1
|
Kim YK, Jo D, Arjunan A, Ryu Y, Lim YH, Choi SY, Kim HK, Song J. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer's Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25:2567. [PMID: 38473814 DOI: 10.3390/ijms25052567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeongseo Ryu
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Seo Yoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Hee Kyung Kim
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| |
Collapse
|
2
|
Boyle CA, Kola PK, Oraegbuna CS, Lei S. Leptin excites basolateral amygdala principal neurons and reduces food intake by LepRb-JAK2-PI3K-dependent depression of GIRK channels. J Cell Physiol 2024; 239:e31117. [PMID: 37683049 PMCID: PMC10920395 DOI: 10.1002/jcp.31117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Leptin is an adipocyte-derived hormone that modulates food intake, energy balance, neuroendocrine status, thermogenesis, and cognition. Whereas a high density of leptin receptors has been detected in the basolateral amygdala (BLA) neurons, the physiological functions of leptin in the BLA have not been determined yet. We found that application of leptin excited BLA principal neurons by activation of the long form leptin receptor, LepRb. The LepRb-elicited excitation of BLA neurons was mediated by depression of the G protein-activated inwardly rectifying potassium (GIRK) channels. Janus Kinase 2 (JAK2) and phosphoinositide 3-kinase (PI3K) were required for leptin-induced excitation of BLA neurons and depression of GIRK channels. Microinjection of leptin into the BLA reduced food intake via activation of LepRb, JAK2, and PI3K. Our results may provide a cellular and molecular mechanism to explain the physiological roles of leptin in vivo.
Collapse
Affiliation(s)
- Cody A. Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Phani K. Kola
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Chidiebele S. Oraegbuna
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
3
|
Trubacova R, Drastichova Z, Novotny J. Biochemical and physiological insights into TRH receptor-mediated signaling. Front Cell Dev Biol 2022; 10:981452. [PMID: 36147745 PMCID: PMC9485831 DOI: 10.3389/fcell.2022.981452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) is an important endocrine agent that regulates the function of cells in the anterior pituitary and the central and peripheral nervous systems. By controlling the synthesis and release of thyroid hormones, TRH affects many physiological functions, including energy homeostasis. This hormone exerts its effects through G protein-coupled TRH receptors, which signal primarily through Gq/11 but may also utilize other G protein classes under certain conditions. Because of the potential therapeutic benefit, considerable attention has been devoted to the synthesis of new TRH analogs that may have some advantageous properties compared with TRH. In this context, it may be interesting to consider the phenomenon of biased agonism and signaling at the TRH receptor. This possibility is supported by some recent findings. Although knowledge about the mechanisms of TRH receptor-mediated signaling has increased steadily over the past decades, there are still many unanswered questions, particularly about the molecular details of post-receptor signaling. In this review, we summarize what has been learned to date about TRH receptor-mediated signaling, including some previously undiscussed information, and point to future directions in TRH research that may offer new insights into the molecular mechanisms of TRH receptor-triggered actions and possible ways to modulate TRH receptor-mediated signaling.
Collapse
|
4
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
5
|
Xiang Z, Xu XH, Knight GE, Burnstock G. Transient expression of thyrotropin releasing hormone peptide and mRNA in the rat hippocampus following global cerebral ischemia/reperfusion injury. Int J Neurosci 2020; 132:787-801. [PMID: 33080155 DOI: 10.1080/00207454.2020.1840374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The role of extra-hypothalamic thyrotropin-releasing hormone (TRH) has been investigated by pharmacological studies using TRH or its analogues and found to produce a wide array of effects in the central nervous system. METHODS Immunofluorescence, In situ labeling of DNA (TUNEL), in situ hybridization chain reaction and quantitative real-time polymerase chain reaction were used in this study. RESULTS We found that the granular cells of the dentate gyrus expressed transiently a significant amount of TRH-like immunoreactivity and TRH mRNA during the 6-24 h period following global cerebral ischemia/reperfusion injury. TUNEL showed that apoptosis of neurons in the CA1 region occurred from 48 h and almost disappeared at 7 days. TRH administration 30 min before or 24 h after the injury could partially inhibit neuronal loss, and improve the survival of neurons in the CA1 region. CONCLUSION These data suggest that endogenous TRH expressed transiently in the dentate gyrus of the hippocampus may play an important role in the survival of neurons during the early stage of ischemia/reperfusion injury and that delayed application of TRH still produced neuroprotection. This delayed application of TRH has a promising therapeutic significance for clinical situations.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, PR China
| | - Xiao-Hui Xu
- School of Life Science, Shanghai University, Shanghai, People's Republic of China
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, London
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London.,Department of Pharmacology and Therapeutics, The University of Melbourne, Australia
| |
Collapse
|
6
|
Vallianatos CN, Raines B, Porter RS, Bonefas KM, Wu MC, Garay PM, Collette KM, Seo YA, Dou Y, Keegan CE, Tronson NC, Iwase S. Mutually suppressive roles of KMT2A and KDM5C in behaviour, neuronal structure, and histone H3K4 methylation. Commun Biol 2020; 3:278. [PMID: 32483278 PMCID: PMC7264178 DOI: 10.1038/s42003-020-1001-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
Histone H3 lysine 4 methylation (H3K4me) is extensively regulated by numerous writer and eraser enzymes in mammals. Nine H3K4me enzymes are associated with neurodevelopmental disorders to date, indicating their important roles in the brain. However, interplay among H3K4me enzymes during brain development remains largely unknown. Here, we show functional interactions of a writer-eraser duo, KMT2A and KDM5C, which are responsible for Wiedemann-Steiner Syndrome (WDSTS), and mental retardation X-linked syndromic Claes-Jensen type (MRXSCJ), respectively. Despite opposite enzymatic activities, the two mouse models deficient for either Kmt2a or Kdm5c shared reduced dendritic spines and increased aggression. Double mutation of Kmt2a and Kdm5c clearly reversed dendritic morphology, key behavioral traits including aggression, and partially corrected altered transcriptomes and H3K4me landscapes. Thus, our study uncovers common yet mutually suppressive aspects of the WDSTS and MRXSCJ models and provides a proof of principle for balancing a single writer-eraser pair to ameliorate their associated disorders.
Collapse
Affiliation(s)
- Christina N Vallianatos
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brynne Raines
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert S Porter
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine M Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | | | - Patricia M Garay
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Katie M Collette
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yali Dou
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine E Keegan
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
8
|
Li H, Hu B, Zhang HP, Boyle CA, Lei S. Roles of K + and cation channels in ORL-1 receptor-mediated depression of neuronal excitability and epileptic activities in the medial entorhinal cortex. Neuropharmacology 2019; 151:144-158. [PMID: 30998945 PMCID: PMC6500758 DOI: 10.1016/j.neuropharm.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/24/2019] [Accepted: 04/13/2019] [Indexed: 02/05/2023]
Abstract
Nociceptin (NOP) is an endogenous opioid-like peptide that selectively activates the opioid receptor-like (ORL-1) receptors. The entorhinal cortex (EC) is closely related to temporal lobe epilepsy and expresses high densities of ORL-1 receptors. However, the functions of NOP in the EC, especially in modulating the epileptiform activity in the EC, have not been determined. We demonstrated that activation of ORL-1 receptors remarkably inhibited the epileptiform activity in entorhinal slices induced by application of picrotoxin or by deprivation of extracellular Mg2+. NOP-mediated depression of epileptiform activity was independent of synaptic transmission in the EC, but mediated by inhibition of neuronal excitability in the EC. NOP hyperpolarized entorhinal neurons via activation of K+ channels and inhibition of cation channels. Whereas application of Ba2+ at 300 μM which is effective for the inward rectifier K+ (Kir) channels slightly inhibited NOP-induced hyperpolarization, the current-voltage (I-V) curve of the net currents induced by NOP was linear without showing inward rectification. However, a role of NOP-induced inhibition of cation channels was revealed after inhibition of Kir channels by Ba2+. Furthermore, NOP-mediated augmentation of membrane currents was differently affected by application of the blockers selective for distinct subfamilies of Kir channels. Whereas SCH23390 or ML133 blocked NOP-induced augmentation of membrane currents at negative potentials, application of tertiapin-Q exerted no actions on NOP-induced alteration of membrane currents. Our results demonstrated a novel cellular and molecular mechanism whereby activation of ORL-1 receptors depresses epilepsy.
Collapse
Affiliation(s)
- Huiming Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Hao-Peng Zhang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
9
|
Watanave M, Matsuzaki Y, Nakajima Y, Ozawa A, Yamada M, Hirai H. Contribution of Thyrotropin-Releasing Hormone to Cerebellar Long-Term Depression and Motor Learning. Front Cell Neurosci 2018; 12:490. [PMID: 30618637 PMCID: PMC6299015 DOI: 10.3389/fncel.2018.00490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) regulates various physiological activities through activation of receptors expressed in a broad range of cells in the central nervous system. The cerebellum expresses TRH receptors in granule cells and molecular layer interneurons. However, the function of TRH in the cerebellum remains to be clarified. Here, using TRH knockout (KO) mice we studied the role of TRH in the cerebellum. Immunohistochemistry showed no gross morphological differences between KO mice and wild-type (WT) littermates in the cerebellum. In the rotarod test, the initial performance of KO mice was comparable to that of WT littermates, but the learning speed of KO mice was significantly lower than that of WT littermates, suggesting impaired motor learning. The motor learning deficit in KO mice was rescued by intraperitoneal injection of TRH. Electrophysiology revealed absence of long-term depression (LTD) at parallel fiber-Purkinje cell synapses in KO mice, which was rescued by bath-application of TRH. TRH was shown to increase cyclic guanosine monophosphate (cGMP) content in the cerebellum. Since nitric oxide (NO) stimulates cGMP synthesis in the cerebellum, we examined whether NO-cGMP pathway was involved in TRH-mediated LTD rescue in KO mice. Pharmacological blockade of NO synthase and subsequent cGMP production prevented TRH-induced LTD expression in KO mice, whereas increase in cGMP signal in Purkinje cells by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane-permeable cGMP analog, restored LTD without TRH application. These results suggest that TRH is involved in cerebellar LTD presumably by upregulating the basal cGMP level in Purkinje cells, and, consequently, in motor learning.
Collapse
Affiliation(s)
- Masashi Watanave
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuyo Nakajima
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Ozawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
- Research Program for Neural Signalling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| |
Collapse
|
10
|
Kolaj M, Zhang L, Renaud LP. L-type calcium channels and MAP kinase contribute to thyrotropin-releasing hormone-induced depolarization in thalamic paraventricular nucleus neurons. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1120-7. [PMID: 27009047 PMCID: PMC4935505 DOI: 10.1152/ajpregu.00082.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
In rat paraventricular thalamic nucleus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances neuronal excitability via concurrent decrease in a G protein-coupled inwardly rectifying K (GIRK)-like conductance and opening of a cannabinoid receptor-sensitive transient receptor potential canonical (TRPC)-like conductance. Here, we investigated the calcium (Ca(2+)) contribution to the components of this TRH-induced response. TRH-induced membrane depolarization was reduced in the presence of intracellular BAPTA, also in media containing nominally zero [Ca(2+)]o, suggesting a critical role for both intracellular Ca(2+) release and Ca(2+) influx. TRH-induced inward current was unchanged by T-type Ca(2+) channel blockade, but was decreased by blockade of high-voltage-activated Ca(2+) channels (HVACCs). Both the pharmacologically isolated GIRK-like and the TRPC-like components of the TRH-induced response were decreased by nifedipine and increased by BayK8644, implying Ca(2+) influx via L-type Ca(2+) channels. Only the TRPC-like conductance was reduced by either thapsigargin or dantrolene, suggesting a role for ryanodine receptors and Ca(2+)-induced Ca(2+) release in this component of the TRH-induced response. In pituitary and other cell lines, TRH stimulates MAPK. In PVT neurons, only the GIRK-like component of the TRH-induced current was selectively decreased in the presence of PD98059, a MAPK inhibitor. Collectively, the data imply that TRH-induced depolarization and inward current in PVT neurons involve both a dependency on extracellular Ca(2+) influx via opening of L-type Ca(2+) channels, a sensitivity of a TRPC-like component to intracellular Ca(2+) release via ryanodine channels, and a modulation by MAPK of a GIRK-like conductance component.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Ottawa Hospital Research Institute, Neuroscience Program and University of Ottawa, Department of Medicine, Ottawa, Ontario, Canada
| | - Li Zhang
- Ottawa Hospital Research Institute, Neuroscience Program and University of Ottawa, Department of Medicine, Ottawa, Ontario, Canada
| | - Leo P Renaud
- Ottawa Hospital Research Institute, Neuroscience Program and University of Ottawa, Department of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Zarif H, Petit-Paitel A, Heurteaux C, Chabry J, Guyon A. TRH modulates glutamatergic synaptic inputs on CA1 neurons of the mouse hippocampus in a biphasic manner. Neuropharmacology 2016; 110:69-81. [PMID: 27060411 DOI: 10.1016/j.neuropharm.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
Abstract
Thyrotropin Releasing Hormone (TRH) is a tripeptide that induces the release of Thyroid Stimulating Hormone (TSH) in the blood. Besides its role in the thyroid system, TRH has been shown to regulate several neuronal systems in the brain however its role in hippocampus remains controversial. Using electrophysiological recordings in acute mouse brain slices, we show that TRH depresses glutamate responses at the CA3-CA1 synapse through an action on NMDA receptors, which, as a consequence, decreases the ability of the synapse to establish a long term potentiation (LTP). TRH also induces a late increase in AMPA/kainate responses. Together, these results suggest that TRH plays an important role in the modulation of hippocampal neuronal activities, and they contribute to a better understanding of the mechanisms by which TRH impacts synaptic function underlying emotional states, learning and memory processes.
Collapse
Affiliation(s)
- Hadi Zarif
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Agnès Petit-Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France.
| |
Collapse
|
12
|
Intracellular postsynaptic cannabinoid receptors link thyrotropin-releasing hormone receptors to TRPC-like channels in thalamic paraventricular nucleus neurons. Neuroscience 2015; 311:81-91. [DOI: 10.1016/j.neuroscience.2015.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022]
|
13
|
Ijiro T, Nakamura K, Ogata M, Inada H, Kiguchi S, Maruyama K, Nabekura J, Kobayashi M, Ishibashi H. Effect of rovatirelin, a novel thyrotropin-releasing hormone analog, on the central noradrenergic system. Eur J Pharmacol 2015; 761:413-22. [DOI: 10.1016/j.ejphar.2015.05.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/05/2023]
|
14
|
Sharma AK, Rani E, Waheed A, Rajput SK. Pharmacoresistant Epilepsy: A Current Update on Non-Conventional Pharmacological and Non-Pharmacological Interventions. J Epilepsy Res 2015; 5:1-8. [PMID: 26157666 PMCID: PMC4494988 DOI: 10.14581/jer.15001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 11/12/2022] Open
Abstract
Uncontrolled seizure or epilepsy is intricately related with an increase risk of pharmacoresistant epilepsy. The failure to achieve seizure control with the first or second drug trial of an anticonvulsant medication given at the appropriate daily dosage is termed as pharmacoresistance, despite the fact that these drugs possess different modes of action. It is one of the devastating neurological disorders act as major culprit of mortality in developed as well as developing countries with towering prevalence. Indeed, the presence of several anti-epileptic drug including carbamazepine, phenytoin, valproate, gabapentin etc. But no promising therapeutic remedies available to manage pharmacoresistance in the present clinical scenario. Hence, utility of alternative strategies in management of resistance epilepsy is increased which further possible by continuing developing of promising therapeutic interventions to manage this insidious condition adequately. Strategies include add on therapy with adenosine, verapamil etc or ketogenic diet, vagus nerve stimulation, focal cooling or standard drugs in combinations have shown some promising results. In this review we will shed light on the current pharmacological and non pharmacological mediator with their potential pleiotropic action on pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Arun Kumar Sharma
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| | - Ekta Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| | - Abdul Waheed
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| | - Satyendra K Rajput
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| |
Collapse
|
15
|
Zhang H, Cilz NI, Yang C, Hu B, Dong H, Lei S. Depression of neuronal excitability and epileptic activities by group II metabotropic glutamate receptors in the medial entorhinal cortex. Hippocampus 2015; 25:1299-313. [DOI: 10.1002/hipo.22437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
- Department of Anesthesiology; Xijing Hospital, Fourth Military Medical University; Xi'an Shaanxi Province China
| | - Nicholas I. Cilz
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Chuanxiu Yang
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Binqi Hu
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Hailong Dong
- Department of Anesthesiology; Xijing Hospital, Fourth Military Medical University; Xi'an Shaanxi Province China
| | - Saobo Lei
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| |
Collapse
|
16
|
Waniek A, Hartlage-Rübsamen M, Höfling C, Kehlen A, Schilling S, Demuth HU, Roßner S. Identification of thyrotropin-releasing hormone as hippocampal glutaminyl cyclase substrate in neurons and reactive astrocytes. Biochim Biophys Acta Mol Basis Dis 2014; 1852:146-55. [PMID: 25446989 DOI: 10.1016/j.bbadis.2014.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023]
Abstract
Recently, Aβ peptide variants with an N-terminal truncation and pyroglutamate modification were identified and shown to be highly neurotoxic and prone to aggregation. This modification of Aβ is catalyzed by glutaminyl cyclase (QC) and pharmacological inhibition of QC diminishes Aβ deposition and accompanying gliosis and ameliorates memory impairment in transgenic mouse models of Alzheimer's disease (AD). QC expression was initially described in the hypothalamus, where thyrotropin-releasing hormone (TRH) is one of its physiological substrates. In addition to its hormonal role, a novel neuroprotective function of TRH following excitotoxicity and Aβ-mediated neurotoxicity has been reported in the hippocampus. Functionally matching this finding, we recently demonstrated QC expression by hippocampal interneurons in mouse brain. Here, we detected neuronal co-expression of QC and TRH in the hippocampus of young adult wild type mice using double immunofluorescence labeling. This provides evidence for TRH being a physiological QC substrate in hippocampus. Additionally, in neocortex of aged but not of young mice transgenic for amyloid precursor protein an increase of QC mRNA levels was found compared to wild type littermates. This phenomenon was not observed in hippocampus, which is later affected by Aβ pathology. However, in hippocampus of transgenic - but not of wild type mice - a correlation between QC and TRH mRNA levels was revealed. This co-regulation of the enzyme QC and its substrate TRH was reflected by a co-induction of both proteins in reactive astrocytes in proximity of Aβ deposits. Also, in primary mouse astrocytes a co-induction of QC and TRH was demonstrated upon Aβ stimulation.
Collapse
Affiliation(s)
- Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | - Astrid Kehlen
- Institute for Medical Microbiology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany.
| |
Collapse
|
17
|
Zhang H, Dong H, Cilz NI, Kurada L, Hu B, Wada E, Bayliss DA, Porter JE, Lei S. Neurotensinergic Excitation of Dentate Gyrus Granule Cells via Gαq-Coupled Inhibition of TASK-3 Channels. Cereb Cortex 2014; 26:977-90. [PMID: 25405940 DOI: 10.1093/cercor/bhu267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurotensin (NT) is a 13-amino acid peptide and serves as a neuromodulator in the brain. Whereas NT has been implicated in learning and memory, the underlying cellular and molecular mechanisms are ill-defined. Because the dentate gyrus receives profound innervation of fibers containing NT and expresses high density of NT receptors, we examined the effects of NT on the excitability of dentate gyrus granule cells (GCs). Our results showed that NT concentration dependently increased action potential (AP) firing frequency of the GCs by the activation of NTS1 receptors resulting in the depolarization of the GCs. NT-induced enhancement of AP firing frequency was not caused indirectly by releasing glutamate, GABA, acetylcholine, or dopamine, but due to the inhibition of TASK-3 K(+) channels. NT-mediated excitation of the GCs was G protein dependent, but independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Immunoprecipitation experiment demonstrates that the activation of NTS1 receptors induced the association of Gαq/11 and TASK-3 channels suggesting a direct coupling of Gαq/11 to TASK-3 channels. Endogenously released NT facilitated the excitability of the GCs contributing to the induction of long-term potentiation at the perforant path-GC synapses. Our results provide a cellular mechanism that helps to explain the roles of NT in learning and memory.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nicholas I Cilz
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Etsuko Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, Tokyo, Japan
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James E Porter
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
18
|
Yu Y, Zeng C, Shu S, Liu X, Li C. Similar effects of substance P on learning and memory function between hippocampus and striatal marginal division. Neural Regen Res 2014; 9:857-63. [PMID: 25206901 PMCID: PMC4146251 DOI: 10.4103/1673-5374.131603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2014] [Indexed: 11/27/2022] Open
Abstract
Substance P is an endogenous neurokinin that is present in the central and peripheral nervous systems. The neuropeptide substance P and its high-affinity receptor neurokinin 1 receptor are known to play an important role in the central nervous system in inflammation, blood pressure, motor behavior and anxiety. The effects of substance P in the hippocampus and the marginal division of the striatum on memory remain poorly understood. Compared with the hippocampus as a control, immunofluorescence showed high expression of the substance P receptor, neurokinin 1, in the marginal division of the striatum of normal rats. Unilateral or bilateral injection of an antisense oligonucleotide against neurokinin 1 receptor mRNA in the rat hippocampus or marginal division of the striatum effectively reduced neurokinin 1 receptor expression. Independent of injection site, rats that received this antisense oligonucleotide showed obviously increased footshock times in a Y-maze test. These results indicate that the marginal division of the striatum plays a similar function in learning and memory to the hippocampus, which is a valuable addition to our mechanistic understanding of the learning and memory functions of the marginal division of the striatum.
Collapse
Affiliation(s)
- Yan Yu
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Changchun Zeng
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Siyun Shu
- Institute of Cognitive Neuroscience, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xuemei Liu
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Chuhua Li
- School of Life Science, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J Neurosci 2014; 34:7027-42. [PMID: 24828655 DOI: 10.1523/jneurosci.0408-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD.
Collapse
|
20
|
Rodríguez-Molina V, Patiño J, Vargas Y, Sánchez-Jaramillo E, Joseph-Bravo P, Charli JL. TRH regulates action potential shape in cerebral cortex pyramidal neurons. Brain Res 2014; 1571:1-11. [PMID: 24842001 DOI: 10.1016/j.brainres.2014.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
Thyrotropin releasing hormone (TRH) is a neuropeptide with a wide neural distribution and a variety of functions. It modulates neuronal electrophysiological properties, including resting membrane potential, as well as excitatory postsynaptic potential and spike frequencies. We explored, with whole-cell patch clamp, TRH effect on action potential shape in pyramidal neurons of the sensorimotor cortex. TRH reduced spike and after hyperpolarization amplitudes, and increased spike half-width. The effect varied with dose, time and cortical layer. In layer V, 0.5µM of TRH induced a small increase in spike half-width, while 1 and 5µM induced a strong but transient change in spike half-width, and amplitude; after hyperpolarization amplitude was modified at 5µM of TRH. Cortical layers III and VI neurons responded intensely to 0.5µM TRH; layer II neurons response was small. The effect of 1µM TRH on action potential shape in layer V neurons was blocked by G-protein inhibition. Inhibition of the activity of the TRH-degrading enzyme pyroglutamyl peptidase II (PPII) reproduced the effect of TRH, with enhanced spike half-width. Many cortical PPII mRNA+ cells were VGLUT1 mRNA+, and some GAD mRNA+. These data show that TRH regulates action potential shape in pyramidal cortical neurons, and are consistent with the hypothesis that PPII controls its action in this region.
Collapse
Affiliation(s)
- Víctor Rodríguez-Molina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), AP 70250, México, D.F. 04510, México; Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Javier Patiño
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Yamili Vargas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 2001, Chamilpa, Cuernavaca, Morelos 62210, México
| | - Edith Sánchez-Jaramillo
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, México D.F., México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 2001, Chamilpa, Cuernavaca, Morelos 62210, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 2001, Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
21
|
Clynen E, Swijsen A, Raijmakers M, Hoogland G, Rigo JM. Neuropeptides as targets for the development of anticonvulsant drugs. Mol Neurobiol 2014; 50:626-46. [PMID: 24705860 PMCID: PMC4182642 DOI: 10.1007/s12035-014-8669-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/27/2014] [Indexed: 11/04/2022]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.
Collapse
Affiliation(s)
- Elke Clynen
- Biomedical Research Institute BIOMED, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium,
| | | | | | | | | |
Collapse
|
22
|
Corticotropin-releasing factor facilitates epileptiform activity in the entorhinal cortex: roles of CRF2 receptors and PKA pathway. PLoS One 2014; 9:e88109. [PMID: 24505399 PMCID: PMC3913751 DOI: 10.1371/journal.pone.0088109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Whereas corticotropin-releasing factor (CRF) has been considered as the most potent epileptogenic neuropeptide in the brain, its action site and underlying mechanisms in epilepsy have not been determined. Here, we found that the entorhinal cortex (EC) expresses high level of CRF and CRF2 receptors without expression of CRF1 receptors. Bath application of CRF concentration-dependently increased the frequency of picrotoxin (PTX)-induced epileptiform activity recorded from layer III of the EC in entorhinal slices although CRF alone did not elicit epileptiform activity. CRF facilitated the induction of epileptiform activity in the presence of subthreshold concentration of PTX which normally would not elicit epileptiform activity. Bath application of the inhibitor for CRF-binding proteins, CRF6-33, also increased the frequency of PTX-induced epileptiform activity suggesting that endogenously released CRF is involved in epileptogenesis. CRF-induced facilitation of epileptiform activity was mediated via CRF2 receptors because pharmacological antagonism and knockout of CRF2 receptors blocked the facilitatory effects of CRF on epileptiform activity. Application of the adenylyl cyclase (AC) inhibitors blocked CRF-induced facilitation of epileptiform activity and elevation of intracellular cyclic AMP (cAMP) level by application of the AC activators or phosphodiesterase inhibitor increased the frequency of PTX-induced epileptiform activity, demonstrating that CRF-induced increases in epileptiform activity are mediated by an increase in intracellular cAMP. However, application of selective protein kinase A (PKA) inhibitors reduced, not completely blocked CRF-induced enhancement of epileptiform activity suggesting that PKA is only partially required. Our results provide a novel cellular and molecular mechanism whereby CRF modulates epilepsy.
Collapse
|
23
|
Cilz NI, Kurada L, Hu B, Lei S. Dopaminergic modulation of GABAergic transmission in the entorhinal cortex: concerted roles of α1 adrenoreceptors, inward rectifier K⁺, and T-type Ca²⁺ channels. Cereb Cortex 2013; 24:3195-208. [PMID: 23843440 DOI: 10.1093/cercor/bht177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse dopaminergic innervations from the midbrain, the effects of dopamine (DA) on γ-Aminobutyric acid (GABA)ergic interneurons in this brain region have not been determined. We probed the actions of DA on GABAA receptor-mediated synaptic transmission in the EC. Application of DA increased the frequency, not the amplitude, of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) recorded from entorhinal principal neurons, but slightly reduced the amplitude of the evoked IPSCs. The effects of DA were unexpectedly found to be mediated by α1 adrenoreceptors, but not by DA receptors. DA endogenously released by the application of amphetamine also increased the frequency of sIPSCs. Ca(2+) influx via T-type Ca(2+) channels was required for DA-induced facilitation of sIPSCs and mIPSCs. DA depolarized and enhanced the firing frequency of action potentials of interneurons. DA-induced depolarization was independent of extracellular Na(+) and Ca(2+) and did not require the functions of hyperpolarization-activated (Ih) channels and T-type Ca(2+) channels. DA-generated currents showed a reversal potential close to the K(+) reversal potential and inward rectification, suggesting that DA inhibits the inward rectifier K(+) channels (Kirs). Our results demonstrate that DA facilitates GABA release by activating α1 adrenoreceptors to inhibit Kirs, which further depolarize interneurons resulting in secondary Ca(2+) influx via T-type Ca(+) channels.
Collapse
Affiliation(s)
- Nicholas I Cilz
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
24
|
Zhang L, Kolaj M, Renaud LP. GIRK-like and TRPC-like conductances mediate thyrotropin-releasing hormone-induced increases in excitability in thalamic paraventricular nucleus neurons. Neuropharmacology 2013; 72:106-15. [PMID: 23632082 DOI: 10.1016/j.neuropharm.2013.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
The thalamic paraventricular nucleus (PVT), reported to participate in arousal and motivated behaviors, contains abundant receptors for thyrotropin-releasing hormone (TRH), a neuropeptide also known to modulate arousal and mood. To test the hypothesis that TRH could influence the excitability of PVT neurons, whole cell patch-clamp recordings obtained in rat brain slice preparations were evaluated during bath applied TRH. In the majority of neurons tested, TRH induced reversible TTX-resistant membrane depolarization. Under voltage-clamp, TRH induced a concentration-dependent G protein- mediated inward current. The mean net TRH-induced current exhibited a decrease in membrane conductance. Further analyses identified two concurrent conductances contributing to the TRH-induced response. One conductance featured a Na(+)-independent and K(+)-dependent net current that displayed rectification and was suppressed by micromolar concentrations of Ba(2+) and two GIRK antagonists, tertiapin Q and SCH 23390. The second conductance featured a Na(+)-dependent net inward current with an I-V relationship that exhibited double rectification with a negative slope conductance below -40 mV. This conductance was suppressed by nonselective TRPC channel blockers 2-APB, flufenamic acid and ML204, enhanced by La(3+) in a subpopulation of cells, and unchanged by the TRPV1 antagonist capsazepine or a Na(+)/Ca(2+) exchanger blocker KB-R7943. TRH also enhanced hyperpolarization-activated low threshold spikes, a feature that was sensitive to pretreatment with either 2-APB or ML204. Collectively, the data imply that TRH enhances excitability in PVT neurons via concurrently decreasing a G-protein-gated inwardly rectifying K(+) conductance and activating a cationic conductance with characteristics reminiscent of TRPC-like channels, possibly involving TRPC4/C5 subunits.
Collapse
Affiliation(s)
- Li Zhang
- Ottawa Hospital Research Institute, Neuroscience Program and University of Ottawa, Department of Medicine, 725 Parkdale Ave., K1Y 4E9 Ottawa, Ontario, Canada
| | | | | |
Collapse
|
25
|
Wang S, Kurada L, Cilz NI, Chen X, Xiao Z, Dong H, Lei S. Adenosinergic depression of glutamatergic transmission in the entorhinal cortex of juvenile rats via reduction of glutamate release probability and the number of releasable vesicles. PLoS One 2013; 8:e62185. [PMID: 23614032 PMCID: PMC3628342 DOI: 10.1371/journal.pone.0062185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/19/2013] [Indexed: 02/05/2023] Open
Abstract
Adenosine is an inhibitory neuromodulator that exerts antiepileptic effects in the brain and the entorhinal cortex (EC) is an essential structure involved in temporal lobe epilepsy. Whereas microinjection of adenosine into the EC has been shown to exert powerful antiepileptic effects, the underlying cellular and molecular mechanisms in the EC have not been determined yet. We tested the hypothesis that adenosine-mediated modulation of synaptic transmission contributes to its antiepileptic effects in the EC. Our results demonstrate that adenosine reversibly inhibited glutamatergic transmission via activation of adenosine A1 receptors without effects on GABAergic transmission in layer III pyramidal neurons in the EC. Adenosine-induced depression of glutamatergic transmission was mediated by inhibiting presynaptic glutamate release probability and decreasing the number of readily releasable vesicles. Bath application of adenosine also reduced the frequency of the miniature EPSCs recorded in the presence of TTX suggesting that adenosine may interact with the exocytosis processes downstream of Ca2+ influx. Both Gαi/o proteins and the protein kinase A pathway were required for adenosine-induced depression of glutamatergic transmission. We further showed that bath application of picrotoxin to the EC slices induced stable epileptiform activity and bath application of adenosine dose-dependently inhibited the epileptiform activity in this seizure model. Adenosine-mediated depression of epileptiform activity was mediated by activation of adenosine A1 receptors and required the functions of Gαi/o proteins and protein kinase A pathway. Our results suggest that the depression of glutamatergic transmission induced by adenosine contributes to its antiepileptic effects in the EC.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Nicholas I. Cilz
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xiaotong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Emergency Medicine, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhaoyang Xiao
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
26
|
Yutsudo N, Kamada T, Kajitani K, Nomaru H, Katogi A, Ohnishi YH, Ohnishi YN, Takase KI, Sakumi K, Shigeto H, Nakabeppu Y. fosB-null mice display impaired adult hippocampal neurogenesis and spontaneous epilepsy with depressive behavior. Neuropsychopharmacology 2013; 38:895-906. [PMID: 23303048 PMCID: PMC3672000 DOI: 10.1038/npp.2012.260] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with epilepsy are at high risk for major depression relative to the general population, and both disorders are associated with changes in adult hippocampal neurogenesis, although the mechanisms underlying disease onset remain unknown. The expression of fosB, an immediate early gene encoding FosB and ΔFosB/Δ2ΔFosB by alternative splicing and translation initiation, is known to be induced in neural progenitor cells within the subventricular zone of the lateral ventricles and subgranular zone of the hippocampus, following transient forebrain ischemia in the rat brain. Moreover, adenovirus-mediated expression of fosB gene products can promote neural stem cell proliferation. We recently found that fosB-null mice show increased depressive behavior, suggesting impaired neurogenesis in fosB-null mice. In the current study, we analyzed neurogenesis in the hippocampal dentate gyrus of fosB-null and fosB(d/d) mice that express ΔFosB/Δ2ΔFosB but not FosB, in comparison with wild-type mice, alongside neuropathology, behaviors, and gene expression profiles. fosB-null but not fosB(d/d) mice displayed impaired neurogenesis in the adult hippocampus and spontaneous epilepsy. Microarray analysis revealed that genes related to neurogenesis, depression, and epilepsy were altered in the hippocampus of fosB-null mice. Thus, we conclude that the fosB-null mouse is the first animal model to provide a genetic and molecular basis for the comorbidity between depression and epilepsy with abnormal neurogenesis, all of which are caused by loss of a single gene, fosB.
Collapse
Affiliation(s)
- Noriko Yutsudo
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takashi Kamada
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Kajitani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroko Nomaru
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsuhisa Katogi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoko H Ohnishi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori N Ohnishi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kei-ichiro Takase
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan,Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| | - Hiroshi Shigeto
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan,Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan,Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan, Tel: +81 92 642 6800, Fax: +81 92 642 6791, E-mail:
| |
Collapse
|
27
|
Daimon CM, Chirdon P, Maudsley S, Martin B. The role of Thyrotropin Releasing Hormone in aging and neurodegenerative diseases. AMERICAN JOURNAL OF ALZHEIMER'S DISEASE (COLUMBIA, MO.) 2013; 1:10.7726/ajad.2013.1003. [PMID: 24199031 PMCID: PMC3817016 DOI: 10.7726/ajad.2013.1003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Thyrotropin releasing hormone (TRH) is primarily known as the central regulator of the hypothalamic-pituitary-thyroid (HPT) axis. However, TRH also exerts a variety of central nervous system effects independent from its activity in the HPT axis. With advancing age, decreases in TRH synthesis, expression, and activity have been demonstrated. Associated with this emerging evidence suggests that TRH is implicated in neurodegenerative diseases of aging, including Alzheimer's disease and Parkinson's disease. TRH and its synthetic analogs have been recognized as trophic factors in neurons of the diencephalon and spinal cord, and as neuroprotectants against oxidative stress, glutamate toxicity, caspase-induced cell death, DNA fragmentation, and inflammation. In this review, we will provide an overview of some of the roles of TRH, outside of the HPT axis, associated with pathological aging and neurodegeneration and we shall discuss the potential of TRH and TRH analogs for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Caitlin M. Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patrick Chirdon
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
- Case Western Reserve University Departments of Biology and Cognitive Science, College of Arts and Sciences, Cleveland, OH
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
28
|
Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol Rev 2013; 65:171-222. [PMID: 23319549 DOI: 10.1124/pr.111.005678] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) remains the most effective symptomatic treatment of Parkinson's disease (PD). However, long-term administration of L-DOPA is marred by the emergence of abnormal involuntary movements, i.e., L-DOPA-induced dyskinesia (LID). Years of intensive research have yielded significant progress in the quest to elucidate the mechanisms leading to the development and expression of dyskinesia and maintenance of the dyskinetic state, but the search for a complete understanding is still ongoing. Herein, we summarize the current knowledge of the pharmacology of LID in PD. Specifically, we review evidence gathered from postmortem and pharmacological studies, both preclinical and clinical, and discuss the involvement of dopaminergic and nondopaminergic systems, including glutamatergic, opioid, serotonergic, γ-aminobutyric acid (GABA)-ergic, adenosine, cannabinoid, adrenergic, histaminergic, and cholinergic systems. Moreover, we discuss changes occurring in transcription factors, intracellular signaling, and gene expression in the dyskinetic phenotype. Inasmuch as a multitude of neurotransmitters and receptors play a role in the etiology of dyskinesia, we propose that to optimally alleviate this motor complication, it may be necessary to develop combined treatment approaches that will target simultaneously more than one neurotransmitter system. This could be achieved via three ways as follows: 1) by developing compounds that will interact simultaneously to a multitude of receptors with the required agonist/antagonist effect at each target, 2) by targeting intracellular signaling cascades where the signals mediated by multiple receptors converge, and/or 3) to regulate gene expression in a manner that has effects on signaling by multiple pathways.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
29
|
Gaier ED, Eipper BA, Mains RE. Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 2012; 91:2-19. [PMID: 23115049 DOI: 10.1002/jnr.23143] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/05/2012] [Accepted: 08/17/2012] [Indexed: 12/14/2022]
Abstract
Copper is an essential metal present at high levels in the CNS. Its role as a cofactor in mitochondrial ATP production and in essential cuproenzymes is well defined. Menkes and Wilson's diseases are severe neurodegenerative conditions that demonstrate the importance of Cu transport into the secretory pathway. In the brain, intracellular levels of Cu, which is almost entirely protein bound, exceed extracellular levels by more than 100-fold. Cu stored in the secretory pathway is released in a Ca(2+)-dependent manner and can transiently reach concentrations over 100 μM at synapses. The ability of low micromolar levels of Cu to bind to and modulate the function of γ-aminobutyric acid type A (GABA(A)) receptors, N-methyl-D-aspartate (NMDA) receptors, and voltage-gated Ca(2+) channels contributes to its effects on synaptic transmission. Cu also binds to amyloid precursor protein and prion protein; both proteins are found at synapses and brain Cu homeostasis is disrupted in mice lacking either protein. Especially intriguing is the ability of Cu to affect AMP-activated protein kinase (AMPK), a monitor of cellular energy status. Despite this, few investigators have examined the direct effects of Cu on synaptic transmission and plasticity. Although the variability of results demonstrates complex influences of Cu that are highly method sensitive, these studies nevertheless strongly support important roles for endogenous Cu and new roles for Cu-binding proteins in synaptic function/plasticity and behavior. Further study of the many roles of Cu in nervous system function will reveal targets for intervention in other diseases in which Cu homeostasis is disrupted.
Collapse
Affiliation(s)
- E D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
30
|
Ramanathan G, Cilz NI, Kurada L, Hu B, Wang X, Lei S. Vasopressin facilitates GABAergic transmission in rat hippocampus via activation of V(1A) receptors. Neuropharmacology 2012; 63:1218-26. [PMID: 22884625 DOI: 10.1016/j.neuropharm.2012.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Whereas vasopressin has been shown to enhance memory possibly by increasing long-term potentiation and direct excitation of the pyramidal neurons in the hippocampus, the effects of vasopressin on GABAergic transmission in the hippocampus remain to be determined. Here we examined the effects of vasopressin on GABAergic transmission onto CA1 pyramidal neurons and our results demonstrate that bath application of [Arg(8)]-vasopressin (AVP) dose-dependently increased the frequency of spontaneous IPSCs (sIPSCs) recorded from CA1 pyramidal neurons via activation of V(1A) receptors. Immunohistological staining and western blot further confirmed that both CA1 pyramidal neurons and interneurons expressed V(1A) receptors. Bath application of AVP altered neither the frequency nor the amplitude of miniature IPSCs in the presence of tetradotoxin and failed to change significantly the amplitude of evoked IPSCs recorded from CA1 pyramidal neurons. AVP increased the firing frequency of action potentials by depolarizing the GABAergic interneurons in the stratum radiatum of CA1 region. AVP-mediated depolarization of interneurons was mediated by inhibition of a background K(+) conductance which was insensitive to extracellular tetraethylammonium, Cs(+), 4-aminopyridine, tertiapin-Q and Ba(2+). AVP-induced depolarization of interneurons was dependent on Gα(q/11) but independent of phospholipase C, intracellular Ca(2+) release and protein kinase C. The inhibitory effects of AVP-mediated modulation of GABA release onto CA1 pyramidal neurons were overwhelmed by its strong excitation of CA1 pyramidal neurons in physiological condition but revealed when its direct excitation of the pyramidal neurons was blocked suggesting that AVP-mediated modulation of GABAergic transmission fine-tunes the excitability of CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Gunasekaran Ramanathan
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wang S, Chen X, Kurada L, Huang Z, Lei S. Activation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability. Cereb Cortex 2012; 22:584-94. [PMID: 21677028 PMCID: PMC3450593 DOI: 10.1093/cercor/bhr131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glutamate interacts with ionotropic and metabotropic glutamate receptors (mGluRs). Whereas the entorhinal cortex (EC) is a principal structure involved in learning and memory, the roles of mGluRs in synaptic transmission in the EC have not been completely determined. Here, we show that activation of group II mGluRs (mGluR II) induced robust depression of glutamatergic transmission in the EC. The mGluR II-induced depression was due to a selective reduction of presynaptic release probability without alterations of the quantal size and the number of release sites. The mechanisms underlying mGluR II-mediated suppression of glutamate release included the inhibition of presynaptic release machinery and the depression of presynaptic P/Q-type Ca(2+) channels. Whereas mGluR II-induced depression required the function of Gα(i/o) proteins, protein kinase A (PKA) pathway was only involved in mGluR II-mediated inhibition of release machinery and thereby partially required for mGluR II-induced inhibition of glutamate release. Presynaptic stimulation at 5 Hz for 10 min also induced depression of glutamatergic transmission via activation of presynaptic mGluR II suggesting an endogenous role for mGluR II in modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Anesthesiology
| | - Xiaotong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, P. R. China
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, P. R. China
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
32
|
Liu R, Lei JX, Luo C, Lan X, Chi L, Deng P, Lei S, Ghribi O, Liu QY. Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer's disease. Neurobiol Dis 2011; 45:902-12. [PMID: 22186421 DOI: 10.1016/j.nbd.2011.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022] Open
Abstract
Though loss of function in CBP/p300, a family of CREB-binding proteins, has been causally associated with a variety of human neurological disorders, such as Rubinstein-Taybi syndrome, Huntington's disease and drug addiction, the role of EP300 interacting inhibitor of differentiation 1 (EID1), a CBP/p300 inhibitory protein, in modulating neurological functions remains completely unknown. Through the examination of EID1 expression and cellular distribution, we discovered that there is a significant increase of EID1 nuclear translocation in the cortical neurons of Alzheimer's disease (AD) patient brains compared to that of control brains. To study the potential effects of EID1 on neurological functions associated with learning and memory, we generated a transgenic mouse model with a neuron-specific expression of human EID1 gene in the brain. Overexpression of EID1 led to an increase in its nuclear localization in neurons mimicking that seen in human AD brains. The transgenic mice had a disrupted neurofilament organization and increase of astrogliosis in the cortex and hippocampus. Furthermore, we demonstrated that overexpression of EID1 reduced hippocampal long-term potentiation and impaired spatial learning and memory function in the transgenic mice. Our results indicated that the negative effects of extra nuclear EID1 in transgenic mouse brains are likely due to its inhibitory function on CBP/p300 mediated histone and p53 acetylation, thus affecting the expression of downstream genes involved in the maintenance of neuronal structure and function. Together, our data raise the possibility that alteration of EID1 expression, particularly the increase of EID1 nuclear localization that inhibits CBP/p300 activity in neuronal cells, may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Rugao Liu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sah N, Rajput S, Singh J, Meena C, Jain R, Sikdar S, Sharma S. l-pGlu-(2-propyl)-l-His-l-ProNH2 attenuates 4-aminopyridine-induced epileptiform activity and sodium current: a possible action of new thyrotropin-releasing hormone analog for its anticonvulsant potential. Neuroscience 2011; 199:74-85. [DOI: 10.1016/j.neuroscience.2011.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 12/11/2022]
|
34
|
Xiao Z, Jaiswal MK, Deng PY, Matsui T, Shin HS, Porter JE, Lei S. Requirement of phospholipase C and protein kinase C in cholecystokinin-mediated facilitation of NMDA channel function and anxiety-like behavior. Hippocampus 2011; 22:1438-50. [PMID: 22072552 DOI: 10.1002/hipo.20984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2011] [Indexed: 01/07/2023]
Abstract
Although cholecystokinin (CCK) has long been known to exert anxiogenic effects in both animal anxiety models and humans, the underlying cellular and molecular mechanisms are ill-defined. CCK interacts with CCK-1 and CCK-2 receptors resulting in up-regulation of phospholipase C (PLC) and protein kinase C (PKC). However, the roles of PLC and PKC in CCK-mediated anxiogenic effects have not been determined. We have shown previously that CCK facilitates glutamate release in the hippocampus especially at the synapses formed by the perforant path and dentate gyrus granule cells via activations of PLC and PKC. Here we further demonstrated that CCK enhanced NMDA receptor function in dentate gyrus granule cells via activation of PLC and PKC pathway. At the single-channel level, CCK increased NMDA single-channel open probability and mean open time, reduced the mean close time, and had no effects on the conductance of NMDA channels. Because elevation of glutamatergic functions results in anxiety, we explored the roles of PLC and PKC in CCK-induced anxiogenic actions using the Vogel Conflict Test (VCT). Our results from both pharmacological approach and knockout mice demonstrated that microinjection of CCK into the dentate gyrus concentration-dependently increased anxiety-like behavior via activation of PLC and PKC. Our results provide a novel unidentified signaling mechanism whereby CCK increases anxiety.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Monga V, Meena CL, Rajput S, Pawar C, Sharma SS, Lu X, Gershengorn MC, Jain R. Synthesis, receptor binding, and CNS pharmacological studies of new thyrotropin-releasing hormone (TRH) analogues. ChemMedChem 2011; 6:531-43. [PMID: 21302359 PMCID: PMC3479646 DOI: 10.1002/cmdc.201000481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/06/2011] [Indexed: 02/03/2023]
Abstract
As part of our search for selective and CNS-active thyrotropin-releasing hormone (TRH) analogues, we synthesized a set of 44 new analogues in which His and pGlu residues were modified or replaced. The analogues were evaluated as agonists at TRH-R1 and TRH-R2 in cells in vitro, and in vivo in mice for analeptic and anticonvulsant activities. Several analogues bound to TRH-R1 and TRH-R2 with good to moderate affinities, and are full agonists at both receptor subtypes. Specifically, analogue 21 a (R=CH3) exhibited binding affinities (Ki values) of 0.17 μM for TRH-R1 and 0.016 μM for TRH-R2; it is 10-fold less potent than TRH in binding to TRH-R1 and equipotent with TRH in binding to TRH-R2. Compound 21 a, the most selective agonist, activated TRH-R2 with a potency (EC50 value) of 0.0021 μM, but activated TRH-R1 at EC50=0.05 μM, and exhibited 24-fold selectivity for TRH-R2 over TRH-R1. The newly synthesized TRH analogues were also evaluated in vivo to assess their potencies in antagonism of barbiturate-induced sleeping time, and several analogues displayed potent analeptic activity. Specifically, analogues 21 a,b and 22 a,b decreased sleeping time by nearly 50% more than TRH. These analogues also displayed potent anticonvulsant activity and provided significant protection against PTZ-induced seizures, but failed to provide any protection in MES-induced seizures at 10 μmol kg(-1). The results of this study provide evidence that TRH analogues that show selectivity for TRH-R2 over TRH-R1 possess potent CNS activity.
Collapse
Affiliation(s)
- Vikramdeep Monga
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar, Punjab 160 062 (India), Fax: (+91) 0172-221-4692
| | - Chhuttan L. Meena
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar, Punjab 160 062 (India), Fax: (+91) 0172-221-4692
| | - Satyendra Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar, Punjab 160 062 (India)
| | - Chandrashekhar Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar, Punjab 160 062 (India)
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar, Punjab 160 062 (India)
| | - Xinping Lu
- Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892 (USA)
| | - Marvin C. Gershengorn
- Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892 (USA)
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar, Punjab 160 062 (India), Fax: (+91) 0172-221-4692
| |
Collapse
|
36
|
Deng PY, Xiao Z, Lei S. Distinct modes of modulation of GABAergic transmission by Group I metabotropic glutamate receptors in rat entorhinal cortex. Hippocampus 2010; 20:980-93. [PMID: 19739246 DOI: 10.1002/hipo.20697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Activation of metabotropic glutamate receptors (mGluRs) modulates synaptic transmission, whereas the roles of mGluRs in GABAergic transmission in the entorhinal cortex (EC) are elusive. Here, we examined the effects of mGluRs on GABAergic transmission onto the principal neurons in the superficial layers of the EC. Bath application of DHPG, a selective Group I mGluR agonist, increased the frequency and amplitude of spontaneous IPSCs (sIPSCs) whereas application of DCG-IV, an agonist for Group II mGluRs or L-AP4, an agonist for Group III mGluRs failed to change significantly sIPSC frequency and amplitude. Bath application of DHPG failed to change significantly the frequency and amplitude of miniature IPSCs (mIPSCs) recorded in the presence of tetradotoxin but significantly reduced the amplitude of IPSCs evoked by extracellular field stimulation or in synaptically connected interneuron-pyramidal neuron pairs in layer III of the EC. DHPG increased the frequency but reduced the amplitude of APs recorded from entorhinal interneurons. Bath application of DHPG generated membrane depolarization and increased the input resistance of GABAergic interneurons. DHPG-mediated depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels which are insensitive to extracellular Cs(+), TEA, 4-AP, and Ba(2+). DHPG-induced facilitation of sIPSCs was mediated by mGluR(5) and required the function of Galphaq but was independent of phospholipase C activity. Elevation of synaptic glutamate concentration by bath application of glutamate transporter inhibitors significantly increased sIPSC frequency and amplitude demonstrating a physiological role of mGluRs in GABAergic transmission. Our results provide a cellular and molecular mechanism to explain the physiological and pathological roles of mGluRs in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | |
Collapse
|
37
|
Abstract
SummaryThe physiological role of thyreoliberin (TRH) is the preservation of homeostasis within four systems (i) the hypothalamic-hypophsysiotropic neuroendocrine system, (ii) the brain stem/midbrain/spinal cord system, (iii) the limbic/cortical system, and (iv) the chronobiological system. Thus TRH, via various cellular mechanisms, regulates a wide range of biological processes (arousal, sleep, learning, locomotive activity, mood) and possesses the potential for unique and widespread applications for treatment of human illnesses. Since the therapeutic potential of TRH is limited by its pharmacological profile (enzymatic instability, short half-life, undesirable effects), several synthetic analogues of TRH were constructed and studied in mono- or adjunct therapy of central nervous system (CNS) disturbances. The present article summarizes the current state of understanding of the physiological role of TRH and describes its putative role in clinical indications in CNS maladies with a focus on the action of TRH analogues.
Collapse
|
38
|
Kondratenko RV, Derevyagin VI, Skrebitsky VG. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells. Neurosci Lett 2010; 476:70-3. [DOI: 10.1016/j.neulet.2010.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
39
|
Deng PY, Xiao Z, Jha A, Ramonet D, Matsui T, Leitges M, Shin HS, Porter JE, Geiger JD, Lei S. Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability. J Neurosci 2010; 30:5136-48. [PMID: 20392936 PMCID: PMC3073615 DOI: 10.1523/jneurosci.5711-09.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/21/2010] [Accepted: 02/27/2010] [Indexed: 02/06/2023] Open
Abstract
Cholecystokinin (CCK), a neuropeptide originally discovered in the gastrointestinal tract, is abundantly distributed in the mammalian brains including the hippocampus. Whereas CCK has been shown to increase glutamate concentration in the perfusate of hippocampal slices and in purified rat hippocampal synaptosomes, the cellular and molecular mechanisms whereby CCK modulates glutamatergic function remain unexplored. Here, we examined the effects of CCK on glutamatergic transmission in the hippocampus using whole-cell recordings from hippocampal slices. Application of CCK increased AMPA receptor-mediated EPSCs at perforant path-dentate gyrus granule cell, CA3-CA3 and Schaffer collateral-CA1 synapses without effects at mossy fiber-CA3 synapses. CCK-induced increases in AMPA EPSCs were mediated by CCK-2 receptors and were not modulated developmentally and transcriptionally. CCK reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that CCK facilitates presynaptic glutamate release. CCK increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. CCK-mediated increases in glutamate release required the functions of phospholipase C, intracellular Ca(2+) release and protein kinase Cgamma. CCK released endogenously from hippocampal interneurons facilitated glutamatergic transmission. Our results provide a cellular and molecular mechanism to explain the roles of CCK in the brain.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Archana Jha
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - David Ramonet
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Toshimitsu Matsui
- Hematology/Oncology, Department of Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-1700, Japan
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Blindern, N-0317, Oslo, Norway, and
| | - Hee-Sup Shin
- Center for Neural Science, Korea Institute of Science and Technology, 136-791, Seoul, Republic of Korea
| | - James E. Porter
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Jonathan D. Geiger
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| |
Collapse
|
40
|
Neuropharmacological profile of l-pGlu-(1-benzyl)-l-His-l-ProNH2, a newer thyrotropin-releasing hormone analog: Effects on seizure models, sodium current, cerebral blood flow and behavioral parameters. Epilepsy Res 2009; 87:223-33. [DOI: 10.1016/j.eplepsyres.2009.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/09/2009] [Accepted: 09/14/2009] [Indexed: 11/21/2022]
|
41
|
Ishibashi H, Nakahata Y, Eto K, Nabekura J. Excitation of locus coeruleus noradrenergic neurons by thyrotropin-releasing hormone. J Physiol 2009; 587:5709-22. [PMID: 19840999 DOI: 10.1113/jphysiol.2009.181420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Locus coeruleus (LC) noradrenergic neurons are implicated in a variety of functions including the regulation of vigilance and the modulation of sensory processing. Thyrotropin-releasing hormone (TRH) is an endogenous neuropeptide that induces a variety of behavioural changes including arousal and antinociception. In the present study, we explored whether the activity of LC noradrenergic neurons is modulated by TRH. Using current-clamp recording from isolated rat LC neurons, we found that TRH increased the firing rate of spontaneous action potentials. The TRH action was mimicked by TRH analogues including taltirelin and TRH-gly. In voltage-clamp recording at a holding potential of 50 mV, TRH produced an inward current associated with a decrease in the membrane K+ conductance. This current was inhibited by the TRH receptor antagonist chlordiazepoxide. Following inhibition of the pH-sensitive K+ conductance by extracellular acidification, the TRH response was fully inhibited. The TRH-induced current was also inhibited by the phospholipase C (PLC) inhibitor U-73122, but not by the protein kinase C inhibitor chelerythrine nor by chelation of intracellular Ca2+ by BAPTA. The recovery from the facilitatory action of TRH on the spike frequency was markedly inhibited by a high concentration of wortmannin. These results suggest that TRH activates LC noradrenergic neurons by decreasing an acid-sensitive K+ conductance via PLC-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate. The present findings demonstrate that TRH activates LC neurons and characterize the underlying signalling mechanisms. The action of TRH on LC neurons may influence a variety of CNS functions related to the noradrenergic system which include arousal and analgesia.
Collapse
Affiliation(s)
- Hitoshi Ishibashi
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.
| | | | | | | |
Collapse
|
42
|
Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, Geiger JD, Liu R, Porter JE, Lei S. GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 2009; 63:230-43. [PMID: 19640481 PMCID: PMC2735825 DOI: 10.1016/j.neuron.2009.06.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/23/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABA(B) receptors, the functions of these receptors in this region remain unexplored. Here, we examined the effects of GABA(B) receptor activation on neuronal excitability in the EC and spatial learning. Application of baclofen, a specific GABA(B) receptor agonist, inhibited significantly neuronal excitability in the EC. GABA(B) receptor-mediated inhibition in the EC was mediated via activating TREK-2, a type of two-pore domain K(+) channels, and required the functions of inhibitory G proteins and protein kinase A pathway. Depression of neuronal excitability in the EC underlies GABA(B) receptor-mediated inhibition of spatial learning as assessed by Morris water maze. Our study indicates that GABA(B) receptors exert a tight control over spatial learning by modulating neuronal excitability in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Chuanxiu Yang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Lalida Rojanathammanee
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Laurel Grisanti
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - John Watt
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Jonathan D. Geiger
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Rugao Liu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - James E. Porter
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
43
|
Xiao Z, Deng PY, Yang C, Lei S. Modulation of GABAergic transmission by muscarinic receptors in the entorhinal cortex of juvenile rats. J Neurophysiol 2009; 102:659-69. [PMID: 19494196 DOI: 10.1152/jn.00226.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse cholinergic innervations from the basal forebrain and activation of cholinergic receptors has been shown to modulate the activities of the principal neurons and promote the intrinsic oscillations in the EC, the effects of cholinergic receptor activation on GABAergic transmission in this brain region have not been determined. We examined the effects of muscarinic receptor activation on GABA(A) receptor-mediated synaptic transmission in the superficial layers of the EC. Application of muscarine dose-dependently increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from the principal neurons in layer II/III via activation of M(3) muscarinic receptors. Muscarine slightly reduced the frequency but had no effects on the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Muscarine reduced the amplitude of IPSCs evoked by extracellular field stimulation and by depolarization of GABAergic interneurons in synaptically connected interneuron and pyramidal neuron pairs. Application of muscarine generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in GABAergic interneurons. Muscarine-induced depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels and independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Our results demonstrate that activation of muscarinic receptors exerts diverse effects on GABAergic transmission in the EC.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | | | |
Collapse
|
44
|
Parmentier R, Kolbaev S, Klyuch BP, Vandael D, Lin JS, Selbach O, Haas HL, Sergeeva OA. Excitation of histaminergic tuberomamillary neurons by thyrotropin-releasing hormone. J Neurosci 2009; 29:4471-83. [PMID: 19357273 PMCID: PMC3198719 DOI: 10.1523/jneurosci.2976-08.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/21/2022] Open
Abstract
The histaminergic tuberomamillary nucleus (TMN) controls arousal and attention, and the firing of TMN neurons is state-dependent, active during waking, silent during sleep. Thyrotropin-releasing hormone (TRH) promotes arousal and combats sleepiness associated with narcolepsy. Single-cell reverse-transcription-PCR demonstrated variable expression of the two known TRH receptors in the majority of TMN neurons. TRH increased the firing rate of most (ca 70%) TMN neurons. This excitation was abolished by the TRH receptor antagonist chlordiazepoxide (CDZ; 50 mum). In the presence of tetrodotoxin (TTX), TRH depolarized TMN neurons without obvious change of their input resistance. This effect reversed at the potential typical for nonselective cation channels. The potassium channel blockers barium and cesium did not influence the TRH-induced depolarization. TRH effects were antagonized by inhibitors of the Na(+)/Ca(2+) exchanger, KB-R7943 and benzamil. The frequency of GABAergic spontaneous IPSCs was either increased (TTX-insensitive) or decreased [TTX-sensitive spontaneous IPSCs (sIPSCs)] by TRH, indicating a heterogeneous modulation of GABAergic inputs by TRH. Facilitation but not depression of sIPSC frequency by TRH was missing in the presence of the kappa-opioid receptor antagonist nor-binaltorphimine. Montirelin (TRH analog, 1 mg/kg, i.p.) induced waking in wild-type mice but not in histidine decarboxylase knock-out mice lacking histamine. Inhibition of histamine synthesis by (S)-alpha-fluoromethylhistidine blocked the arousal effect of montirelin in wild-type mice. We conclude that direct receptor-mediated excitation of rodent TMN neurons by TRH demands activation of nonselective cation channels as well as electrogenic Na(+)/Ca(2+) exchange. Our findings indicate a key role of the brain histamine system in TRH-induced arousal.
Collapse
Affiliation(s)
- Regis Parmentier
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
- Inserm, U628, Physiologie Intégrée du Système d'Éveil, 69373 Lyon Cedex 08, France
| | - Sergej Kolbaev
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Boris P. Klyuch
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - David Vandael
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Jian-Sheng Lin
- Inserm, U628, Physiologie Intégrée du Système d'Éveil, 69373 Lyon Cedex 08, France
| | - Oliver Selbach
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Helmut L. Haas
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Olga A. Sergeeva
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| |
Collapse
|
45
|
Hara J, Gerashchenko D, Wisor JP, Sakurai T, Xie X(S, Kilduff TS. Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci 2009; 29:3705-14. [PMID: 19321767 PMCID: PMC2712668 DOI: 10.1523/jneurosci.0431-09.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 02/03/2009] [Indexed: 11/21/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) has previously been shown to promote wakefulness and to induce arousal from hibernation. Expression of TRH-R1 (TRH receptor 1) is enriched in the tuberal and lateral hypothalamic area (LHA), brain regions in which the hypocretin/orexin (Hcrt) cells are located. Because the Hcrt system is implicated in sleep/wake control, we hypothesized that TRH provides modulatory input to the Hcrt cells. In vitro electrophysiological studies showed that bath application of TRH caused concentration-dependent membrane depolarization, decreased input resistance, and increased firing rate of identified Hcrt neurons. In the presence of tetrodotoxin, TRH induced inward currents that were associated with a decrease in frequency, but not amplitude, of miniature postsynaptic currents (PSCs). Ion substitution experiments suggested that the TRH-induced inward current was mediated in part by Ca(2+) influx. Although TRH did not significantly alter either the frequency or amplitude of spontaneous excitatory PSCs, TRH (100 nm) increased the frequency of spontaneous inhibitory PSCs by twofold without affecting the amplitude of these events, indicating increased presynaptic GABA release onto Hcrt neurons. In contrast, TRH significantly reduced the frequency, but not amplitude, of miniature excitatory PSCs without affecting miniature inhibitory PSC frequency or amplitude, indicating that TRH also reduces the probability of glutamate release onto Hcrt neurons. When injected into the LHA, TRH increased locomotor activity in wild-type mice but not in orexin/ataxin-3 mice in which the Hcrt neurons degenerate postnatally. Together, these results are consistent with the hypothesis that TRH modulates behavioral arousal, in part, through the Hcrt system.
Collapse
Affiliation(s)
- Junko Hara
- Biosciences Division, SRI International, Menlo Park, California 94025
| | | | - Jonathan P. Wisor
- Biosciences Division, SRI International, Menlo Park, California 94025
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Kanazawa University, Kanazawa 920-8640, Japan, and
| | - Xinmin (Simon) Xie
- Biosciences Division, SRI International, Menlo Park, California 94025
- AfaSci, Inc., Burlingame, California 94010
| | - Thomas S. Kilduff
- Biosciences Division, SRI International, Menlo Park, California 94025
| |
Collapse
|
46
|
Xiao Z, Deng PY, Rojanathammanee L, Yang C, Grisanti L, Permpoonputtana K, Weinshenker D, Doze VA, Porter JE, Lei S. Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2 K+ channels. J Biol Chem 2009; 284:10980-91. [PMID: 19244246 DOI: 10.1074/jbc.m806760200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The entorhinal cortex is closely associated with the consolidation and recall of memories, Alzheimer disease, schizophrenia, and temporal lobe epilepsy. Norepinephrine is a neurotransmitter that plays a significant role in these physiological functions and neurological diseases. Whereas the entorhinal cortex receives profuse noradrenergic innervations from the locus coeruleus of the pons and expresses high densities of adrenergic receptors, the function of norepinephrine in the entorhinal cortex is still elusive. Accordingly, we examined the effects of norepinephrine on neuronal excitability in the entorhinal cortex and explored the underlying cellular and molecular mechanisms. Application of norepinephrine-generated hyperpolarization and decreased the excitability of the neurons in the superficial layers with no effects on neuronal excitability in the deep layers of the entorhinal cortex. Norepinephrine-induced hyperpolarization was mediated by alpha(2A) adrenergic receptors and required the functions of Galpha(i) proteins, adenylyl cyclase, and protein kinase A. Norepinephrine-mediated depression on neuronal excitability was mediated by activation of TREK-2, a type of two-pore domain K(+) channel, and mutation of the protein kinase A phosphorylation site on TREK-2 channels annulled the effects of norepinephrine. Our results indicate a novel action mode in which norepinephrine depresses neuronal excitability in the entorhinal cortex by disinhibiting protein kinase A-mediated tonic inhibition of TREK-2 channels.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rajput SK, Krishnamoorthy S, Pawar C, Kaur N, Monga V, Meena CL, Jain R, Sharma SS. Antiepileptic potential and behavioral profile of L-pGlu-(2-propyl)-L-His-L-ProNH2, a newer thyrotropin-releasing hormone analog. Epilepsy Behav 2009; 14:48-53. [PMID: 18952198 DOI: 10.1016/j.yebeh.2008.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/25/2008] [Accepted: 10/05/2008] [Indexed: 11/27/2022]
Abstract
Thyrotropin-releasing hormone (TRH) and its analogs have a number of neurobiological functions and therapeutic uses in disorders of the central nervous system. In this study, the newly synthesized TRH analogs were evaluated for central nervous system activity in pentobarbital-induced sleeping in mice. The most potent TRH analog (L-pGlu-(2-propyl)-L-His-L-ProNH(2) coded as NP-647) was evaluated for its antiepileptic potential in various seizure models in mice in comparison with TRH. Intravenous pretreatment with NP-647 (10 and 20 micromol/kg body wt) significantly delayed the onset and reduced the frequency of convulsions in the pentylenetetrazole model, but not in the maximum electroshock seizure model. Also, it was found to be protective against picrotoxin- and kainic acid-induced seizures. However, NP-647 did not significantly affect theophylline-induced seizures. Further study of the effect of NP-647 on locomotor activity and a functional observational battery revealed that it did not significantly exhibit any undesirable effects as compared with vehicle and TRH. NP-647 did not significantly affect cerebral blood flow, whereas the native peptide TRH markedly increased cerebral blood flow. Furthermore, NP-647 exerted antiepileptic activity without significantly altering plasma thyroid-stimulating hormone levels and mean arterial blood pressure. This suggests that NP-647 is more selective for central nervous system activity and devoid of hormonal and cerebrovascular system effects. In contrast, TRH exhibited cardiac and endocrine effects as marked by significant elevation in mean arterial blood pressure and plasma thyroid-stimulating hormone levels. This study demonstrates that NP-647 has potential antiepileptic activity devoid of undesirable effects and, thus, can be exploited for the prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Satyendra Kumar Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Infantile spasms are an epilepsy syndrome with distinctive features, including age onset during infancy, characteristic epileptic spasms, and specific electroencephalographic patterns (interictal hypsarrhythmia and ictal voltage suppression). Adrenocorticotropic hormone (ACTH) was first employed to treat infantile spasms in 1958, and since then it has been tried in prospective and retrospective studies for infantile spasms. Oral corticosteroids were also used in a few studies for infantile spasms. Variable success in cessation of infantile spasms and normalization of electroencephalograms was demonstrated. However, frequent significant adverse effects are associated with ACTH and oral corticosteroids. Vigabatrin has been used since the 1990s, and shown to be successful in resolution of infantile spasms, especially for infantile spasms associated with tuberous sclerosis. It is associated with visual field constriction, which is often asymptomatic and requires perimetric visual field study to identify. When ACTH, oral corticosteroids, and vigabatrin fail to induce cessation of infantile spasms, other alternative treatments include valproic acid, nitrazepam, pyridoxine, topiramate, zonisamide, lamotrigine, levetiracetam, felbamate, ganaxolone, liposteroid, thyrotropin-releasing hormone, intravenous immunoglobulin and a ketogenic diet. Rarely, infantile spasms in association with biotinidase deficiency, phenylketonuria, and pyridoxine-dependent seizures are successfully treated with biotin, a low phenylalanine diet, and pyridoxine, respectively. For medically intractable infantile spasms, some properly selected patients may have complete cessation of infantile spasms with appropriate surgical treatments.
Collapse
Affiliation(s)
- Chang-Yong Tsao
- Clinical Pediatrics and Neurology, The Ohio State University, College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
49
|
Rodríguez-Molina V, Vargas MA, Joseph-Bravo P, Charli JL. NMDA receptor up-regulates pyroglutamyl peptidase II activity in the rat hippocampus. Neurosci Lett 2008; 449:211-4. [PMID: 19013213 DOI: 10.1016/j.neulet.2008.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/18/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
Abstract
Ecto-peptidases hydrolyze peptides in the extracellular fluid of the brain. This process is critical for defining the strength of peptidergic communication. A few studies suggest that brain ecto-peptidase activities are regulated by brain function but the extracellular messengers involved are generally unknown. Pyroglutamyl peptidase II (PPII) is specific for thyrotropin releasing hormone (TRH), a tripeptide with multiple homeostatic functions in brain. The purpose of this study was to identify regulators of brain PPII activity. Electrical stimulation (multiple tetani) did not change PPII activity in cortical or hippocampal slices. However, in hippocampal slices, blockade of calcium channels with high magnesium, or of L-type calcium channels (LTCC) or NMDA receptors, decreased PPII activity, while blockade of AMPA or GABA(A) receptors did not. Blockade of NMDA receptors did not change PPII mRNA levels but decreased PPII levels. The activity of another ecto-peptidase, aminopeptidase N, was also down regulated by a magnesium blockade, not regulated by NMDA receptor blockade and increased by LTCC blockade. The data show a differential regulation of the activity of ecto-peptidases by that of Ca(2+) channel and that synaptic activity, through the NMDA receptor, specifically regulates that of pyroglutamyl peptidase II.
Collapse
|
50
|
Ogier R, Wrobel L, Raggenbass M. Action of tachykinins in the hippocampus: Facilitation of inhibitory drive to GABAergic interneurons. Neuroscience 2008; 156:527-36. [DOI: 10.1016/j.neuroscience.2008.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/01/2008] [Accepted: 08/02/2008] [Indexed: 12/20/2022]
|