1
|
McKiernan EC, Herrera-Valdez MA, Marrone DF. A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity. PLoS One 2024; 19:e0308809. [PMID: 39231135 PMCID: PMC11373847 DOI: 10.1371/journal.pone.0308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Marco A Herrera-Valdez
- Laboratorio de Dinámica, Biofísica y Fisiología de Sistemas, Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
- McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Depierre P, Ginet V, Truttmann AC, Puyal J. Neuronal autosis is Na +/K +-ATPase alpha 3-dependent and involved in hypoxic-ischemic neuronal death. Cell Death Dis 2024; 15:363. [PMID: 38796484 PMCID: PMC11127954 DOI: 10.1038/s41419-024-06750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Macroautophagy (hereafter called autophagy) is an essential physiological process of degradation of organelles and long-lived proteins. The discovery of autosis, a Na+/K+-ATPase (ATP1)-dependent type of autophagic cell death with specific morphological and biochemical features, has strongly contributed to the acceptance of a pro-death role of autophagy. However, the occurrence and relevance of autosis in neurons has never been clearly investigated, whereas we previously provided evidence that autophagy mechanisms could be involved in neuronal death in different in vitro and in vivo rodent models of hypoxia-ischemia (HI) and that morphological features of autosis were observed in dying neurons following rat perinatal cerebral HI. In the present study, we demonstrated that neuronal autosis could occur in primary cortical neurons using two different stimulations enhancing autophagy flux and neuronal death: a neurotoxic concentration of Tat-BECN1 (an autophagy-inducing peptide) and a hypoxic/excitotoxic stimulus (mimicking neuronal death induced by cerebral HI). Both stimulations induce autophagic neuronal death (dependent on canonical autophagic genes and independent on apoptotic, necroptotic or ferroptotic pathways) with all morphological and biochemical (ATP1a-dependent) features of autosis. However, we demonstrated that autosis is not dependent on the ubiquitous subunit ATP1a1 in neurons, as in dividing cell types, but on the neuronal specific ATP1a3 subunit. We also provided evidence that, in different in vitro and in vivo models where autosis is induced, ATP1a3-BECN1 interaction is increased and prevented by cardiac glycosides treatment. Interestingly, an increase in ATP1a3-BECN1 interaction is also detected in dying neurons in the autoptic brains of human newborns with severe hypoxic-ischemic encephalopathy (HIE). Altogether, these results suggest that ATP1a3-BECN1-dependent autosis could play an important role in neuronal death in HI conditions, paving the way for the development of new neuroprotective strategies in hypoxic-ischemic conditions including in severe case of human HIE.
Collapse
Affiliation(s)
- Pauline Depierre
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
- CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
3
|
Arizono E, Sato N, Shigemoto Y, Kimura Y, Chiba E, Maki H, Matsuda H, Takeshita E, Shimizu-Motohashi Y, Sasaki M, Saito K. Brain structural changes in alternating hemiplegia of childhood using single-case voxel-based morphometry analysis. Int J Dev Neurosci 2023; 83:665-673. [PMID: 37604479 DOI: 10.1002/jdn.10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disease caused by ATP1A3 mutations. Using voxel-based morphometry (VBM) analysis, we compared an AHC patient cohort with controls. Additionally, with single-case VBM analysis, we assessed the associations between clinical severity and brain volume in patients with AHC. MATERIALS AND METHODS To investigate structural brain changes in gray matter (GM) and white matter (WM) volumes between 9 patients with AHC and 20 age-matched controls, VBM analysis was performed using three-dimensional T1-weighted magnetic resonance imaging. Single-case VBM analysis was also performed on nine patients with AHC to investigate the associations between the respective volumes of GM/WM differences and the motor level, cognitive level, and status epilepticus severity in patients with AHC. RESULTS Compared with controls, patients with AHC showed significant GM volume reductions in both hippocampi and diffuse cerebellum, and there were WM reductions in both cerebral hemispheres. In patients with AHC, cases with more motor dysfunction, the less GM/WM volume of cerebellum was shown. Three of the six cases with cognitive dysfunction showed a clear GM volume reduction in the insulae. Five of the six cases with status epilepticus showed the GM volume reduction in hippocampi. One case had severe status epilepticus without motor dysfunction and showed no cerebellar atrophy. CONCLUSION With single-case VBM analysis, we could show the association between region-specific changes in brain volume and the severity of various clinical symptoms even in a small sample of subjects.
Collapse
Affiliation(s)
- Elly Arizono
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Emiko Chiba
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroyuki Maki
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Jiao S, Johnson K, Moreno C, Yano S, Holmgren M. Comparative description of the mRNA expression profile of Na + /K + -ATPase isoforms in adult mouse nervous system. J Comp Neurol 2021; 530:627-647. [PMID: 34415061 PMCID: PMC8716420 DOI: 10.1002/cne.25234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/16/2021] [Accepted: 08/16/2021] [Indexed: 11/09/2022]
Abstract
Mutations in genes encoding Na+ /K+ -ATPase α1, α2, and α3 subunits cause a wide range of disabling neurological disorders, and dysfunction of Na+ /K+ -ATPase may contribute to neuronal injury in stroke and dementia. To better understand the pathogenesis of these diseases, it is important to determine the expression patterns of the different Na+ /K+ -ATPase subunits within the brain and among specific cell types. Using two available scRNA-Seq databases from the adult mouse nervous system, we examined the mRNA expression patterns of the different isoforms of the Na+ /K+ -ATPase α, β and Fxyd subunits at the single-cell level among brain regions and various neuronal populations. We subsequently identified specific types of neurons enriched with transcripts for α1 and α3 isoforms and elaborated how α3-expressing neuronal populations govern cerebellar neuronal circuits. We further analyzed the co-expression network for α1 and α3 isoforms, highlighting the genes that positively correlated with α1 and α3 expression. The top 10 genes for α1 were Chn2, Hpcal1, Nrgn, Neurod1, Selm, Kcnc1, Snrk, Snap25, Ckb and Ccndbp1 and for α3 were Sorcs3, Eml5, Neurod2, Ckb, Tbc1d4, Ptprz1, Pvrl1, Kirrel3, Pvalb, and Asic2.
Collapse
Affiliation(s)
- Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kory Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sho Yano
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Abstract
By evaluating children with a malformed cerebral cortex, we identified an ATPase pump (ATP1A3) with an early role in brain development. The ATP1A3 pump maintains the physiological concentration of sodium and potassium ions in cells, a process critical for osmotic equilibrium and membrane potential across several developing cell populations. We employed single-cell sequencing approaches to identify key enrichments for ATP1A3 expression during human cortex development. Unravelling this early cell-type–specific pathophysiology in the developing brain offers a potential basis for the treatment of ATP1A3-related diseases affecting prenatal and early childhood development. Osmotic equilibrium and membrane potential in animal cells depend on concentration gradients of sodium (Na+) and potassium (K+) ions across the plasma membrane, a function catalyzed by the Na+,K+-ATPase α-subunit. Here, we describe ATP1A3 variants encoding dysfunctional α3-subunits in children affected by polymicrogyria, a developmental malformation of the cerebral cortex characterized by abnormal folding and laminar organization. To gain cell-biological insights into the spatiotemporal dynamics of prenatal ATP1A3 expression, we built an ATP1A3 transcriptional atlas of fetal cortical development using mRNA in situ hybridization and transcriptomic profiling of ∼125,000 individual cells with single-cell RNA sequencing (Drop-seq) from 11 areas of the midgestational human neocortex. We found that fetal expression of ATP1A3 is most abundant to a subset of excitatory neurons carrying transcriptional signatures of the developing subplate, yet also maintains expression in nonneuronal cell populations. Moving forward a year in human development, we profiled ∼52,000 nuclei from four areas of an infant neocortex and show that ATP1A3 expression persists throughout early postnatal development, most predominantly in inhibitory neurons, including parvalbumin interneurons in the frontal cortex. Finally, we discovered the heteromeric Na+,K+-ATPase pump complex may form nonredundant cell-type–specific α-β isoform combinations, including α3-β1 in excitatory neurons and α3-β2 in inhibitory neurons. Together, the developmental malformation phenotype of affected individuals and single-cell ATP1A3 expression patterns point to a key role for α3 in human cortex development, as well as a cell-type basis for pre- and postnatal ATP1A3-associated diseases.
Collapse
|
6
|
Biglari N, Gaziano I, Schumacher J, Radermacher J, Paeger L, Klemm P, Chen W, Corneliussen S, Wunderlich CM, Sue M, Vollmar S, Klöckener T, Sotelo-Hitschfeld T, Abbasloo A, Edenhofer F, Reimann F, Gribble FM, Fenselau H, Kloppenburg P, Wunderlich FT, Brüning JC. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat Neurosci 2021; 24:913-929. [PMID: 34002087 PMCID: PMC8249241 DOI: 10.1038/s41593-021-00854-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.
Collapse
Affiliation(s)
- Nasim Biglari
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Isabella Gaziano
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jonas Schumacher
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan Radermacher
- grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Lars Paeger
- grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Paul Klemm
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Weiyi Chen
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Svenja Corneliussen
- grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Claudia M. Wunderlich
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Michael Sue
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Stefan Vollmar
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Tim Klöckener
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tamara Sotelo-Hitschfeld
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Amin Abbasloo
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Frank Edenhofer
- grid.5771.40000 0001 2151 8122Leopold-Franzens-Universität Innsbruck, Institute for Molecular Biology, Innsbruck, Austria
| | - Frank Reimann
- grid.120073.70000 0004 0622 5016Cambridge Institute for Medical Research and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, Cambridge, UK
| | - Fiona M. Gribble
- grid.120073.70000 0004 0622 5016Cambridge Institute for Medical Research and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, Cambridge, UK
| | - Henning Fenselau
- grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Research Group Synaptic Transmission in Energy Homeostasis, Cologne, Germany
| | - Peter Kloppenburg
- grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Frank T. Wunderlich
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jens C. Brüning
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, Neuherberg, Germany
| |
Collapse
|
7
|
Wallace K, Uchitel J, Prange L, Jasien J, Bonner M, D'Alli R, Maslow G, Mikati MA. Characterization of Severe and Extreme Behavioral Problems in Patients With Alternating Hemiplegia of Childhood. Pediatr Neurol 2020; 111:5-12. [PMID: 32951661 DOI: 10.1016/j.pediatrneurol.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alternating hemiplegia of childhood often manifests severe or extreme behavioral problems, the nature of which remains to be fully characterized. METHODS We analyzed 39 consecutive patients with alternating hemiplegia of childhood for occurrence of behavioral problems and categorized those by severity: mild (not requiring intervention), moderate (requiring intervention but no risk), severe (minor risk to self, others, or both), and extreme (major risk). We then analyzed behavioral manifestations, concurrent morbidity, and medication responses in patients with severe or extreme symptoms. RESULTS Two patients had mild behavioral problems, five moderate, 10 severe, six extreme, and 16 none. Extreme cases exhibited disruptive behaviors escalating to assaults. Triggers, when present, included peer-provocation, low frustration tolerance, limits set by others, and sleep disruption. Reversible psychotic symptoms occurred in two patients: in one triggered by infection and trihexyphenidyl, and in another triggered by sertraline. Of the 16 patients with severe or extreme symptoms, 13 had concurrent neuropsychiatric diagnoses. Occurrence of severe or extreme symptoms did not correlate with age, puberty, severity of intellectual disability, or mutation status (P > 0.05). A multidisciplinary team including mental health professionals comanaged all patients with severe or extreme symptoms with either behavioral therapy, medications, or both. When considering medications prescribed to more than four patients, medicines that demonstrated efficacy or partial efficacy in more than 50% of patients were alpha-adrenergic agonists and selective-serotonin-reuptake-inhibitors. CONCLUSIONS Patients with alternating hemiplegia of childhood (41%) often experience severe or extreme behavioral problems and, rarely, medication-triggered psychotic symptoms. These observations are consistent with current understanding of underlying alternating hemiplegia of childhood brain pathophysiology. Increasing awareness of these behavioral problems facilitates alternating hemiplegia of childhood management and anticipatory guidance.
Collapse
Affiliation(s)
- Keri Wallace
- Division of Pediatric Neurology and Developmental Medicine, Duke Children's Health Center, Durham, North Carolina
| | - Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke Children's Health Center, Durham, North Carolina
| | - Lyndsey Prange
- Division of Pediatric Neurology and Developmental Medicine, Duke Children's Health Center, Durham, North Carolina
| | - Joan Jasien
- Division of Pediatric Neurology and Developmental Medicine, Duke Children's Health Center, Durham, North Carolina
| | - Melanie Bonner
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - Richard D'Alli
- Division of Child Development and Behavioral Health, Department of Pediatrics, Duke University, Durham, North Carolina
| | - Gary Maslow
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina; Department of Pediatrics, Duke University, Durham, North Carolina
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke Children's Health Center, Durham, North Carolina.
| |
Collapse
|
8
|
Melone M, Ciriachi C, Pietrobon D, Conti F. Heterogeneity of Astrocytic and Neuronal GLT-1 at Cortical Excitatory Synapses, as Revealed by its Colocalization With Na+/K+-ATPase α Isoforms. Cereb Cortex 2020; 29:3331-3350. [PMID: 30260367 DOI: 10.1093/cercor/bhy203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/29/2022] Open
Abstract
GLT-1, the major glutamate transporter, is expressed at perisynaptic astrocytic processes (PAP) and axon terminals (AxT). GLT-1 is coupled to Na+/K+-ATPase (NKA) α1-3 isoforms, whose subcellular distribution and spatial organization in relationship to GLT-1 are largely unknown. Using several microscopy techniques, we showed that at excitatory synapses α1 and α3 are exclusively neuronal (mainly in dendrites and in some AxT), while α2 is predominantly astrocytic. GLT-1 displayed a differential colocalization with α1-3. GLT-1/α2 and GLT-1/α3 colocalization was higher in GLT-1 positive puncta partially (for GLT-1/α2) or almost totally (for GLT-1/α3) overlapping with VGLUT1 positive terminals than in nonoverlapping ones. GLT-1 colocalized with α2 at PAP, and with α1 and α3 at AxT. GLT-1 and α2 gold particles were ∼1.5-2 times closer than GLT-1/α1 and GLT-1/α3 particles. GLT-1/α2 complexes (edge to edge interdistance of gold particles ≤50 nm) concentrated at the perisynaptic region of PAP membranes, whereas neuronal GLT-1/α1 and GLT-1/α3 complexes were fewer and more uniformly distributed in AxT. These data unveil different composition of GLT-1 and α subunits complexes in the glial and neuronal domains of excitatory synapses. The spatial organization of GLT-1/α1-3 complexes suggests that GLT-1/NKA interaction is more efficient in astrocytes than in neurons, further supporting the dominant role of astrocytic GLT-1 in glutamate homeostasis.
Collapse
Affiliation(s)
- Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Chiara Ciriachi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neuroscience, Padova, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.,Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Podvin S, Jones A, Liu Q, Aulston B, Ransom L, Ames J, Shen G, Lietz CB, Jiang Z, O'Donoghue AJ, Winston C, Ikezu T, Rissman RA, Yuan S, Hook V. Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses. Mol Cell Proteomics 2020; 19:1017-1034. [PMID: 32295833 PMCID: PMC7261814 DOI: 10.1074/mcp.ra120.002079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Accumulation and propagation of hyperphosphorylated Tau (p-Tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating Tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-Tau pathology after injection into mouse brain. To gain an understanding of the mTau exosome cargo involved in Tau pathogenesis, these pathogenic exosomes were analyzed by proteomics and bioinformatics. The data showed that mTau expression dysregulates the exosome proteome to result in 1) proteins uniquely present only in mTau, and not control exosomes, 2) the absence of proteins in mTau exosomes, uniquely present in control exosomes, and 3) shared proteins which were significantly upregulated or downregulated in mTau compared with control exosomes. Notably, mTau exosomes (not control exosomes) contain ANP32A (also known as I1PP2A), an endogenous inhibitor of the PP2A phosphatase which regulates the phosphorylation state of p-Tau. Several of the mTau exosome-specific proteins have been shown to participate in AD mechanisms involving lysosomes, inflammation, secretases, and related processes. Furthermore, the mTau exosomes lacked a substantial portion of proteins present in control exosomes involved in pathways of localization, vesicle transport, and protein binding functions. The shared proteins present in both mTau and control exosomes represented exosome functions of vesicle-mediated transport, exocytosis, and secretion processes. These data illustrate mTau as a dynamic regulator of the biogenesis of exosomes to result in acquisition, deletion, and up- or downregulation of protein cargo to result in pathogenic mTau exosomes capable of in vivo propagation of p-Tau neuropathology in mouse brain.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Alexander Jones
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Qing Liu
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California
| | - Brent Aulston
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California
| | - Linnea Ransom
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Janneca Ames
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Gloria Shen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Christopher B Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Charisse Winston
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Department of Neurology, Alzheimer's Disease Research Center, Boston University, School of Medicine, Boston, Massachusetts
| | - Robert A Rissman
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, La Jolla, California
| | - Shauna Yuan
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California; Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
10
|
An axon-specific expression of HCN channels catalyzes fast action potential signaling in GABAergic interneurons. Nat Commun 2020; 11:2248. [PMID: 32382046 PMCID: PMC7206118 DOI: 10.1038/s41467-020-15791-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
During high-frequency network activities, fast-spiking, parvalbumin-expressing basket cells (PV+-BCs) generate barrages of fast synaptic inhibition to control the probability and precise timing of action potential (AP) initiation in principal neurons. Here we describe a subcellular specialization that contributes to the high speed of synaptic inhibition mediated by PV+-BCs. Mapping of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel distribution in rat hippocampal PV+-BCs with subcellular patch-clamp methods revealed that functional HCN channels are exclusively expressed in axons and completely absent from somata and dendrites. HCN channels not only enhance AP initiation during sustained high-frequency firing but also speed up the propagation of AP trains in PV+-BC axons by dynamically opposing the hyperpolarization produced by Na+-K+ ATPases. Since axonal AP signaling determines the timing of synaptic communication, the axon-specific expression of HCN channels represents a specialization for PV+-BCs to operate at high speed. The precise subcellular location of ion channels is a key determinant of their functions. Here, subcellular patch-clamp recordings demonstrate that an axon-specific expression of HCN channels facilitates the initiation and propagation of action potentials in parvalbumin-expressing basket cells.
Collapse
|
11
|
Murata K, Kinoshita T, Ishikawa T, Kuroda K, Hoshi M, Fukazawa Y. Region- and neuronal-subtype-specific expression of Na,K-ATPase alpha and beta subunit isoforms in the mouse brain. J Comp Neurol 2020; 528:2654-2678. [PMID: 32301109 PMCID: PMC7540690 DOI: 10.1002/cne.24924] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/01/2023]
Abstract
Na,K‐ATPase is a ubiquitous molecule contributing to the asymmetrical distribution of Na+ and K+ ions across the plasma membrane and maintenance of the membrane potential, a prerequisite of neuronal activity. Na,K‐ATPase comprises three subunits (α, β, and FXYD). The α subunit has four isoforms in mice, with three of them (α1, α2, and α3) expressed in the brain. However, the functional and biological significances of the different brain isoforms remain to be fully elucidated. Recent studies have revealed the association of Atp1a3, a gene encoding α3 subunit, with neurological disorders. To map the cellular distributions of the α subunit isoforms and their coexpression patterns, we evaluated the mRNA expression of Atp1a1, Atp1a2, and Atp1a3 by in situ hybridization in the mouse brain. Atp1a1 and Atp1a3 were expressed in neurons, whereas Atp1a2 was almost exclusively expressed in glial cells. Most neurons coexpressed Atp1a1 and Atp1a3, with highly heterogeneous expression levels across the brain regions and neuronal subtypes. We identified parvalbumin (PV)‐expressing GABAergic neurons in the hippocampus, somatosensory cortex, and retrosplenial cortex as an example of a neuronal subtype expressing low Atp1a1 and high Atp1a3. The expression of Atp1b isoforms was also heterogeneous across brain regions and cellular subtypes. The PV‐expressing neurons expressed a high level of Atp1b1 and a low level of Atp1b2 and Atp1b3. These findings provide basic information on the region‐ and neuronal‐subtype‐dependent expression of Na,K‐ATPase α and β subunit isoforms, as well as a rationale for the selective involvement of neurons expressing high levels of Atp1a3 in neurological disorders.
Collapse
Affiliation(s)
- Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Tomoki Kinoshita
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsuya Ishikawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Kazuki Kuroda
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Minako Hoshi
- Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| |
Collapse
|
12
|
Snow JP, Westlake G, Klofas LK, Jeon S, Armstrong LC, Swoboda KJ, George AL, Ess KC. Neuronal modeling of alternating hemiplegia of childhood reveals transcriptional compensation and replicates a trigger-induced phenotype. Neurobiol Dis 2020; 141:104881. [PMID: 32348881 DOI: 10.1016/j.nbd.2020.104881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 01/30/2023] Open
Abstract
Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disease caused by heterozygous de novo missense mutations in the ATP1A3 gene that encodes the neuronal specific α3 subunit of the Na,K-ATPase (NKA) pump. Mechanisms underlying patient episodes including environmental triggers remain poorly understood, and there are no empirically proven treatments for AHC. In this study, we generated patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls for the E815K ATP1A3 mutation that causes the most phenotypically severe form of AHC. Using an in vitro iPSC-derived cortical neuron disease model, we found elevated levels of ATP1A3 mRNA in AHC lines compared to controls, without significant perturbations in protein expression. Microelectrode array analyses demonstrated that in cortical neuronal cultures, ATP1A3+/E815K iPSC-derived neurons displayed less overall activity than neurons differentiated from isogenic mutation-corrected and unrelated control cell lines. However, induction of cellular stress by elevated temperature revealed a hyperactivity phenotype following heat stress in ATP1A3+/E815K neurons compared to control lines. Treatment with flunarizine, a drug commonly used to prevent AHC episodes, did not impact this stress-triggered phenotype. These findings support the use of iPSC-derived neuronal cultures for studying complex neurodevelopmental conditions such as AHC and provide a platform for mechanistic discovery in a human disease model.
Collapse
Affiliation(s)
- John P Snow
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Grant Westlake
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lindsay K Klofas
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Soyoun Jeon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura C Armstrong
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathryn J Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kevin C Ess
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
MacAulay N. Molecular mechanisms of K + clearance and extracellular space shrinkage-Glia cells as the stars. Glia 2020; 68:2192-2211. [PMID: 32181522 DOI: 10.1002/glia.23824] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+ ]o . This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+ ]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+ /K+ -ATPase, but not the Na+ /K+ /Cl- cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+ /K+ -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+ -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na +/K +-ATPase. Mol Neurobiol 2019; 57:1170-1185. [PMID: 31701438 PMCID: PMC7031213 DOI: 10.1007/s12035-019-01779-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
Collapse
|
15
|
Allocco AA, Jin SC, Duy PQ, Furey CG, Zeng X, Dong W, Nelson-Williams C, Karimy JK, DeSpenza T, Hao LT, Reeves B, Haider S, Gunel M, Lifton RP, Kahle KT. Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3. Front Cell Neurosci 2019; 13:425. [PMID: 31616254 PMCID: PMC6775207 DOI: 10.3389/fncel.2019.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background ATP1A3 encodes the α3 subunit of the Na+/K+ ATPase, a fundamental ion-transporting enzyme. Primarily expressed in neurons, ATP1A3 is mutated in several autosomal dominant neurological diseases. To our knowledge, damaging recessive genotypes in ATP1A3 have never been associated with any human disease. Atp1a3 deficiency in zebrafish results in hydrocephalus; however, no known association exists between ATP1A3 and human congenital hydrocephalus (CH). Methods We utilized whole-exome sequencing (WES), bioinformatics, and computational modeling to identify and characterize novel ATP1A3 mutations in a patient with CH. We performed immunohistochemical studies using mouse embryonic brain tissues to characterize Atp1a3 expression during brain development. Results We identified two germline mutations in ATP1A3 (p. Arg19Cys and p.Arg463Cys), each of which was inherited from one of the patient’s unaffected parents, in a single patient with severe obstructive CH due to aqueductal stenosis, along with open schizencephaly, type 1 Chiari malformation, and dysgenesis of the corpus callosum. Both mutations are predicted to be highly deleterious and impair protein stability. Immunohistochemical studies demonstrate robust Atp1a3 expression in neural stem cells (NSCs), differentiated neurons, and choroid plexus of the mouse embryonic brain. Conclusion These data provide the first evidence of a recessive human phenotype associated with mutations in ATP1A3, and implicate impaired Na+/K+ ATPase function in the pathogenesis of CH.
Collapse
Affiliation(s)
- August A Allocco
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Phan Q Duy
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Charuta G Furey
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Xue Zeng
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Weilai Dong
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Carol Nelson-Williams
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Jason K Karimy
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Tyrone DeSpenza
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Le T Hao
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Benjamin Reeves
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Shozeb Haider
- Department of Computational Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Murat Gunel
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Richard P Lifton
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,NIH-Yale Centers for Mendelian Genomics, School of Medicine, Yale University, New Haven, CT, United States.,Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
16
|
Factors in the disease severity of ATP1A3 mutations: Impairment, misfolding, and allele competition. Neurobiol Dis 2019; 132:104577. [PMID: 31425744 DOI: 10.1016/j.nbd.2019.104577] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Dominant mutations of ATP1A3, a neuronal Na,K-ATPase α subunit isoform, cause neurological disorders with an exceptionally wide range of severity. Several new mutations and their phenotypes are reported here (p.Asp366His, p.Asp742Tyr, p.Asp743His, p.Leu924Pro, and a VUS, p.Arg463Cys). Mutations associated with mild or severe phenotypes [rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), or early infantile epileptic encephalopathy (EIEE)] were expressed in HEK-293 cells. Paradoxically, the severity of human symptoms did not correlate with whether there was enough residual activity to support cell survival. We hypothesized that distinct cellular consequences may result not only from pump inactivation but also from protein misfolding. Biosynthesis was investigated in four tetracycline-inducible isogenic cell lines representing different human phenotypes. Two cell biological complications were found. First, there was impaired trafficking of αβ complex to Golgi apparatus and plasma membrane, as well as changes in cell morphology, for two mutations that produced microcephaly or regions of brain atrophy in patients. Second, there was competition between exogenous mutant ATP1A3 (α3) and endogenous ATP1A1 (α1) so that their sum was constant. This predicts that in patients, the ratio of normal to mutant ATP1A3 proteins will vary when misfolding occurs. At the two extremes, the results suggest that a heterozygous mutation that only impairs Na,K-ATPase activity will produce relatively mild disease, while one that activates the unfolded protein response could produce severe disease and may result in death of neurons independently of ion pump inactivation.
Collapse
|
17
|
Upmanyu N, Dietze R, Bulldan A, Scheiner-Bobis G. Cardiotonic steroid ouabain stimulates steroidogenesis in Leydig cells via the α3 isoform of the sodium pump. J Steroid Biochem Mol Biol 2019; 191:105372. [PMID: 31042565 DOI: 10.1016/j.jsbmb.2019.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 11/28/2022]
Abstract
Cardiotonic steroids such as ouabain are potent inhibitors of the sodium pump and have been widely used for centuries in the treatment of congestive heart failure. In recent decades, however, they have also been identified as hormone-like molecules that trigger signaling cascades of physiological relevance by using the various sodium pump α subunit isoforms as receptors. The murine Leydig cell line MLTC-1 expresses both the ubiquitous, relatively ouabain-insensitive α1 isoform of the sodium pump and the ouabain-sensitive α3 isoform that is normally found in neuronal cells. The physiological relevance of the simultaneous presence of the two isoforms in Leydig cells has not been previously addressed. MLTC-1 Leydig cells contain lipid droplets (LDs) and are capable of progesterone biosynthesis when stimulated by luteinizing hormone (LH). When exposed to low nanomolar concentrations of ouabain, they respond with stimulation of Erk1/2, CREB, and ATF-1 phosphorylation, LD enlargement, and perilipin2 mobilization to the LDs. As a result, progesterone biosynthesis is augmented. Abrogation of α3 isoform expression by siRNA prevents all of the above responses, indicating that it is the hormone/receptor-like interaction of ouabain exclusively with this isoform that triggers the signaling events that normally occur when LH binds to its receptor. Considering that ouabain is produced endogenously and is found in seminal fluid, one can speculate that effects of this substance on germ and somatic cells of the testis might play a role in male reproductive physiology.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Ahmed Bulldan
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany.
| |
Collapse
|
18
|
Regulation of Neuronal Na +/K +-ATPase by Specific Protein Kinases and Protein Phosphatases. J Neurosci 2019; 39:5440-5451. [PMID: 31085608 DOI: 10.1523/jneurosci.0265-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
The Na+/K+-ATPase (NKA) is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasmalemma of living cells. Numerous studies in non-neuronal tissues have shown that this transport mechanism is reversibly regulated by phosphorylation/dephosphorylation of the catalytic α subunit and/or associated proteins. In neurons, Na+/K+ transport by NKA is essential for almost all neuronal operations, consuming up to two-thirds of the neuron's energy expenditure. However, little is known about its cellular regulatory mechanisms. Here we have used an electrophysiological approach to monitor NKA transport activity in male rat hippocampal neurons in situ We report that this activity is regulated by a balance between serine/threonine phosphorylation and dephosphorylation. Phosphorylation by the protein kinases PKG and PKC inhibits NKA activity, whereas dephosphorylation by the protein phosphatases PP-1 and PP-2B (calcineurin) reverses this effect. Given that these kinases and phosphatases serve as downstream effectors in key neuronal signaling pathways, they may mediate the coupling of primary messengers, such as neurotransmitters, hormones, and growth factors, to the NKAs, through which multiple brain functions can be regulated or dysregulated.SIGNIFICANCE STATEMENT The Na+/K+-ATPase (NKA), known as the "Na+ pump," is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasma membrane of living cells. In neurons, as in most types of cells, the NKA generates the negative resting membrane potential, which is the basis for almost all aspects of cellular function. Here we used an electrophysiological approach to monitor physiological NKA transport activity in single hippocampal pyramidal cells in situ We have found that neuronal NKA activity is oppositely regulated by phosphorylation and dephosphorylation, and we have identified the main protein kinases and phosphatases mediating this regulation. This fundamental form of NKA regulation likely plays a role in multiple brain functions.
Collapse
|
19
|
Jasien JM, Bonner M, D'alli R, Prange L, Mclean M, Sachdev M, Uchitel J, Ricano J, Smith B, Mikati MA. Cognitive, adaptive, and behavioral profiles and management of alternating hemiplegia of childhood. Dev Med Child Neurol 2019; 61:547-554. [PMID: 30362107 DOI: 10.1111/dmcn.14077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2018] [Indexed: 11/28/2022]
Abstract
AIM To determine the neuropsychological abnormalities that occur in alternating hemiplegia of childhood (AHC) and report on our experience in managing them. METHOD Patients underwent evaluations according to our standardized AHC pathway. Data were entered into our prospective AHC database and then analyzed. RESULTS Of the cohort of 25 consecutive patients (ages 15mo-42y), eight had initial chief complaints about cognition, 14 language, five attention, and 11 behavior. As compared to population norms means, neuropsychological and behavioral assessment tools (including Child Behavior Checklist, Vineland Adaptive Behavior Scales, Peabody Picture Vocabulary, and Wechsler Intelligence Quotient tests) showed significant impairments in multiple domains: cognition, expressive and receptive language, executive function/attention, and behavior (p<0.05 in all comparisons). Evaluations generated management recommendations in all patients. Twenty had neuropsychiatric diagnoses: 10 attention-deficit/hyperactivity disorder (ADHD), seven disruptive behavior, and three anxiety disorder. Eight out of nine patients with ADHD who were prescribed medications responded to pharmacotherapy. INTERPRETATION Patients with AHC have developmental difficulties related to impairments in multiple neuropsychological domains. This supports the hypothesis that the underlying AHC pathophysiology involves diffuse neuronal dysfunction. Testing generated recommendations to help manage these difficulties. Patients with AHC also have a range of neuropsychiatric diagnoses, the most common being ADHD which responds to pharmacotherapy. WHAT THIS PAPER ADDS Patients with alternating hemiplegia of childhood (AHC) have developmental difficulties with underlying neuropsychological impairments. The findings in this study are consistent with an underlying AHC pathophysiology which involves diffuse neuronal, probably largely GABAergic, dysfunction. Patients with AHC have a range of neuropsychiatric diagnoses, the most common being attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Joan M Jasien
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Melanie Bonner
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Richard D'alli
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Lyndsey Prange
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Melissa Mclean
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | | | - Julie Uchitel
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Jennifer Ricano
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Brian Smith
- Department of Pediatrics, Division of Quantitative Medicine, Duke University Medical Center, Durham, NC, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA.,Duke Institute for Brain Sciences and Duke Department of Neurobiology, Durham, NC, USA
| |
Collapse
|
20
|
Shrivastava AN, Triller A, Melki R. Cell biology and dynamics of Neuronal Na +/K +-ATPase in health and diseases. Neuropharmacology 2018; 169:107461. [PMID: 30550795 DOI: 10.1016/j.neuropharm.2018.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/17/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Neuronal Na+/K+-ATPase is responsible for the maintenance of ionic gradient across plasma membrane. In doing so, in a healthy brain, Na+/K+-ATPase activity accounts for nearly half of total brain energy consumption. The α3-subunit containing Na+/K+-ATPase expression is restricted to neurons. Heterozygous mutations within α3-subunit leads to Rapid-onset Dystonia Parkinsonism, Alternating Hemiplegia of Childhood and other neurological and neuropsychiatric disorders. Additionally, proteins such as α-synuclein, amyloid-β, tau and SOD1 whose aggregation is associated to neurodegenerative diseases directly bind and impair α3-Na+/K+-ATPase activity. The review will provide a summary of neuronal α3-Na+/K+-ATPase functional properties, expression pattern, protein-protein interactions at the plasma membrane, biophysical properties (distribution and lateral diffusion). Lastly, the role of α3-Na+/K+-ATPase in neurological and neurodegenerative disorders will be discussed. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL, Research University, 46 Rue d'Ulm, 75005 Paris, France
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
21
|
Orellana AM, Leite JA, Kinoshita PF, Vasconcelos AR, Andreotti DZ, de Sá Lima L, Xavier GF, Kawamoto EM, Scavone C. Ouabain increases neuronal branching in hippocampus and improves spatial memory. Neuropharmacology 2018; 140:260-274. [PMID: 30099050 DOI: 10.1016/j.neuropharm.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-β-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/β-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Diana Zukas Andreotti
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Bioscience, University of São Paulo, Adress: Rua do Matão, Travessa 14, 101, São Paulo, 05508-090, Brazil.
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| |
Collapse
|
22
|
Helseth AR, Hunanyan AS, Adil S, Linabarger M, Sachdev M, Abdelnour E, Arehart E, Szabo M, Richardson J, Wetsel WC, Hochgeschwender U, Mikati MA. Novel E815K knock-in mouse model of alternating hemiplegia of childhood. Neurobiol Dis 2018; 119:100-112. [PMID: 30071271 DOI: 10.1016/j.nbd.2018.07.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/05/2018] [Accepted: 07/28/2018] [Indexed: 01/30/2023] Open
Abstract
De novo mutations causing dysfunction of the ATP1A3 gene, which encodes the α3 subunit of Na+/K+-ATPase pump expressed in neurons, result in alternating hemiplegia of childhood (AHC). AHC manifests as paroxysmal episodes of hemiplegia, dystonia, behavioral abnormalities, and seizures. The first aim of this study was to characterize a novel knock-in mouse model (Atp1a3E815K+/-, Matoub, Matb+/-) containing the E815K mutation of the Atp1a3 gene recognized as causing the most severe and second most common phenotype of AHC with increased morbidity and mortality as compared to other mutations. The second aim was to investigate the effects of flunarizine, currently the most effective drug used in AHC, to further validate our model and to help address a question with significant clinical implications that has not been addressed in prior studies. Specifically, many E815K patients have clinical decompensation and catastrophic regression after discontinuing flunarizine therapy; however, it is not known whether this is congruent with the natural course of the disease and is a result of withdrawal from an acute beneficial effect, withdrawal from a long-term protective effect or from a detrimental effect of prior flunarizine exposure. Our behavioral and neurophysiological testing demonstrated that Matb+/- mice express a phenotype that bears a strong resemblance to the E815K phenotype in AHC. In addition, these mice developed spontaneous seizures with high incidence of mortality and required fewer electrical stimulations to reach the kindled state as compared to wild-type littermates. Matb+/- mice treated acutely with flunarizine had reduction in hemiplegic attacks as compared with vehicle-treated mice. After withdrawal of flunarizine, Matb+/- mice that had received flunarizine did neither better nor worse, on behavioral tests, than those who had received vehicle. We conclude that: 1) Our mouse model containing the E815K mutation manifests clinical and neurophysiological features of the most severe form of AHC, 2) Flunarizine demonstrated acute anti-hemiplegic effects but not long-term beneficial or detrimental behavioral effects after it was stopped, and 3) The Matb+/- mouse model can be used to investigate the underlying pathophysiology of ATP1A3 dysfunction and the efficacy of potential treatments for AHC.
Collapse
Affiliation(s)
- Ashley R Helseth
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Arsen S Hunanyan
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Syed Adil
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Molly Linabarger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Monisha Sachdev
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elie Abdelnour
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eric Arehart
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Marlee Szabo
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jordan Richardson
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William C Wetsel
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ute Hochgeschwender
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mohamad A Mikati
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Dobretsov M, Hayar A, Kockara NT, Kozhemyakin M, Light KE, Patyal P, Pierce DR, Wight PA. A Transgenic Mouse Model to Selectively Identify α 3 Na,K-ATPase Expressing Cells in the Nervous System. Neuroscience 2018; 398:274-294. [PMID: 30031123 DOI: 10.1016/j.neuroscience.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
The α3 Na+,K+-ATPase (α3NKA) is one of four known α isoforms of the mammalian transporter. A deficiency in α3NKA is linked to severe movement control disorders. Understanding the pathogenesis of these disorders is limited by an incomplete knowledge of α3NKA expression in the brain as well as the challenges associated with identifying living cells that express the isoform for subsequent electrophysiological studies. To address this problem, transgenic mice were generated on the C57BL/6 genetic background, which utilize the mouse α3 subunit gene (Atp1a3) promoter to drive the expression of ZsGreen1 fluorescent protein. Consistent with published results on α3NKA distribution, a ZsGreen1 signal was detected in the brain, but not in the liver, with Atp1a3-ZsGreen1 transgenic mice. The intensity of ZsGreen1 fluorescence in neuronal cell bodies varied considerably in the brain, being highest in the brainstem, deep cerebellar and select thalamic nuclei, and relatively weak in cortical regions. Fluorescence was not detected in astrocytes or white matter areas. ZsGreen1-positive neurons were readily observed in fresh (unfixed) brain sections, which were amenable to patch-clamp recordings. Thus, the α3NKA-ZsGreen1 mouse model provides a powerful tool for studying the distribution and functional properties of α3NKA-expressing neurons in the brain.
Collapse
Affiliation(s)
- Maxim Dobretsov
- Department of Anesthesiology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States.
| | - Abdallah Hayar
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Maxim Kozhemyakin
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Kim E Light
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Pankaj Patyal
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Dwight R Pierce
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States.
| |
Collapse
|
24
|
Tiwari MN, Mohan S, Biala Y, Yaari Y. Differential contributions of Ca 2+ -activated K + channels and Na + /K + -ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus 2018; 28:338-357. [PMID: 29431274 PMCID: PMC5947627 DOI: 10.1002/hipo.22836] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
In many types of CNS neurons, repetitive spiking produces a slow afterhyperpolarization (sAHP), providing sustained, intrinsically generated negative feedback to neuronal excitation. Changes in the sAHP have been implicated in learning behaviors, in cognitive decline in aging, and in epileptogenesis. Despite its importance in brain function, the mechanisms generating the sAHP are still controversial. Here we have addressed the roles of M-type K+ current (IM ), Ca2+ -gated K+ currents (ICa(K) 's) and Na+ /K+ -ATPases (NKAs) current to sAHP generation in adult rat CA1 pyramidal cells maintained at near-physiological temperature (35 °C). No evidence for IM contribution to the sAHP was found in these neurons. Both ICa(K) 's and NKA current contributed to sAHP generation, the latter being the predominant generator of the sAHP, particularly when evoked with short trains of spikes. Of the different NKA isoenzymes, α1 -NKA played the key role, endowing the sAHP a steep voltage-dependence. Thus normal and pathological changes in α1 -NKA expression or function may affect cognitive processes by modulating the inhibitory efficacy of the sAHP.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Sandesh Mohan
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Yoav Biala
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Yoel Yaari
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| |
Collapse
|
25
|
Chakraborty D, Fedorova OV, Bagrov AY, Kaphzan H. Selective ligands for Na+/K+-ATPase α isoforms differentially and cooperatively regulate excitability of pyramidal neurons in distinct brain regions. Neuropharmacology 2017; 117:338-351. [DOI: 10.1016/j.neuropharm.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
|
26
|
Sasaki M, Ishii A, Saito Y, Hirose S. Progressive Brain Atrophy in Alternating Hemiplegia of Childhood. Mov Disord Clin Pract 2017; 4:406-411. [PMID: 30363489 DOI: 10.1002/mdc3.12451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Background Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disorder that includes involuntary movements, paroxysmal symptoms, and various severities of nonparoxysmal symptoms. Objective To investigate the occurrence of structural brain abnormalities in patients with AHC during clinical courses. Methods Conventional brain magnetic resonance imaging findings and clinical courses were retrospectively investigated in 14 patients with AHC confirmed by ATP1A3 mutations. Results Progressive frontal dominant cerebral, diffuse cerebellar cortical, and severe hippocampal atrophy were observed in seven patients with irreversible severe motor and intellectual deterioration. All of these seven patients exhibited status epilepticus and required transient respiratory care. Isolated diffuse cerebellar cortical atrophy was observed in two adult patients with mild motor regression. Five patients without apparent deterioration displayed almost normal brain findings. Conclusions The areas of atrophy were consistent with the areas of increased expression of the Na+/K+-ATPase α3 subunit encoded by ATP1A3. Some of paroxysmal and nonparoxysmal neurological symptoms are considered as related to the areas of brain atrophy.
Collapse
Affiliation(s)
- Masayuki Sasaki
- Department of Child Neurology National Center of Neurology and Psychiatry Kodaira Tokyo Japan
| | - Atsushi Ishii
- Department of Pediatrics and Central Research Institute for the Molecular Pathomechanisms of Epilepsy Fukuoka University School of Medicine Fukuoka Japan
| | - Yoshiaki Saito
- Division of Child Neurology Department of Brain and Neurosciences Faculty of Medicine Tottori University Yonago Japan
| | - Shinichi Hirose
- Department of Pediatrics and Central Research Institute for the Molecular Pathomechanisms of Epilepsy Fukuoka University School of Medicine Fukuoka Japan
| |
Collapse
|
27
|
Zhao J, Guo X, Du Y, Han Y, Wang Y, Li L, Qian J, Li M, Wu H, Golden T, Wu N. Correlative study of peripheral ATP1A1 gene expression level to anxiety severity score on major depressive disorder patients. J Basic Clin Physiol Pharmacol 2016; 27:563-567. [PMID: 27487491 DOI: 10.1515/jbcpp-2015-0148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) frequently co-occurs with other psychiatric problems. Our previous study showed that ATP1A1 gene expression level was significantly decreased in MDD patients. This research explores the potential correlations between the ATP1A1 expression level reduction and MDD patients' clinical manifestation. METHODS All participant patients were diagnosed by Diagnostic and Statistical Manual of Mental Disorders - 4th edition (DSM-IV). Hamilton rating scale for depression (HAM-D) and anxiety (HAM-A) were applied to group patients into different categories. ATP1A1 expression level was measured by reverse transcript real-time polymerase chain reaction. RESULTS ATP1A1 expression levels of all MDD subgroups showed significant reduction compared to the control group (p<0.01). Further, the trend of ATP1A1 expression level reduction is significantly related to MDD patients' HAM-A scores (p<0.01). However, there was no significance between ATP1A1 level and HAM-D scores (p>0.05). CONCLUSIONS ATP1A1 expression level reduction is related to MDD anxiety score, which may be an explanation for the clinical manifestations and the underlining physiological mechanisms.
Collapse
|
28
|
Upmanyu N, Dietze R, Kirch U, Scheiner-Bobis G. Ouabain interactions with the α4 isoform of the sodium pump trigger non-classical steroid hormone signaling and integrin expression in spermatogenic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2809-2819. [PMID: 27599714 DOI: 10.1016/j.bbamcr.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 01/18/2023]
Abstract
In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Ulrike Kirch
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany.
| |
Collapse
|
29
|
Larsen BR, Holm R, Vilsen B, MacAulay N. Glutamate transporter activity promotes enhanced Na + /K + -ATPase-mediated extracellular K + management during neuronal activity. J Physiol 2016; 594:6627-6641. [PMID: 27231201 DOI: 10.1113/jp272531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Management of glutamate and K+ in brain extracellular space is of critical importance to neuronal function. The astrocytic α2β2 Na+ /K+ -ATPase isoform combination is activated by the K+ transients occurring during neuronal activity. In the present study, we report that glutamate transporter-mediated astrocytic Na+ transients stimulate the Na+ /K+ -ATPase and thus the clearance of extracellular K+ . Specifically, the astrocytic α2β1 Na+ /K+ -ATPase subunit combination displays an apparent Na+ affinity primed to react to physiological changes in intracellular Na+ . Accordingly, we demonstrate a distinct physiological role in K+ management for each of the two astrocytic Na+ /K+ -ATPase β-subunits. ABSTRACT Neuronal activity is associated with transient [K+ ]o increases. The excess K+ is cleared by surrounding astrocytes, partly by the Na+ /K+ -ATPase of which several subunit isoform combinations exist. The astrocytic Na+ /K+ -ATPase α2β2 isoform constellation responds directly to increased [K+ ]o but, in addition, Na+ /K+ -ATPase-mediated K+ clearance could be governed by astrocytic [Na+ ]i . During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+ -coupled glutamate transporters, thereby elevating [Na+ ]i . It thus remains unresolved whether the different Na+ /K+ -ATPase isoforms are controlled by [K+ ]o or [Na+ ]i during neuronal activity. Hippocampal slice recordings of stimulus-induced [K+ ]o transients with ion-sensitive microelectrodes revealed reduced Na+ /K+ -ATPase-mediated K+ management upon parallel inhibition of the glutamate transporter. The apparent intracellular Na+ affinity of isoform constellations involving the astrocytic β2 has remained elusive as a result of inherent expression of β1 in most cell systems, as well as technical challenges involved in measuring intracellular affinity in intact cells. We therefore expressed the different astrocytic isoform constellations in Xenopus oocytes and determined their apparent Na+ affinity in intact oocytes and isolated membranes. The Na+ /K+ -ATPase was not fully saturated at basal astrocytic [Na+ ]i , irrespective of isoform constellation, although the β1 subunit conferred lower apparent Na+ affinity to the α1 and α2 isoforms than the β2 isoform. In summary, enhanced astrocytic Na+ /K+ -ATPase-dependent K+ clearance was obtained with parallel glutamate transport activity. The astrocytic Na+ /K+ -ATPase isoform constellation α2β1 appeared to be specifically geared to respond to the [Na+ ]i transients associated with activity-induced glutamate transporter activity.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nanna MacAulay
- Department Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Neuner SM, Garfinkel BP, Wilmott LA, Ignatowska-Jankowska BM, Citri A, Orly J, Lu L, Overall RW, Mulligan MK, Kempermann G, Williams RW, O'Connell KMS, Kaczorowski CC. Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. Neurobiol Aging 2016; 46:58-67. [PMID: 27460150 DOI: 10.1016/j.neurobiolaging.2016.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 12/13/2022]
Abstract
An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease.
Collapse
Affiliation(s)
- Sarah M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lynda A Wilmott
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bogna M Ignatowska-Jankowska
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rupert W Overall
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gerd Kempermann
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden 01307, Germany
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristen M S O'Connell
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Catherine C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
31
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
32
|
Larsen BR, Stoica A, MacAulay N. Managing Brain Extracellular K(+) during Neuronal Activity: The Physiological Role of the Na(+)/K(+)-ATPase Subunit Isoforms. Front Physiol 2016; 7:141. [PMID: 27148079 PMCID: PMC4841311 DOI: 10.3389/fphys.2016.00141] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
During neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
33
|
Paciorkowski AR, McDaniel SS, Jansen LA, Tully H, Tuttle E, Ghoneim DH, Tupal S, Gunter SA, Vasta V, Zhang Q, Tran T, Liu YB, Ozelius LJ, Brashear A, Sweadner KJ, Dobyns WB, Hahn S. Novel mutations in ATP1A3 associated with catastrophic early life epilepsy, episodic prolonged apnea, and postnatal microcephaly. Epilepsia 2015; 56:422-30. [PMID: 25656163 DOI: 10.1111/epi.12914] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Mutations of ATP1A3 have been associated with rapid onset dystonia-parkinsonism and more recently with alternating hemiplegia of childhood. Here we report one child with catastrophic early life epilepsy and shortened survival, and another with epilepsy, episodic prolonged apnea, postnatal microcephaly, and severe developmental disability. Novel heterozygous mutations (p.Gly358Val and p.Ile363Asn) were identified in ATP1A3 in these children. METHODS Subjects underwent next-generation sequencing under a research protocol. Clinical data were collected retrospectively. The biochemical effects of the mutations on ATP1A3 protein function were investigated. Postmortem neuropathologic specimens from control and affected subjects were studied. RESULTS The mutations localized to the P domain of the Na,K-ATPase α3 protein, and resulted in significant reduction of Na,K-ATPase activity in vitro. We demonstrate in both control human brain tissue and that from the subject with the p.Gly358Val mutation that ATP1A3 immunofluorescence is prominently associated with interneurons in the cortex, which may provide some insight into the pathogenesis of the disease. SIGNIFICANCE The findings indicate these mutations cause severe phenotypes of ATP1A3-related disorder spectrum that include catastrophic early life epilepsy, episodic apnea, and postnatal microcephaly.
Collapse
Affiliation(s)
- Alex R Paciorkowski
- Departments of Neurology, Pediatrics, and Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, U.S.A; Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York, U.S.A
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Krivoi II. Functional interactions of Na,K-ATPase with molecular environment. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s000635091405011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
35
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
36
|
Centella asiatica Attenuates Diabetes Induced Hippocampal Changes in Experimental Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:592062. [PMID: 25161691 PMCID: PMC4139016 DOI: 10.1155/2014/592062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na(+)/K(+)-, Ca(2+)- and Mg(2+)-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition.
Collapse
|
37
|
Oblak AL, Hagen MC, Sweadner KJ, Haq I, Whitlow CT, Maldjian JA, Epperson F, Cook JF, Stacy M, Murrell JR, Ozelius LJ, Brashear A, Ghetti B. Rapid-onset dystonia-parkinsonism associated with the I758S mutation of the ATP1A3 gene: a neuropathologic and neuroanatomical study of four siblings. Acta Neuropathol 2014; 128:81-98. [PMID: 24803225 PMCID: PMC4059967 DOI: 10.1007/s00401-014-1279-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/24/2022]
Abstract
Rapid-onset dystonia-parkinsonism (RDP) is a movement disorder associated with mutations in the ATP1A3 gene. Signs and symptoms of RDP commonly occur in adolescence or early adulthood and can be triggered by physical or psychological stress. Mutations in ATP1A3 are also associated with alternating hemiplegia of childhood (AHC). The neuropathologic substrate of these conditions is unknown. The central nervous system of four siblings, three affected by RDP and one asymptomatic, all carrying the I758S mutation in the ATP1A3 gene, was analyzed. This neuropathologic study is the first carried out in ATP1A3 mutation carriers, whether affected by RDP or AHC. Symptoms began in the third decade of life for two subjects and in the fifth for another. The present investigation aimed at identifying, in mutation carriers, anatomical areas potentially affected and contributing to RDP pathogenesis. Comorbid conditions, including cerebrovascular disease and Alzheimer disease, were evident in all subjects. We evaluated areas that may be relevant to RDP separately from those affected by the comorbid conditions. Anatomical areas identified as potential targets of I758S mutation were globus pallidus, subthalamic nucleus, red nucleus, inferior olivary nucleus, cerebellar Purkinje and granule cell layers, and dentate nucleus. Involvement of subcortical white matter tracts was also evident. Furthermore, in the spinal cord, a loss of dorsal column fibers was noted. This study has identified RDP-associated pathology in neuronal populations, which are part of complex motor and sensory loops. Their involvement would cause an interruption of cerebral and cerebellar connections which are essential for maintenance of motor control.
Collapse
Affiliation(s)
- Adrian L. Oblak
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Matthew C. Hagen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kathleen J. Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Ihtsham Haq
- Department of Neurology, Wake Forest School of Medicine, Wake Forest Baptist Health, Winston-Salem, NC USA
| | - Christopher T. Whitlow
- Department of Radiology (Neuroradiology), Wake Forest Baptist Health, Winston-Salem, NC USA
| | - Joseph A. Maldjian
- Department of Radiology (Neuroradiology), Wake Forest Baptist Health, Winston-Salem, NC USA
| | - Francine Epperson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jared F. Cook
- Department of Neurology, Wake Forest School of Medicine, Wake Forest Baptist Health, Winston-Salem, NC USA
| | - Mark Stacy
- Department of Neurology, Duke University School of Medicine, Duke Health, Durham, NC USA
| | - Jill R. Murrell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Laurie J. Ozelius
- Department of Genetics and Genomic Sciences and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Allison Brashear
- Department of Neurology, Wake Forest School of Medicine, Wake Forest Baptist Health, Winston-Salem, NC USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
38
|
Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N. Contributions of the Na⁺/K⁺-ATPase, NKCC1, and Kir4.1 to hippocampal K⁺ clearance and volume responses. Glia 2014; 62:608-22. [PMID: 24482245 DOI: 10.1002/glia.22629] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/06/2022]
Abstract
Network activity in the brain is associated with a transient increase in extracellular K(+) concentration. The excess K(+) is removed from the extracellular space by mechanisms proposed to involve Kir4.1-mediated spatial buffering, the Na(+)/K(+)/2Cl(-) cotransporter 1 (NKCC1), and/or Na(+)/K(+)-ATPase activity. Their individual contribution to [K(+)]o management has been of extended controversy. This study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na(+)/K(+)-ATPase and to resolve their involvement in clearance of extracellular K(+) transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K(+)]o increases above basal levels. Increased [K(+)]o produced NKCC1-mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K(+) clearance while concomitantly mediate the associated shrinkage of the extracellular space. In rat hippocampal slices, inhibition of NKCC1 failed to affect the rate of K(+) removal from the extracellular space while Kir4.1 enacted its spatial buffering only during a local [K(+)]o increase. In contrast, inhibition of the different isoforms of Na(+)/K(+)-ATPase reduced post-stimulus clearance of K(+) transients. The astrocyte-characteristic α2β2 subunit composition of Na(+)/K(+)-ATPase, when expressed in Xenopus oocytes, displayed a K(+) affinity and voltage-sensitivity that would render this subunit composition specifically geared for controlling [K(+)]o during neuronal activity. In rat hippocampal slices, simultaneous measurements of the extracellular space volume revealed that neither Kir4.1, NKCC1, nor Na(+)/K(+)-ATPase accounted for the stimulus-induced shrinkage of the extracellular space. Thus, NKCC1 plays no role in activity-induced extracellular K(+) recovery in native hippocampal tissue while Kir4.1 and Na(+)/K(+)-ATPase serve temporally distinct roles.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Casper C, Kalliolia E, Warner TT. Recent advances in the molecular pathogenesis of dystonia-plus syndromes and heredodegenerative dystonias. Curr Neuropharmacol 2013; 11:30-40. [PMID: 23814535 PMCID: PMC3580789 DOI: 10.2174/157015913804999432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/17/2012] [Accepted: 08/29/2012] [Indexed: 12/04/2022] Open
Abstract
The majority of studies investigating the molecular pathogenesis and cell biology underlying dystonia have been performed in individuals with primary dystonia. This includes monogenic forms such as DYT1and DYT6 dystonia, and primary focal dystonia which is likely to be multifactorial in origin. In recent years there has been renewed interest in non-primary forms of dystonia including the dystonia-plus syndromes and heredodegenerative disorders. These are caused by a variety of genetic mutations and their study has contributed to our understanding of the neuronal dysfunction that leads to dystonia These findings have reinforced themes identified from study of primary dystonia including abnormal dopaminergic signalling, cellular trafficking and mitochondrial function. In this review we highlight recent advances in the understanding of the dystonia-plus syndromes and heredodegenerative dystonias.
Collapse
Affiliation(s)
- Catharina Casper
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | |
Collapse
|
40
|
Nikolić L, Bataveljić D, Andjus PR, Nedeljković M, Todorović D, Janać B. Changes in the expression and current of the Na+/K+ pump in the snail nervous system after exposure to a static magnetic field. ACTA ACUST UNITED AC 2013; 216:3531-41. [PMID: 23788713 DOI: 10.1242/jeb.085332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Compelling evidence supports the use of a moderate static magnetic field (SMF) for therapeutic purposes. In order to provide insight into the mechanisms underlying SMF treatment, it is essential to examine the cellular responses elicited by therapeutically applied SMF, especially in the nervous system. The Na(+)/K(+) pump, by creating and maintaining the gradient of Na(+) and K(+) ions across the plasma membrane, regulates the physiological properties of neurons. In this study, we examined the expression of the Na(+)/K(+) pump in the isolated brain-subesophageal ganglion complex of the garden snail Helix pomatia, along with the immunoreactivity and current of the Na(+)/K(+) pump in isolated snail neurons after 15 min exposure to a moderate (10 mT) SMF. Western blot and immunofluorescence analysis revealed that 10 mT SMF did not significantly change the expression of the Na(+)/K(+) pump α-subunit in the snail brain and the neuronal cell body. However, our immunofluorescence data showed that SMF treatment induced a significant increase in the Na(+)/K(+) pump α-subunit expression in the neuronal plasma membrane area. This change in Na(+)/K(+) pump expression was reflected in pump activity as demonstrated by the pump current measurements. Whole-cell patch-clamp recordings from isolated snail neurons revealed that Na(+)/K(+) pump current density was significantly increased after the 10 mT SMF treatment. The SMF-induced increase was different in the two groups of control snail neurons, as defined by the pump current level. The results obtained could represent a physiologically important response of neurons to 10 mT SMF comparable in strength to therapeutic applications.
Collapse
Affiliation(s)
- Ljiljana Nikolić
- Department of Neurophysiology, Institute for Biological Research Sinisa Stankovic, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
41
|
Diaz MR, Wadleigh A, Kumar S, De Schutter E, Valenzuela CF. Na+/K+-ATPase inhibition partially mimics the ethanol-induced increase of the Golgi cell-dependent component of the tonic GABAergic current in rat cerebellar granule cells. PLoS One 2013; 8:e55673. [PMID: 23383260 PMCID: PMC3561345 DOI: 10.1371/journal.pone.0055673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/28/2012] [Indexed: 11/19/2022] Open
Abstract
Cerebellar granule cells (CGNs) are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs) mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-I(tonic)) is controversial. Earlier studies suggested that GoCs mediate a component of CGN-I(tonic) that is present only in preparations from immature rodents. However, more recent studies have detected a GoC-dependent component of CGN-I(tonic) in preparations of mature rodents. In addition, acute exposure to ethanol was shown to potentiate the GoC component of CGN-I(tonic) and to induce a parallel increase in spontaneous inhibitory postsynaptic current frequency at CGNs. Here, we tested the hypothesis that these effects of ethanol on GABAergic transmission in CGNs are mediated by inhibition of the Na(+)/K(+)-ATPase. We used whole-cell patch-clamp electrophysiology techniques in cerebellar slices of male rats (postnatal day 23-30). Under these conditions, we reliably detected a GoC-dependent component of CGN-I(tonic) that could be blocked with tetrodotoxin. Further analysis revealed a positive correlation between basal sIPSC frequency and the magnitude of the GoC-dependent component of CGN-I(tonic). Inhibition of the Na(+)/K(+)-ATPase with a submaximal concentration of ouabain partially mimicked the ethanol-induced potentiation of both phasic and tonic GABAergic currents in CGNs. Modeling studies suggest that selective inhibition of the Na(+)/K(+)-ATPase in GoCs can, in part, explain these effects of ethanol. These findings establish a novel mechanism of action of ethanol on GABAergic transmission in the central nervous system.
Collapse
Affiliation(s)
- Marvin R. Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Aya Wadleigh
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Shyam Kumar
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Department of Theoretical Neurobiology, University of Antwerp, Wilrijk, Belgium
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
42
|
Chatterjee A, Dutta S, Mukherjee S, Mukherjee N, Dutta A, Mukherjee A, Sinha S, Panda CK, Chaudhuri K, Roy AL, Mukhopadhyay K. Potential contribution of SIM2 and ETS2 functional polymorphisms in Down syndrome associated malignancies. BMC MEDICAL GENETICS 2013; 14:12. [PMID: 23343470 PMCID: PMC3563522 DOI: 10.1186/1471-2350-14-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 01/18/2013] [Indexed: 01/04/2023]
Abstract
Background Proper expression and functioning of transcription factors (TFs) are essential for regulation of different traits and thus could be crucial for the development of complex diseases. Subjects with Down syndrome (DS) have a higher incidence of acute lymphoblastic leukemia (ALL) while solid tumors, like breast cancer (BC) and oral cancer (OC), show rare incidences. Triplication of the human chromosome 21 in DS is associated with altered genetic dosage of different TFs. V-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and Single Minded 2 (SIM2) are two such TFs that regulate several downstream genes involved in developmental and neurological pathways. Here we studied functional genetic polymorphisms (fSNP) in ETS2 and SIM2 encoding genes in a group of patients and control subjects to better understand association of these variants with DS phenotypes. Methods We employed an in silico approach to identify potential target pathways of ETS2 and SIM2. fSNPs in genes encoding for these two TFs were identified using available databases. Selected sites were genotyped in individuals with DS, their parents, ALL, BC, OC as well as ethnically matched control individuals. We further analyzed these data by population-based statistical methods. Results Allelic/genotypic association analysis showed significant (P < 0.03) differences of rs2070530, rs1051476, rs11254, rs711 for DS subjects compared to control. rs711 also exhibited significantly different genotypic distribution pattern in parents of DS probands (P < 0.02) and BC patients (P < 0.02). Interaction analysis revealed independent main effect of rs711 in all the groups, while rs11254 exhibited independent main effect in DS subjects only. High entropy values were noticed for rs461155 in the solid tumor groups. Significant interactive effects of rs2070531 with rs1051475, rs1051476, rs11254 were observed in all the groups except DS. Conclusions We infer from the present investigation that the difference in frequencies of fSNPs and their independent as well as interactive effects may be the cause for altered expression of SIM2 and ETS2 in DS and malignant groups, which affects different downstream biological pathways. Thus, altered expression of SIM2 and ETS2 could be one of the reasons for variable occurrence of different malignant conditions in DS.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, MRIH, Kolkata, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Song H, Thompson SM, Blaustein MP. Nanomolar ouabain augments Ca2+ signalling in rat hippocampal neurones and glia. J Physiol 2013; 591:1671-89. [PMID: 23297310 DOI: 10.1113/jphysiol.2012.248336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Linkage of certain neurological diseases to Na(+) pump mutations and some mood disorders to altered Na(+) pump function has renewed interest in brain Na(+) pumps. We tested nanomolar ouabain on Ca(2+) signalling (fura-2) in rat hippocampal neurone-astrocyte co-cultures. The neurones and astrocytes express Na(+) pumps with a high-ouabain-affinity catalytic subunit (α3 and α2, respectively); both also express pumps with a ouabain-resistant α1 subunit. Neurones and astrocytes were identified by immunocytochemistry and by stimulation; 3-4 μM L-glutamate (Glu) and 3 μM carbachol (CCh) evoked rapid Ca(2+) transients only in neurones, and small, delayed transients in some astrocytes, whereas 0.5-1 μM ATP evoked Ca(2+) transients only in astrocytes. Both cell types responded to 5-10 μM Glu or ATP. The signals evoked by 3-4 μM Glu in neurones were markedly inhibited by 3-10 μm MPEP (blocks metabotropic glutamate receptor mGluR5) and 10 μm LY341495 (non-selective mGluR blocker), but not by 80 μm AP5 (NMDA receptor blocker) or by selective block of mGluR1 or mGluR2. Pre-incubation (0.5-10 min) with 1-10 nm ouabain (EC50 < 1 nm) augmented Glu- and CCh-evoked signals in neurones. This augmentation was abolished by a blocker of the Na(+)-Ca(2+) exchanger, SEA0400 (300 nm). Ouabain (3 nm) pre-incubation also augmented 10 μM cyclopiazonic acid plus 10 mm caffeine-evoked release of Ca(2+) from the neuronal endoplasmic reticulum (ER). The implication is that nanomolar ouabain inhibits α3 Na(+) pumps, increases (local) intracellular Na(+), and promotes Na(+)-Ca(2+) exchanger-mediated Ca(2+) gain and increased storage in the adjacent ER. Ouabain (3 nm) also increased ER Ca(2+) release and enhanced 0.5 μM ATP-evoked transients in astrocytes; these effects were mediated by α2 Na(+) pumps. Thus, nanomolar ouabain may strongly influence synaptic transmission in the brain as a result of its actions on the high-ouabain-affinity Na(+) pumps in both neurones and astrocytes. The significance of these effects is heightened by the evidence that ouabain is endogenous in mammals.
Collapse
Affiliation(s)
- Hong Song
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
44
|
Sibarov DA, Bolshakov AE, Abushik PA, Krivoi II, Antonov SM. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J Pharmacol Exp Ther 2012; 343:596-607. [PMID: 22927545 DOI: 10.1124/jpet.112.198341] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Using a fluorescent viability assay, immunocytochemistry, patch-clamp recordings, and Ca(2+) imaging analysis, we report that ouabain, a specific ligand of the Na(+),K(+)-ATPase cardiac glycoside binding site, can prevent glutamate receptor agonist-induced apoptosis in cultured rat cortical neurons. In our model of excitotoxicity, a 240-min exposure to 30 μM N-methyl-d-aspartate (NMDA) or kainate caused apoptosis in ∼50% of neurons. These effects were accompanied by a significant decrease in the number of neurons that were immunopositive for the antiapoptotic peptide Bcl-2. Apoptotic injury was completely prevented when the agonists were applied together with 0.1 or 1 nM ouabain, resulting in a greater survival of neurons, and the percentage of neurons expressing Bcl-2 remained similar to those obtained without agonist treatments. In addition, subnanomolar concentrations of ouabain prevented the increase of spontaneous excitatory postsynaptic current's frequency and the intracellular Ca(2+) overload induced by excitotoxic insults. Loading neurons with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or inhibition of the plasma membrane Na(+),Ca(2+)-exchanger by 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate (KB-R7943) eliminated ouabain's effects on NMDA- or kainite-evoked enhancement of spontaneous synaptic activity. Our data suggest that during excitotoxic insults ouabain accelerates Ca(2+) extrusion from neurons via the Na(+),Ca(2+) exchanger. Because intracellular Ca(2+) accumulation caused by the activation of glutamate receptors and boosted synaptic activity represents a key factor in triggering neuronal apoptosis, up-regulation of Ca(2+) extrusion abolishes its development. These antiapoptotic effects are independent of Na(+),K(+)-ATPase ion transport function and are initiated by concentrations of ouabain that are within the range of an endogenous analog, suggesting a novel functional role for Na(+),K(+)-ATPase in neuroprotection.
Collapse
Affiliation(s)
- Dmitry A Sibarov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
45
|
Heo S, Csaszar E, Jung G, Beuk T, Höger H, Lubec G. Hippocampal levels and activity of the sodium/potassium transporting ATPase subunit α-3 (AT1A3) are paralleling memory training in the multiple T-maze in the C57BL/6J mouse. Neurochem Int 2012; 61:702-12. [PMID: 22797008 DOI: 10.1016/j.neuint.2012.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 12/23/2022]
Abstract
Although the sodium/potassium transporting ATPase subunit alpha-3 (AT1A3) has been linked to memory mechanisms in rodents, regulation of this ATPase in terms of activity and complex levels by memory performance in a land maze has not been shown so far. It was therefore the aim of the study to link memory retrieval in the multiple T-Maze (MTM) to AT1A3 protein levels and activity. C57BL/6J mice were trained in the MTM and euthanized 6h following memory retrieval. Hippocampal membrane proteins were prepared by ultracentrifugation and run on blue native gel electrophoresis (BN-PAGE). Enzyme activity was evaluated using an in-gel method. AT1A3 protein was characterized using mass spectrometry (nano-LC-ESI-MS/MS). On BN-PAGE a single band was observed at 240 kDa, which corresponds to the dimeric form of the enzyme. Higher levels of AT1A3 complex were seen in trained mice. Also ATPase activity was higher in trained mice, and was observed both at 110 and at 240 kDa. Mass spectrometry unambiguously identified AT1A3 with 98.91% sequence coverage. A series of novel AT1A3 phosphorylation sites were detected. Taken together, it was shown that increased AT1A3 protein levels for the dimer as well as AT1A3 activity represented by the monomer and the dimer were paralleling memory training in the MTM. This may be relevant for understanding the role of the catalytic hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane that generates the electrochemical gradient of sodium and potassium ions. Herein, we provide evidence for a possible role of AT1A3 in memory mechanisms and support previous findings using different animal models for memory formation.
Collapse
Affiliation(s)
- Seok Heo
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Kirshenbaum GS, Clapcote SJ, Petersen J, Vilsen B, Ralph MR, Roder JC. Genetic suppression of agrin reduces mania-like behavior in Na+ , K+ -ATPase α3 mutant mice. GENES BRAIN AND BEHAVIOR 2012; 11:436-43. [PMID: 22520507 DOI: 10.1111/j.1601-183x.2012.00800.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myshkin mice heterozygous for an inactivating mutation in the neuron-specific Na(+) ,K(+) -ATPase α3 isoform show behavior analogous to mania, including an abnormal endogenous circadian period. Agrin is a proteoglycan implicated as a regulator of synapses that has been proposed to inhibit activity of Na(+) ,K(+) -ATPase α3. We examined whether the mania-related behavior of Myshkin mice could be rescued by a reduction in the expression of agrin through genetic knockout. The suppression of agrin reduced hyperambulation and holeboard exploration, restored anxiety-like behavior (or reduced risk-taking behavior), improved prepulse inhibition and shortened the circadian period. Hence, agrin is important for regulating mania-like behavior and circadian rhythms. In Myshkin mice, the suppression of agrin increased brain Na(+) ,K(+) -ATPase activity by 11 ± 4%, whereas no effect on Na(+) ,K(+) -ATPase activity was detected when agrin was suppressed in mice without the Myshkin mutation. These results introduce agrin as a potential therapeutic target for the treatment of mania and other neurological disorders associated with reduced Na(+) ,K(+) -ATPase activity and neuronal hyperexcitability.
Collapse
Affiliation(s)
- G S Kirshenbaum
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
47
|
Hiyoshi H, Abdelhady S, Segerström L, Sveinbjörnsson B, Nuriya M, Lundgren TK, Desfrere L, Miyakawa A, Yasui M, Kogner P, Johnsen JI, Andäng M, Uhlén P. Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na,K-ATPase. Br J Cancer 2012; 106:1807-15. [PMID: 22531632 PMCID: PMC3364115 DOI: 10.1038/bjc.2012.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Cellular quiescence is a state of reversible proliferation arrest that is induced by anti-mitogenic signals. The endogenous cardiac glycoside ouabain is a specific ligand of the ubiquitous sodium pump, Na,K-ATPase, also known to regulate cell growth through unknown signalling pathways. Methods: To investigate the role of ouabain/Na,K-ATPase in uncontrolled neuroblastoma growth we used xenografts, flow cytometry, immunostaining, comet assay, real-time PCR, and electrophysiology after various treatment strategies. Results: The ouabain/Na,K-ATPase complex induced quiescence in malignant neuroblastoma. Tumour growth was reduced by >50% when neuroblastoma cells were xenografted into immune-deficient mice that were fed with ouabain. Ouabain-induced S-G2 phase arrest, activated the DNA-damage response (DDR) pathway marker γH2AX, increased the cell cycle regulator p21Waf1/Cip1 and upregulated the quiescence-specific transcription factor hairy and enhancer of split1 (HES1), causing neuroblastoma cells to ultimately enter G0. Cells re-entered the cell cycle and resumed proliferation, without showing DNA damage, when ouabain was removed. Conclusion: These findings demonstrate a novel action of ouabain/Na,K-ATPase as a regulator of quiescence in neuroblastoma, suggesting that ouabain can be used in chemotherapies to suppress tumour growth and/or arrest cells to increase the therapeutic index in combination therapies.
Collapse
Affiliation(s)
- H Hiyoshi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kagiava A, Aligizaki K, Katikou P, Nikolaidis G, Theophilidis G. Assessing the neurotoxic effects of palytoxin and ouabain, both Na+/K+-ATPase inhibitors, on the myelinated sciatic nerve fibres of the mouse: An ex vivo electrophysiological study. Toxicon 2012; 59:416-26. [DOI: 10.1016/j.toxicon.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
|
49
|
Kawamoto EM, Lima LS, Munhoz CD, Yshii LM, Kinoshita PF, Amara FG, Pestana RRF, Orellana AMM, Cipolla-Neto J, Britto LRG, Avellar MCW, Rossoni LV, Scavone C. Influence of N-methyl-D-aspartate receptors on ouabain activation of nuclear factor-κB in the rat hippocampus. J Neurosci Res 2011; 90:213-28. [PMID: 22006678 DOI: 10.1002/jnr.22745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 06/25/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023]
Abstract
It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-κB (NF-κB) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-κB binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-κB activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-κB, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-α (Tnf-α), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF-κB activation and increased NOS and α(2/3) -Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-κB activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-κB activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain.
Collapse
Affiliation(s)
- E M Kawamoto
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wostyn P, Van Dam D, Audenaert K, De Deyn PP. Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease. Int J Alzheimers Dis 2011; 2011:617420. [PMID: 21660211 PMCID: PMC3109764 DOI: 10.4061/2011/617420] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/12/2011] [Accepted: 03/29/2011] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia among older people, is characterized by the accumulation of β-amyloid (Aβ) senile plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Despite major advances in understanding the molecular etiology of the disease, progress in the clinical treatment of AD patients has been extremely limited. Therefore, new and more effective therapeutic approaches are needed. Accumulating evidence from human and animal studies suggests that the long-term consumption of caffeine, the most commonly used psychoactive drug in the world, may be protective against AD. The mechanisms underlying the suggested beneficial effect of caffeine against AD remain to be elucidated. In recent studies, several potential neuroprotective effects of caffeine have been proposed. Interestingly, a recent study in rats showed that the long-term consumption of caffeine increased cerebrospinal fluid (CSF) production, associated with the increased expression of Na+-K+ ATPase and increased cerebral blood flow. Compromised function of the choroid plexus and defective CSF production and turnover, with diminished clearance of Aβ, may be one mechanism implicated in the pathogenesis of late-onset AD. If reduced CSF turnover is a risk factor for AD, then therapeutic strategies to improve CSF flow are reasonable. In this paper, we hypothesize that long-term caffeine consumption could exert protective effects against AD at least in part by facilitating CSF production, turnover, and clearance. Further, we propose a preclinical experimental design allowing evaluation of this hypothesis.
Collapse
Affiliation(s)
- Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Reigerlostraat 10, 8730 Beernem, Belgium
| | | | | | | |
Collapse
|