1
|
Liu J, Liu Y, Liu T, Zhao C, Wang Y, Huang K, Xu A, Liu L, Gong L, Lü Z. Transcriptomic profiling revealed the regulatory pathways and key genes associated with cold tolerance in two eel gobies. J Therm Biol 2025; 130:104136. [PMID: 40408822 DOI: 10.1016/j.jtherbio.2025.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/13/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025]
Abstract
Closely related species of the eel goby family (Gobiidae) have evolved divergent resistance to low temperatures, but the molecular mechanisms remain poorly understood. This study used a comparative transcriptomic approach to identify key pathways and genes associated with cold tolerance in two eel goby species. Expression profiles of the cold-tolerant O. lacepedii and the cold-sensitive O. rebecca in control (23 °C) and cold stress groups (15 °C and 11 °C) were analyzed. Differentially expressed genes closely linked to interspecific cold tolerance divergence were identified through transcriptome profiling and Venn diagram analysis. GO and KEGG enrichment analyses revealed that processes related to cellular homeostasis, the PPAR signaling pathway, cellular respiration, and oxidative phosphorylation were activated during the cold tolerance response of eel gobies. WGCNA analysis indicated that the hub genes related to thermogenesis and microtubular stability, specifically PPARGC1A and α-tubulin, may contribute to the high cold tolerance in O. lacepedii. These findings provide key clues for dissection of the molecular mechanisms behind the formation of cold tolerance in eel gobies.
Collapse
Affiliation(s)
- Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Yantao Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianwei Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Cheng Zhao
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Yuzhen Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Kun Huang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - An Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Ke S, Xiang S, Kattel GR, Li D, Tu Z, Shi X. Design and initial evaluation of a novel tubular fishway for the rubber dam on the Huangbai River, a tributary of the Gezhouba Reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125301. [PMID: 40222077 DOI: 10.1016/j.jenvman.2025.125301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Tens of thousands of low-head dams (LD) built in southwest China's river systems have disrupted fish migration pathways, posing a critical challenge for balancing hydropower development with ecological sustainability. An increased number of LD in small mountain river systems in southwest China is suitable for constructing low-cost fish passage facilities under minimal costs, presenting new demands for such dam development in the area. The primary objective of this study was to assess the effectiveness of an innovative low-cost PVC-made tubular fishway based on the hydraulic siphon principle to facilitate the fish passage over dams. The study was conducted at the Huangbai River dam within the Gezhouba Reservoir. Using the radio frequency identification (RFID) technology, we monitored the fish passage performance of the upstream migration of grass carp (Ctenopharyngodon idella) from the dam and quantified key evaluation metrics including attempt rate, passage rate, return rate, and return frequency. Cox proportional hazards regression method was used for modelling fishway attempt rates and passage rates and to identifying key factors affecting the effectiveness of the tubular fishway. Results showed that: (1) the tubular fishway effectively facilitated fish migration through the LD, with an attempt rate of 45.1 % and a passage rate of 56.8 % respectively. (2) The attempt rate was significantly influenced by water temperature, water transparency, and dam spillover conditions (P < 0.05). The attempt rate was low during spillover than non-spillover conditions and increases with rising water temperature but decreased with increasing transparency. (3) Passage rate was primarily affected by water temperature and the attempt number (P < 0.05). Passage rate increased with higher water temperatures along with increased attempts by the target fish. These findings highlight the potential of the tubular fishway as a cost-effective and environmentally sustainable solution for a fish passage in LD. As a first of this kind to develop and test this prototype in southwest China' river systems, our research provides a foundation for future optimization and broader implementation of the tubular fishways in the region.
Collapse
Affiliation(s)
- Senfan Ke
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China; Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, 443002, China
| | - Shiao Xiang
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, 443002, China
| | - Giri Raj Kattel
- Department of Infrastructure Engineering, The University of Melbourne, Australia; Department of Hydraulic Engineering, Tsinghua University, Beijing, China
| | - Dongqing Li
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, 443002, China
| | - Zhiying Tu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China; Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, 443002, China
| | - Xiaotao Shi
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China; Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
3
|
Glover CN, Veilleux HD, Misutka MD. Commentary: Environmental RNA and the assessment of organismal function in the field. Comp Biochem Physiol B Biochem Mol Biol 2025; 275:111036. [PMID: 39313021 DOI: 10.1016/j.cbpb.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Environmental RNA (eRNA) is an emerging technique with significant potential for the assessment of organismal function in field settings. It has the advantage of being non-invasive, facilitating insight into the physiological status of an organism without complications associated with processes such as capture, handling, and transportation from the field to the laboratory. It is hypothesised that eRNA approaches will be especially valuable for assessing sublethal stress of species living in environmental settings undergoing change and could therefore be integral for examining population health and for testing hypotheses regarding organismal physiology developed from laboratory studies. However, the successful application of eRNA approaches requires further data regarding the stability and persistence of eRNA in natural substrates; established and validated relationships between molecular biomarkers and the physiological processes they participate in; and an understanding of the contributions of different epithelia in direct contact with the environment (skin, gill, gut) to the eRNA transcriptome. The utility of microRNA as a component of the eRNA pool should be an area of specific future research focus. Ultimately, eRNA has the potential to provide fundamental physiological information regarding the responses of organisms in their natural settings and could increase the sensitivity and acuity of biomonitoring efforts.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | - Melissa D Misutka
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Azevedo RDSD, Falcão KVG, Almeida SMVD, Araújo MC, Silva-Filho RC, Souza Maia MBD, Amaral IPGD, Leite ACR, de Souza Bezerra R. The tissue-specific nature of physiological zebrafish mitochondrial bioenergetics. Mitochondrion 2024; 77:101901. [PMID: 38777222 DOI: 10.1016/j.mito.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish are a powerful tool to study a myriad of experimental conditions, including mitochondrial bioenergetics. Considering that mitochondria are different in many aspects depending on the tissue evaluated, in the zebrafish model there is still a lack of this investigation. Especially for juvenile zebrafish. In the present study, we examined whether different tissues from zebrafish juveniles show mitochondrial density- and tissue-specificity comparing brain, liver, heart, and skeletal muscle (SM). The liver and brain complex IV showed the highest O2 consumption of all ETC in all tissues (10x when compared to other respiratory complexes). The liver showed a higher potential for ROS generation. In this way, the brain and liver showed more susceptibility to O2- generation when compared to other tissues. Regarding Ca2+ transport, the brain showed greater capacity for Ca2+ uptake and the liver presented low Ca2+ uptake capacity. The liver and brain were more susceptible to producing NO. The enzymes SOD and Catalase showed high activity in the brain, whereas GPx showed higher activity in the liver and CS in the SM. TEM reveals, as expected, a physiological diverse mitochondrial morphology. The essential differences between zebrafish tissues investigated probably reflect how the mitochondria play a diverse role in systemic homeostasis. This feature may not be limited to normal metabolic functions but also to stress conditions. In summary, mitochondrial bioenergetics in zebrafish juvenile permeabilized tissues showed a tissue-specificity and a useful tool to investigate conditions of redox system imbalance, mainly in the liver and brain.
Collapse
Affiliation(s)
- Rafael David Souto de Azevedo
- Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Garanhuns, PE, Brazil.
| | - Kivia Vanessa Gomes Falcão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | - Marlyete Chagas Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | | | | | | | - Ranilson de Souza Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
5
|
Ning Z, Chen Y, Wang Z, Zhou H, Sun M, Yao T, Mu W. Transcriptome, histological, and physiological responses of Amur sleeper (Perccottus glenii) during cold stress, freezing, and recovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101192. [PMID: 38278046 DOI: 10.1016/j.cbd.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Freeze tolerance is a survival strategy employed by some ectotherms living in extremely cold environments. Some fish in extremely cold areas can recover from their frozen state, but they also have to endure cold stress. Amur sleeper (Perccottus glenii) can recover from a completely frozen state. To explore the response of freeze-resistant fish to low temperatures, we analyzed histological alterations, and antioxidant and carbohydrate-lipid metabolizing enzymes of P. glenii under low temperatures. So far, sensory genes regulating P. glenii during cold stress, freezing, and recovery have not been identified. Ultrastructure results indicated that glycogen content and mitochondrial ridge decreased during cold stress and freezing, whereas the number of endoplasmic reticulum increased during recovery. Plasma glucose and glycerol levels of the three treatment groups significantly increased. Lactate dehydrogenase and pyruvate kinase levels significantly increased during cold stress and freezing, and hexokinase levels significantly increased during cold stress. In total, 30,560 unigenes were found (average length 1724 bp, N50 2843 bp). In addition, 7370 differentially expressed genes (DEGs; including 2938 upregulated genes and 4432 downregulated genes) were identified. KEGG analysis revealed that the DEGs were enriched in carbohydrate and lipid metabolism, lipid synthesis, immune system, and anti-apoptosis. Genes involved in glycolysis and phospholipid metabolism were significantly upregulated during cold stress; genes related to circadian rhythm, oxidative phosphorylation, and lipid synthesis were significantly upregulated during freezing; and genes involved in the immune system and anti-apoptosis were significantly upregulated during recovery. Our results attempt to offer new insights into the physiological mechanisms of complex adaptation in P. glenii and provide useful information for future studies on the mechanism underlying freezing/recovery in animals.
Collapse
Affiliation(s)
- Zhaoyang Ning
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zijian Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Haishui Zhou
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Mingyang Sun
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tiehui Yao
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
6
|
Perelló-Amorós M, Fernández-Borràs J, Yu S, Sánchez-Moya A, García de la serrana D, Gutiérrez J, Blasco J. Improving the Aerobic Capacity in Fingerlings of European Sea Bass ( Dicentrarchus labrax) through Moderate and Sustained Exercise: A Metabolic Approach. Animals (Basel) 2024; 14:274. [PMID: 38254443 PMCID: PMC10812480 DOI: 10.3390/ani14020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Sustained swimming induces beneficial effects on growth and energy metabolism in some fish species. However, the absence of a standardized exercise regimen that guarantees an optimal response to physical activity is due to the anatomical, behavioral, and physiological differences among species, and the different conditions of tests applied, which are especially notable for the early stages of cultured species. The objective of this study was to assess the growth and metabolic responses of European sea bass submitted to continuous and moderate exercise exposure, selecting a practical swimming speed from swimming tests of groups of five fingerlings. The exercise-effects trial was carried out with 600 sea bass fingerlings (3-5 g body weight) distributed in two groups (control: voluntary swimming; exercised: under sustained swimming at 1.5 body lengths·s-1). After 6 weeks, growth parameters and proximal composition of both muscles were not altered by sustained swimming, but an increased synthetic capacity (increased RNA/DNA ratio) and more efficient use of proteins (decreased ΔN15) were observed in white muscle. The gene expression of mitochondrial proteins in white and red muscle was not affected by exercise, except for ucp3, which increased. The increase of UCP3 and Cox4 protein expression, as well as the higher COX/CS ratio of enzyme activity in white muscle, pointed out an enhanced oxidative capacity in this tissue during sustained swimming. In the protein expression of red muscle, only CS increased. All these metabolic adaptations to sustained exercise were also reflected in an enhanced maximum metabolic rate (MMR) with higher aerobic scope (AMS) of exercised fish in comparison to the non-trained fish, during a swimming test. These results demonstrated that moderate sustained swimming applied to sea bass fingerlings can improve the physical fitness of individuals through the enhancement of their aerobic capacities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (M.P.-A.); (J.F.-B.); (S.Y.); (A.S.-M.); (D.G.d.l.s.); (J.G.)
| |
Collapse
|
7
|
Scheuffele H, Todd EV, Donald JA, Clark TD. Daily thermal variability does not modify long-term gene expression relative to stable thermal environments: A case study of a tropical fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111532. [PMID: 37816418 DOI: 10.1016/j.cbpa.2023.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Global warming is leading to an increase in the frequency and intensity of extreme weather events, magnifying the breadth of temperatures faced by ectotherms across days and seasons. Despite the importance and ecological relevance of diurnal thermal variability, the vast majority of knowledge on gene expression patterns and physiology stems from animals acclimated to constant temperatures or in the early stages of exposure to a new temperature regime. If heterothermal environments modulate responses differently from constant thermal environments, our existing capacity to forecast impacts of climate warming may be compromised. To address this knowledge gap, we acclimated barramundi (Lates calcarifer) to 23 °C, 29 °C (optimal), 35 °C and to thermal cycling conditions (23-35 °C daily with a mean of 29 °C) and sampled liver and white muscle tissue before acclimation and after 2 and 17 weeks of acclimation. NanoString nCounter technologies were used to measure expression of 20 genes related to metabolism, growth and maintenance of cellular homeostasis. Acclimation to cool and warm conditions caused predictable changes in whole-animal performance (metabolism and growth) and the underlying gene expression patterns. Acclimation to a cycling temperature regime did not change the molecular regulation of metabolism or growth compared with barramundi acclimated to constant 29 °C, nor did it cause any discernible effects on whole-animal performance. However, the heat shock response was higher in the former group, suggesting that barramundi under a daily temperature cycle have an increased need for cellular chaperoning to minimise detrimental effects of temperature on proteins. We conclude that the genetic regulation of metabolism and growth may be more dependent on the mean daily temperature than on the daily temperature range.
Collapse
Affiliation(s)
- Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.
| | - Erica V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - John A Donald
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/JohnDon17043551
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/Timothy_D_Clark
| |
Collapse
|
8
|
Rubin AM, Seebacher F. Feeding frequency does not interact with BPA exposure to influence metabolism or behaviour in zebrafish (Danio rerio). Physiol Behav 2024; 273:114403. [PMID: 37939830 DOI: 10.1016/j.physbeh.2023.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Resource limitation can constrain energy (ATP) production, and thereby affect locomotion and behaviour such as exploration of novel environments and boldness. Consequently, ecological processes such as dispersal and interactions within and between species may be influenced by food availability. Energy metabolism, and behaviour are regulated by endocrine signalling, and may therefore be impacted by endocrine disrupting compounds (EDCs) including bisphenol A (BPA) derived from plastic manufacture and pollution. It is important to determine the impacts of these novel environmental contexts to understand how human activity alters individual physiology and behaviour and thereby populations. Our aim was to determine whether BPA exposure interacts with feeding frequency to alter metabolism and behaviour. In a fully factorial experiment, we show that low feeding frequency reduced zebrafish (Danio rerio) mass, condition, resting metabolic rates, total distance moved and speed in a novel arena, as well as anxiety indicated by the number of times fish returned to a dark shelter. However, feeding frequency did not significantly affect maximal metabolic rates, aerobic scope, swimming performance, latency to leave a shelter, or metabolic enzyme activities (citrate synthase and lactate dehydrogenase). Natural or anthropogenic fluctuation in food resources can therefore impact energetics and movement of animals with repercussions for ecological processes such as dispersal. BPA exposure reduced LDH activity and body mass, but did not interact with feeding frequency. Hence, behaviour of adult fish is relatively insensitive to disruption by BPA. However, alteration of LDH activity by BPA could disrupt lactate metabolism and signalling and together with reduction in body mass could affect size-dependent reproductive output. BPA released by plastic manufacture and pollution can thereby impact conservation and management of natural resources.
Collapse
Affiliation(s)
- Alexander M Rubin
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia.
| |
Collapse
|
9
|
Ikeda D, Fujita S, Toda K, Yaginuma Y, Kan-no N, Watabe S. Cold-induced muscle atrophy in zebrafish: Insights from swimming activity and gene expression analysis. Biochem Biophys Rep 2023; 36:101570. [PMID: 37965068 PMCID: PMC10641114 DOI: 10.1016/j.bbrep.2023.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
The investigation into the effects of cold acclimation on fish skeletal muscle function and its potential implications for muscle atrophy is of great interest to us. This study examines how rearing zebrafish at low temperatures affects their locomotor activity and the expression of genes associated with muscle atrophy. Zebrafish were exposed to temperatures ranging from 10 °C to 25 °C, and their swimming distance was measured. The expression levels of important muscle atrophy genes, Atrogin-1 and MuRF1, were also evaluated. Our findings show that swimming activity significantly decreases when the water temperature ranges from 10 °C to 15 °C, indicating a decrease in voluntary movement. Additionally, gene expression analysis shows a significant increase in the expression of Atrogin-1 and MuRF1 at 10 °C. This up-regulation could lead to muscle atrophy caused by decreased activity in cold temperatures. To investigate the effects of exercise on reducing muscle atrophy, we subjected zebrafish to forced swimming at a temperature of 8 °C for ten days. This treatment significantly reduced the expression of Atrogin-1 and MuRF1, emphasizing the importance of muscle stimulation in preventing muscle atrophy in zebrafish. These findings suggest that zebrafish can serve as a valuable model organism for studying muscle atrophy and can be utilized in drug screening for muscle atrophy-related disorders. Cold-reared zebrafish provide a practical and ethical approach to inducing disuse muscle atrophy, providing valuable insights into potential therapeutic strategies for addressing skeletal muscle atrophy.
Collapse
Affiliation(s)
- Daisuke Ikeda
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Seina Fujita
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kaito Toda
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuma Yaginuma
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Nobuhiro Kan-no
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
10
|
Cahill T, Chan S, Overton IM, Hardiman G. Transcriptome Profiling Reveals Enhanced Mitochondrial Activity as a Cold Adaptive Strategy to Hypothermia in Zebrafish Muscle. Cells 2023; 12:1366. [PMID: 37408201 PMCID: PMC10216211 DOI: 10.3390/cells12101366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- JLABS at the Children’s National Research and Innovation Campus, Washington, DC 20012, USA
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
11
|
Cahill T, da Silveira WA, Renaud L, Wang H, Williamson T, Chung D, Chan S, Overton I, Hardiman G. Investigating the effects of chronic low-dose radiation exposure in the liver of a hypothermic zebrafish model. Sci Rep 2023; 13:918. [PMID: 36650199 PMCID: PMC9845366 DOI: 10.1038/s41598-022-26976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Mankind's quest for a manned mission to Mars is placing increased emphasis on the development of innovative radio-protective countermeasures for long-term space travel. Hibernation confers radio-protective effects in hibernating animals, and this has led to the investigation of synthetic torpor to mitigate the deleterious effects of chronic low-dose-rate radiation exposure. Here we describe an induced torpor model we developed using the zebrafish. We explored the effects of radiation exposure on this model with a focus on the liver. Transcriptomic and behavioural analyses were performed. Radiation exposure resulted in transcriptomic perturbations in lipid metabolism and absorption, wound healing, immune response, and fibrogenic pathways. Induced torpor reduced metabolism and increased pro-survival, anti-apoptotic, and DNA repair pathways. Coupled with radiation exposure, induced torpor led to a stress response but also revealed maintenance of DNA repair mechanisms, pro-survival and anti-apoptotic signals. To further characterise our model of induced torpor, the zebrafish model was compared with hepatic transcriptomic data from hibernating grizzly bears (Ursus arctos horribilis) and active controls revealing conserved responses in gene expression associated with anti-apoptotic processes, DNA damage repair, cell survival, proliferation, and antioxidant response. Similarly, the radiation group was compared with space-flown mice revealing shared changes in lipid metabolism.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Willian Abraham da Silveira
- School of Health, Science and Wellbeing, Department of Biological Sciences, Science Centre, Staffordshire University, Leek Road, Stoke-On-Trent, ST4 2DF, UK
- International Space University, 1 Rue Jean-Dominique Cassini, 67400, Illkirch-Graffenstaden, France
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hao Wang
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Tucker Williamson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
- JLABS at the Children's National Research and Innovation Campus, Washington, DC, 20012, USA
| | - Ian Overton
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK.
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
12
|
Patel N, Ivantsova E, Konig I, Souders CL, Martyniuk CJ. Perfluorotetradecanoic Acid (PFTeDA) Induces Mitochondrial Damage and Oxidative Stress in Zebrafish ( Danio rerio) Embryos/Larvae. TOXICS 2022; 10:776. [PMID: 36548609 PMCID: PMC9785682 DOI: 10.3390/toxics10120776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Industrial and consumer products, such as pesticides, lubricants, and cosmetics, can contain perfluorinated compounds (PFCs). Although many short-chain PFCs have been linked to physiological and behavioral changes in fish, there are limited data on longer-chain PFCs. The objective of this study was to determine the potential impact of perfluorotetradecanoic acid (PFTeDA) exposure on zebrafish (Danio rerio) during early developmental stages. We measured several endpoints including gene expression, mitochondrial bioenergetics, and locomotor activity in zebrafish. Survival, timing of hatching, and deformity frequency were unaffected by PFTeDA at the concentrations tested (0.01, 0.1, 1, and 10 µM) over a 7-day exposure period. The expression levels of mitochondrial-related genes (cox1 and mt-nd3) and oxidative stress-related genes (cat, hsp70, and hsp90a) were increased in larval fish with exposure to 10 µM PFTeDA; however, there was no change in oxidative respiration of embryos (i.e., basal respiration and oligomycin-induced ATP-linked respiration). Reactive oxygen species were reduced in larvae treated with 10 µM PFTeDA, coinciding with the increased transcription of antioxidant defense genes. Both the visual motor response test and light-dark preference test were conducted on 7 dpf larvae and yielded no significant findings. This study improves current knowledge regarding toxicity mechanisms for longer-chain PFCs such as PFTeDA.
Collapse
Affiliation(s)
- Neep Patel
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Department of Chemistry, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil
| | - Christopher L. Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
- UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Li X, Liu S, Qi D, Qi H, Wang Y, Zhao K, Tian F. Genome-wide identification and expression of the peroxisome proliferator-activated receptor gene family in the Tibetan highland fish Gymnocypris przewalskii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1685-1699. [PMID: 36469183 DOI: 10.1007/s10695-022-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) plays an important role in the regulation of lipid metabolism and has been widely identified in diverse species. Gymnocypris przewalskii is a native fish of the Qinghai Tibetan Plateau that survives in a chronically cold environment. In the current study, we conducted genome-wide identification of PPAR genes, revealing the existence of seven PPARs in the G. przewalskii genome. Collinearity was observed between two copies of PPARαb and PPARγ in G. przewalskii, suggesting that the additional copy might be gained through whole genome duplication. Both phylogenetic and multiple sequence alignment analyses indicated that PPARs in G. przewalskii were conserved with teleosts. The cold treatment (10 °C and 4 °C) led to the developmental delay of G. przewalskii embryos. Continuous expression of PPARs was observed during the embryonic development of G. przewalskii under normal and cold conditions, with significantly different transcriptional patterns. These results indicated that PPARs participated in the embryonic development of G. przewalskii, and were involved in the cold response during development. The current study proposed a potential role of PPARs in the cold response in the embryonic development of G. przewalskii, which shed light on understanding cold adaptation in Tibetan highland fish.
Collapse
Affiliation(s)
- Xiaohuan Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Dubale NM, Kapron CM, West SL. Commentary: Zebrafish as a Model for Osteoporosis-An Approach to Accelerating Progress in Drug and Exercise-Based Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15866. [PMID: 36497941 PMCID: PMC9739463 DOI: 10.3390/ijerph192315866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Osteoporosis (OP) is a degenerative disease characterized by reduced bone strength and increased fracture risk. As the global population continues to age, the prevalence and economic burden of osteoporosis can be expected to rise substantially, but there remain various gaps in the field of OP care. For instance, there is a lack of anti-fracture drugs with proven long-term efficacy. Likewise, though exercise remains widely recommended in OP prevention and management, data regarding the safety and efficacy for patients after vertebral fracture remain limited. This lack of evidence may be due to the cost and inherent difficulties associated with exercise-based OP research. Thus, the current research landscape highlights the need for novel research strategies that accelerate OP drug discovery and allow for the low-cost study of exercise interventions. Here, we outline an example of one strategy, the use of zebrafish, which has emerged as a potential model for the discovery of anti-osteoporosis therapeutics and study of exercise interventions. The strengths, limitations, and potential applications of zebrafish in OP research will be outlined.
Collapse
Affiliation(s)
- Natnaiel M. Dubale
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Carolyn M. Kapron
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Sarah L. West
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Department of Kinesiology, Trent University, Peterborough, ON K9L 0G2, Canada
- Trent/Fleming School of Nursing, Trent University, Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
15
|
Li S, Liu Y, Li B, Ding L, Wei X, Wang P, Chen Z, Han S, Huang T, Wang B, Sun Y. Physiological responses to heat stress in the liver of rainbow trout (Oncorhynchus mykiss) revealed by UPLC-QTOF-MS metabolomics and biochemical assays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113949. [PMID: 35999764 DOI: 10.1016/j.ecoenv.2022.113949] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the world's most widely farmed cold-water fish. However, the rise in water temperature caused by global warming has seriously restricted the development of rainbow trout aquaculture. In this study, we investigated the physiological responses in the liver of rainbow trout exposed to 20 ℃ and 24 ℃ and returning to the initial temperature (14 ℃) by combining biochemical analyses and UPLC-QTOF-MS metabolomics. The results of the biochemical analysis showed that serum aminotransferase, lysozyme, total bilirubin, alkaline phosphatase and liver superoxide dismutase, glutathione peroxidase, and malondialdehyde in rainbow trout under heat stress changed significantly. Even after the temperature recovery, some of the above indicators were still affected. Compared to the control group, 115, 130, and 121 differentially expressed metabolites were identified in the 20 ℃, 24 ℃, and recovery groups, respectively. Further pathway enrichment of these metabolites revealed that heat stress mainly affected the linoleic acid metabolism, α-linolenic acid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism in the liver of rainbow trout, and continuously affected these metabolic pathways during the recovery period. Notably, the enrichment of glutathione metabolic pathways was consistent with the changes in glutathione peroxidase in the biochemical results. The results above suggest that heat stress can induce immune responses and oxidative stress inside the rainbow trout. After temperature recovery, some of the hepatic functions of fish return to normal gradually. The biochemical analysis and UPLC-QTOF-MS metabolomics tools provide insight into the physiological regulation of rainbow trout in response to heat stress.
Collapse
Affiliation(s)
- Shanwei Li
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bolun Li
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaofeng Wei
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Shicheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Tianqing Huang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Bingqian Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Gomez Isaza DF, Rodgers EM. Exercise training does not affect heat tolerance in Chinook salmon (Oncorhynchus tshawytscha). Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111229. [PMID: 35500866 DOI: 10.1016/j.cbpa.2022.111229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/21/2023]
Abstract
The progression of climate warming will expose ectotherms to transient heatwave events and temperatures above their tolerance range at increased frequencies. It is therefore pivotal that we understand species' physiological limits and the capacity for various controls to plastically alter these thresholds. Exercise training could have beneficial impacts on organismal heat tolerance through improvements in cardio-respiratory capacity, but this remains unexplored. Using juvenile Chinook salmon (Oncorhynchus tshawytscha), we tested the hypothesis that exercise training improves heat tolerance through enhancements in oxygen-carrying capacity. Fish were trained once daily at 60% of their maximum sustainable swim speed, UCRIT, for 60 min. Tolerance to acute warming was assessed following three weeks of exercise training, measured as the critical thermal maximum (CTMAX). CTMAX measurements were coupled with examinations of the oxygen carrying capacity (haematocrit, haemoglobin concentration, relative ventricle size, and relative splenic mass) as critical components of the oxygen transport cascade in fish. Contrary to our hypothesis, we found that exercise training did not raise the CTMAX of juvenile Chinook salmon with a mean CTMAX increase of just 0.35 °C compared to unexercised control fish. Training also failed to improve the oxygen carrying capacity of fish. Exercise training remains a novel strategy against acute warming that requires substantial fine-tuning before it can be applied to the management of commercial and wild fishes.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia. https://twitter.com/@_danielgomez94
| | - Essie M Rodgers
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
17
|
Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm. Nat Ecol Evol 2022; 6:405-417. [PMID: 35256809 DOI: 10.1038/s41559-022-01686-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Identifying factors that influence how ectothermic animals respond physiologically to changing temperatures is of high importance given current threats of global climate change. Host-associated microbial communities impact animal physiology and have been shown to influence host thermal tolerance in invertebrate systems. However, the role of commensal microbiota in the thermal tolerance of ectothermic vertebrates is unknown. Here we show that experimentally manipulating the tadpole microbiome through environmental water sterilization reduces the host's acute thermal tolerance to both heat and cold, alters the thermal sensitivity of locomotor performance, and reduces animal survival under prolonged heat stress. We show that these tadpoles have reduced activities of mitochondrial enzymes and altered metabolic rates compared with tadpoles colonized with unmanipulated microbiota, which could underlie differences in thermal phenotypes. These results demonstrate a strong link between the microbiota of an ectothermic vertebrate and the host's thermal tolerance, performance and fitness. It may therefore be important to consider host-associated microbial communities when predicting species' responses to climate change.
Collapse
|
18
|
Lotic Environment Affects Morphological Characteristics and Energy Metabolism of Juvenile Grass Carp Ctenopharyngodon idella. WATER 2022. [DOI: 10.3390/w14071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effect of a lotic environment on morphological characteristics and energy metabolism in juvenile grass carp Ctenopharyngodon idella. The fish were stocked in the lotic environment and forced to swim for 12 h per day for 4 weeks at three water current velocities of 0.5, 2, and 4 body length s−1 (Bl s−1). The control fish were stocked in the lentic environment with water current velocities of 0 Bl s−1. The results showed that lotic environment significantly increased body weight, body length, and condition factor of grass carp. The first principal component (PC1) characterized by measured overall body size suggested that fish in a lotic environment had body stoutness and wider tail stalk. Standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic swimming performance (Ucrit) were elevated with the increased water flow and positively correlated with PC1. The 4 Bl s−1 group showed significantly decreased contents of serum glucose and muscular glycogen, and a significantly increased level of serum lactic acid. The mRNA expression levels of AMP-activated protein kinase-phosphorylate PPAR γ coactivator 1 α-nuclear respiratory factor 1 (AMPK-PGC1α-NRF1) pathway-related genes were significantly upregulated in red muscle of grass carp in the lotic environment. Water flow environment at 4 Bl s−1 significantly increased ratios of metabolic enzymes (lactate dehydrogenase/citrate synthase) and cytochrome c oxidase/citrate synthase) in the muscle. The relationship between morphological characteristics and metabolic capacity suggested that the body size of grass carp in a lotic environment was shaped to promote energy metabolism. The study identified the evidence of the mechanism and relationship of the trade-off between energy and morphology in grass carp.
Collapse
|
19
|
Tamai S, Fujita SI, Komine R, Kanki Y, Aoki K, Watanabe K, Takekoshi K, Sugasawa T. Acute cold stress induces transient MuRF1 upregulation in the skeletal muscle of zebrafish. Biochem Biophys Res Commun 2022; 608:59-65. [PMID: 35390673 DOI: 10.1016/j.bbrc.2022.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022]
Abstract
Cryotherapy is one of the most common treatments for trauma or fatigue in the field of sports medicine. However, the molecular biological effects of acute cold exposure on skeletal muscle remain unclear. Therefore, we used zebrafish, which have recently been utilized as an animal model for skeletal muscle, to comprehensively investigate and selectively clarify the time-course changes induced by cryotherapy. Zebrafish were exposed intermittently to cold stimulation three times for 15 min each. Thereafter, skeletal muscle samples were collected after 15 min and 1, 2, 4, and 6 h. mRNA sequencing revealed the involvement of trim63a, fbxo32, fbxo30a, and klhl38b in "protein ubiquitination" from the top 10 most upregulated genes. Subsequently, we examined the time-course changes of the four genes by quantitative PCR, and their expression peaked 2 h after cryotherapy and returned to baseline after 6 h. Moreover, the proteins encoded by trim63a and fbxo32 (muscle-specific RING finger protein 1 [MuRF1] and muscle atrophy F-box, respectively), which are known to be major genes encoding E3 ubiquitin ligases, were examined by western blotting, and MuRF1 expression displayed similar temporal changes as trim63a expression. These findings suggest that acute cold exposure transiently upregulates E3 ubiquitin ligases, especially MuRF1; thus, cryotherapy may contribute to the treatment of trauma or fatigue by promoting protein processing.
Collapse
Affiliation(s)
- Shinsuke Tamai
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shin-Ichiro Fujita
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ritsuko Komine
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuharu Kanki
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kai Aoki
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Koichi Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Takekoshi
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Department of Sports Medicine Analysis, Open Facility Network Office, Research Facility Center for Science and Technology, University of Tsukuba, Japan.
| |
Collapse
|
20
|
van de Pol ILE, Hermaniuk A, Verberk WCEP. Interacting Effects of Cell Size and Temperature on Gene Expression, Growth, Development and Swimming Performance in Larval Zebrafish. Front Physiol 2021; 12:738804. [PMID: 34950046 PMCID: PMC8691434 DOI: 10.3389/fphys.2021.738804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cell size may be important in understanding the thermal biology of ectotherms, as the regulation and consequences of cell size appear to be temperature dependent. Using a recently developed model system of triploid zebrafish (which have around 1.5-fold larger cells than their diploid counterparts) we examine the effects of cell size on gene expression, growth, development and swimming performance in zebrafish larvae at different temperatures. Both temperature and ploidy affected the expression of genes related to metabolic processes (citrate synthase and lactate dehydrogenase), growth and swimming performance. Temperature also increased development rate, but there was no effect of ploidy level. We did find interactive effects between ploidy and temperature for gene expression, body size and swimming performance, confirming that the consequences of cell size are temperature dependent. Triploids with larger cells performed best at cool conditions, while diploids performed better at warmer conditions. These results suggest different selection pressures on ectotherms and their cell size in cold and warm habitats.
Collapse
Affiliation(s)
- Iris Louise Eleonora van de Pol
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Adam Hermaniuk
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| | | |
Collapse
|
21
|
Yu X, Ozorio ROA, Magnoni L. Sustained swimming exercise training decreases the individual variation in the metabolic phenotype of gilthead sea bream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2021; 262:111077. [PMID: 34534677 DOI: 10.1016/j.cbpa.2021.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Cultured fish can be induced to swim, although the suitability and benefits remain to be tested. Sustained swimming exercise (SSE) training and detraining (DET) were applied in juvenile gilthead sea bream (Sparus aurata) and the metabolic rates were investigated. Fish with a total body mass of 80.5 ± 1.5 g and total length 17.2 ± 0.1 cm were maintained untrained (spontaneously swimming activity, UNT), swim-trained (induced sustained swimming activity, SSE) at 1 BL s-1 for 28 days, or detrained (28 days of swimming followed by 10 days of untraining, DET). Standard metabolic rate (SMR), maximum metabolic rate (MMR), and excess post-exercise oxygen consumption (EPOC) were assessed (n = 10). In addition, the effects of SSE training (51 days) on blood and plasma parameters were investigated before and immediately after applying a high-intensity swimming (HIS) protocol. SMR, MMR, and EPOC values were not different between SSE, UNT, or DET fish (143.2, 465.5 mg O2 kg-1 h-1, and 459.1 mg O2 kg-1, respectively). Spite the lack of differences between treatments, the dispersion in the residuals for SMR, MMR, and absolute aerobic scope (AAS) values followed the order UNT > DET > SSE, indicating that swim training decreases the individual variation of these metabolic parameters. Haematological parameters, plasma glucose, lactate, and cortisol levels were similar between SSE and UNT groups before HIS. Plasma glucose and lactate levels increased in both groups after HIS, being higher in the SSE group. Plasma cortisol levels were similar between both groups after HIS. Results suggest that SSE training improves energy use and reduces individual variation in SMR and MMR, an effect that declines with detraining.
Collapse
Affiliation(s)
- Xiaoming Yu
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; College of Fisheries and Life Science, Dalian Ocean University, China
| | - Rodrigo O A Ozorio
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - LeonardoJ Magnoni
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| |
Collapse
|
22
|
Le Roy A, Mazué GPF, Metcalfe NB, Seebacher F. Diet and temperature modify the relationship between energy use and ATP production to influence behavior in zebrafish ( Danio rerio). Ecol Evol 2021; 11:9791-9803. [PMID: 34306662 PMCID: PMC8293724 DOI: 10.1002/ece3.7806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 11/14/2022] Open
Abstract
Food availability and temperature influence energetics of animals and can alter behavioral responses such as foraging and spontaneous activity. Food availability, however, is not necessarily a good indicator of energy (ATP) available for cellular processes. The efficiency of energy transduction from food-derived substrate to ATP in mitochondria can change with environmental context. Our aim was to determine whether the interaction between food availability and temperature affects mitochondrial efficiency and behavior in zebrafish (Danio rerio). We conducted a fully factorial experiment to test the effects of feeding frequency, acclimation temperature (three weeks to 18 or 28°C), and acute test temperature (18 and 28°C) on whole-animal oxygen consumption, mitochondrial bioenergetics and efficiency (ADP consumed per oxygen atom; P:O ratio), and behavior (boldness and exploration). We show that infrequently fed (once per day on four days per week) zebrafish have greater mitochondrial efficiency than frequently fed (three times per day on five days per week) animals, particularly when warm-acclimated. The interaction between temperature and feeding frequency influenced exploration of a novel environment, but not boldness. Both resting rate of producing ATP and scope for increasing it were positively correlated with time spent exploring and distance moved in standardized trials. In contrast, behavior was not associated with whole-animal aerobic (oxygen consumption) scope, but exploration was positively correlated with resting oxygen consumption rates. We highlight the importance of variation in both metabolic (oxygen consumption) rate and efficiency of producing ATP in determining animal performance and behavior. Oxygen consumption represents energy use, and P:O ratio is a variable that determines how much of that energy is allocated to ATP production. Our results emphasize the need to integrate whole-animal responses with subcellular traits to evaluate the impact of environmental conditions on behavior and movement.
Collapse
Affiliation(s)
- Amélie Le Roy
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
| | | | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Frank Seebacher
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
23
|
Perelló-Amorós M, Fernández-Borràs J, Sánchez-Moya A, Vélez EJ, García-Pérez I, Gutiérrez J, Blasco J. Mitochondrial Adaptation to Diet and Swimming Activity in Gilthead Seabream: Improved Nutritional Efficiency. Front Physiol 2021; 12:678985. [PMID: 34220544 PMCID: PMC8249818 DOI: 10.3389/fphys.2021.678985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
Sustained exercise promotes growth in different fish species, and in gilthead seabream we have demonstrated that it improves nutrient use efficiency. This study assesses for differences in growth rate, tissue composition and energy metabolism in gilthead seabream juveniles fed two diets: high-protein (HP; 54% protein, 15% lipid) or high energy (HE; 50% protein, 20% lipid), under voluntary swimming (VS) or moderate-to-low-intensity sustained swimming (SS) for 6 weeks. HE fed fish under VS conditions showed lower body weight and higher muscle lipid content than HP fed fish, but no differences between the two groups were observed under SS conditions. Irrespective of the swimming regime, the white muscle stable isotopes profile of the HE group revealed increased nitrogen and carbon turnovers. Nitrogen fractionation increased in the HP fed fish under SS, indicating enhanced dietary protein oxidation. Hepatic gene expression markers of energy metabolism and mitochondrial biogenesis showed clear differences between the two diets under VS: a significant shift in the COX/CS ratio, modifications in UCPs, and downregulation of PGC1a in the HE-fed fish. Swimming induced mitochondrial remodeling through upregulation of fusion and fission markers, and removing almost all the differences observed under VS. In the HE-fed fish, white skeletal muscle benefited from the increased energy demand, amending the oxidative uncoupling produced under the VS condition by an excess of lipids and the pro-fission state observed in mitochondria. Contrarily, red muscle revealed more tolerant to the energy content of the HE diet, even under VS conditions, with higher expression of oxidative enzymes (COX and CS) without any sign of mitochondrial stress or mitochondrial biogenesis induction. Furthermore, this tissue had enough plasticity to shift its metabolism under higher energy demand (SS), again equalizing the differences observed between diets under VS condition. Globally, the balance between dietary nutrients affects mitochondrial regulation due to their use as energy fuels, but exercise corrects imbalances allowing practical diets with lower protein and higher lipid content without detrimental effects.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Albert Sánchez-Moya
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Emilio J Vélez
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR 1419 Nutrition Métabolisme et Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Isabel García-Pérez
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquin Gutiérrez
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Pengam M, Amérand A, Simon B, Guernec A, Inizan M, Moisan C. How do exercise training variables stimulate processes related to mitochondrial biogenesis in slow and fast trout muscle fibres? Exp Physiol 2021; 106:938-957. [PMID: 33512052 DOI: 10.1113/ep089231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? Exercise is known to promote mitochondrial biogenesis in skeletal muscle, but what are the most relevant training protocols to stimulate it? What is the main finding and its importance? As in mammals, training in rainbow trout affects slow and fast muscle fibres differently. Exercise intensity, relative to volume, duration and frequency, is the most relevant training variable to stimulate the processes related to mitochondrial biogenesis in both red and white muscles. This study offers new insights into muscle fibre type-specific transcription and expression of genes involved in mitochondrial adaptations following training. ABSTRACT Exercise is known to be a powerful way to improve health through the stimulation of mitochondrial biogenesis in skeletal muscle, which undergoes cellular and molecular adaptations. One of the current challenges in human is to define the optimal training stimulus to improve muscle performance. Fish are relevant models for exercise training physiology studies mainly because of their distinct slow and fast muscle fibres. Using rainbow trout, we investigated the effects of six different training protocols defined by manipulating specific training variables (such as exercise intensity, volume, duration and frequency), on mRNAs and some proteins related to four subsystems (AMP-activated protein kinase-peroxisome proliferator-activated receptor γ coactivator-1α signalling pathway, mitochondrial function, antioxidant defences and lactate dehydrogenase (LDH) metabolism) in both red and white muscles (RM and WM, respectively). In both muscles, high-intensity exercise stimulated more mRNA types and enzymatic activities related to mitochondrial biogenesis than moderate-intensity exercise. For volume, duration and frequency variables, we demonstrated fibre type-specific responses. Indeed, for high-intensity interval training, RM transcript levels are increased by a low training volume, but WM transcript responses are stimulated by a high training volume. Moreover, transcripts and enzymatic activities related to mitochondria and LDH show that WM tends to develop aerobic metabolism with a high training volume. For transcript stimulation, WM requires a greater duration and frequency of exercise than RM, whereas protein adaptations are efficient with a long training duration and a high frequency in both muscles.
Collapse
Affiliation(s)
- Morgane Pengam
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Aline Amérand
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Bernard Simon
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Anthony Guernec
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Manon Inizan
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Christine Moisan
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| |
Collapse
|
25
|
Temperature sensitivity differs between heart and red muscle mitochondria in mahi-mahi (Coryphaena hippurus). Sci Rep 2020; 10:14865. [PMID: 32913250 PMCID: PMC7484784 DOI: 10.1038/s41598-020-71741-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 08/10/2020] [Indexed: 11/08/2022] Open
Abstract
Maintaining energy balance over a wide range of temperatures is critical for an active pelagic fish species such as the mahi-mahi (Coryphaena hippurus), which can experience rapid changes in temperature during vertical migrations. Due to the profound effect of temperature on mitochondrial function, this study was designed to investigate the effects of temperature on mitochondrial respiration in permeabilized heart and red skeletal muscle (RM) fibres isolated from mahi-mahi. As RM is thought to be more anatomically isolated from rapid ambient temperature changes compared to the myocardium, it was hypothesized that heart mitochondria would be more tolerant of temperature changes through a greater ability to match respiratory capacity to an increase in temperature and to maintain coupling, when compared to RM mitochondria. Results show that heart fibres were more temperature sensitive and increased respiration rate with temperature increases to a greater degree than RM. Respiratory coupling ratios at the three assay temperatures (20, 26, and 30 °C), revealed that heart mitochondria were less coupled at a lower temperature (26 °C) compared to RM mitochondria (30 °C). In response to an in vitro acute temperature challenge, both tissues showed irreversible effects, where both heart and RM increased uncoupling whether the assay temperature was acutely changed from 20 to 30 °C or 30 to 20 °C. The findings from this study indicate that mahi-mahi heart mitochondria were more temperature sensitive compared to those from RM.
Collapse
|
26
|
Little AG, Loughland I, Seebacher F. What do warming waters mean for fish physiology and fisheries? JOURNAL OF FISH BIOLOGY 2020; 97:328-340. [PMID: 32441327 DOI: 10.1111/jfb.14402] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental signals act primarily on physiological systems, which then influence higher-level functions such as movement patterns and population dynamics. Increases in average temperature and temperature variability associated with global climate change are likely to have strong effects on fish physiology and thereby on populations and fisheries. Here we review the principal mechanisms that transduce temperature signals and the physiological responses to those signals in fish. Temperature has a direct, thermodynamic effect on biochemical reaction rates. Nonetheless, plastic responses to longer-term thermal signals mean that fishes can modulate their acute thermal responses to compensate at least partially for thermodynamic effects. Energetics are particularly relevant for growth and movement, and therefore for fisheries, and temperature can have pronounced effects on energy metabolism. All energy (ATP) production is ultimately linked to mitochondria, and temperature has pronounced effects on mitochondrial efficiency and maximal capacities. Mitochondria are dependent on oxygen as the ultimate electron acceptor so that cardiovascular function and oxygen delivery link environmental inputs with energy metabolism. Growth efficiency, that is the conversion of food into tissue, changes with temperature, and there are indications that warmer water leads to decreased conversion efficiencies. Moreover, movement and migration of fish relies on muscle function, which is partially dependent on ATP production but also on intracellular calcium cycling within the myocyte. Neuroendocrine processes link environmental signals to regulated responses at the level of different tissues, including muscle. These physiological processes within individuals can scale up to population responses to climate change. A mechanistic understanding of thermal responses is essential to predict the vulnerability of species and populations to climate change.
Collapse
Affiliation(s)
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Pengam M, Moisan C, Simon B, Guernec A, Inizan M, Amérand A. Training protocols differently affect AMPK-PGC-1α signaling pathway and redox state in trout muscle. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110673. [PMID: 32044445 DOI: 10.1016/j.cbpa.2020.110673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023]
Abstract
Beneficial effects of physical exercise training are in part related to enhancement of muscle mitochondrial performance. The effects of two different trainings were investigated on transcripts and proteins of the AMPK-PGC-1α signaling pathway, the mitochondrial functioning (citrate synthase (CS), oxidative phosphorylation complexes, uncoupling proteins (UCP)) and the antioxidant defenses (superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase) in rainbow trout red and white skeletal muscles. One group of trouts swam for 10 days at a moderate intensity (approximately 57% Ucrit or 2.0 body lengths/s, 23.5 h/day) and another group at a high intensity (approximately 90% Ucrit or 3.2 body lengths/s, 2 h/day). In the red muscle, the increase of Cs mRNA levels was significantly correlated with the transcripts of Ampkα1, Ampkα2, Pgc-1α, the oxidative phosphorylation complexes, Ucp2α, Ucp2β, Sod1, Sod2 and Gpx1. After 10 days of training, high intensity training (HIT) stimulates more the transcription of genes involved in this aerobic pathway than moderate intensity training (MIT) in the skeletal muscles, and mainly in the red oxidative muscle. However, no changes in CS, cytochrome c oxidase (COX) and antioxidant defenses activities and in oxidative stress marker (isoprostane plasmatic levels) were observed. The transcriptomic responses are fiber- and training-type dependent when proteins were not yet expressed after 10 days of training. As in mammals, our results suggest that HIT could promote benefit effects in fish.
Collapse
Affiliation(s)
- Morgane Pengam
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Christine Moisan
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Bernard Simon
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Anthony Guernec
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Manon Inizan
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Aline Amérand
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France.
| |
Collapse
|
28
|
Messerli M, Aaldijk D, Haberthür D, Röss H, García-Poyatos C, Sande-Melón M, Khoma OZ, Wieland FAM, Fark S, Djonov V. Adaptation mechanism of the adult zebrafish respiratory organ to endurance training. PLoS One 2020; 15:e0228333. [PMID: 32023296 PMCID: PMC7001924 DOI: 10.1371/journal.pone.0228333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 11/19/2022] Open
Abstract
In order to study the adaptation scope of the fish respiratory organ and the O2 metabolism due to endurance training, we subjected adult zebrafish (Danio rerio) to endurance exercise for 5 weeks. After the training period, the swimmer group showed a significant increase in swimming performance, body weight and length. In scanning electron microscopy of the gills, the average length of centrally located primary filaments appeared significantly longer in the swimmer than in the non-trained control group (+6.1%, 1639 μm vs. 1545 μm, p = 0.00043) and the average number of secondary filaments increased significantly (+7.7%, 49.27 vs. 45.73, p = 9e-09). Micro-computed tomography indicated a significant increase in the gill volume (p = 0.048) by 11.8% from 0.490 mm3 to 0.549 mm3. The space-filling complexity dropped significantly (p = 0.0088) by 8.2% from 38.8% to 35.9%., i.e. making the gills of the swimmers less compact. Respirometry after 5 weeks showed a significantly higher oxygen consumption (+30.4%, p = 0.0081) of trained fish during exercise compared to controls. Scanning electron microscopy revealed different stages of new secondary filament budding, which happened at the tip of the primary lamellae. Using BrdU we could confirm that the growth of the secondary filaments took place mainly in the distal half and the tip and for primary filaments mainly at the tip. We conclude that the zebrafish respiratory organ-unlike the mammalian lung-has a high plasticity, and after endurance training increases its volume and changes its structure in order to facilitate O2 uptake.
Collapse
Affiliation(s)
- Matthias Messerli
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Dea Aaldijk
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - David Haberthür
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Helena Röss
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Carolina García-Poyatos
- Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Marcos Sande-Melón
- Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Oleksiy-Zakhar Khoma
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Fluri A. M. Wieland
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Sarya Fark
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Valentin Djonov
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
29
|
Abstract
The vulnerability of early fish stages represents a critical bottleneck for fish recruitment; therefore, it is essential to understand how climate change affects their physiology for more sustainable management of fisheries. Here, we investigated the effects of warming (OW; +4 °C) and acidification (OA; ΔpH = 0.5) on the heart and oxygen consumption rates, metabolic enzymatic machinery—namely citrate synthase (CS), lactate dehydrogenase (LDH), and ß-hydroxyacyl CoA dehydrogenase (HOAD), of seabream (Sparus aurata) larvae (fifteen days after hatch). Oxygen consumption and heart rates showed a significant increase with rising temperature, but decreased with pCO2. Results revealed a significant increase of LDH activity with OW and a significant decrease of the aerobic potential (CS and HOAD activity) of larvae with OA. In contrast, under OA, the activity levels of the enzyme LDH and the LDH:CS ratio indicated an enhancement of anaerobic pathways. Although such a short-term metabolic strategy may eventually sustain the basic costs of maintenance, it might not be adequate under the future chronic ocean conditions. Given that the potential for adaptation to new forthcoming conditions is yet experimentally unaccounted for this species, future research is essential to accurately predict the physiological performance of this commercially important species under future ocean conditions.
Collapse
|
30
|
Turner LA, Bucking C. The role of intestinal bacteria in the ammonia detoxification ability of teleost fish. ACTA ACUST UNITED AC 2019; 222:jeb.209882. [PMID: 31753905 DOI: 10.1242/jeb.209882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
Protein catabolism during digestion generates appreciable levels of ammonia in the gastrointestinal tract (GIT) lumen. Amelioration by the enterocyte, via enzymes such as glutamine synthetase (GS), glutamate dehydrogenase (GDH), and alanine and aspartate aminotransferases (ALT; AST), is found in teleost fish. Conservation of these enzymes across bacterial phyla suggests that the GIT microbiome could also contribute to ammonia detoxification by providing supplemental activity. Hence, the GIT microbiome, enzyme activities and ammonia detoxification were investigated in two fish occupying dissimilar niches: the carnivorous rainbow darter and the algivorous central stoneroller. There was a strong effect of fish species on the activity levels of GS, GDH, AST and ALT, as well as GIT lumen ammonia concentration, and bacterial composition of the GIT microbiome. Furthermore, removal of the intestinal bacteria impacted intestinal activities of GS and ALT in the herbivorous fish but not in the carnivore. The repeatability and robustness of this relationship was tested across field locations and years. Within an individual waterbody, there was no impact of sampling location on any of these factors. However, different waterbodies affected enzyme activities and luminal ammonia concentrations in both fish, while only the central stoneroller intestinal bacteria populations varied. Overall, a relationship between GIT bacteria, enzyme activity and ammonia detoxification was observed in herbivorous fish while the carnivorous fish displayed a correlation between enzyme activity and ammonia detoxification alone that was independent of the GIT microbiome. This could suggest that carnivorous fish are less dependent on non-host mechanisms for ammonia regulation in the GIT.
Collapse
Affiliation(s)
- Leah A Turner
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Carol Bucking
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
31
|
McFarlane W, Rossi GS, Wright PA. Amphibious fish 'get a jump' on terrestrial locomotor performance after exercise training on land. ACTA ACUST UNITED AC 2019; 222:jeb.213348. [PMID: 31570512 DOI: 10.1242/jeb.213348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Many amphibious fishes rely on terrestrial locomotion to accomplish essential daily tasks, but it is unknown whether terrestrial exercise improves the locomotor performance of fishes on land. Thus, we tested the hypothesis that terrestrial exercise improves locomotion in amphibious fishes out of water as a result of skeletal muscle remodeling. We compared the jumping performance of Kryptolebias marmoratus before and after an exercise training regimen, and assessed the muscle phenotype of control and exercise-trained fish. We found that exercise-trained fish jumped 41% farther and 48% more times before reaching exhaustion. Furthermore, exercise training resulted in the hypertrophy of red muscle fibers, and an increase in red muscle capillarity and aerobic capacity. Lactate accumulation after jumping indicates that white muscle is also important in powering terrestrial jumps. Overall, skeletal muscle in K. marmoratus is highly responsive to terrestrial exercise, and muscle plasticity may assist in the effective exploitation of terrestrial habitats by amphibious fishes.
Collapse
Affiliation(s)
- William McFarlane
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
32
|
Northam C, LeMoine CMR. Metabolic regulation by the PGC-1α and PGC-1β coactivators in larval zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2019; 234:60-67. [PMID: 31004809 DOI: 10.1016/j.cbpa.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
The peroxisome proliferator activated receptor γ coactivator-1 (PGC-1) family is composed of three coactivators whose role in regulating mammalian bioenergetics regulation is clear, but is much less certain in other vertebrates. Current evidence suggests that in fish, PGC-1α and PGC-1β may exhibit much less redundancy in the control of fatty acid oxidation and mitochondrial biogenesis compared to mammals. To assess these roles directly, we knocked down PGC-1α and PGC-1β expression with morpholinos in zebrafish embryos, and we investigated the resulting molecular and physiological phenotypes. First, we found no effects of either morpholinos on larval hatching, heart rates and oxygen consumption over the first few days of development. Next, at 3 days post fertilization (dpf), we confirmed by real time PCR a specific knock down of both coactivators, that resulted in a significant reduction in the transcript levels of citrate synthase (CS), 3-hydroxyacyl-CoA dehydrogenase (HOAD), and medium-chain acyl-coenzyme A dehydrogenase (MCAD) in both morphant groups. However, there was no effect on transcription factors' gene expression except for a marked reduction in estrogen related receptor α (ERRα) transcripts in PGC-1α morphants. Finally, we assessed whole embryonic enzyme activity for CS, cytochrome oxidase (COX), HOAD and carnitine palmitoyltransferase I (CPT-1) at 4 dpf. The only significant effect of the knockdown was a reduced CS activity in PGC-1α morphants and a counterintuitive increase of cytochrome oxidase activity in PGC-1β morphants. Overall, our results indicate that in larval zebrafish, PGC-1α and PGC-1β both play a role in regulating expression of important mitochondrial genes potentially through ERRα.
Collapse
Affiliation(s)
- Caleb Northam
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | | |
Collapse
|
33
|
Audira G, Sampurna BP, Juniardi S, Liang ST, Lai YH, Han L, Hsiao CD. Establishing simple image-based methods and a cost-effective instrument for toxicity assessment on circadian rhythm dysregulation in fish. Biol Open 2019; 8:bio.041871. [PMID: 31182629 PMCID: PMC6602318 DOI: 10.1242/bio.041871] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Analysis of circadian rhythm behavior alteration in fish for toxicity assessment usually requires expensive commercial equipment and laborious and complicated tweaking. Here, we report a simple setup that consists of a custom-made light box equipped with white and 940 nm light-emitting diode (LED) light strips as light sources, where the locomotion activities of zebrafish or catfish are captured using an infrared-sensitive coupled charged device (CCD). The whole setup was housed in a temperature-controlled incubator to isolate external noise and to maintain consistent experimental conditions. The video recording and light triggering were synchronized using Total Recorder, a recording scheduling software. By using the setup mentioned above and open source software such as ImageJ or idTracker, the locomotion activities of diurnal (e.g. zebrafish) and nocturnal (e.g. catfish) fish during day and night cycles can be quantitatively analyzed. We used simple image-based methods and a cost-effective instrument to assess the circadian rhythm of multiple fish species, as well as other parameters such as age, ambient temperature and chemical toxicology with high precision and reproducibility. In conclusion, the instrument setting and analysis methods established in this study provide a reliable and easy entry point for toxicity assessment on circadian rhythm dysregulation in fish. Summary: A cost-effective device and two methods to measure the circadian rhythm in diurnal and nocturnal fish, providing a reliable entry point for toxicity assessment on circadian rhythm dysregulation in fish.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | | | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan City, Shandong, China
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan .,Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.,Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.,Center of Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
34
|
Histone deacetylase activity mediates thermal plasticity in zebrafish (Danio rerio). Sci Rep 2019; 9:8216. [PMID: 31160672 PMCID: PMC6546753 DOI: 10.1038/s41598-019-44726-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Regulatory mechanisms underlying thermal plasticity determine its evolution and potential to confer resilience to climate change. Here we show that class I and II histone deacetylases (HDAC) mediated thermal plasticity globally by shifting metabolomic profiles of cold acclimated zebrafish (Danio rerio) away from warm acclimated animals. HDAC activity promoted swimming performance, but reduced slow and fast myosin heavy chain content in cardiac and skeletal muscle. HDAC increased sarco-endoplasmic reticulum ATPase activity in cold-acclimated fish but not in warm-acclimated animals, and it promoted cardiac function (heart rate and relative stroke volume) in cold but not in warm-acclimated animals. HDAC are an evolutionarily ancient group of proteins, and our data show that they mediate the capacity for thermal plasticity, although the actual manifestation of plasticity is likely to be determined by interactions with other regulators such as AMP-activated protein kinase and thyroid hormone.
Collapse
|
35
|
Zak MA, Manzon RG. Expression and activity of lipid and oxidative metabolism enzymes following elevated temperature exposure and thyroid hormone manipulation in juvenile lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2019; 275:51-64. [PMID: 30721659 DOI: 10.1016/j.ygcen.2019.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/11/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
Temperature has unequivocal effects on several aspects of fish physiology, but the full extent of its interaction with key endocrine signaling systems to influence metabolic function remains unknown. The aim of the current study was to assess the individual and combined effects of elevated temperature and hyperthyroidism on hepatic metabolism in juvenile lake whitefish by quantifying mRNA abundance and activity of key metabolic enzymes. Fish were exposed to 13 (control), 17 or 21 °C for 0, 4, 8 or 24 days in the presence or absence of low-T4 (1 µg × g body weight-1) or high-T4 (10 µg × g body weight-1) treatment. Our results demonstrate moderate sensitivity to elevated temperature in this species, characterized by short-term changes in mRNA abundance of several metabolic enzymes and long-term declines in citrate synthase (CS) and cytochrome c oxidase (COX) activities. T4-induced hyperthyroidism also had several short-term effects on mRNA abundance of metabolic transcripts, including depressions in acetyl-coA carboxylase β (accβ) and carnitine palmitoyltransferase 1β (cpt1β), and stabilization of cs mRNA levels; however, these effects were primarily limited to elevated temperature groups, indicating temperature-dependent effects of exogenous T4 treatment in this species. In contrast, maximal CS and COX activities were not altered by hyperthyroidism at any temperature. Collectively, our data suggest that temperature has the potential to manipulate thyroid hormone physiology in juvenile lake whitefish and, under warm-conditions, hyperthyroidism may suppress certain elements of the β-oxidation pathway without substantial impacts on overall cellular oxidative capacity.
Collapse
Affiliation(s)
- Megan A Zak
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
36
|
Harada AE, Healy TM, Burton RS. Variation in Thermal Tolerance and Its Relationship to Mitochondrial Function Across Populations of Tigriopus californicus. Front Physiol 2019; 10:213. [PMID: 30930787 PMCID: PMC6429002 DOI: 10.3389/fphys.2019.00213] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Variation in thermal tolerance plays a key role in determining the biogeographic distribution of organisms. Consequently, identifying the mechanistic basis for thermal tolerance is necessary for understanding not only current species range limits but also the capacity for range limits to shift in response to climate change. Although variation in mitochondrial function likely contributes to variation in thermal tolerance, the extent to which mitochondrial function underlies local thermal adaptation is not fully understood. In the current study, we examine variation in thermal tolerance and mitochondrial function among three populations of the intertidal copepod Tigriopus californicus found across a latitudinal thermal gradient along the coast of California, USA. We tested (1) acute thermal tolerance using survivorship and knockdown assays, (2) chronic thermal tolerance using survivorship of nauplii and developmental rate, and (3) mitochondrial performance at a range of temperatures using ATP synthesis fueled by complexes I, II, and I&II, as well as respiration of permeabilized fibers. We find evidence for latitudinal thermal adaptation: the southernmost San Diego population outperforms the northernmost Santa Cruz in measures of survivorship, knockdown temperature, and ATP synthesis rates during acute thermal exposures. However, under a chronic thermal regime, survivorship and developmental rate are more similar in the southernmost and northernmost population than in the mid-range population (Abalone Cove). Though this pattern is unexpected, it aligns well with population-specific rates of ATP synthesis at these chronic temperatures. Combined with the tight correlation of ATP synthesis decline and knockdown temperature, these data suggest a role for mitochondria in setting thermal range limits and indicate that divergence in mitochondrial function is likely a component of adaptation across latitudinal thermal gradients.
Collapse
Affiliation(s)
- Alice E Harada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
37
|
Song X, Rahimnejad S, Zhou W, Cai L, Lu K. Molecular Characterization of Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α (PGC1α) and Its Role in Mitochondrial Biogenesis in Blunt Snout Bream ( Megalobrama amblycephala). Front Physiol 2019; 9:1957. [PMID: 30733687 PMCID: PMC6354234 DOI: 10.3389/fphys.2018.01957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/23/2018] [Indexed: 11/13/2022] Open
Abstract
PGC1α is a transcriptional coactivator that plays key roles in mitochondrial biogenesis, so exploring its molecular characterization contributes to the understanding of mitochondrial function in cultured fish. In the present study, a full-length cDNA coding PGC1α was cloned from the liver of blunt snout bream (Megalobrama amblycephala) which covered 3741 bp with an open reading frame of 2646 bp encoding 881 amino acids. Sequence alignment and phylogenetic analysis revealed high conservation with other fish species, as well as other higher vertebrates. Comparison of the derived amino acid sequences indicates that, as with other fish, there is a proline at position 176 (RIRP) compared to a Thr in the mammalian sequences (RIRT). To investigate PGC1α function, three in vitro tests were carried out using primary hepatocytes of blunt snout bream. The effect of AMPK activity on the expression of PGC1α was determined by the culture of the hepatocytes with an activator (Metformin) or inhibitor (Compound C) of AMPK. Neither AMPK activation nor inhibition altered PGC1α expression. Knockdown of PGC1α expression in hepatocytes using small interfering RNA (si-RNA) was used to determine the role of PGC1α in mitochondrial biogenesis. No significant differences in the expression of NRF1 and TFAM, and mtDNA copy number were found between control and si-RNA groups. Also, hepatocytes were cultured with oleic acid, and the findings showed the significant reduction of mtDNA copy number in oleic acid group compared to control. Moreover, oleic acid down-regulated the expression of NRF1 and TFAM genes, while PGC1α expression remained unchanged. Our findings support the proposal that PGC1α may not play a role in mitochondrial biogenesis in blunt snout bream hepatocytes.
Collapse
Affiliation(s)
- Xiaojun Song
- Laboratory for Animal Nutrition and Immune Molecular Biology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Samad Rahimnejad
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, China.,South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Wenhao Zhou
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, China
| | - Linsen Cai
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, China
| | - Kangle Lu
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
38
|
Garcia de la serrana D, Wreggelsworth K, Johnston IA. Duplication of a Single myhz1.1 Gene Facilitated the Ability of Goldfish ( Carassius auratus) to Alter Fast Muscle Contractile Properties With Seasonal Temperature Change. Front Physiol 2018; 9:1724. [PMID: 30568597 PMCID: PMC6290348 DOI: 10.3389/fphys.2018.01724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Seasonal temperature changes markedly effect the swimming performance of some cyprinid fish acutely tested at different temperatures, involving a restructuring of skeletal muscle phenotype including changes in contractile properties and myosin heavy chain expression. We analyzed the transcriptome of fast myotomal muscle from goldfish (Carassius auratus L.) acclimated to either 8 or 25°C for 4 weeks (12 h light: 12 h dark) and identified 10 myosin heavy chains (myh) and 13 myosin light chain (myl) transcripts. Goldfish orthologs were classified based on zebrafish nomenclature as myhz1.1α, myhz1.1β, myhz1.1γ, myha, myhb, embryo_myh1, myh9b, smyh2, symh3, and myh11 (myosin heavy chains) and myl1a, myl1b, myl2, myl9a, myl9b, myl3, myl13, myl6, myl12.1a, myl12.1b, myl12.2a, myl12.2b, and myl10 (myosin light chains). The most abundantly expressed transcripts myhz1.1α, myhz1.1β, myhz1.1γ, myha, myl1a, myl1b, myl2, and myl3) were further investigated in fast skeletal muscle of goldfish acclimated to either 4, 8, 15, or 30°C for 12 weeks (12 h light:12 h dark). Total copy number for the myosin heavy chains showed a distinct optimum at 15°C (P < 0.01). Together myhz1.1α and myhz1.1β comprised 90 to 97% of myhc transcripts below 15°C, but only 62% at 30°C. Whereas myhz1.1α and myhz1.1β were equally abundant at 4 and 8°C, myhz1.1β transcripts were 17 and 12 times higher than myhz1.1α at 15 and 30°C, respectively, (P < 0.01). Myhz1.1γ expression was at least nine-fold higher at 30°C than at cooler temperatures (P < 0.01). In contrast, the expression of myha and myosin light chains showed no consistent pattern with acclimation temperature. A phylogenetic analysis indicated that the previously reported ability of goldfish and common carp to alter contractile properties and myofibrillar ATPase activity with temperature acclimation was related to the duplication of a single myhz1.1 fast muscle myosin heavy chain found in basal cyprinids such as the zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Daniel Garcia de la serrana
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
- Serra Húnter Fellow, Cell Biology Physiology and Immunology Department, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Kristin Wreggelsworth
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| | - Ian A. Johnston
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| |
Collapse
|
39
|
Jian QL, HuangFu WC, Lee YH, Liu IH. Age, but not short-term intensive swimming, affects chondrocyte turnover in zebrafish vertebral cartilage. PeerJ 2018; 6:e5739. [PMID: 30294512 PMCID: PMC6171498 DOI: 10.7717/peerj.5739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/30/2018] [Indexed: 01/07/2023] Open
Abstract
Both age and intensive exercise are generally considered critical risk factors for osteoarthritis. In this work, we intend to establish zebrafish models to assess the role of these two factors on cartilage homeostasis. We designed a swimming device for zebrafish intensive exercise. The body measurements, bone mineral density (BMD) and the histology of spinal cartilages of 4- and 12-month-old zebrafish, as well the 12-month-old zebrafish before and after a 2-week exercise were compared. Our results indicate that both age and exercise affect the body length and body weight, and the micro-computed tomography reveals that both age and exercise affect the spinal BMD. However, quantitative analysis of immunohistochemistry and histochemistry indicate that short-term intensive exercise does not affect the extracellular matrix (ECM) of spinal cartilage. On the other hand, the cartilage ECM significantly grew from 4 to 12 months of age with an increase in total chondrocytes. dUTP nick end labeling staining shows that the percentages of apoptotic cells significantly increase as the zebrafish grows, whereas the BrdU labeling shows that proliferative cells dramatically decrease from 4 to 12 months of age. A 30-day chase of BrdU labeling shows some retention of labeling in cells in 4-month-old spinal cartilage but not in cartilage from 12-month-old zebrafish. Taken together, our results suggest that zebrafish chondrocytes are actively turned over, and indicate that aging is a critical factor that alters cartilage homeostasis. Zebrafish vertebral cartilage may serve as a good model to study the maturation and homeostasis of articular cartilage.
Collapse
Affiliation(s)
- Quan-Liang Jian
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Mehdi H, Dickson FH, Bragg LM, Servos MR, Craig PM. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:270-279. [DOI: 10.1016/j.cbpb.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 01/26/2023]
|
41
|
Boskovic S, Marín-Juez R, Jasnic J, Reischauer S, El Sammak H, Kojic A, Faulkner G, Radojkovic D, Stainier DYR, Kojic S. Characterization of zebrafish (Danio rerio) muscle ankyrin repeat proteins reveals their conserved response to endurance exercise. PLoS One 2018; 13:e0204312. [PMID: 30252882 PMCID: PMC6155536 DOI: 10.1371/journal.pone.0204312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022] Open
Abstract
Muscle proteins with ankyrin repeats (MARPs) ANKRD1 and ANKRD2 are titin-associated proteins with a putative role as transcriptional co-regulators in striated muscle, involved in the cellular response to mechanical, oxidative and metabolic stress. Since many aspects of the biology of MARPs, particularly exact mechanisms of their action, in striated muscle are still elusive, research in this field will benefit from novel animal model system. Here we investigated the MARPs found in zebrafish for protein structure, evolutionary conservation, spatiotemporal expression profiles and response to increased muscle activity. Ankrd1 and Ankrd2 show overall moderate conservation at the protein level, more pronounced in the region of ankyrin repeats, motifs indispensable for their function. The two zebrafish genes, ankrd1a and ankrd1b, counterparts of mammalian ANKRD1/Ankrd1, have different expression profiles during first seven days of development. Mild increase of ankrd1a transcript levels was detected at 72 hpf (1.74±0.24 fold increase relative to 24 hpf time point), while ankrd1b expression was markedly upregulated from 24 hpf onward and peaked at 72 hpf (92.18±36.95 fold increase relative to 24 hpf time point). Spatially, they exhibited non-overlapping expression patterns during skeletal muscle development in trunk (ankrd1a) and tail (ankrd1b) somites. Expression of ankrd2 was barely detectable. Zebrafish MARPs, expressed at a relatively low level in adult striated muscle, were found to be responsive to endurance exercise training consisting of two bouts of 3 hours of forced swimming daily, for five consecutive days. Three hours after the last exercise bout, ankrd1a expression increased in cardiac muscle (6.19±5.05 fold change), while ankrd1b and ankrd2 were upregulated in skeletal muscle (1.97±1.05 and 1.84±0.58 fold change, respectively). This study provides the foundation to establish zebrafish as a novel in vivo model for further investigation of MARPs function in striated muscle.
Collapse
Affiliation(s)
- Srdjan Boskovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hadil El Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Dragica Radojkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
42
|
Different ecophysiological responses of freshwater fish to warming and acidification. Comp Biochem Physiol A Mol Integr Physiol 2018; 216:34-41. [DOI: 10.1016/j.cbpa.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 12/25/2022]
|
43
|
Dhillon RS, Richards JG. Hypoxia induces selective modifications to the acetylome in the brain of zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2018; 224:79-87. [PMID: 29309913 DOI: 10.1016/j.cbpb.2017.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
Reversible protein acetylation is an important regulatory mechanism for modulating protein function. The cellular protein acetylome is in large part dictated by the cellular redox balance, and in particular [NAD+]. While the relationship between hypoxia, redox balance, energy charge and resulting mitochondrial dysfunction has been examined in the context of hypoxia-linked pathologies, little is known about the direct effects of decreases in environmental oxygen on reversible lysine acetylation, and the resulting modifications to mitochondrial metabolism. To address this knowledge gap, we exposed zebrafish (Danio rerio) to 16 h of hypoxia (2.21 kPa) and quantified acetylation levels of 1220 proteins using whole-cell proteomics in samples of brain taken from normoxic and hypoxic zebrafish. In addition, we examined the effects of hypoxia on cytoplasmic and mitochondrial redox status, whole-cell energetics, the activity of the mitochondrial NAD+-dependent deacetylase SIRT3, and electron transport chain complex activities to determine if there is an association between hypoxia-induced metabolic disturbances, protein acetylation, and mitochondrial function. Our results (1) reveal several key changes in the acetylation status of proteins in the brain, primarily within the mitochondria; (2) show significant fluctuations in cytoplasmic and mitochondrial redox status within the brain during hypoxia exposure; and (3) provide evidence that lysine acetylation may be related to large changes in electron transport and ATP-synthase complex activities and adenylate status in zebrafish exposed to hypoxic stress. Together, these data provide new insights into the role of protein modifications in mitochondrial metabolism during hypoxia.
Collapse
Affiliation(s)
- Rashpal S Dhillon
- Wisconsin Institute for Discovery, Department of Biomolecular Chemistry, University of Wisconsin-Madison, 330 North Orchard Street, Madison, WI 53715, USA; Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
44
|
Rovira M, Arrey G, Planas JV. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish. Front Physiol 2017; 8:1063. [PMID: 29326600 PMCID: PMC5741866 DOI: 10.3389/fphys.2017.01063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR) and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK) was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest improved aerobic capacity as a result of swimming-induced exercise. Finally, the induction of myokine expression by swimming-induced exercise support the hypothesis that these myokines may have been produced and secreted by the exercised zebrafish muscle and acted on fast muscle cells to promote metabolic remodeling. These results support the use of zebrafish as a suitable model for studies on muscle remodeling in vertebrates, including humans.
Collapse
Affiliation(s)
- Mireia Rovira
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Arrey
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain
| | - Josep V Planas
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Velando A, Costa MM, Kim SY. Sex-specific phenotypes and metabolism-related gene expression in juvenile sticklebacks. Behav Ecol 2017. [DOI: 10.1093/beheco/arx129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alberto Velando
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| | - María M Costa
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| | - Sin-Yeon Kim
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
46
|
Stucki D, Freitak D, Sundström L. Survival and gene expression under different temperature and humidity regimes in ants. PLoS One 2017; 12:e0181137. [PMID: 28759608 PMCID: PMC5536355 DOI: 10.1371/journal.pone.0181137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Short term variation in environmental conditions requires individuals to adapt via changes in behavior and/or physiology. In particular variation in temperature and humidity are common, and the physiological adaptation to changes in temperature and humidity often involves alterations in gene expression, in particular that of heat-shock proteins. However, not only traits involved in the resistance to environmental stresses, but also other traits, such as immune defenses, may be influenced indirectly by changes in temperature and humidity. Here we investigated the response of the ant F. exsecta to two temperature regimes (20°C & 25°C), and two humidity regimes (50% & 75%), for two populations. We measured the survival and the expression of six metabolism- and immunity-related genes, and furthermore compared the expression levels in each condition with the pre-experiment expression levels. Both populations survived equally well at the two humidities, but one population showed higher mortality at 25°C than 20°, at 50% humidity. Similarly, the two populations showed striking differences in their gene expression before the experiment, and in their responses to the environmental conditions. Surprisingly, instead of converging to similar expression levels in the same environmental conditions, gene expression diverged further apart. This indicates different reaction norms to both temperature and humidity for the two populations. Furthermore, our results suggest that also immune defenses are indirectly affected by environmental conditions.
Collapse
Affiliation(s)
- Dimitri Stucki
- Centre of Excellence in Biological Interactions / Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- * E-mail:
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions / Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- Centre of Excellence in Biological Interactions, University of Jyväskylä, Jyväskylä, Finland
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions / Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
47
|
Eya JC, Yossa R, Perera D, Okubajo O, Gannam A. Combined effects of diets and temperature on mitochondrial function, growth and nutrient efficiency in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2017; 212:1-11. [PMID: 28687361 DOI: 10.1016/j.cbpb.2017.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
A 4×3 factorial experiment was conducted to evaluate the effects of two dietary protein sources (mixed fishmeal/plant protein-, and plant protein- based diet), two dietary lipid levels (10% and 20%) and three water temperatures (10°C, 14°C, and 18°C) on the growth performance, nutrient utilization efficiencies and mitochondrial enzyme complex activities in rainbow trout Oncorhynchus mykiss (average weight±SD, 39.5±5g) over a 180day rearing period. At the end of the experiment, weight gain (WG), condition factor (CF), and feed efficiency (FE) were significantly affected by diet×temperature interaction (P<0.05). Specific growth rate (SGR) was significantly affected by increasing temperature (P<0.05). The plant protein-based diets led to a higher CF than the mixed fishmeal/plant protein-based diets. The protein productive value (PPV), protein efficiency ratio (PER), lipid efficiency ratio, (LER) and lipid productive value (LPV) were all significantly affected by diet×temperature interaction (P<0.05). The diet×temperature interaction also had significant effects on mitochondrial enzyme complexes II, V and citrate synthase in the liver, complexes II and IV in the intestine, and complex IV in the muscle (P<0.05). Temperature had a significant main effect on the activity of the enzymatic complexes I and III in the liver, complex III and citrate synthase in the intestine, and complexes I, II, III, V and citrate synthase in the muscle (P<0.05). Diet had a significant main effect on complexes I and III in the liver, complexes II and III for the intestine and complexes I and II in the muscle (P<0.05). The significant temperature x diet interaction observed has practical ecological implications explicitly demonstrating how changes in temperature regimens as anticipated in the rising global temperature can influence organismal performance in relation to changes in dietary formulations (replacing fishmeal based diet with plant protein based ingredients). To illustrate the practical application of the observations from this study, the most economical and cost effective way to produce rainbow trout would be to use 40/10PP diet at 14°C because fish fed this treatment had a weight gain comparable to that of the fish fed the more expensive experimental diets (40/10 FM/PP, 40/20 FM/PP, and 40/20 PP).
Collapse
Affiliation(s)
- Jonathan C Eya
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| | - Rodrigue Yossa
- Coastal Zones Research Institute, 232B avenue de l'Église, Shippagan, N.B. E8S 1J2, Canada.
| | - Dayan Perera
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Olasupo Okubajo
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Ann Gannam
- USFWS, Abernathy Fish Technology Center, Longview, WA 98632, USA.
| |
Collapse
|
48
|
Simmonds AIM, Seebacher F. Histone deacetylase activity modulates exercise-induced skeletal muscle plasticity in zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2017; 313:R35-R43. [PMID: 28404582 DOI: 10.1152/ajpregu.00378.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
Aerobic exercise has a positive impact on animals by enhancing skeletal muscle function and locomotor performance. Responses of skeletal muscle to exercise involve changes in energy metabolism, calcium handling, and the composition of contractile protein isoforms, which together influence contractile properties. Histone deacetylases (HDAC) can cause short-term changes in gene expression and may thereby mediate plasticity in contractile properties of skeletal muscle in response to exercise. The aim of this project was to determine (in zebrafish, Danio rerio) the traits that mediate interindividual differences in sustained and sprint performance and to determine whether inhibiting class I and II HDACs mediates exercise-induced changes in these traits. High sustained performers had greater aerobic metabolic capacity [citrate synthase (CS) activity], calcium handling capacity [sarco/endoplasmic reticulum ATPase (SERCA) activity], and slow contractile protein concentration [slow myosin heavy chain (MHC)] compared with low performers. High sprint performers had lower CS activity and slow MHC concentrations compared with low performers, but there were no significant differences in lactate dehydrogenase activity or fast MHC concentrations. Four weeks of aerobic exercise training increased sustained performance, CS activity, SERCA activity, and slow MHC concentration. Inhibiting class I and II HDACs increased slow MHC concentration in untrained fish but not in trained fish. However, inhibiting HDACs reduced SERCA activity, which was paralleled by a reduction in sustained and sprint performance. The regulation of muscle phenotypes by HDACs could be a mechanism underlying the adaptation of sustained locomotor performance to different environmental conditions, and may therefore be of therapeutic and ecological significance.
Collapse
Affiliation(s)
- Alec I M Simmonds
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Turner LA, Bucking C. The interactive effect of digesting a meal and thermal acclimation on maximal enzyme activities in the gill, kidney, and intestine of goldfish (Carassius auratus). J Comp Physiol B 2017; 187:959-972. [PMID: 28382530 DOI: 10.1007/s00360-017-1068-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Surrounding environmental temperatures affect many aspects of ectotherm physiology. Generally, organisms can compensate at one or more biological levels, or allow temperature to dictate processes such as enzyme activities through kinetic effects on reaction rates. As digestion also alters physiological processes such as enzyme activities, this study determined the interacting effect of thermal acclimation (8 and 20 °C) and digesting a single meal on maximal enzyme activities in three tissues of the goldfish (Carrassius auratus). Acclimation to elevated temperatures decreased branchial Na+, K+, ATPase (NKA) activity. In contrast, acclimation to elevated temperatures had no effect on citrate synthase (CS) or pyruvate kinase (PK) activity in any tissue, nor were renal NKA or glutamine synthetase (GS) activities impacted. Warm water-acclimation exaggerated the positive impact of digestion on intestinal and branchial NKA activities and intestinal GS activity only, but digestion had no effect in the kidney. CS and PK did not display intestinal zonation; however, there was a distinct increase towards the distal intestine in NKA and GS activities. Zonation of NKA was more prominent in warm-acclimated animals, while acclimation temperature did not affect intestinal heterogeneity of GS. Finally, the impact of tissue protein content on enzyme activity was discussed. We conclude that the intestine and gill of warm-acclimated goldfish exhibited an augmented capacity for increasing several enzyme activities in response to digestion while the kidney was unaffected by thermal acclimation or digesting a single meal. However, this amplified capacity was ameliorated by alterations in tissue protein content. Amplified increases in NKA activity may ultimately have implications for ATP demand in these tissues, while increased GS activity may beneficially increase ammonia-detoxifying capacity in the intestine.
Collapse
Affiliation(s)
- Leah A Turner
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Carol Bucking
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
50
|
Zhao JY, Zhao XT, Sun JT, Zou LF, Yang SX, Han X, Zhu WC, Yin Q, Hong XY. Transcriptome and proteome analyses reveal complex mechanisms of reproductive diapause in the two-spotted spider mite, Tetranychus urticae. INSECT MOLECULAR BIOLOGY 2017; 26:215-232. [PMID: 28001328 DOI: 10.1111/imb.12286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although a variety of factors underlying diapause have been identified in arthropods and other organisms, the molecular mechanisms regulating diapause are still largely unknown. Here, to better understand this process, we examined diapause-associated genes in the two-spotted spider mite, Tetranychus urticae, by comparing the transcriptomes and proteomes of early diapausing and reproductive adult females. Amongst genes underlying diapause revealed by the transcriptomic and proteomic data sets, we described the noticeable change in Ca2+ -associated genes, including 65 Ca2+ -binding protein genes and 23 Ca2+ transporter genes, indicating that Ca2+ signalling has a substantial role in diapause regulation. Other interesting changes in diapause included up-regulation of (1) glutamate receptors that may be involved in synaptic plasticity changes, (2) genes involved in cytoskeletal reorganization including genes encoding each of the components of thick and thin filaments, tubulin and members of integrin signalling and (3) genes involved in anaerobic energy metabolism, which reflects a shift to anaerobic energy metabolism in early diapausing mites.
Collapse
Affiliation(s)
- J-Y Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X-T Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - J-T Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - L-F Zou
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - S-X Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X Han
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - W-C Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Q Yin
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|