1
|
Carter MM, Zeng X, Ward CP, Landry M, Perelman D, Hennings T, Meng X, Weakley AM, Cabrera AV, Robinson JL, Nguyen T, Higginbottom S, Maecker HT, Sonnenburg ED, Fischbach MA, Gardner CD, Sonnenburg JL. A gut pathobiont regulates circulating glycine and host metabolism in a twin study comparing vegan and omnivorous diets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.08.25320192. [PMID: 39830242 PMCID: PMC11741504 DOI: 10.1101/2025.01.08.25320192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Metabolic diseases including type 2 diabetes and obesity pose a significant global health burden. Plant-based diets, including vegan diets, are linked to favorable metabolic outcomes, yet the underlying mechanisms remain unclear. In a randomized trial involving 21 pairs of identical twins, we investigated the effects of vegan and omnivorous diets on the host metabolome, immune system, and gut microbiome. Vegan diets induced significant shifts in serum and stool metabolomes, cytokine profiles, and gut microbial composition. Despite lower dietary glycine intake, vegan diet subjects exhibited elevated serum glycine levels linked to reduced abundance of the gut pathobiont Bilophila wadsworthia. Functional studies demonstrated that B. wadsworthia metabolizes glycine via the glycine reductase pathway and modulates host glycine availability. Removing B. wadsworthia from a complex microbiota in mice elevated glycine levels and improved metabolic markers. These findings reveal a previously underappreciated mechanism by which diet regulates host metabolic status via the gut microbiota.
Collapse
Affiliation(s)
- Matthew M. Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xianfeng Zeng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Catherine P. Ward
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Matthew Landry
- Department of Population Health and Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, Irvine, CA, USA
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tayler Hennings
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Xiandong Meng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Allison M. Weakley
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ashley V. Cabrera
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jennifer L. Robinson
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tran Nguyen
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University, School of Medicine, Stanford, CA, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Holden T. Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University, School of Medicine, Stanford, CA, USA
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A. Fischbach
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Byun KA, Lee SY, Oh S, Batsukh S, Jang JW, Lee BJ, Rheu KM, Li S, Jeong MS, Son KH, Byun K. Fermented Fish Collagen Attenuates Melanogenesis via Decreasing UV-Induced Oxidative Stress. Mar Drugs 2024; 22:421. [PMID: 39330302 PMCID: PMC11433465 DOI: 10.3390/md22090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Excessive melanogenesis leads to hyperpigmentation-related cosmetic problems. UV exposure increases oxidative stress, which promotes melanogenesis-related signal pathways such as the PKA, microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2) pathways. Glycine is a source of endogenous antioxidants, including glutathione. Fermented fish collagen (FC) contains glycine; thus, we evaluated the effect of FC on decreasing melanogenesis via decreasing oxidative stress. The glycine receptor (GlyR) and glycine transporter-1 (GlyT1) levels were decreased in UV-irradiated keratinocytes; however, the expression levels of these proteins increased upon treatment with FC. The FC decreased oxidative stress, as indicated by the decreasing expression of NOX1/2/4, increased expression of GSH/GSSG, increased SOD activity, and decreased 8-OHdG expression in UV-irradiated keratinocytes. Administration of conditioned media from FC-treated keratinocytes to melanocytes led to decreased p38, PKC, MITF, TRP1, and TRP2 expression. These changes induced by the FC were also observed in UV-irradiated animal skin. FC treatment increased the expression of GlyR and GlyT, which was accompanied by decreased oxidative stress in the UV-irradiated skin. Moreover, the FC negatively regulated the melanogenesis signaling pathways, leading to decreased melanin content in the UV-irradiated skin. In conclusion, FC decreased UV-induced oxidative stress and melanogenesis in melanocytes and animal skin. FC could be used in the treatment of UV-induced hyperpigmentation problems.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jong-Won Jang
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | | | - Sichao Li
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | - Min-Seok Jeong
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Becker B, Wottawa F, Bakr M, Koncina E, Mayr L, Kugler J, Yang G, Windross SJ, Neises L, Mishra N, Harris D, Tran F, Welz L, Schwärzler J, Bánki Z, Stengel ST, Ito G, Krötz C, Coleman OI, Jaeger C, Haller D, Paludan SR, Blumberg R, Kaser A, Cicin-Sain L, Schreiber S, Adolph TE, Letellier E, Rosenstiel P, Meiser J, Aden K. Serine metabolism is crucial for cGAS-STING signaling and viral defense control in the gut. iScience 2024; 27:109173. [PMID: 38496294 PMCID: PMC10943449 DOI: 10.1016/j.isci.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.
Collapse
Affiliation(s)
- Björn Becker
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Felix Wottawa
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Mohamed Bakr
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Eric Koncina
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Université du Luxembourg, Luxembourg, Luxembourg
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Kugler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Guang Yang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | | | - Laura Neises
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Danielle Harris
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephanie T. Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Go Ito
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Christina Krötz
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Olivia I. Coleman
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Luxembourg, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Luxembourg, Luxembourg
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | | | - Richard Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, England, UK
| | - Luka Cicin-Sain
- Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Letellier
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Université du Luxembourg, Luxembourg, Luxembourg
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Johannes Meiser
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
4
|
Kim HW, Lee SY, Hur SJ, Kil DY, Kim JH. Effects of functional nutrients on chicken intestinal epithelial cells induced with oxidative stress. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1040-1052. [PMID: 37969347 PMCID: PMC10640939 DOI: 10.5187/jast.2023.e22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
The objective of this study was to investigate the protective effects of functional nutrients including various functional amino acids, vitamins, and minerals on chicken intestinal epithelial cells (cIECs) treated with oxidative stress. The cIECs were isolated from specific pathogen free eggs. Cells were exposed to 0 mM supplement (control), 20 mM threonine (Thr), 0.4 mM tryptophan (Trp), 1 mM glycine (Gly), 10 μM vitamin C (VC), 40 μM vitamin E (VE), 5 μM vitamin A (VA), 34 μM chromium (Cr), 0.42 μM selenium (Se), and 50 μM zinc (Zn) for 24 h with 6 replicates for each treatment. After 24 h, cells were further incubated with fresh culture medium (positive control, PC) or 1 mM H2O2 with different supplements (negative control, NC and each treatment). Oxidative stress was measured by cell proliferation, whereas tight junction barrier function was analyzed by fluorescein isothiocyanate (FITC)-dextran permeability and transepithelial electrical resistance (TEER). Results indicated that cell viability and TEER values were less (p < 0.05) in NC treatments with oxidative stress than in PC treatments. In addition, FITC-dextran values were greater (p < 0.05) in NC treatments with oxidative stress than in PC treatments. The supplementations of Thr, Trp, Gly, VC, and VE in cells treated with H2O2 showed greater (p < 0.05) cell viability than the supplementation of VA, Cr, Se, and Zn. The supplementations of Trp, Gly, VC, and Se in cells treated with H2O2 showed the least (p < 0.05) cellular permeability. In addition, the supplementation of Thr, VE, VA, Cr, and Zn in cells treated with H2O2 decreased (p < 0.05) cellular permeability. At 48 h, the supplementations of Thr, Trp, and Gly in cells treated with H2O2 showed the greatest (p < 0.05) TEER values among all treatments, and the supplementations of VC and VE in cells treated with H2O2 showed greater (p < 0.05) TEER values than the supplementations of VA, Cr, Se, and Zn in cells treated with H2O2. In conclusion, Thr, Trp, Gly, and VC supplements were effective in improving cell viability and intestinal barrier function of cIECs exposed to oxidative stress.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science (BK21 Four),
Institute of Agriculture Life Science, Gyeongsang National
University, Jinju 52725, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dong Yong Kil
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
5
|
Aguayo-Cerón KA, Sánchez-Muñoz F, Gutierrez-Rojas RA, Acevedo-Villavicencio LN, Flores-Zarate AV, Huang F, Giacoman-Martinez A, Villafaña S, Romero-Nava R. Glycine: The Smallest Anti-Inflammatory Micronutrient. Int J Mol Sci 2023; 24:11236. [PMID: 37510995 PMCID: PMC10379184 DOI: 10.3390/ijms241411236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Glycine is a non-essential amino acid with many functions and effects. Glycine can bind to specific receptors and transporters that are expressed in many types of cells throughout an organism to exert its effects. There have been many studies focused on the anti-inflammatory effects of glycine, including its abilities to decrease pro-inflammatory cytokines and the concentration of free fatty acids, to improve the insulin response, and to mediate other changes. However, the mechanism through which glycine acts is not clear. In this review, we emphasize that glycine exerts its anti-inflammatory effects throughout the modulation of the expression of nuclear factor kappa B (NF-κB) in many cells. Although glycine is a non-essential amino acid, we highlight how dietary glycine supplementation is important in avoiding the development of chronic inflammation.
Collapse
Affiliation(s)
- Karla Aidee Aguayo-Cerón
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de Mexico 14080, Mexico
| | | | | | - Aurora Vanessa Flores-Zarate
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico
| | - Abraham Giacoman-Martinez
- Laboratorio de Framacología, Departamaneto de Ciencias de la Salud, DCBS, Universidad Autónoma Mteropolitana-Iztapalapa (UAM-I), Ciudad de Mexico 09340, Mexico
| | - Santiago Villafaña
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Rodrigo Romero-Nava
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
6
|
Miotelo L, Ferro M, Maloni G, Otero IVR, Nocelli RCF, Bacci M, Malaspina O. Transcriptomic analysis of Malpighian tubules from the stingless bee Melipona scutellaris reveals thiamethoxam-induced damages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158086. [PMID: 35985603 DOI: 10.1016/j.scitotenv.2022.158086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The concern about pesticide exposure to neotropical bees has been increasing in the last few years, and knowledge gaps have been identified. Although stingless bees, (e.g.: Melipona scutellaris), are more diverse than honeybees and they stand out in the pollination of several valuable economical crops, toxicity assessments with stingless bees are still scarce. Nowadays new approaches in ecotoxicological studies, such as omic analysis, were pointed out as a strategy to reveal mechanisms of how bees deal with these stressors. To date, no molecular techniques have been applied for the evaluation of target and/or non-target organs in stingless bees, such as the Malpighian tubules (Mt). Therefore, in the present study, we evaluated the differentially expressed genes (DEGs) in the Mt of M. scutellaris after one and eight days of exposure to LC50/100 (0.000543 ng a.i./μL) of thiamethoxam (TMX). Through functional annotation analysis of four transcriptome libraries, the time course line approach revealed 237 DEGs (nine clusters) associated with carbon/energy metabolism and cellular processes (lysosomes, autophagy, and glycan degradation). The expression profiles of Mt were altered by TMX in processes, such as detoxification, excretion, tissue regeneration, oxidative stress, apoptosis, and DNA repair. Transcriptome analysis showed that cell metabolism in Mt was mainly affected after 8 days of exposure. Nine genes were selected from different clusters and validated by RT-qPCR. According to our findings, TMX promotes several types of damage in Mt cells at the molecular level. Therefore, interference of different cellular processes directly affects the health of M. scutellaris by compromising the function of Mt.
Collapse
Affiliation(s)
- Lucas Miotelo
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Geovana Maloni
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Igor Vinicius Ramos Otero
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | | - Mauricio Bacci
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
7
|
Ommati MM, Ahmadi HN, Sabouri S, Retana-Marquez S, Abdoli N, Rashno S, Niknahad H, Jamshidzadeh A, Mousavi K, Rezaei M, Akhlagh A, Azarpira N, Khodaei F, Heidari R. Glycine protects the male reproductive system against lead toxicity via alleviating oxidative stress, preventing sperm mitochondrial impairment, improving kinematics of sperm, and blunting the downregulation of enzymes involved in the steroidogenesis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2990-3006. [PMID: 36088639 DOI: 10.1002/tox.23654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) is a highly toxic heavy metal widely dispersed in the environment because of human industrial activities. Many studies revealed that Pb could adversely affect several organs, including the male reproductive system. Pb-induced reproductive toxicity could lead to infertility. Thus, finding safe and clinically applicable protective agents against this complication is important. It has been found that oxidative stress plays a fundamental role in the pathogenesis of Pb-induced reprotoxicity. Glycine is the simplest amino acid with a wide range of pharmacological activities. It has been found that glycine could attenuate oxidative stress and mitochondrial impairment in various experimental models. The current study was designed to evaluate the role of glycine in Pb-induced reproductive toxicity in male mice. Male BALB/c mice received Pb (20 mg/kg/day; gavage; 35 consecutive days) and treated with glycine (250 and 500 mg/kg/day; gavage; 35 consecutive days). Then, reproductive system weight indices, biomarkers of oxidative stress in the testis and isolated sperm, sperm kinetic, sperm mitochondrial indices, and testis histopathological alterations were monitored. A significant change in testis, epididymis, and Vas deferens weight was evident in Pb-treated animals. Markers of oxidative stress were also significantly increased in the testis and isolated sperm of the Pb-treated group. A significant disruption in sperm kinetic was also evident when mice received Pb. Moreover, Pb exposure caused significant deterioration in sperm mitochondrial indices. Tubular injury, tubular desquamation, and decreased spermatogenic index were histopathological alterations detected in Pb-treated mice. It was found that glycine significantly blunted oxidative stress markers in testis and sperm, improved sperm mitochondrial parameters, causing considerable higher velocity-related indices (VSL, VCL, and VAP) and percentages of progressively motile sperm, and decreased testis histopathological changes in Pb-exposed animals. These data suggest glycine as a potential protective agent against Pb-induced reproductive toxicity. The effects of glycine on oxidative stress markers and mitochondrial function play a key role in its protective mechanism.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Nategh Ahmadi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- College of Animal Science and Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Samira Sabouri
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Socorro Retana-Marquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Sajjad Rashno
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Akhlagh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Jockel-Schneider Y, Stoelzel P, Hess J, Haubitz I, Fickl S, Schlagenhauf U. Impact of a Specific Collagen Peptide Food Supplement on Periodontal Inflammation in Aftercare Patients-A Randomised Controlled Trial. Nutrients 2022; 14:4473. [PMID: 36364735 PMCID: PMC9658266 DOI: 10.3390/nu14214473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 10/15/2023] Open
Abstract
Background: This controlled clinical trial evaluated the impact of a specific collagen peptide food supplement on parameters of periodontal inflammation in aftercare patients. Methods: A total of 39 study patients were enrolled. At baseline, bleeding on probing (BoP; primary outcome), gingival index (GI), plaque control record (PCR), recession (REC) and probing pocket depth (PPD) for the calculation of the periodontal inflamed surface area (PISA) were documented. After subsequent professional mechanical plaque removal (PMPR), participants were randomly provided with a supply of sachets containing either a specific collagen peptide preparation (test group; n = 20) or a placebo (placebo group; n = 19) to be consumed dissolved in liquid once daily until reevaluation at day 90. Results: PMPR supplemented with the consumption of the specific collagen peptides resulted in a significantly lower mean percentage of persisting BoP-positive sites than PMPR plus placebo (test: 10.4% baseline vs. 3.0% reevaluation; placebo: 14.2% baseline vs. 9.4% reevaluation; effect size: 0.86). Mean PISA and GI values were also reduced compared to baseline, with a significant difference in favor of the test group (PISA test: 170.6 mm2 baseline vs. 53.7 mm2 reevaluation; PISA placebo: 229.4 mm2 baseline vs. 184.3 mm2 reevaluation; GI test: 0.5 baseline vs. 0.1 reevaluation; GI placebo: 0.4 baseline vs. 0.3 reevaluation). PCR was also significantly decreased in both experimental groups at revaluation, but the difference between the groups did not reach the level of significance. Conclusions: The supplementary intake of specific collagen peptides may further enhance the anti-inflammatory effect of PMPR in periodontal recall patients.
Collapse
Affiliation(s)
- Yvonne Jockel-Schneider
- Department of Periodontology, University Hospital Wuerzburg, Pleicherwall 2, D-97070 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Liu J, Zhang D, Zhang L, Wang Z, Shen J. New Insight on Vitality Differences for the Penaeid Shrimp, Fenneropenaeus chinensis, in Low Salinity Environment Through Transcriptomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.716018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive rainfall changes salinity in shrimp farming ponds in short period and exerts low salinity stress on the outdoor breeding shrimp under global warming. Fenneropenaeus chinensis can have different performance on vitality in low salinity environments. To reveal mechanisms of vitality difference in shrimp living in low saline environments. This study based on the normal and moribund F. chinensis in 10 ppt salinity environment using high-throughput sequencing identifies 1,429 differentially expressed genes (DEGs), 586 of which are upregulated, while 843 of which are downregulated in the normal group (FCN10) as compared to the moribund group (FCM10). Meanwhile, another transcriptomic analysis is conducted on the normal and moribund shrimp from 25 ppt (FCN25 vs. FCM25) salinity environment as the control, in which 1,311 DEGs (upregulated: 327 genes, downregulated: 984 genes) are identified. In this study, intersective pathways, GO (Gene Ontology) categories and DEGs from the two groups of comparative transcriptome are investigated. The two intersective pathways (Metabolism of xenobiotics by cytochrome P450, Pentose, and glucuronate interconversions) significantly enriched by DEGs are related to detoxification. In these two pathways, there is one vitality regulation-related gene (VRRG), the Dhdh (dihydrodiol dehydrogenase), which is upregulated in both the groups of FCN10 and FCN25 as compared to the groups of FCM10 and FCM25, respectively. Similarly, in the 25 top intersective GO categories, four VRRGs are revealed. Three of them are upregulated (Itgbl, kielin/chordin-like protein, Slc2a8, solute carrier family 2, facilitated glucose transporter member 8-like protein and Cyp3a30, cytochrome P450 3A30-like protein); one of them is downregulated (Slc6a9, sodium-dependent nutrient amino acid transporter 1-like protein isoform X2). These GO categories are related to transmembrane transporter activity of substance, enzyme inhibitor activity, monooxygenase activity. RT-qPCR analysis further verifies the VRRGs. The study gives new insight into understanding the vitality differences for F. chinensis, in low salinity environment. The pathways and DEGs in response to low salinity stress in modulating the vitality of F. chinensis that could serve as tools in future genetic studies and molecular breeding.
Collapse
|
10
|
Yang Y, Fan X, Ji Y, Li J, Dai Z, Wu Z. Glycine represses endoplasmic reticulum stress-related apoptosis and improves intestinal barrier by activating mammalian target of rapamycin complex 1 signaling. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:1-9. [PMID: 34977370 PMCID: PMC8669258 DOI: 10.1016/j.aninu.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress has been associated with the dysfunction of intestinal barrier in humans and animals. We have previously shown that oral administration of glycine to suckling-piglets improves ER stress-related intestinal mucosal barrier impairment and jejunal epithelial apoptosis. However, the underlying mechanism remains unknown. In this study, the protective effect and the mechanism of glycine on apoptosis and dysfunction in intestinal barrier induced by brefeldin A (BFA), an ER stress inducer, was explored in porcine intestinal epithelial cells (IPEC-1). The results showed that BFA treatment led to enhanced apoptosis and upregulation of proteins involved in ER stress signaling, including inositol-requiring enzyme 1α (IRE1α), activating transcription factor 6α (ATF6α), c-Jun N-terminal kinase (JNK), and C/EBP-homologous protein (CHOP). In addition, BFA induced a dysfunction in intestinal epithelial barrier, as evidenced by the increased paracellular permeability, decreased transepithelial electrical resistance (TEER), and reduced abundance of tight junction proteins (occludin, claudin-1, zonula occludens [ZO]-1, and ZO-2). These alterations triggered by BFA were significantly abolished by glycine treatment (P < 0.05), indicating a protective effect of glycine on barrier function impaired by ER stress. Importantly, we found that the regulatory effect of glycine on intestinal permeability, proteins implicated in ER stress and apoptosis, as well as the morphological alterations of the ER were reversed by rapamycin. In summary, our results indicated that glycine alleviates ER stress-induced apoptosis and intestinal barrier dysfunction in IPEC-1 cells in a mammalian target of rapamycin complex 1 (mTORC1)-dependent manner. The data provides in vitro evidence and a mechanism for the protective effect of glycine against the disruption of intestinal barrier integrity induced by ER stress.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xiaoxiao Fan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Xinzheng, Henan, 451100, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
- Corresponding author.
| |
Collapse
|
11
|
Genton L, Pruijm M, Teta D, Bassi I, Cani PD, Gaïa N, Herrmann FR, Marangon N, Mareschal J, Muccioli GG, Stoermann C, Suriano F, Wurzner-Ghajarzadeh A, Lazarevic V, Schrenzel J. Gut barrier and microbiota changes with glycine and branched-chain amino acid supplementation in chronic haemodialysis patients. J Cachexia Sarcopenia Muscle 2021; 12:1527-1539. [PMID: 34535959 PMCID: PMC8718035 DOI: 10.1002/jcsm.12781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND We have previously shown that glycine increases fat-free mass in chronic haemodialysis patients with features of malnutrition as compared with branched-chain amino acids (BCAAs). This multicentre randomized double-blind crossover study evaluates the impact of these amino acids on the gut barrier and microbiota. METHODS Haemodialysis patients were included if they had plasma albumin <38 g/L or weight loss >5% of dry body weight, and daily dietary intakes <30 kcal/kg and <1 g protein/kg. They consumed glycine or BCAA (7 g twice daily) for 4 months and underwent a 1 month washout period, before crossover of supplementations. Faecal microbiota (16S rRNA gene sequencing) and immunoglobulin A (IgA), serum levels of cytokines, surrogate markers of intestinal permeability, appetite mediators, and endocannabinoids were obtained at the start and end of each supplementation. Supplementations were compared by multiple mixed linear regression models, adjusted for age, sex, month of supplementation (0 and 4 in each period), and period (Period 1: first 4 months; Period 2: last 4 months). Microbiota comparisons were performed using principal coordinate analysis and permutational multivariate analysis of variance, Shannon diversity index estimate and analysis of composition of microbiomes analysis, and Wilcoxon tests. RESULTS We analysed 27 patients compliant to the supplementations. Multiple mixed linear regression models were significant only for interleukin-6 (P = 0.002), glucagon-like peptide 1 (P = 0.028), cholecystokinin (P = 0.021), and peptide YY (P = 0.002), but not for the other outcomes. The significant models did not show any impact of the type of supplementation (P < 0.05 in all models). Principal coordinate analysis and permutational multivariate analysis of variance (P = 0.0001) showed strong microbiota clustering by subject, but no effect of the amino acids. Bacterial alpha diversity and zero-radius operational taxonomic unit richness remained stable, whatever the supplementation. Lacticaseibacillus paracasei (0.030; Q1-Q3 0.008-0.078 vs. 0.004; Q1-Q3 0.001-0.070) and Bifidobacterium dentium (0.0247; Q1-Q3 0.002-0.191 vs. 0.003; Q1-Q3 0.001-0.086) significantly decreased with the BCAA supplementation. CONCLUSIONS The BCAA and glycine supplementations had no impact on the serum levels of cytokines, appetite mediators, intestinal permeability, endocannabinoids, or faecal IgA. Overall faecal microbiota composition and microbial diversity did not change with the glycine or BCAA supplementation but decreased the abundance of L. paracasei and B. dentium.
Collapse
Affiliation(s)
- Laurence Genton
- Unit of Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Menno Pruijm
- Service of Nephrology, University Hospitals of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Daniel Teta
- Service of Nephrology, Cantonal Hospital of Sion, Sion, Switzerland
| | - Isabelle Bassi
- Service of Nephrology, Cantonal Hospital of Sion, Sion, Switzerland
| | - Patrice D Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Université catholique de Louvain, Brussels, Belgium
| | - Nadia Gaïa
- Genomic Research Lab and Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Nicola Marangon
- Service of Nephrology, Geneva University Hospitals and Clinique of Champel, Geneva, Switzerland
| | - Julie Mareschal
- Unit of Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Catherine Stoermann
- Service of Nephrology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Francesco Suriano
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Université catholique de Louvain, Brussels, Belgium
| | - Arlene Wurzner-Ghajarzadeh
- Service of Nephrology, University Hospitals of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Vladimir Lazarevic
- Genomic Research Lab and Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Lab and Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Genton L, Teta D, Pruijm M, Stoermann C, Marangon N, Mareschal J, Bassi I, Wurzner‐Ghajarzadeh A, Lazarevic V, Cynober L, Cani PD, Herrmann FR, Schrenzel J. Glycine increases fat-free mass in malnourished haemodialysis patients: a randomized double-blind crossover trial. J Cachexia Sarcopenia Muscle 2021; 12:1540-1552. [PMID: 34519439 PMCID: PMC8718019 DOI: 10.1002/jcsm.12780] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/22/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Protein energy wasting is associated with negative outcome in patients under chronic haemodialysis (HD). Branched-chain amino acids (BCAAs) may increase the muscle mass. This post hoc analysis of a controlled double-blind randomized crossover study assessed the impact of BCAAs on nutritional status, physical function, and quality of life. METHODS We included 36 chronic HD patient features of protein energy wasting as plasma albumin <38 g/L, and dietary intakes <30 kcal/kg/day and <1 g protein/kg/day. Patients received either oral BCAA (2 × 7 g/day) or glycine (2 × 7 g/day) for 4 months (Period 1), followed by a washout period of 1 month, and then received the opposite supplement (Period 2). The outcomes were lean body mass measured by dual-energy X-ray absorptiometry, fat-free mass index measured by bioelectrical impedance, resting energy expenditure, dietary intake and appetite rating, physical activity and function, quality of life, and blood parameters. Analyses were performed by multiple mixed linear regressions including type of supplementation, months, period, sex, and age as fixed effects and subjects as random intercepts. RESULTS Twenty-seven patients (61.2 ± 13.7 years, 41% women) were compliant to the supplementations (consumption >80% of packs) and completed the study. BCAA did not affect lean body mass index and body weight, but significantly decreased fat-free mass index, as compared with glycine (coeff -0.27, 95% confidence interval -0.43 to -0.10, P = 0.002, respectively). BCAA and glycine intake had no effect on the other clinical parameters, blood chemistry tests, or plasma amino acids. CONCLUSIONS Branched-chain amino acid did not improve lean body mass as compared with glycine. Unexpectedly, glycine improved fat-free mass index in HD patients, as compared with BCAA. Whether long-term supplementation with glycine improves the clinical outcome remains to be demonstrated.
Collapse
Affiliation(s)
- Laurence Genton
- Unit of Clinical NutritionGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Daniel Teta
- Service of NephrologyCantonal Hospital of SionSionSwitzerland
| | - Menno Pruijm
- Service of NephrologyUniversity Hospital of Lausanne and University of LausanneLausanneSwitzerland
| | - Catherine Stoermann
- Service of NephrologyGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Nicola Marangon
- Service of NephrologyGeneva University Hospitals and Clinique of ChampelGenevaSwitzerland
| | - Julie Mareschal
- Unit of Clinical NutritionGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Isabelle Bassi
- Service of NephrologyCantonal Hospital of SionSionSwitzerland
| | | | - Vladimir Lazarevic
- Genomic Research Lab and Service of Infectious DiseasesGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Luc Cynober
- EA 4466, Faculty of PharmacyParis University, and Clin Chem Lab, Cochin HospitalParisFrance
| | - Patrice D. Cani
- Louvain Drug Research Institute Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO)Université catholique de LouvainBrusselsBelgium
| | - François R. Herrmann
- Department of Rehabilitation and GeriatricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Jacques Schrenzel
- Genomic Research Lab and Service of Infectious DiseasesGeneva University Hospitals and University of GenevaGenevaSwitzerland
| |
Collapse
|
13
|
Bierhals CG, Howard A, Hirst BH. Reduction of Rapid Proliferating Tumour Cell Lines by Inhibition of the Specific Glycine Transporter GLYT1. Biomedicines 2021; 9:biomedicines9121770. [PMID: 34944586 PMCID: PMC8698617 DOI: 10.3390/biomedicines9121770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/23/2022] Open
Abstract
Studies have highlighted the relevance of extracellular glycine and serine in supporting high growth rates of rapidly proliferating tumours. The present study analysed the role of the specific glycine transporter GLYT1 in supplying glycine to cancer cells and maintaining cell proliferation. GLYT1 knockdown in the rapidly proliferating tumour cell lines A549 and HT29 reduced the number of viable cells by approximately 30% and the replication rate presented a decrease of about 50% when compared to cells transfected with control siRNA. In contrast, when compared to control, GLYT1 siRNA had only a minimal effect on cell number of the slowly proliferating tumour cell line A498, reducing the number of viable cells by 7% and no significant difference was observed when analysing the replication rate between GLYT1 knockdown and control group. When utilising a specific GLYT1 inhibitor, ALX-5407, the doubling time of rapidly proliferating cells increased by about 8 h presenting a significant reduction in the number of viable cells after 96 h treatment when compared to untreated cells. Therefore, these results suggest that GLYT1 is required to maintain high proliferation rates in rapidly proliferating cancer cells and encourage further investigation of GLYT1 as a possible target in a novel therapeutic approach.
Collapse
|
14
|
Salah M, Osuga S, Nakahana M, Irino Y, Shinohara M, Shimizu Y, Mukumoto N, Akasaka H, Nakaoka A, Miyawaki D, Ishihara T, Yoshida K, Okamoto Y, Sasaki R. Elucidation of gastrointestinal dysfunction in response to irradiation using metabolomics. Biochem Biophys Rep 2020; 23:100789. [PMID: 32775703 PMCID: PMC7393574 DOI: 10.1016/j.bbrep.2020.100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022] Open
Abstract
Gastrointestinal toxicity is frequently observed secondary to accidental or therapeutic radiation exposure. However, the variation in the intestinal metabolites after abdominal radiation exposure remains ambiguous. In the present study, C57BL/6 mice were exposed to 0, 2, and 20 Gy irradiation dose. The Head and chest of each mouse were covered with a lead shield before x-ray irradiation. 24 h post-irradiation treatment, intestinal tissue of each mouse was excised and prepared for metabolites measurement using gas chromatography-mass spectrometry (GC-MS). Our comprehensive analysis of metabolites in the intestinal tissues detected 44 metabolites after irradiation, including amino acids, carbohydrates, organic acids, and sugars. Amino acid levels in the intestinal tissue gradually rose, dependent on the radiation dose, perhaps as an indication of oxidative stress. Our findings raise the possibility that amino acid metabolism may be a potential target for the development of treatments to alleviate or mitigate the harmful effects of oxidative stress-related gastrointestinal toxicity due to radiation exposure. Gastrointestinal damage frequently results from radiation exposure. We analyzed the metabolic profile after local irradiation to the intestine. Amino acid levels in the intestinal tissue rose dependent on the radiation dose. Amino acid metabolism may be a good target for future therapies.
Collapse
Affiliation(s)
- Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Saki Osuga
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Makiko Nakahana
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Japan
| | - Masakazu Shinohara
- Division of Epidemiology and the Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Japan.,The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Japan
| | - Yasuyuki Shimizu
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ai Nakaoka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiaki Okamoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Radiation Therapy, Osaka Police Hospital, Osaka, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
15
|
Wu H, Xu B, Guan Y, Chen T, Huang R, Zhang T, Sun R, Xie K, Chen M. A metabolomic study on the association of exposure to heavy metals in the first trimester with primary tooth eruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138107. [PMID: 32392674 DOI: 10.1016/j.scitotenv.2020.138107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The influence of prenatal heavy metals exposure on primary tooth eruption in humans is rarely reported. AIM Based on the cohort study design, we investigated the association of exposure to 12 heavy metals in the first trimester with primary tooth eruption, and the maternal metabolisms in the first trimester which might be related to the above relationship. METHODS Maternal urine samples were collected in their first trimester, and 12 metals (Ti, V, Fe, Co, Cu, As, Se, Cd, Sn, Hg, Tl, U) were measured using the inductively coupled plasma mass spectrometry method. The maternal metabolome in the first trimester was analyzed by ultrahigh performance liquid chromatography coupled mass spectrometry based metabolomics using urine samples. The infant's first tooth eruption time and number of teeth at age one were recorded by oral examination and questionnaire. RESULTS No significant associations were observed between heavy metals exposure in the first trimester and primary tooth eruption, except for Co. The level of Co was positively associated with time of infant's first tooth eruption, and was negatively associated with the number of teeth at age one. Based on metabolomic profiling, glycine was revealed as the key mediating metabolite, which showed negative correlation with Co and opposite effect of Co in the primary tooth eruption. CONCLUSIONS Prenatal Co exposure in the first trimester might delay the primary tooth eruption in children through the decreased glycine-disrupted dentin formation, providing the first evidence and novel insights into the control of prenatal heavy metals exposure for ensuring normal (timely) primary tooth eruption.
Collapse
Affiliation(s)
- Huaying Wu
- Department of Stomatology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Chen
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Rui Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Zhang
- Department of Child Health Care, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
16
|
Dastmalchi F, Karachi A, Yang C, Azari H, Sayour EJ, Dechkovskaia A, Vlasak AL, Saia ME, Lovaton RE, Mitchell DA, Rahman M. Sarcosine promotes trafficking of dendritic cells and improves efficacy of anti-tumor dendritic cell vaccines via CXC chemokine family signaling. J Immunother Cancer 2019; 7:321. [PMID: 31753028 PMCID: PMC6873439 DOI: 10.1186/s40425-019-0809-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/06/2019] [Indexed: 01/20/2023] Open
Abstract
Background Dendritic cell (DC) vaccine efficacy is directly related to the efficiency of DC migration to the lymph node after delivery to the patient. We discovered that a naturally occurring metabolite, sarcosine, increases DC migration in human and murine cells resulting in significantly improved anti-tumor efficacy. We hypothesized that sarcosine induced cell migration was due to chemokine signaling. Methods DCs were harvested from the bone marrow of wild type C57BL/6 mice and electroporated with tumor messenger RNA (mRNA). Human DCs were isolated from peripheral blood mononuclear cells (PBMCs). DCs were treated with 20 mM of sarcosine. Antigen specific T cells were isolated from transgenic mice and injected intravenously into tumor bearing mice. DC vaccines were delivered via intradermal injection. In vivo migration was evaluated by flow cytometry and immunofluorescence microscopy. Gene expression in RNA was investigated in DCs via RT-PCR and Nanostring. Results Sarcosine significantly increased human and murine DC migration in vitro. In vivo sarcosine-treated DCs had significantly increased migration to both the lymph nodes and spleens after intradermal delivery in mice. Sarcosine-treated DC vaccines resulted in significantly improved tumor control in a B16F10-OVA tumor flank model and improved survival in an intracranial GL261-gp100 glioma model. Gene expression demonstrated an upregulation of CXCR2, CXCL3 and CXCL1 in sarcosine- treated DCs. Further metabolic analysis demonstrated the up-regulation of cyclooxygenase-1 and Pik3cg. Sarcosine induced migration was abrogated by adding the CXCR2 neutralizing antibody in both human and murine DCs. CXCR2 neutralizing antibody also removed the survival benefit of sarcosine-treated DCs in the tumor models. Conclusion Sarcosine increases the migration of murine and human DCs via the CXC chemokine pathway. This platform can be utilized to improve existing DC vaccine strategies.
Collapse
Affiliation(s)
- Farhad Dastmalchi
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA.
| | - Aida Karachi
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Hassan Azari
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Elias Joseph Sayour
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Anjelika Dechkovskaia
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Alexander Loren Vlasak
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Megan Ellen Saia
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | | | - Duane Anthony Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019; 11:nu11061356. [PMID: 31208147 PMCID: PMC6627940 DOI: 10.3390/nu11061356] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.
Collapse
|
18
|
van Sadelhoff JHJ, Perez Pardo P, Wu J, Garssen J, van Bergenhenegouwen J, Hogenkamp A, Hartog A, Kraneveld AD. The Gut-Immune-Brain Axis in Autism Spectrum Disorders; A Focus on Amino Acids. Front Endocrinol (Lausanne) 2019; 10:247. [PMID: 31057483 PMCID: PMC6477881 DOI: 10.3389/fendo.2019.00247] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a range of neurodevelopmental conditions that affect communication and social behavior. Besides social deficits, systemic inflammation, gastrointestinal immune-related problems, and changes in the gut microbiota composition are characteristic for people with ASD. Animal models showed that these characteristics can induce ASD-associated behavior, suggesting an intimate relationship between the microbiota, gut, immune system and the brain in ASD. Multiple factors can contribute to the development of ASD, but mutations leading to enhanced activation of the mammalian target of rapamycin (mTOR) are reported frequently. Hyperactivation of mTOR leads to deficits in the communication between neurons in the brain and to immune impairments. Hence, mTOR might be a critical factor linking the gut-brain-immune axis in ASD. Pharmacological inhibition of mTOR is shown to improve ASD-associated behavior and immune functions, however, the clinical use is limited due to severe side reactions. Interestingly, studies have shown that mTOR activation can also be modified by nutritional stimuli, in particular by amino acids. Moreover, specific amino acids are demonstrated to inhibit inflammation, improve gut barrier function and to modify the microbiota composition. In this review we will discuss the gut-brain-immune axis in ASD and explore the potential of amino acids as a treatment option for ASD, either via modification of mTOR activity, the immune system or the gut microbiota composition.
Collapse
Affiliation(s)
- Joris H. J. van Sadelhoff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jiangbo Wu
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anita Hartog
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Veterinary Pharmacology, Institute for Risk Assessment Studies, Faculty of Veterinary Sciences, Utrecht University, Utrecht, Netherlands
- *Correspondence: Aletta D. Kraneveld
| |
Collapse
|
19
|
van Bergenhenegouwen J, Braber S, Loonstra R, Buurman N, Rutten L, Knipping K, Savelkoul PJ, Harthoorn LF, Jahnsen FL, Garssen J, Hartog A. Oral exposure to the free amino acid glycine inhibits the acute allergic response in a model of cow's milk allergy in mice. Nutr Res 2018; 58:95-105. [PMID: 30340819 DOI: 10.1016/j.nutres.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
The conditionally essential amino acid glycine functions as inhibitory neurotransmitter in the mammalian central nervous system. Moreover, it has been shown to act as an anti-inflammatory compound in animal models of ischemic perfusion, post-operative inflammation, periodontal disease, arthritis and obesity. Glycine acts by binding to a glycine-gated chloride channel, which has been demonstrated on neurons and immune cells, including macrophages, polymorphonuclear neutrophils and lymphocytes. The present study aims to evaluate the effect of glycine on allergy development in a cow's milk allergy model. To this end, C3H/HeOuJ female mice were supplemented with glycine by oral gavage (50 or 100 mg/mouse) 4 hours prior to sensitization with cow's milk whey protein, using cholera toxin as adjuvant. Acute allergic skin responses and anaphylaxis were assessed after intradermal allergen challenge in the ears. Mouse mast cell protease-1 (mMCP-1) and whey specific IgE levels were detected in blood collected 30 minutes after an oral allergen challenge. Jejunum was dissected and evaluated for the presence of mMCP-1-positive cells by immunohistochemistry. Intake of glycine significantly inhibited allergy development in a concentration dependent manner as indicated by a reduction in; acute allergic skin response, anaphylaxis, serum mMCP-1 and serum levels of whey specific IgE. In addition, in-vitro experiments using rat basophilic leukemia cells (RBL), showed that free glycine inhibited cytokine release but not cellular degranulation. These findings support the hypothesis that the onset of cow's milk allergy is prevented by the oral intake of the amino acid glycine. An adequate intake of glycine might be important in the improvement of tolerance against whey allergy or protection against (whey-induced) allergy development.
Collapse
Affiliation(s)
- Jeroen van Bergenhenegouwen
- Nutricia Research, Uppsalalaan 12, 3584, CT, Utrecht, The Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Reinilde Loonstra
- Nutricia Research, Uppsalalaan 12, 3584, CT, Utrecht, The Netherlands
| | - Nicole Buurman
- Nutricia Research, Uppsalalaan 12, 3584, CT, Utrecht, The Netherlands
| | - Lieke Rutten
- Nutricia Research, Uppsalalaan 12, 3584, CT, Utrecht, The Netherlands
| | - Karen Knipping
- Nutricia Research, Uppsalalaan 12, 3584, CT, Utrecht, The Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Paul J Savelkoul
- Nutricia Research, Uppsalalaan 12, 3584, CT, Utrecht, The Netherlands
| | | | - Frode L Jahnsen
- Centre for Immune Regulation and Department of Immunology, University of Oslo, Oslo, Norway
| | - Johan Garssen
- Nutricia Research, Uppsalalaan 12, 3584, CT, Utrecht, The Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Anita Hartog
- Nutricia Research, Uppsalalaan 12, 3584, CT, Utrecht, The Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
20
|
Chen L, Zhang J, Li C, Wang Z, Li J, Zhao D, Wang S, Zhang H, Huang Y, Guo X. Glycine Transporter-1 and glycine receptor mediate the antioxidant effect of glycine in diabetic rat islets and INS-1 cells. Free Radic Biol Med 2018; 123:53-61. [PMID: 29753073 DOI: 10.1016/j.freeradbiomed.2018.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Oxidative stress is the main inducer of β-cell damage, which underlies the pathogenesis of diabetes. Evidence suggests that glycine, a recognized antioxidant, may improve β-cell function; however, its mechanism in protecting diabetic β-cells against oxidative stress has not been directly investigated. Using a streptozotocin-induced diabetic rat model and INS-1 pancreatic β-cells, we evaluated whether glycine can attenuate diabetic β-cell damage induced by oxidative stress. In diabetic rats, glycine stimulated insulin secretion; enhanced plasma glutathione (GSH), catalase and superoxide dismutase levels; reduced plasma 8-hydroxy-2 deoxyguanosine and islet p22phox levels; and improved islet β-cell mitochondrial degeneration and insulin granule degranulation. In INS-1 cells, glycine reduced the intracellular reactive oxygen species (ROS) concentration and inhibited apoptosis induced by high glucose or H2O2. Glycine transporter-1 inhibitor blocked the antioxidative effect of glycine by reducing the intracellular GSH content, and glycine receptor inhibitor reversed the glycine antioxidative effect by blocking p22phox. Collectively, our findings reveal a mechanism by which glycine protects diabetic β-cells against damage caused by oxidative stress by increasing glycine transporter-1-mediated synthesis of GSH and by reducing glycine receptor-mediated ROS production.
Collapse
Affiliation(s)
- Lei Chen
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China.
| | - Changhong Li
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Ziwei Wang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| | - Jingjing Li
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| | - Dan Zhao
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Peking University First Hospital, Beijing 100034, China
| | - Hong Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| |
Collapse
|
21
|
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences , Albany, NY, USA
| |
Collapse
|
22
|
Ndoni SA, Okoko T. Comparative effect of selenium and glycine on hydrogen peroxide-induced cell death and activation of macrophage U937 cells. J Genet Eng Biotechnol 2017; 15:521-526. [PMID: 30647695 PMCID: PMC6296632 DOI: 10.1016/j.jgeb.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/08/2017] [Accepted: 06/10/2017] [Indexed: 12/04/2022]
Abstract
The effects of selenium and glycine (either separately or in combination) on hydrogen peroxide-induced cell death on U937 cells and activation of U937-derived macrophages were investigated. In the first instance, U937 cells were incubated with or without selenium (Se) or glycine (GLY) or both (Se + GLY) for 24 h before exposure to hydrogen peroxide. Control cells were not incubated with Se, GLY or exposed to hydrogen peroxide. Cell viability was later assessed via trypan blue and MTT assays. For the other experiment, U937 cells were transformed to the macrophage form using phorbol 12-myristate 13-acetate before incubating with or without Se, GLY, Se + GLY. Contents were subsequently exposed to hydrogen peroxide and 24 h later assessed for the production of TNF-α, IL-1, IL-6 and the expression of iNOS and NF-κB. The results revealed that hydrogen peroxide caused significant cell death which was ameliorated by both Se and GLY. Pre-incubation of the cells with both Se and GLY did not significantly enhance cell numbers compared to GLY (p > 0.05). On the other hand, Se and GLY reduced hydrogen peroxide-mediated production of TNF-α, IL-1, IL-6 and expression of iNOS and NF-κB. Incubating the U937-derived macrophages with Se + GLY significantly ameliorated hydrogen peroxide-mediated activation of macrophages when compared to pre-treatments with Se or GLY (p < 0.05). The findings demonstrate that both Se and GLY reduced hydrogen peroxide-induced alterations in U937 cells and U937-derived macrophages. Implications of the findings are discussed.
Collapse
Affiliation(s)
| | - Tebekeme Okoko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Niger Delta University, PMB 71, Wilberforce Island, Bayelsa State, Nigeria
| |
Collapse
|
23
|
Garcia-Santos D, Schranzhofer M, Bergeron R, Sheftel AD, Ponka P. Extracellular glycine is necessary for optimal hemoglobinization of erythroid cells. Haematologica 2017; 102:1314-1323. [PMID: 28495915 PMCID: PMC5541866 DOI: 10.3324/haematol.2016.155671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/09/2017] [Indexed: 01/10/2023] Open
Abstract
Vertebrate heme synthesis requires three substrates: succinyl-CoA, which regenerates in the tricarboxylic acid cycle, iron and glycine. For each heme molecule synthesized, one atom of iron and eight molecules of glycine are needed. Inadequate delivery of iron to immature erythroid cells leads to a decreased production of heme, but virtually nothing is known about the consequence of an insufficient supply of extracellular glycine on the process of hemoglobinization. To address this issue, we exploited mice in which the gene encoding glycine transporter 1 (GlyT1) was disrupted. Primary erythroid cells isolated from fetal livers of GlyT1 knockout (GlyT1-/-) and GlyT1-haplodeficient (GlyT1+/-) embryos had decreased cellular uptake of [2-14C]glycine and heme synthesis as revealed by a considerable decrease in [2-14C]glycine and 59Fe incorporation into heme. Since GlyT1-/- mice die during the first postnatal day, we analyzed blood parameters of newborn pups and found that GlyT1-/- animals develop hypochromic microcytic anemia. Our finding that Glyt1-deficiency causes decreased heme synthesis in erythroblasts is unexpected, since glycine is a non-essential amino acid. It also suggests that GlyT1 represents a limiting step in heme and, consequently, hemoglobin production.
Collapse
Affiliation(s)
- Daniel Garcia-Santos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and the Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Matthias Schranzhofer
- Lady Davis Institute for Medical Research, Jewish General Hospital, and the Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Richard Bergeron
- Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Alex D Sheftel
- Spartan Bioscience Inc., Ottawa, Canada.,High Impact Editing, Ottawa, Ontario, Canada
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, and the Department of Physiology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
24
|
Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1716701. [PMID: 28337245 PMCID: PMC5350494 DOI: 10.1155/2017/1716701] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023]
Abstract
Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.
Collapse
|
25
|
Tang R, Ding C, Ma Y, Wang J, Zhang T, Wang X. Time-dependent responses of earthworms to soil contaminated with low levels of lead as detected using1H NMR metabolomics. RSC Adv 2017. [DOI: 10.1039/c7ra04393g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1H NMR-based metabolomics was used to profile the time-dependent metabolic responses of earthworms (Eisenia fetida) that were exposed to low-Pb-contaminated-soil (L-Pb-CS) for 28 days using an indoor culture.
Collapse
Affiliation(s)
- Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing
- People's Republic of China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing
- People's Republic of China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning
- Chinese Academy of Agricultural Sciences
- Beijing
- People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing
- People's Republic of China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing
- People's Republic of China
| |
Collapse
|
26
|
Kurolap A, Armbruster A, Hershkovitz T, Hauf K, Mory A, Paperna T, Hannappel E, Tal G, Nijem Y, Sella E, Mahajnah M, Ilivitzki A, Hershkovitz D, Ekhilevitch N, Mandel H, Eulenburg V, Baris HN. Loss of Glycine Transporter 1 Causes a Subtype of Glycine Encephalopathy with Arthrogryposis and Mildly Elevated Cerebrospinal Fluid Glycine. Am J Hum Genet 2016; 99:1172-1180. [PMID: 27773429 DOI: 10.1016/j.ajhg.2016.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/07/2016] [Indexed: 01/02/2023] Open
Abstract
Glycine is a major neurotransmitter that activates inhibitory glycine receptors and is a co-agonist for excitatory glutamatergic N-methyl-D-aspartate (NMDA) receptors. Two transporters, GLYT1 and GLYT2, regulate extracellular glycine concentrations within the CNS. Dysregulation of the extracellular glycine has been associated with hyperekplexia and nonketotic hyperglycinemia. Here, we report four individuals from two families who presented at birth with facial dysmorphism, encephalopathy, arthrogryposis, hypotonia progressing to hypertonicity with startle-like clonus, and respiratory failure. Only one individual survived the respiratory failure and was weaned off ventilation but has significant global developmental delay. Mildly elevated cerebrospinal fluid (CSF) glycine and normal serum glycine were observed in two individuals. In both families, we identified truncating mutations in SLC6A9, encoding GLYT1. We demonstrate that pharmacologic or genetic abolishment of GlyT1 activity in mice leads to mildly elevated glycine in the CSF but not in blood. Additionally, previously reported slc6a9-null mice and zebrafish mutants also display phenotypes consistent with the affected individuals we examined. Our data suggest that truncating SLC6A9 mutations lead to a distinct human neurological syndrome hallmarked by mildly elevated CSF glycine and normal serum glycine.
Collapse
|
27
|
Weinberg JM, Bienholz A, Venkatachalam MA. The role of glycine in regulated cell death. Cell Mol Life Sci 2016; 73:2285-308. [PMID: 27066896 PMCID: PMC4955867 DOI: 10.1007/s00018-016-2201-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
The cytoprotective effects of glycine against cell death have been recognized for over 28 years. They are expressed in multiple cell types and injury settings that lead to necrosis, but are still not widely appreciated or considered in the conceptualization of cell death pathways. In this paper, we review the available data on the expression of this phenomenon, its relationship to major pathophysiologic pathways that lead to cell death and immunomodulatory effects, the hypothesis that it involves suppression by glycine of the development of a hydrophilic death channel of molecular dimensions in the plasma membrane, and evidence for its impact on disease processes in vivo.
Collapse
Affiliation(s)
- Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Room 1560, MSRB II, Ann Arbor, MI, 48109-0676, USA.
| | - Anja Bienholz
- Department of Nephrology, University Duisburg-Essen, 45122, Essen, Germany
| | - M A Venkatachalam
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, 78234, USA
| |
Collapse
|
28
|
Wang W, Wu Z, Lin G, Hu S, Wang B, Dai Z, Wu G. Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells. J Nutr 2014; 144:1540-8. [PMID: 25122646 DOI: 10.3945/jn.114.194001] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycine has recently been classified as a nutritionally essential amino acid for maximal growth in young pigs. Currently, little is known about the metabolism or function of glycine in the neonatal intestine. This work was conducted to test the hypothesis that glycine has a protective effect against oxidative stress in intestinal epithelial cells. Jejunal enterocytes isolated from newborn pigs were cultured in the presence of 0.0-2 mmol/L glycine for measurements of glycine metabolism, cell proliferation, protein turnover, apoptosis, and antioxidative response. Compared with 0.0-0.5 mmol/L glycine, 1.0 mmol/L glycine enhanced (P < 0.05) cell growth (by 8-24% on day 2 and by 34-224% on day 4, respectively) and protein synthesis (by 36-419%) while reducing (P < 0.05) protein degradation (by 7-28%). This effect of glycine was associated with activation of the mammalian target of rapamycin signaling pathway in enterocytes. By using a model of oxidative stress induced by 30 μmol/L 4-hydroxynonenal (4-HNE), which was assessed by flow cytometry analysis, 1.0 mmol/L glycine inhibited (P < 0.05) activation of caspase 3 by 25% and attenuated (P < 0.05) 4-HNE-induced apoptosis by 38% in intestinal porcine epithelial cell line 1 cells through promotion of reduced glutathione synthesis and expression of glycine transporter 1 while reducing the activation of extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 protein in the mitogen-activated protein kinase signaling pathway. These novel findings provide a biochemical mechanism for the use of dietary glycine to improve intestinal health in neonates under conditions of oxidative stress and glycine deficiency.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and Department of Animal Science, Texas A&M University, College Station, TX
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Gang Lin
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Bin Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
29
|
Fultang L, Howard A, Hirst B. Expression of the glycine transporter type 1 (GlyT‐1A) is upregulated by ATF‐4 following physiological stress in human intestinal epithelial cells (1109.14). FASEB J 2014. [DOI: 10.1096/fasebj.28.1_supplement.1109.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Livingstone Fultang
- Faculty of Medical Sciences University of NewcastleNewcastle Upon TyneUnited Kingdom
| | - Alison Howard
- Faculty of Medical Sciences University of NewcastleNewcastle Upon TyneUnited Kingdom
| | - Barry Hirst
- Faculty of Medical Sciences University of NewcastleNewcastle Upon TyneUnited Kingdom
| |
Collapse
|
30
|
Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov 2014; 12:866-85. [PMID: 24172334 DOI: 10.1038/nrd3893] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycine transporters are endogenous regulators of the dual functions of glycine, which acts as a classical inhibitory neurotransmitter at glycinergic synapses and as a modulator of neuronal excitation mediated by NMDA (N-methyl-D-aspartate) receptors at glutamatergic synapses. The two major subtypes of glycine transporters, GlyT1 and GlyT2, have been linked to the pathogenesis and/or treatment of central and peripheral nervous system disorders, including schizophrenia and related affective and cognitive disturbances, alcohol dependence, pain, epilepsy, breathing disorders and startle disease (also known as hyperekplexia). This Review examines the rationale for the therapeutic potential of GlyT1 and GlyT2 inhibition, and surveys the latest advances in the biology of glycine reuptake and transport as well as the drug discovery and clinical development of compounds that block glycine transporters.
Collapse
|
31
|
Nikandrov V, Balashevich T. Glycine receptors in nervous tissue and their functional role. ACTA ACUST UNITED AC 2014; 60:403-15. [DOI: 10.18097/pbmc20146004403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The literature data on glycine metabolism in neural tissue, mitochondrial Gly-cleaving system, Gly-catching system in neural and glial cells are summarized. The peculiarities of localization and distribution of specific glycine receptors and binding-sites in nervous tissue of mammals are described. Four types of glycine-binding receptors are described: own specific glycine receptor (Gly-R), ionotropic receptor, which binds N-methyl-D-aspartate selectively (NMDA-R), and ionotropic receptors of g-aminobutyrate (GABA A -R, GABA С -R). The feutures of glycine effects in neuroglial cultures are discussed
Collapse
|
32
|
Díaz-Flores M, Cruz M, Duran-Reyes G, Munguia-Miranda C, Loza-Rodríguez H, Pulido-Casas E, Torres-Ramírez N, Gaja-Rodriguez O, Kumate J, Baiza-Gutman LA, Hernández-Saavedra D. Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure. Can J Physiol Pharmacol 2013; 91:855-60. [DOI: 10.1139/cjpp-2012-0341] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species derived from abdominal fat and uncontrolled glucose metabolism are contributing factors to both oxidative stress and the development of metabolic syndrome (MetS). This study was designed to evaluate the effects of daily administration of an oral glycine supplement on antioxidant enzymes and lipid peroxidation in MetS patients. The study included 60 volunteers: 30 individuals that were supplemented with glycine (15 g/day) and 30 that were given a placebo for 3 months. We analysed thiobarbituric acid reactive substances (TBARS) and S-nitrosohemoglobin (SNO-Hb) in plasma; the enzymatic activities of glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) in erythrocytes; and the expression of CAT, GPX, and SOD2 in leukocytes. Individuals treated with glycine showed a 25% decrease in TBARS compared with the placebo-treated group. Furthermore, there was a 20% reduction in SOD-specific activity in the glycine-treated group, which correlated with SOD2 expression. G6PD activity and SNO-Hb levels increased in the glycine-treated male group. Systolic blood pressure (SBP) also showed a significant decrease in the glycine-treated men (p = 0.043). Glycine plays an important role in balancing the redox reactions in the human body, thus protecting against oxidative damage in MetS patients.
Collapse
Affiliation(s)
- Margarita Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| | - Genoveva Duran-Reyes
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| | - Catarina Munguia-Miranda
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| | - Hilda Loza-Rodríguez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| | - Evelyn Pulido-Casas
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| | - Nayeli Torres-Ramírez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| | - Olga Gaja-Rodriguez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| | - Jesus Kumate
- Fundacion IMSS, Paseo de la Reforma 476, Mezanine poniente, C.P. 06600, D.F. México
| | - Luis Arturo Baiza-Gutman
- Laboratorio en Biología del Desarrollo, Unidad de Morfofisiologia FES-IZTACALA, UNAM, D.F. México
| | - Daniel Hernández-Saavedra
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), CMN Siglo XXI, IMSS, Avenida Cuauhtémoc 330, C.P. 06725, D.F. México
| |
Collapse
|
33
|
Yu ZL, Zeng WC. Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract. J Food Sci 2013; 78:C1354-62. [PMID: 23924383 DOI: 10.1111/1750-3841.12224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/18/2013] [Indexed: 01/19/2023]
Abstract
The antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract (LRE) were investigated and the main antioxidant component was isolated and identified. With its high content of phenols and flavonoids, the LRE showed remarkable antioxidant capacity to scavenge free radicals in vitro and to inhibit oil oxidation in a peanut oil system. Moreover, LRE was observed to inhibit tyrosinase action and browning of fresh-cut apple slices effectively. Furthermore, the cytoprotective activity of LRE was evaluated in a human intestine model using Caco-2 cell lines. According to the activity-guided isolation and identification, by using column chromatography, high-performance liquid chromatography, time-of-flight mass spectrometry, and nuclear magnetic resonance analyses, ursolic acid was characterized as the main antioxidant component of LRE; it showed the strongest free radical-scavenging activity. The results suggested that L. robustum (Rxob.) Blume could be a new resource for preparing functional food and nutraceutical products for use in food and pharmacology industries.
Collapse
Affiliation(s)
- Zhi-Long Yu
- Dept. of Food Engineering, Sichuan Univ. Chengdu, 610065, PR China
| | | |
Collapse
|
34
|
Yuk J, Simpson MJ, Simpson AJ. 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 175:35-44. [PMID: 23333485 DOI: 10.1016/j.envpol.2012.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/29/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
One-dimensional (1-D) and two-dimensional (2-D) nuclear magnetic resonance (NMR)-based metabolomics was used to investigate the toxic mode of action (MOA) of endosulfan, an organochlorine pesticide, and its degradation product, endosulfan sulfate, to Eisenia fetida earthworms in soil. Three soil concentrations (0.1, 1.0 and 10.0 mg/kg) were used for both endosulfan and endosulfan sulfate. Both earthworm coelomic fluid (CF) and tissues were extracted and then analyzed using (1)H and (1)H-(13)C NMR techniques. A similar separation trajectory was observed for endosulfan and endosulfan sulfate-exposed earthworms in the mean principal component analysis (PCA) scores plot for both the earthworm CF and tissue extracts. A neurotoxic and apoptotic MOA was postulated for both endosulfan and endosulfan sulfate exposed earthworms as significant fluctuations in glutamine/GABA-glutamate cycle metabolites and spermidine were detected respectively. This study highlights the application of NMR-based metabolomics to understand molecular-level toxicity of persistent organochlorine pesticides and their degradation products directly in soil.
Collapse
Affiliation(s)
- Jimmy Yuk
- Department of Chemistry, University of Toronto, Scarborough College, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | | | | |
Collapse
|
35
|
Bhattacharyya S, Ghosh J, Sil PC. Iron induces hepatocytes death via MAPK activation and mitochondria-dependent apoptotic pathway: beneficial role of glycine. Free Radic Res 2012; 46:1296-1307. [PMID: 22817335 DOI: 10.3109/10715762.2012.712690] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present study we investigated the beneficial role of glycine in iron (FeSO₄) induced oxidative damage in murine hepatocytes. Exposure of hepatocytes to 20 μM FeSO₄ for 3 hours enhanced reactive oxygen species (ROS) generation and induced alteration in biochemical parameters related to hepatic oxidative stress. Investigating cell signalling pathway, we observed that iron (FeSO₄) intoxication caused NF-κB activation as well as the phosphorylation of p38 and ERK MAPKs. Iron (FeSO₄) administration also disrupted Bcl-2/Bad protein balance, reduced mitochondrial membrane potential, released cytochrome c and induced the activation of caspases and cleavage of PARP protein. Flow cytometric analysis also confirmed that iron (FeSO₄) induced hepatocytes death is apoptotic in nature. Glycine (10 mM) supplementation, on the other hand, reduced all the iron (FeSO₄) induced apoptotic indices. Combining, results suggest that glycine could be a beneficial agent against iron mediated toxicity in hepatocytes.
Collapse
|
36
|
Therapeutic effect of ginsenoside Rd in rats with TNBS-induced recurrent ulcerative colitis. Arch Pharm Res 2012; 35:1231-9. [PMID: 22864746 DOI: 10.1007/s12272-012-0714-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/10/2011] [Accepted: 03/18/2011] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is characterized by oxidative and nitrosative stress and neutrophil infiltration. In the present study, we aimed to investigate the therapeutic effect of ginsenoside Rd (GRd) in rats with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced recurrent UC. After UC was twice-induced by intracolonic injection of TNBS, rats were intragastrically administered different doses of GRd per day for 7 days. The colonic lesions and inflammation were evaluated both histologically and biochemically. Compared with the TNBS group, GRd treatment facilitated recovery of pathologic changes in the colon after induction of recurrent UC, as evidenced by a significant reduction of colonic weight/length ratio and macroscopic and microscopic damage scores (p < 0.01). The myeloperoxidase and inducible nitric oxide synthase activities with malonyldialdehyde and nitric oxide levels in colonic tissues were significantly decreased in the GRd group compared with those in the TNBS group (p < 0.01). GRd treatment was associated with remarkably increased superoxide dismutase and glutathione peroxidase activities. Results showed a valuable effect of GRd against TNBS-induced recurrent UC by inhibiting neutrophil infiltration and promoting the antioxidant capacity of the damaged colonic tissue.
Collapse
|
37
|
Ileal and faecal protein digestibility measurement in humans and other non-ruminants – a comparative species view. Br J Nutr 2012; 108 Suppl 2:S247-57. [DOI: 10.1017/s0007114512002395] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A comparative non-ruminant species view of the contribution of the large intestinal metabolism to inaccuracies in nitrogen and amino acid absorption measurements is provided to assess potential implications for the determination of crude protein/amino acid digestibility in adult humans consuming lower digestible protein sources. Most of the amino acids in the hindgut are constituents of the microorganisms and significant microbial metabolism of dietary and endogenous amino acids occurs. Bacterial metabolism of nitrogen-containing compounds leads to a significant disappearance of nitrogen in the large intestine. Literature data show that some 79 % of the nitrogen entering the large intestine of the horse is absorbed. For dogs, sows, and growing pigs these estimates are 49, 34 and 16 %, respectively. The coefficient of gut differentiation of humans compares closely to that of dogs while the coefficient of fermentation in humans is the lowest of all non-ruminant species and closest to that of cats and dogs. Large intestinal digesta transit times of humans compare closest to adult dogs. Significant amino acid metabolism has been shown to occur in the large intestine of the adult dog. Use of the growing pig as an animal model is likely to underestimate the fermentation of amino acids in the human large intestine. Based on the significant degree of fermentation of nitrogen-containing components in the large intestine of several non-ruminant species, it can be expected that determination of amino acid digestibility at a faecal level in humans consuming low quality proteins would not provide accurate estimates of the amino acids absorbed by the intestine.
Collapse
|
38
|
Petrat F, Boengler K, Schulz R, de Groot H. Glycine, a simple physiological compound protecting by yet puzzling mechanism(s) against ischaemia-reperfusion injury: current knowledge. Br J Pharmacol 2012; 165:2059-72. [PMID: 22044190 DOI: 10.1111/j.1476-5381.2011.01711.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ischaemia is amongst the leading causes of death. Despite this importance, there are only a few therapeutic approaches to protect from ischaemia-reperfusion injury (IRI). In experimental studies, the amino acid glycine effectively protected from IRI. In the prevention of IRI by glycine in cells and isolated perfused or cold-stored organs (tissues), direct cytoprotection plays a crucial role, most likely by prevention of the formation of pathological plasma membrane pores. Under in vivo conditions, the mechanism of protection by glycine is less clear, partly due to the physiological presence of the amino acid. Here, inhibition of the inflammatory response in the injured tissue is considered to contribute decisively to the glycine-induced reduction of IRI. However, attenuation of IRI recently achieved in experimental animals by low-dose glycine treatment regimens suggests additional/other (unknown) protective mechanisms. Despite the convincing experimental evidence and the large therapeutic width of glycine, there are only a few clinical trials on the protection from IRI by glycine with ambivalent results. Thus, both the mechanism(s) behind the protection of glycine against IRI in vivo and its true clinical potential remain to be addressed in future experimental studies/clinical trials.
Collapse
Affiliation(s)
- Frank Petrat
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | | | | | | |
Collapse
|
39
|
Yuk J, Simpson MJ, Simpson AJ. Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using ¹H NMR-based earthworm metabolomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1301-1313. [PMID: 22451197 DOI: 10.1007/s10646-012-0884-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Endosulfan is an environmentally persistent pesticide and has been shown to be genotoxic, neurotoxic and carcinogenic to surrounding organisms. Earthworms are widely used in environmental metabolomic studies to assess soil ecotoxicity. Previous nuclear magnetic resonance (NMR)-based metabolomic studies have analyzed earthworm tissue extracts after exposure to endosulfan and identified some key metabolic indicators that can be used as biomarkers of stress. However, some metabolites may have been masked due to overlap with other metabolites in the tissue extract. Therefore, in this study, the coelomic fluid (CF) and the tissue extract of the earthworm, Eisenia fetida, were both investigated using ¹H NMR-based metabolomics to analyze their metabolic profile in response to endosulfan exposure at three sub-lethal (below LC₅₀) concentrations. Principal component analysis determined the earthworm CF and earthworm tissue extract to both have significant separation between the exposed and control at the two highest sub-lethal endosulfan exposures (1.0 and 2.0 μg cm⁻²). Alanine, glycine, malate, α-ketoglutarate, succinate, betaine, myo-inositol, lactate and spermidine in the earthworm CF and alanine, glutamine, fumarate, glutamate, maltose, melibiose, ATP and lactate in earthworm tissue extract were all detected as having significant fluctuations after endosulfan exposure. An increase in ATP production was detected by the increase activity in the citric acid cycle and by anaerobic metabolism. A significant decrease in the polyamine, spermidine after endosulfan exposure describes an apoptotic mode of protection which correlates to a previous endosulfan exposure study where DNA damage has been reported. This study highlights that earthworm CF is a complementary biological medium to tissue extracts and can be helpful to better understand the toxic mode of action of contaminants at sub-lethal levels in the environment.
Collapse
Affiliation(s)
- Jimmy Yuk
- Department of Chemistry, Scarborough College, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | | | |
Collapse
|
40
|
Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J, Aguirre-Ghiso JA. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 2011; 31:3616-29. [PMID: 21709020 PMCID: PMC3165554 DOI: 10.1128/mcb.05164-11] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/17/2011] [Indexed: 11/20/2022] Open
Abstract
Mammary epithelial cells (MECs) detached from the extracellular matrix (ECM) produce deleterious reactive oxygen species (ROS) and induce autophagy to survive. The coordination of such opposing responses likely dictates whether epithelial cells survive ECM detachment or undergo anoikis. Here, we demonstrate that the endoplasmic reticulum kinase PERK facilitates survival of ECM-detached cells by concomitantly promoting autophagy, ATP production, and an antioxidant response. Loss-of-function studies show that ECM detachment activates a canonical PERK-eukaryotic translation initiation factor 2α (eIF2α)-ATF4-CHOP pathway that coordinately induces the autophagy regulators ATG6 and ATG8, sustains ATP levels, and reduces ROS levels to delay anoikis. Inducible activation of an Fv2E-ΔNPERK chimera by persistent activation of autophagy and reduction of ROS results in lumen-filled mammary epithelial acini. Finally, luminal P-PERK and LC3 levels are reduced in PERK-deficient mammary glands, whereas they are increased in human breast ductal carcinoma in situ (DCIS) versus normal breast tissues. We propose that the normal proautophagic and antioxidant PERK functions may be hijacked to promote the survival of ECM-detached tumor cells in DCIS lesions.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Autophagy/physiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Adhesion
- Cell Line
- Cell Survival
- Cells, Cultured
- Embryo, Mammalian/cytology
- Enzyme Activation
- Extracellular Matrix/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Immunoblotting
- Mammary Glands, Animal/metabolism
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Oxidative Stress/physiology
- RNA Interference
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Alvaro Avivar-Valderas
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Eduardo Salas
- University of California San Francisco, Department of Pathology, and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143
| | - Ekaterina Bobrovnikova-Marjon
- Department of Cancer Biology and Abramson Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - J. Alan Diehl
- Department of Cancer Biology and Abramson Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Chandandeep Nagi
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Jayanta Debnath
- University of California San Francisco, Department of Pathology, and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143
| | - Julio A. Aguirre-Ghiso
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| |
Collapse
|
41
|
Jiménez E, Zafra F, Pérez-Sen R, Delicado EG, Miras-Portugal MT, Aragón C, López-Corcuera B. P2Y purinergic regulation of the glycine neurotransmitter transporters. J Biol Chem 2011; 286:10712-24. [PMID: 21245148 DOI: 10.1074/jbc.m110.167056] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sodium- and chloride-coupled glycine neurotransmitter transporters (GLYTs) control the availability of glycine at glycine-mediated synapses. The mainly glial GLYT1 is the key regulator of the glycine levels in glycinergic and glutamatergic pathways, whereas the neuronal GLYT2 is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft. In this study, we report that stimulation of P2Y purinergic receptors with 2-methylthioadenosine 5'-diphosphate in rat brainstem/spinal cord primary neuronal cultures and adult rat synaptosomes leads to the inhibition of GLYT2 and the stimulation of GLYT1 by a paracrine regulation. These effects are mainly mediated by the ADP-preferring subtypes P2Y(1) and P2Y(13) because the effects are partially reversed by the specific antagonists N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate and pyridoxal-5'-phosphate-6-azo(2-chloro-5-nitrophenyl)-2,4-disulfonate and are totally blocked by suramin. P2Y(12) receptor is additionally involved in GLYT1 stimulation. Using pharmacological approaches and siRNA-mediated protein knockdown methodology, we elucidate the molecular mechanisms of GLYT regulation. Modulation takes place through a signaling cascade involving phospholipase C activation, inositol 1,4,5-trisphosphate production, intracellular Ca(2+) mobilization, protein kinase C stimulation, nitric oxide formation, cyclic guanosine monophosphate production, and protein kinase G-I (PKG-I) activation. GLYT1 and GLYT2 are differentially sensitive to NO/cGMP/PKG-I both in brain-derived preparations and in heterologous systems expressing the recombinant transporters and P2Y(1) receptor. Sensitivity to 2-methylthioadenosine 5'-diphosphate by GLYT1 and GLYT2 was abolished by small interfering RNA (siRNA)-mediated knockdown of nitric-oxide synthase. Our data may help define the role of GLYTs in nociception and pain sensitization.
Collapse
Affiliation(s)
- Esperanza Jiménez
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Howard A, Hirst BH. The glycine transporter GLYT1 in human intestine: expression and function. Biol Pharm Bull 2011; 34:784-788. [PMID: 21628872 DOI: 10.1248/bpb.34.784] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Glycine is a well-documented cytoprotective agent and protects mammalian intestine against ischemia-reperfusion injury, irradiation and experimentally induced colitis. The specific glycine transporter GLYT1 is found throughout the human intestine where it is responsible for some 30-50% of glycine uptake into intestinal epithelial cells across the basolateral membrane and appears to function to maintain glycine supply to enterocytes and colonocytes. This paper reviews current knowledge of GLYT1 and presents recent evidence supporting its essential role in glycine mediated cytoprotection in intestinal absorptive cells. Regulatory mechanisms involved in intestinal expression of GLYT1 are discussed and the potential of glycine for use as an anti-inflammatory, protective agent in the management of inflammatory bowel disease examined.
Collapse
Affiliation(s)
- Alison Howard
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, UK
| | | |
Collapse
|
43
|
McCole DF. The epithelial glycine transporter GLYT1: protecting the gut from inflammation. J Physiol 2010; 588:1033-4. [PMID: 20360026 DOI: 10.1113/jphysiol.2010.188516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Declan F McCole
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive-0063, La Jolla, CA 92093-0063, USA.
| |
Collapse
|