human tissues by 5'-Rapid Amplification of cDNA Ends (RACE) and RNAseq, while the putative promoter was bioinformatically predicted. We investigated GPR101 mRNA and protein expression by RT-quantitative PCR (qPCR), whole-mount in situ hybridization, and immunostaining, in human, rhesus monkey, rat and zebrafish. We identified four GPR101 isoforms characterized by different 5'-untranslated regions (UTRs) and a common 6.1kb long 3'UTR. GPR101 expression was very low or absent in almost all adult human tissues examined, except for specific brain regions. Strong GPR101 staining was observed in human fetal pituitary and during adolescence, whereas very weak/absent expression was detected during childhood and adult life. In contrast to humans, adult monkey and rat pituitaries expressed GPR101, but in different cell types. Gpr101 is expressed in the brain and pituitary during rat and zebrafish development; in rat pituitary, Gpr101 is expressed only after birth and shows sexual dimorphism. This study shows that different GPR101 transcripts exist and that the brain is the major site of GPR101 expression across different species, although divergent species- and temporal-specific expression patterns are evident. These findings suggest an important role for GPR101 in brain and pituitary development and likely reflect the very different growth, development and maturation patterns among species.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ivana Bjelobaba
- Section on Cellular SignalingEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adrian F Daly
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Darwin O Larco
- Department of Obstetrics and GynecologyUniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leonor Palmeira
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Fabio R Faucz
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Albert Thiry
- Department of PathologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Letícia F Leal
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA Department of PediatricsUniversity of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Liliya Rostomyan
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Martha Quezado
- Laboratory of PathologyNational Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marie Helene Schernthaner-Reiter
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marija M Janjic
- Section on Cellular SignalingEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Chiara Villa
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium Hopital FochService d'Anatomie et Cytologie Pathologiques, Suresnes Cedex, France
| | - T John Wu
- Department of Obstetrics and GynecologyUniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stanko S Stojilkovic
- Section on Cellular SignalingEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Albert Beckers
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Benjamin Feldman
- Division of Developmental BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Constantine A Stratakis
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
16
|
Yang Y, Tang Z, Fan X, Xu K, Mu Y, Zhou R, Li K. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle. Sci Rep 2016; 6:29039. [PMID: 27352850 PMCID: PMC4926253 DOI: 10.1038/srep29039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| | - Zhonglin Tang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| | - Xinhao Fan
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Kui Xu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Yulian Mu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| |
Collapse
|
17
|
|
18
|
The Antisense Transcriptome and the Human Brain. J Mol Neurosci 2015; 58:1-15. [PMID: 26697858 DOI: 10.1007/s12031-015-0694-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
The transcriptome of a cell is made up of a varied array of RNA species, including protein-coding RNAs, long non-coding RNAs, short non-coding RNAs, and circular RNAs. The cellular transcriptome is dynamic and can change depending on environmental factors, disease state and cellular context. The human brain has perhaps the most diverse transcriptome profile that is enriched for many species of RNA, including antisense transcripts. Antisense transcripts are produced when both the plus and minus strand of the DNA helix are transcribed at a particular locus. This results in an RNA transcript that has a partial or complete overlap with an intronic or exonic region of the sense transcript. While antisense transcription is known to occur at some level in most organisms, this review focuses specifically on antisense transcription in the brain and how regulation of genes by antisense transcripts can contribute to functional aspects of the healthy and diseased brain. First, we discuss different techniques that can be used in the identification and quantification of antisense transcripts. This is followed by examples of antisense transcription and modes of regulatory function that have been identified in the brain.
Collapse
|
19
|
Robert C, Kapetanovic R, Beraldi D, Watson M, Archibald AL, Hume DA. Identification and annotation of conserved promoters and macrophage-expressed genes in the pig genome. BMC Genomics 2015; 16:970. [PMID: 26582032 PMCID: PMC4652390 DOI: 10.1186/s12864-015-2111-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/19/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The FANTOM5 consortium used Cap Analysis of Gene Expression (CAGE) tag sequencing to produce a comprehensive atlas of promoters and enhancers within the human and mouse genomes. We reasoned that the mapping of these regulatory elements to the pig genome could provide useful annotation and evidence to support assignment of orthology. RESULTS For human transcription start sites (TSS) associated with annotated human-mouse orthologs, 17% mapped to the pig genome but not to the mouse, 10% mapped only to the mouse, and 55% mapped to both pig and mouse. Around 17% did not map to either species. The mapping percentages were lower where there was not clear orthology relationship, but in every case, mapping to pig was greater than to mouse, and the degree of homology was also greater. Combined mapping of mouse and human CAGE-defined promoters identified at least one putative conserved TSS for >16,000 protein-coding genes. About 54% of the predicted locations of regulatory elements in the pig genome were supported by CAGE and/or RNA-Seq analysis from pig macrophages. CONCLUSIONS Comparative mapping of promoters and enhancers from humans and mice can provide useful preliminary annotation of other animal genomes. The data also confirm extensive gain and loss of regulatory elements between species, and the likelihood that pigs provide a better model than mice for human gene regulation and function.
Collapse
Affiliation(s)
- Christelle Robert
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Dario Beraldi
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
- Edinburgh Genomics, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
| |
Collapse
|
20
|
Khamis AM, Hamilton AR, Medvedeva YA, Alam T, Alam I, Essack M, Umylny B, Jankovic BR, Naeger NL, Suzuki M, Harbers M, Robinson GE, Bajic VB. Insights into the Transcriptional Architecture of Behavioral Plasticity in the Honey Bee Apis mellifera. Sci Rep 2015; 5:11136. [PMID: 26073445 PMCID: PMC4466890 DOI: 10.1038/srep11136] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/01/2015] [Indexed: 12/30/2022] Open
Abstract
Honey bee colonies exhibit an age-related division of labor, with worker bees performing discrete sets of behaviors throughout their lifespan. These behavioral states are associated with distinct brain transcriptomic states, yet little is known about the regulatory mechanisms governing them. We used CAGEscan (a variant of the Cap Analysis of Gene Expression technique) for the first time to characterize the promoter regions of differentially expressed brain genes during two behavioral states (brood care (aka “nursing”) and foraging) and identified transcription factors (TFs) that may govern their expression. More than half of the differentially expressed TFs were associated with motifs enriched in the promoter regions of differentially expressed genes (DEGs), suggesting they are regulators of behavioral state. Strikingly, five TFs (nf-kb, egr, pax6, hairy, and clockwork orange) were predicted to co-regulate nearly half of the genes that were upregulated in foragers. Finally, differences in alternative TSS usage between nurses and foragers were detected upstream of 646 genes, whose functional analysis revealed enrichment for Gene Ontology terms associated with neural function and plasticity. This demonstrates for the first time that alternative TSSs are associated with stable differences in behavior, suggesting they may play a role in organizing behavioral state.
Collapse
Affiliation(s)
- Abdullah M Khamis
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adam R Hamilton
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yulia A Medvedeva
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tanvir Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Boris Umylny
- Lumenogix Inc., 2935 Rodeo Park Drive East, Santa Fe NM, 87505, USA
| | - Boris R Jankovic
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nicholas L Naeger
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Makoto Suzuki
- DNAFORM Inc., Leading Venture Plaza-2, 75-1, Ono-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0046, Japan
| | - Matthias Harbers
- 1] DNAFORM Inc., Leading Venture Plaza-2, 75-1, Ono-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0046, Japan [2] RIKEN Center for Life Science Technologies, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Gene E Robinson
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vladimir B Bajic
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
de Klerk E, 't Hoen PAC. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 2015; 31:128-39. [PMID: 25648499 DOI: 10.1016/j.tig.2015.01.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
The human transcriptome comprises >80,000 protein-coding transcripts and the estimated number of proteins synthesized from these transcripts is in the range of 250,000 to 1 million. These transcripts and proteins are encoded by less than 20,000 genes, suggesting extensive regulation at the transcriptional, post-transcriptional, and translational level. Here we review how RNA sequencing (RNA-seq) technologies have increased our understanding of the mechanisms that give rise to alternative transcripts and their alternative translation. We highlight four different regulatory processes: alternative transcription initiation, alternative splicing, alternative polyadenylation, and alternative translation initiation. We discuss their transcriptome-wide distribution, their impact on protein expression, their biological relevance, and the possible molecular mechanisms leading to their alternative regulation. We conclude with a discussion of the coordination and the interdependence of these four regulatory layers.
Collapse
Affiliation(s)
- Eleonora de Klerk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
22
|
Rajan KS, Ramasamy S. Retrotransposons and piRNA: The missing link in central nervous system. Neurochem Int 2014; 77:94-102. [DOI: 10.1016/j.neuint.2014.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/25/2014] [Accepted: 05/29/2014] [Indexed: 01/17/2023]
|
23
|
Complex expression of the UL136 gene of human cytomegalovirus results in multiple protein isoforms with unique roles in replication. J Virol 2014; 88:14412-25. [PMID: 25297993 DOI: 10.1128/jvi.02711-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a complex DNA virus with a 230-kb genome encoding 170 and up to 750 proteins. The upper limit of this coding capacity suggests the evolution of complex mechanisms to substantially increase the coding potential from the 230-kb genome. Our work examines the complexity of one gene, UL136, encoded within the ULb' region of the genome that is lost during serial passage of HCMV in cultured fibroblasts. UL136 is expressed as five protein isoforms. We mapped these isoforms and demonstrate that they originate from both a complex transcriptional profile and, possibly, the usage of multiple translation initiation sites. Intriguingly, the pUL136 isoforms exhibited distinct subcellular distributions with varying association with the Golgi apparatus. The subcellular localization of membrane-bound isoforms of UL136 differed between when they were expressed exogenously and when they were expressed in the context of viral infection, suggesting that the trafficking of these isoforms is mediated by infection-specific factors. While UL136, like most ULb' genes, was dispensable for replication in fibroblasts, the soluble 23- and 19-kDa isoforms suppressed virus replication. In CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro, disruption of the 23- and 19-kDa isoforms resulted in increased replication and a loss of the latency phenotype, similar to the effects of the UL138 latency determinant encoded within the same genetic locus. Our work suggests a complex interplay between the UL136 isoforms which balances viral replication in multiple cell types and likely contributes to the cell type-dependent phenotypes of the UL133/8 locus and the outcome of HCMV infection. IMPORTANCE HCMV is a significant cause of morbidity in immunocompromised individuals, including transplant patients. The lifelong persistence of the virus results in a high seroprevalence worldwide and may contribute to age-related pathologies, such as atherosclerosis. The mechanisms of viral persistence are poorly understood; however, understanding the molecular basis of persistence is imperative for the development of new treatments. In this work, we characterize a complex HCMV gene, UL136, which is expressed as five protein isoforms. These isoforms arise predominantly from complex transcriptional mechanisms, which contribute to an increased coding capacity of the virus. Further, the UL136 isoforms oppose the activity of one another to balance HCMV replication in multiple cell types. We identify soluble isoforms of UL136 that function to suppress virus replication in fibroblasts and in CD34(+) HPCs for latency.
Collapse
|
24
|
Hood JL, Morabito MV, Martinez CR, Gilbert JA, Ferrick EA, Ayers GD, Chappell JD, Dermody TS, Emeson RB. Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions. Mol Cell Neurosci 2014; 61:97-109. [PMID: 24906008 PMCID: PMC4134954 DOI: 10.1016/j.mcn.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 05/22/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022] Open
Abstract
Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation. In contrast to other tissues, p150 is expressed at extremely low levels in the brain and it is unclear what role, if any, this isoform may play in the innate immune response of the central nervous system (CNS) or whether the extent of editing for RNA substrates critical for CNS function is affected by its induction. To investigate the expression of ADAR1 isoforms in response to viral infection and subsequent alterations in A-to-I editing profiles for endogenous ADAR targets, we used a neurotropic strain of reovirus to infect neonatal mice and quantify A-to-I editing in discrete brain regions using a multiplexed, high-throughput sequencing strategy. While intracranial injection of reovirus resulted in a widespread increase in the expression of ADAR1 (p150) in multiple brain regions and peripheral organs, significant changes in site-specific A-to-I conversion were quite limited, suggesting that steady-state levels of p150 expression are not a primary determinant for modulating the extent of editing for numerous ADAR targets in vivo.
Collapse
Affiliation(s)
- Jennifer L Hood
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Michael V Morabito
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Charles R Martinez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - James A Gilbert
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Elizabeth A Ferrick
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Gregory D Ayers
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James D Chappell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Terence S Dermody
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Ronald B Emeson
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
25
|
Lan D, Xiong X, Wei Y, Xu T, Zhong J, Zhi X, Wang Y, Li J. RNA-Seq analysis of yak ovary: improving yak gene structure information and mining reproduction-related genes. SCIENCE CHINA-LIFE SCIENCES 2014; 57:925-35. [DOI: 10.1007/s11427-014-4678-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/01/2014] [Indexed: 12/28/2022]
|
26
|
Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, Shill H, Adler C, Sabbagh M, Villa S, Tembe W, Craig D, Van Keuren-Jensen K. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLoS One 2014; 9:e94839. [PMID: 24797360 PMCID: PMC4010405 DOI: 10.1371/journal.pone.0094839] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/13/2014] [Indexed: 01/09/2023] Open
Abstract
The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the inaccessibility of the diseased tissue--such as the inability to biopsy or test tissue from the central nervous system directly. RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral biofluids with neurodegenerative disease status of patients with Alzheimer's and Parkinson's diseases, we assessed the miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We profiled the miRNA content from 69 patients with Alzheimer's disease, 67 with Parkinson's disease and 78 neurologically normal controls using next generation small RNA sequencing (NGS). We report the average abundance of each detected miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and serum are reflective of cell-based changes in pathology and can be used to assess disease progression and therapeutic efficacy.
Collapse
Affiliation(s)
- Kasandra Burgos
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Ivana Malenica
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Raghu Metpally
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Amanda Courtright
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Benjamin Rakela
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Thomas Beach
- Neurology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Holly Shill
- Neurology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charles Adler
- Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Marwan Sabbagh
- Neurology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Stephen Villa
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Waibhav Tembe
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - David Craig
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Kendall Van Keuren-Jensen
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
27
|
Liang KC, Suzuki Y, Kumagai Y, Nakai K. Analysis of changes in transcription start site distribution by a classification approach. Gene 2014; 537:29-40. [DOI: 10.1016/j.gene.2013.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
|
28
|
Guennewig B, Cooper AA. The Central Role of Noncoding RNA in the Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:153-94. [DOI: 10.1016/b978-0-12-801105-8.00007-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Xue W, Li JT, Zhu YP, Hou GY, Kong XF, Kuang YY, Sun XW. L_RNA_scaffolder: scaffolding genomes with transcripts. BMC Genomics 2013; 14:604. [PMID: 24010822 PMCID: PMC3846640 DOI: 10.1186/1471-2164-14-604] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
Background Generation of large mate-pair libraries is necessary for de novo genome assembly but the procedure is complex and time-consuming. Furthermore, in some complex genomes, it is hard to increase the N50 length even with large mate-pair libraries, which leads to low transcript coverage. Thus, it is necessary to develop other simple scaffolding approaches, to at least solve the elongation of transcribed fragments. Results We describe L_RNA_scaffolder, a novel genome scaffolding method that uses long transcriptome reads to order, orient and combine genomic fragments into larger sequences. To demonstrate the accuracy of the method, the zebrafish genome was scaffolded. With expanded human transcriptome data, the N50 of human genome was doubled and L_RNA_scaffolder out-performed most scaffolding results by existing scaffolders which employ mate-pair libraries. In these two examples, the transcript coverage was almost complete, especially for long transcripts. We applied L_RNA_scaffolder to the highly polymorphic pearl oyster draft genome and the gene model length significantly increased. Conclusions The simplicity and high-throughput of RNA-seq data makes this approach suitable for genome scaffolding. L_RNA_scaffolder is available at http://www.fishbrowser.org/software/L_RNA_scaffolder.
Collapse
Affiliation(s)
- Wei Xue
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ling MHT, Ban Y, Wen H, Wang SM, Ge SX. Conserved expression of natural antisense transcripts in mammals. BMC Genomics 2013; 14:243. [PMID: 23577827 PMCID: PMC3635984 DOI: 10.1186/1471-2164-14-243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/06/2013] [Indexed: 02/03/2023] Open
Abstract
Background Recent studies had found thousands of natural antisense transcripts originating from the same genomic loci of protein coding genes but from the opposite strand. It is unclear whether the majority of antisense transcripts are functional or merely transcriptional noise. Results Using the Affymetrix Exon array with a modified cDNA synthesis protocol that enables genome-wide detection of antisense transcription, we conducted large-scale expression analysis of antisense transcripts in nine corresponding tissues from human, mouse and rat. We detected thousands of antisense transcripts, some of which show tissue-specific expression that could be subjected to further study for their potential function in the corresponding tissues/organs. The expression patterns of many antisense transcripts are conserved across species, suggesting selective pressure on these transcripts. When compared to protein-coding genes, antisense transcripts show a lesser degree of expression conservation. We also found a positive correlation between the sense and antisense expression across tissues. Conclusion Our results suggest that natural antisense transcripts are subjected to selective pressure but to a lesser degree compared to sense transcripts in mammals.
Collapse
Affiliation(s)
- Maurice H T Ling
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | |
Collapse
|
31
|
Greek R, Menache A. Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci 2013; 10:206-21. [PMID: 23372426 PMCID: PMC3558708 DOI: 10.7150/ijms.5529] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/30/2012] [Indexed: 01/24/2023] Open
Abstract
Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions.
Collapse
Affiliation(s)
- Ray Greek
- Americans For Medical Advancement, 2251 Refugio Rd, Goleta, CA 93117, USA.
| | | |
Collapse
|
32
|
Freeman LA. Cloning full-length transcripts and transcript variants using 5' and 3' RACE. Methods Mol Biol 2013; 1027:3-17. [PMID: 23912980 DOI: 10.1007/978-1-60327-369-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gene transcripts and transcript variants must be cloned to characterize gene function and regulation. However, obtaining full-length cDNAs with accurate sequences from the 5' end through to the 3' end can be challenging. Here we describe a reverse-transcriptase-based method for obtaining full-length cDNAs using the SMARTer ("Switching Mechanism At RNA Termini") RACE technology developed by Clontech. RNA is isolated from the tissue of interest and annealed to a primer (a modified oligo(dT) primer for polyA+ transcripts; random hexamers or a gene-specific primer for polyA- transcripts). A modified MMLV-reverse transcriptase uses the primer to initiate cDNA synthesis from RNA transcript(s) annealed to the primer and continues cDNA synthesis (reverse transcription) towards the 5' end of the transcript(s). Importantly, this reverse transcriptase possesses terminal transferase activity, so when it reaches the 5' end of a transcript it adds a 3-5 residue "tail" to the newly synthesized cDNA strand. Included in the reverse transcriptase reaction mix is an oligonucleotide containing a sequence tag as well as a terminal series of modified bases that anneal to the 3-5 residue tail on the newly synthesized cDNA. The reverse transcriptase proceeds from the end of the transcript onwards into the modified bases and the rest of the sequence-tagged oligo. The newly synthesized cDNA now has a sequence tag attached to it and can be used as a template for PCR, with one primer complementary to the sequence tag and the second primer specific to the gene of interest. The fragment can be cloned and sequenced or just sequenced directly. If high-quality, undegraded RNA is used, obtaining the true 5' end of a transcript is greatly enhanced. In combination with 3' RACE, full-length transcripts are easily cloned. This method provides sequence information on important regulatory regions, such as 5' and 3' UTRs and flanking regions, and is ideal for detecting transcript variants, including those with alternative transcriptional start sites, alternative splicing, and/or alternative polyadenylation.
Collapse
Affiliation(s)
- Lita A Freeman
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Identification and comparative analysis of ncRNAs in human, mouse and zebrafish indicate a conserved role in regulation of genes expressed in brain. PLoS One 2012; 7:e52275. [PMID: 23284966 PMCID: PMC3527520 DOI: 10.1371/journal.pone.0052275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022] Open
Abstract
ncRNAs (non-coding RNAs), in particular long ncRNAs, represent a significant proportion of the vertebrate transcriptome and probably regulate many biological processes. We used publically available ESTs (Expressed Sequence Tags) from human, mouse and zebrafish and a previously published analysis pipeline to annotate and analyze the vertebrate non-protein-coding transcriptome. Comparative analysis confirmed some previously described features of intergenic ncRNAs, such as a positionally biased distribution with respect to regulatory or development related protein-coding genes, and weak but clear sequence conservation across species. Significantly, comparative analysis of developmental and regulatory genes proximate to long ncRNAs indicated that the only conserved relationship of these genes to neighbor long ncRNAs was with respect to genes expressed in human brain, suggesting a conserved, ncRNA cis-regulatory network in vertebrate nervous system development. Most of the relationships between long ncRNAs and proximate coding genes were not conserved, providing evidence for the rapid evolution of species-specific gene associated long ncRNAs. We have reconstructed and annotated over 130,000 long ncRNAs in these three species, providing a significantly expanded number of candidates for functional testing by the research community.
Collapse
|
34
|
Ulbrich SE, Groebner AE, Bauersachs S. Transcriptional profiling to address molecular determinants of endometrial receptivity--lessons from studies in livestock species. Methods 2012. [PMID: 23178633 DOI: 10.1016/j.ymeth.2012.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of a fertilized oocyte into a differentiated multi-cellular organism is a major challenge with regard to the orchestration of the expression of the mammalian genome. Highly complex networks of genes are temporally and spatially regulated during cellular differentiation to generate specific cell types. Embryonic development is critically influenced by external impacts in the female reproductive tract. A most critical phase of pregnancy in mammals is the pre- and peri-implantation period, during which the uterine environment plays a crucial role in supporting the development of the conceptus. The analytical description of the transcriptome, proteome and metabolome of the embryo-maternal interface is a prerequisite for the understanding of the complex regulatory processes taking place during this time. This review lines out potentials and limitations of different approaches to unravel the determinants of endometrial receptivity in cattle, the pig and the horse. Suitable in vivo and in vitro models, which have been used to elucidate factors participating in the embryo-maternal dialog are discussed. Taken together, transcriptome analyses and specified selective candidate gene driven approaches contribute to the understanding of endometrial function. The endometrium as sensor and driver of fertility may indicate the qualitative and quantitative nature of signaling molecules sent by the early embryo and in turn, accordingly impact on embryonic development.
Collapse
Affiliation(s)
- Susanne E Ulbrich
- Physiology Weihenstephan, Technische Universität München, Freising, Germany.
| | | | | |
Collapse
|
35
|
Qu Z, Adelson DL. Evolutionary conservation and functional roles of ncRNA. Front Genet 2012; 3:205. [PMID: 23087702 PMCID: PMC3466565 DOI: 10.3389/fgene.2012.00205] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of transcribed RNA molecules without protein-coding potential. They were regarded as transcriptional noise, or the byproduct of genetic information flow from DNA to protein for a long time. However, in recent years, a number of studies have shown that ncRNAs are pervasively transcribed, and most of them show evidence of evolutionary conservation, although less conserved than protein-coding genes. More importantly, many ncRNAs have been confirmed as playing crucial regulatory roles in diverse biological processes and tumorigenesis. Here we summarize the functional significance of this class of “dark matter” in terms its genomic organization, evolutionary conservation, and broad functional classes.
Collapse
Affiliation(s)
- Zhipeng Qu
- School of Molecular and Biomedical Science, The University of Adelaide Adelaide, SA, Australia
| | | |
Collapse
|
36
|
Feng L, Lintula S, Ho TH, Anastasina M, Paju A, Haglund C, Stenman UH, Hotakainen K, Orpana A, Kainov D, Stenman J. Technique for strand-specific gene-expression analysis and monitoring of primer-independent cDNA synthesis in reverse transcription. Biotechniques 2012; 52:263-70. [PMID: 22482442 DOI: 10.2144/0000113842] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/06/2012] [Indexed: 11/23/2022] Open
Abstract
Primer-independent cDNA synthesis during reverse transcription hinders quantitative analysis of bidirectional mRNA synthesis in eukaryotes as well as in cells infected with RNA viruses. We report a simple RT-PCR-based assay for strand-specific gene-expression analysis. By modifying the cDNA sequence during reverse transcription, the opposite strands of target sequences can be simultaneously detected by postamplification melting curve analysis and primer-initiated transcripts are readily distinguished from nonspecifically primed cDNA. We have utilized this technique to optimize the specificity of reverse transcription on a panel of 15 target genes. Primer-independent reverse transcription occurred for all target sequences when reverse transcription was performed at 42°C and accounted for 11%-57% of the final PCR amplification products. By raising the reaction temperature to 55°C, the specificity of reverse transcription could be increased without significant loss of sensitivity. We have also demonstrated the utility of this technique for analysis of (+) and (-) RNA synthesis of influenza A virus in infected cells. Thus, this technique represents a powerful tool for analysis of bidirectional RNA synthesis.
Collapse
Affiliation(s)
- Lin Feng
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qu Z, Adelson DL. Bovine ncRNAs are abundant, primarily intergenic, conserved and associated with regulatory genes. PLoS One 2012; 7:e42638. [PMID: 22880061 PMCID: PMC3412814 DOI: 10.1371/journal.pone.0042638] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 07/11/2012] [Indexed: 12/15/2022] Open
Abstract
It is apparent that non-coding transcripts are a common feature of higher organisms and encode uncharacterized layers of genetic regulation and information. We used public bovine EST data from many developmental stages and tissues, and developed a pipeline for the genome wide identification and annotation of non-coding RNAs (ncRNAs). We have predicted 23,060 bovine ncRNAs, 99% of which are un-annotated, based on known ncRNA databases. Intergenic transcripts accounted for the majority (57%) of the predicted ncRNAs and the occurrence of ncRNAs and genes were only moderately correlated (r = 0.55, p-value<2.2e-16). Many of these intergenic non-coding RNAs mapped close to the 3′ or 5′ end of thousands of genes and many of these were transcribed from the opposite strand with respect to the closest gene, particularly regulatory-related genes. Conservation analyses showed that these ncRNAs were evolutionarily conserved, and many intergenic ncRNAs proximate to genes contained sequence-specific motifs. Correlation analysis of expression between these intergenic ncRNAs and protein-coding genes using RNA-seq data from a variety of tissues showed significant correlations with many transcripts. These results support the hypothesis that ncRNAs are common, transcribed in a regulated fashion and have regulatory functions.
Collapse
Affiliation(s)
- Zhipeng Qu
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
38
|
Davis MJ, Shin CJ, Jing N, Ragan MA. Rewiring the dynamic interactome. MOLECULAR BIOSYSTEMS 2012; 8:2054-2013. [PMID: 22729145 DOI: 10.1039/c2mb25050k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Transcriptomics continues to provide ever-more evidence that in morphologically complex eukaryotes, each protein-coding genetic locus can give rise to multiple transcripts that differ in length, exon content and/or other sequence features. In humans, more than 60% of loci give rise to multiple transcripts in this way. Motifs that mediate protein-protein interactions can be present or absent in these transcripts. Analysis of protein interaction networks has been a valuable development in systems biology. Interactions are typically recorded for representative proteins or even genes, although exploratory transcriptomics has revealed great spatiotemporal diversity in the output of genes at both the transcript and protein-isoform levels. The increasing availability of high-resolution protein structures has made it possible to identify the domain-domain interactions that underpin many protein interactions. To explore the impact of transcript and isoform diversity we use full-length human cDNAs to interrogate the protein-coding transcriptional output of genes, identifying variation in the inclusion of protein interaction domains. We map these data to a set of high-quality protein interactions, and characterise the variation in network connectivity likely to result. We find strong evidence for altered interaction potential in nearly 20% of genes, suggesting that transcriptional variation can significantly rewire the human interactome.
Collapse
Affiliation(s)
- Melissa J Davis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
39
|
Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 2012; 13:528-41. [PMID: 22814587 DOI: 10.1038/nrn3234] [Citation(s) in RCA: 430] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel classes of small and long non-coding RNAs (ncRNAs) are being characterized at a rapid pace, driven by recent paradigm shifts in our understanding of genomic architecture, regulation and transcriptional output, as well as by innovations in sequencing technologies and computational and systems biology. These ncRNAs can interact with DNA, RNA and protein molecules; engage in diverse structural, functional and regulatory activities; and have roles in nuclear organization and transcriptional, post-transcriptional and epigenetic processes. This expanding inventory of ncRNAs is implicated in mediating a broad spectrum of processes including brain evolution, development, synaptic plasticity and disease pathogenesis.
Collapse
|
40
|
5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 2012; 7:542-61. [PMID: 22362160 DOI: 10.1038/nprot.2012.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cap-analysis gene expression (CAGE) provides accurate high-throughput measurement of RNA expression. CAGE allows mapping of all the initiation sites of both capped coding and noncoding RNAs. In addition, transcriptional start sites within promoters are characterized at single-nucleotide resolution. The latter allows the regulatory inputs driving gene expression to be studied, which in turn enables the construction of transcriptional networks. Here we provide an optimized protocol for the construction of CAGE libraries on the basis of the preparation of 27-nt-long tags corresponding to initial bases at the 5' ends of capped RNAs. We have optimized the methods using simple steps based on filtration, which altogether takes 4 d to complete. The CAGE tags can be readily sequenced with Illumina sequencers, and upon modification they are also amenable to sequencing using other platforms.
Collapse
|
41
|
Plessy C, Pascarella G, Bertin N, Akalin A, Carrieri C, Vassalli A, Lazarevic D, Severin J, Vlachouli C, Simone R, Faulkner GJ, Kawai J, Daub CO, Zucchelli S, Hayashizaki Y, Mombaerts P, Lenhard B, Gustincich S, Carninci P. Promoter architecture of mouse olfactory receptor genes. Genome Res 2011; 22:486-97. [PMID: 22194471 DOI: 10.1101/gr.126201.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice.
Collapse
Affiliation(s)
- Charles Plessy
- RIKEN Yokohama Institute, Omics Science Center, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Esteve-Codina A, Kofler R, Palmieri N, Bussotti G, Notredame C, Pérez-Enciso M. Exploring the gonad transcriptome of two extreme male pigs with RNA-seq. BMC Genomics 2011; 12:552. [PMID: 22067327 PMCID: PMC3221674 DOI: 10.1186/1471-2164-12-552] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/08/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although RNA-seq greatly advances our understanding of complex transcriptome landscapes, such as those found in mammals, complete RNA-seq studies in livestock and in particular in the pig are still lacking. Here, we used high-throughput RNA sequencing to gain insight into the characterization of the poly-A RNA fraction expressed in pig male gonads. An expression analysis comparing different mapping approaches and detection of allele specific expression is also discussed in this study. RESULTS By sequencing testicle mRNA of two phenotypically extreme pigs, one Iberian and one Large White, we identified hundreds of unannotated protein-coding genes (PcGs) in intergenic regions, some of them presenting orthology with closely related species. Interestingly, we also detected 2047 putative long non-coding RNA (lncRNA), including 469 with human homologues. Two methods, DEGseq and Cufflinks, were used for analyzing expression. DEGseq identified 15% less expressed genes than Cufflinks, because DEGseq utilizes only unambiguously mapped reads. Moreover, a large fraction of the transcriptome is made up of transposable elements (14500 elements encountered), as has been reported in previous studies. Gene expression results between microarray and RNA-seq technologies were relatively well correlated (r = 0.71 across individuals). Differentially expressed genes between Large White and Iberian showed a significant overrepresentation of gamete production and lipid metabolism gene ontology categories. Finally, allelic imbalance was detected in ~ 4% of heterozygous sites. CONCLUSIONS RNA-seq is a powerful tool to gain insight into complex transcriptomes. In addition to uncovering many unnanotated genes, our study allowed us to determine that a considerable fraction is made up of long non-coding transcripts and transposable elements. Their biological roles remain to be determined in future studies. In terms of differences in expression between Large White and Iberian pigs, these were largest for genes involved in spermatogenesis and lipid metabolism, which is consistent with phenotypic extreme differences in prolificacy and fat deposition between these two breeds.
Collapse
Affiliation(s)
- Anna Esteve-Codina
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Center for Research in Agricultural Genomics (CRAG), Campus UAB, 08193 Bellaterra, Spain
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Nicola Palmieri
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Giovanni Bussotti
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra (UPF), Carrer del Doctor Aiguader 88, Barcelona, Spain
| | - Cedric Notredame
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra (UPF), Carrer del Doctor Aiguader 88, Barcelona, Spain
| | - Miguel Pérez-Enciso
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Center for Research in Agricultural Genomics (CRAG), Campus UAB, 08193 Bellaterra, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Carrer de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
43
|
Becker J, Hackl M, Rupp O, Jakobi T, Schneider J, Szczepanowski R, Bekel T, Borth N, Goesmann A, Grillari J, Kaltschmidt C, Noll T, Pühler A, Tauch A, Brinkrolf K. Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing. J Biotechnol 2011; 156:227-35. [PMID: 21945585 DOI: 10.1016/j.jbiotec.2011.09.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 11/17/2022]
Abstract
The pyrosequencing technology from 454 Life Sciences and a novel assembly approach for cDNA sequences with the Newbler Assembler were used to achieve a major step forward to unravel the transcriptome of Chinese hamster ovary (CHO) cells. Normalized cDNA libraries originating from several cell lines and diverse culture conditions were sequenced and the resulting 1.84 million reads were assembled into 32,801 contiguous sequences, 29,184 isotigs, and 24,576 isogroups. A taxonomic classification of the isotigs showed that more than 70% of the assembled data is most similar to the transcriptome of Mus musculus, with most of the remaining isotigs being homologous to DNA sequences from Rattus norvegicus. Mapping of the CHO cell line contigs to the mouse transcriptome demonstrated that 9124 mouse transcripts, representing 6701 genes, are covered by more than 95% of their sequence length. Metabolic pathways of the central carbohydrate metabolism and biosynthesis routes of sugars used for protein N-glycosylation were reconstructed from the transcriptome data. All relevant genes representing major steps in the N-glycosylation pathway of CHO cells were detected. The present manuscript represents a data set of assembled and annotated genes for CHO cells that can now be used for a detailed analysis of the molecular functioning of CHO cell lines.
Collapse
Affiliation(s)
- Jennifer Becker
- Centrum für Biotechnologie, Universität Bielefeld, 33594 Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Valen E, Sandelin A. Genomic and chromatin signals underlying transcription start-site selection. Trends Genet 2011; 27:475-85. [PMID: 21924514 DOI: 10.1016/j.tig.2011.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 01/03/2023]
Abstract
A central question in cellular biology is how the cell regulates transcription and discerns when and where to initiate it. Locating transcription start sites (TSSs), the signals that specify them, and ultimately elucidating the mechanisms of regulated initiation has therefore been a recurrent theme. In recent years substantial progress has been made towards this goal, spurred by the possibility of applying genome-wide, sequencing-based analysis. We now have a large collection of high-resolution datasets identifying locations of TSSs, protein-DNA interactions, and chromatin features over whole genomes; the field is now faced with the daunting challenge of translating these descriptive maps into quantitative and predictive models describing the underlying biology. We review here the genomic and chromatin features that underlie TSS selection and usage, focusing on the differences between the major classes of core promoters.
Collapse
Affiliation(s)
- Eivind Valen
- The Bioinformatics Centre, Department of Biology, Ole Maaløes Vej 5, Copenhagen University, DK-2200, Denmark.
| | | |
Collapse
|
45
|
Sepp M, Kannike K, Eesmaa A, Urb M, Timmusk T. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5' exon usage and splicing. PLoS One 2011; 6:e22138. [PMID: 21789225 PMCID: PMC3137626 DOI: 10.1371/journal.pone.0022138] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms.
Collapse
Affiliation(s)
- Mari Sepp
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaja Kannike
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Ave Eesmaa
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mari Urb
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
46
|
Shishkin SS, Lisitskaya KV, Krakhmaleva IN. Biochemical polymorphism of the growth hormone system proteins and its manifestations in human prostate cells. BIOCHEMISTRY (MOSCOW) 2011; 75:1547-62. [PMID: 21417994 DOI: 10.1134/s0006297910130043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basic mechanisms are considered that are responsible for producing biochemical polymorphism of human proteins realized at three basic levels: the structures of genome and genes; the transcription and maturation of transcripts; the postsynthetic formation of functionally active protein products of gene expression. The data on biochemical polymorphism of growth hormone (GH) and some other proteins that are directly or indirectly necessary for its functioning and support this polymorphism by polylocus, polyallelism, alternative splicing, and various postsynthetic modifications are analyzed. The role of polymorphic proteins of the GH system is discussed in formation of a variety of oligomeric molecular structures of this system (multicomponent transport complexes, receptors, and endocellular protein ensembles involved in the regulation of gene expression). It is emphasized that such structural polymorphism significantly influences the biological effects in various parts of the GH system during physiological processes and in tumors, in particular in prostate cancer.
Collapse
Affiliation(s)
- S S Shishkin
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
47
|
Wang X, Song X, Glass CK, Rosenfeld MG. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 2011; 3:a003756. [PMID: 20573714 DOI: 10.1101/cshperspect.a003756] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major surprise arising from genome-wide analyses has been the observation that the majority of the genome is transcribed, generating noncoding RNAs (ncRNAs). It is still an open question whether some or all of these ncRNAs constitute functional networks regulating gene transcriptional programs. However, in light of recent discoveries and given the diversity and flexibility of long ncRNAs and their abilities to nucleate molecular complexes and to form spatially compact arrays of complexes, it becomes likely that many or most ncRNAs act as sensors and integrators of a wide variety of regulated transcriptional responses and probably epigenetic events. Because many RNA-binding proteins, on binding RNAs, show distinct allosteric conformational alterations, we suggest that a ncRNA/RNA-binding protein-based strategy, perhaps in concert with several other mechanistic strategies, serves to integrate transcriptional, as well as RNA processing, regulatory programs.
Collapse
Affiliation(s)
- Xiangting Wang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093-0651, USA
| | | | | | | |
Collapse
|
48
|
Hestand MS, Klingenhoff A, Scherf M, Ariyurek Y, Ramos Y, van Workum W, Suzuki M, Werner T, van Ommen GJB, den Dunnen JT, Harbers M, 't Hoen PAC. Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies. Nucleic Acids Res 2010; 38:e165. [PMID: 20615900 PMCID: PMC2938216 DOI: 10.1093/nar/gkq602] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Next-generation sequencing is excellently suited to evaluate the abundance of mRNAs to study gene expression. Here we compare two alternative technologies, cap analysis of gene expression (CAGE) and serial analysis of gene expression (SAGE), for the same RNA samples. Along with quantifying gene expression levels, CAGE can be used to identify tissue-specific transcription start sites, while SAGE monitors 3′-end usage. We used both methods to get more insight into the transcriptional control of myogenesis, studying differential gene expression in differentiated and proliferating C2C12 myoblast cells with statistical evaluation of reproducibility and differential gene expression. Both CAGE and SAGE provided highly reproducible data (Pearson's correlations >0.92 among biological triplicates). With both methods we found around 10 000 genes expressed at levels 2 transcripts per million (0.3 copies per cell), with an overlap of 86%. We identified 4304 and 3846 genes differentially expressed between proliferating and differentiated C2C12 cells by CAGE and SAGE, respectively, with an overlap of 2144. We identified 196 novel regulatory regions with preferential use in proliferating or differentiated cells. Next-generation sequencing of CAGE and SAGE libraries provides consistent expression levels and can enrich current genome annotations with tissue-specific promoters and alternative 3′-UTR usage.
Collapse
Affiliation(s)
- Matthew S Hestand
- The Center for Human and Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
van der Brug M, Nalls MA, Cookson MR. Deep sequencing of coding and non-coding RNA in the CNS. Brain Res 2010; 1338:146-54. [PMID: 20307502 PMCID: PMC2883621 DOI: 10.1016/j.brainres.2010.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/10/2010] [Accepted: 03/15/2010] [Indexed: 01/23/2023]
Abstract
Several methods now exist for identifying and quantifying many biological events in parallel and in a relatively unbiased fashion. For gene expression experiments, cloning approaches have been supplemented with microarray platforms over the past few years. The focus of this review is on deep sequencing, a new set of techniques that can be used to both identify RNA species and quantify them in a massively parallel fashion. Deep sequencing has some advantages over other methods, driven largely by the high depth of coverage for any library of nucleic acids. This allows, for example, estimates of alternative splicing and untranslated region utilization. We will discuss how deep sequencing methods are being applied to characterization of gene expression in the brain and how these technologies might develop over the next few years.
Collapse
Affiliation(s)
- Marcel van der Brug
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
50
|
De Smaele E, Ferretti E, Gulino A. MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 2010; 1338:100-11. [PMID: 20380821 DOI: 10.1016/j.brainres.2010.03.103] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/27/2010] [Accepted: 03/31/2010] [Indexed: 12/21/2022]
Abstract
The use of miRNAs as biomarkers has gained growing interest in the last few years. Their role in regulating a great variety of targets and, as a consequence, multiple pathways, makes their use in diagnostics a powerful tool to be exploited for early detection of disease, risk assessment and prognosis and for the design of innovative therapeutic strategies. While still not fully validated, profiling of blood cells, exosomes or body fluid miRNAs would represent a tremendous and promising advance in non-invasive diagnostics of CNS disorders. A major challenge is represented by technological aspects of miRNA detection and discovery aiming to genome-wide high throughput, sensitive and accurate analysis. Although there is much to be learned in the field, this review will highlight the potential role of miRNA as a new class of biomarkers in several CNS disorders, including neurodegenerative diseases such as Alzheimer, Huntington and Parkinson diseases, schizophrenia and autism as well as different types of cancer (e.g. gliomas and medulloblastomas).
Collapse
Affiliation(s)
- Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, 324 viale Regina Elena, Rome, Italy
| | | | | |
Collapse
|