1
|
Haseleu J, Walcher J, Lewin GR. The mechanotransduction protein STOML3 is required for proprioceptor plasticity following peripheral nerve regeneration. Exp Physiol 2025. [PMID: 40163784 DOI: 10.1113/ep092428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/12/2025] [Indexed: 04/02/2025]
Abstract
Nerve regeneration is associated with the plasticity of sensory neurons such that even muscle afferents directed to the skin form mechanosensitive receptive fields appropriate for the new target. STOML3 is an essential mechanotransduction component in many cutaneous mechanoreceptors. Here, we asked whether STOML3 is required for functional and anatomical plasticity following peripheral nerve regeneration. We used a cross-anastomosis model adapted to the mouse, in which the medial gastrocnemius nerve was redirected to innervate hairy skin previously occupied by the sural nerve. We recorded from muscle afferents innervating the skin and found that in wild-type mice their receptive properties were largely identical to normal skin mechanoreceptors. However, in mice lacking STOML3, muscle afferents largely failed to form functional mechanosensitive receptive fields, despite making anatomically appropriate endings in the skin. Our tracing experiments demonstrated that muscle afferents from both wild-type and stoml3 mutant mice display remarkable anatomical plasticity, forming new somatotopically appropriate synaptic terminals in the region of the dorsal horn representing the sural nerve territory. The dramatic reduction in stimulus-evoked activity from the cross-anastomosed gastrocnemius nerve in stoml3 mutant mice did not prevent central anatomical plasticity. Our results have identified a molecular factor required for functional plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- Julia Haseleu
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jan Walcher
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin, Berlin, Germany
| |
Collapse
|
2
|
Yan L, Claman A, Bode A, Collins KM. The C. elegans uv1 Neuroendocrine Cells Provide Mechanosensory Feedback of Vulval Opening. J Neurosci 2025; 45:e0678242024. [PMID: 39788737 PMCID: PMC11800740 DOI: 10.1523/jneurosci.0678-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm Caenorhabditis elegans, four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying. We have previously shown uv1 cells are mechanically deformed during egg laying, driving uv1 Ca2+ transients. However, whether egg-laying circuit activity, vulval opening, and/or egg release triggered uv1 Ca2+ activity was unclear. Here, we show uv1 responds directly to mechanical activation. Optogenetic vulval muscle stimulation triggers uv1 Ca2+ activity following muscle contraction even in sterile animals. Direct mechanical prodding with a glass probe placed against the worm cuticle triggers robust uv1 Ca2+ activity similar to that seen during egg laying. Direct mechanical activation of uv1 cells does not require other cells in the egg-laying circuit, synaptic or peptidergic neurotransmission, or transient receptor potential vanilloid and Piezo channels. EGL-19 L-type Ca2+ channels, but not P/Q/N-type or ryanodine receptor Ca2+ channels, promote uv1 Ca2+ activity following mechanical activation. L-type channels also facilitate the coordinated activation of uv1 cells across the vulva, suggesting mechanical stimulation of one uv1 cell cross-activates the other. Our findings show how neuroendocrine cells like uv1 report on the mechanics of tissue deformation and muscle contraction, facilitating feedback to local circuits to coordinate behavior.
Collapse
Affiliation(s)
- Lijie Yan
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Alexander Claman
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Addys Bode
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| |
Collapse
|
3
|
Ojeda-Alonso J, Bégay V, Garcia-Contreras JA, Campos-Pérez AF, Purfürst B, Lewin GR. Lack of evidence for participation of TMEM150C in sensory mechanotransduction. J Gen Physiol 2022; 154:e202213098. [PMID: 36256908 PMCID: PMC9582506 DOI: 10.1085/jgp.202213098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
The membrane protein TMEM150C has been proposed to form a mechanosensitive ion channel that is required for normal proprioceptor function. Here, we examined whether expression of TMEM150C in neuroblastoma cells lacking Piezo1 is associated with the appearance of mechanosensitive currents. Using three different modes of mechanical stimuli, indentation, membrane stretch, and substrate deflection, we could not evoke mechanosensitive currents in cells expressing TMEM150C. We next asked if TMEM150C is necessary for the normal mechanosensitivity of cutaneous sensory neurons. We used an available mouse model in which the Tmem150c locus was disrupted through the insertion of a LacZ cassette with a splice acceptor that should lead to transcript truncation. Analysis of these mice indicated that ablation of the Tmem150c gene was not complete in sensory neurons of the dorsal root ganglia (DRG). Using a CRISPR/Cas9 strategy, we made a second mouse model in which a large part of the Tmem150c gene was deleted and established that these Tmem150c-/- mice completely lack TMEM150C protein in the DRGs. We used an ex vivo skin nerve preparation to characterize the mechanosenstivity of mechanoreceptors and nociceptors in the glabrous skin of the Tmem150c-/- mice. We found no quantitative alterations in the physiological properties of any type of cutaneous sensory fiber in Tmem150c-/- mice. Since it has been claimed that TMEM150C is required for normal proprioceptor function, we made a quantitative analysis of locomotion in Tmem150c-/- mice. Here again, we found no indication that there was altered gait in Tmem150c-/- mice compared to wild-type controls. In summary, we conclude that existing mouse models that have been used to investigate TMEM150C function in vivo are problematic. Furthermore, we could find no evidence that TMEM150C forms a mechanosensitive channel or that it is necessary for the normal mechanosensitivity of cutaneous sensory neurons.
Collapse
Affiliation(s)
- Julia Ojeda-Alonso
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Valérie Bégay
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonathan Alexis Garcia-Contreras
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andrea Fernanda Campos-Pérez
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gary R. Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
4
|
The T-type calcium channel Ca V 3.2 regulates bladder afferent responses to mechanical stimuli. Pain 2022; 164:1012-1026. [PMID: 36279179 PMCID: PMC10108591 DOI: 10.1097/j.pain.0000000000002795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.
Collapse
|
5
|
Huzard D, Martin M, Maingret F, Chemin J, Jeanneteau F, Mery PF, Fossat P, Bourinet E, François A. The impact of C-tactile low-threshold mechanoreceptors on affective touch and social interactions in mice. SCIENCE ADVANCES 2022; 8:eabo7566. [PMID: 35767616 PMCID: PMC9242590 DOI: 10.1126/sciadv.abo7566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Affective touch is necessary for proper neurodevelopment and sociability. However, it remains unclear how the neurons innervating the skin detect affective and social behaviors. The C low-threshold mechanoreceptors (C-LTMRs), a specific population of somatosensory neurons in mice, appear particularly well suited, physiologically and anatomically, to perceive affective and social touch. However, their contribution to sociability has not been resolved yet. Our observations revealed that C-LTMR functional deficiency induced social isolation and reduced tactile interactions in adulthood. Conversely, transient increase in C-LTMR excitability in adults, using chemogenetics, was rewarding, promoted touch-seeking behaviors, and had prosocial influences on group dynamics. This work provides the first empirical evidence that specific peripheral inputs alone can drive complex social behaviors. It demonstrates the existence of a specialized neuronal circuit, originating in the skin, wired to promote interactions with other individuals.
Collapse
Affiliation(s)
- Damien Huzard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Miquel Martin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - François Maingret
- Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS, Bordeaux, France
| | - Jean Chemin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Freddy Jeanneteau
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierre-François Mery
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pascal Fossat
- Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS, Bordeaux, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury François
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Corresponding author.
| |
Collapse
|
6
|
Harding EK, Zamponi GW. Central and peripheral contributions of T-type calcium channels in pain. Mol Brain 2022; 15:39. [PMID: 35501819 PMCID: PMC9063214 DOI: 10.1186/s13041-022-00923-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractChronic pain is a severely debilitating condition that reflects a long-term sensitization of signal transduction in the afferent pain pathway. Among the key players in this pathway are T-type calcium channels, in particular the Cav3.2 isoform. Because of their biophysical characteristics, these channels are ideally suited towards regulating neuronal excitability. Recent evidence suggests that T-type channels contribute to excitability of neurons all along the ascending and descending pain pathways, within primary afferent neurons, spinal dorsal horn neurons, and within pain-processing neurons in the midbrain and cortex. Here we review the contribution of T-type channels to neuronal excitability and function in each of these neuronal populations and how they are dysregulated in chronic pain conditions. Finally, we discuss their molecular pharmacology and the potential role of these channels as therapeutic targets for chronic pain.
Collapse
|
7
|
Hoffmann T, Kistner K, Joksimovic SLJ, Todorovic SM, Reeh PW, Sauer SK. Painful diabetic neuropathy leads to functional Ca V3.2 expression and spontaneous activity in skin nociceptors of mice. Exp Neurol 2021; 346:113838. [PMID: 34450183 PMCID: PMC8549116 DOI: 10.1016/j.expneurol.2021.113838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022]
Abstract
Painful diabetic neuropathy occurs in approximately 20% of diabetic patients with underlying pathomechanisms not fully understood. We evaluated the contribution of the CaV3.2 isoform of T-type calcium channel to hyperglycemia-induced changes in cutaneous sensory C-fiber functions and neuropeptide release employing the streptozotocin (STZ) diabetes model in congenic mouse strains including global knockouts (KOs). Hyperglycemia established for 3-5 weeks in male C57BL/6J mice led to major reorganizations in peripheral C-fiber functions. Unbiased electrophysiological screening of mechanosensitive single-fibers in isolated hairy hindpaw skin revealed a relative loss of (polymodal) heat sensing in favor of cold sensing. In healthy CaV3.2 KO mice both heat and cold sensitivity among the C-fibers seemed underrepresented in favor of exclusive mechanosensitivity, low-threshold in particular, which deficit became significant in the diabetic KOs. Diabetes also led to a marked increase in the incidence of spontaneous discharge activity among the C-fibers of wildtype mice, which was reduced by the specific CaV3.2 blocker TTA-P2 and largely absent in the KOs. Evaluation restricted to the peptidergic class of nerve fibers - measuring KCl-stimulated CGRP release - revealed a marked reduction in the sciatic nerve by TTA-P2 in healthy but not diabetic wildtypes, the latter showing CGRP release that was as much reduced as in healthy and, to the same extent, in diabetic CaV3.2 KOs. These data suggest that diabetes abrogates all CaV3.2 functionality in the peripheral nerve axons. In striking contrast, diabetes markedly increased the KCl-stimulated CGRP release from isolated hairy skin of wildtypes but not KO mice, and TTA-P2 reversed this increase, strongly suggesting a de novo expression of CaV3.2 in peptidergic cutaneous nerve endings which may contribute to the enhanced spontaneous activity. De-glycosylation by neuraminidase showed clear desensitizing effects, both in regard to spontaneous activity and stimulated CGRP release, but included actions independent of CaV3.2. However, as diabetes-enhanced glycosylation is decisive for intra-axonal trafficking, it may account for the substantial reorganizations of the CaV3.2 distribution. The results may strengthen the validation of CaV3.2 channel as a therapeutic target of treating painful diabetic neuropathy.
Collapse
Affiliation(s)
- Tal Hoffmann
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Katrin Kistner
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Sonja L J Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter W Reeh
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Susanne K Sauer
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
8
|
Handler A, Ginty DD. The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci 2021; 22:521-537. [PMID: 34312536 PMCID: PMC8485761 DOI: 10.1038/s41583-021-00489-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Our sense of touch emerges from an array of mechanosensory structures residing within the fabric of our skin. These tactile end organ structures convert innocuous forces acting on the skin into electrical signals that propagate to the CNS via the axons of low-threshold mechanoreceptors (LTMRs). Our rich capacity for tactile discrimination arises from the dissimilar intrinsic properties of the LTMR subtypes that innervate different regions of the skin and the structurally distinct end organ complexes with which they associate. These end organ structures comprise a range of non-neuronal cell types, which may themselves actively contribute to the transformation of tactile forces into neural impulses within the LTMR afferents. Although the mechanism and the site of transduction across end organs remain unclear, PIEZO2 has emerged as the principal mechanosensitive channel involved in light touch of the skin. Here we review the physiological properties of LTMR subtypes and discuss how features of their cutaneous end organ complexes shape subtype-specific tuning.
Collapse
Affiliation(s)
- Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Papazoglou A, Henseler C, Broich K, Daubner J, Weiergräber M. Breeding of Ca v2.3 deficient mice reveals Mendelian inheritance in contrast to complex inheritance in Ca v3.2 null mutant breeding. Sci Rep 2021; 11:13972. [PMID: 34234221 PMCID: PMC8263769 DOI: 10.1038/s41598-021-93391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
High voltage-activated Cav2.3 R-type Ca2+ channels and low voltage-activated Cav3.2 T-type Ca2+ channels were reported to be involved in numerous physiological and pathophysiological processes. Many of these findings are based on studies in Cav2.3 and Cav3.2 deficient mice. Recently, it has been proposed that inbreeding of Cav2.3 and Cav3.2 deficient mice exhibits significant deviation from Mendelian inheritance and might be an indication for potential prenatal lethality in these lines. In our study, we analyzed 926 offspring from Cav3.2 breedings and 1142 offspring from Cav2.3 breedings. Our results demonstrate that breeding of Cav2.3 deficient mice shows typical Mendelian inheritance and that there is no indication of prenatal lethality. In contrast, Cav3.2 breeding exhibits a complex inheritance pattern. It might be speculated that the differences in inheritance, particularly for Cav2.3 breeding, are related to other factors, such as genetic specificities of the mutant lines, compensatory mechanisms and altered sperm activity.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
10
|
The Somatosensory World of the African Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:197-220. [PMID: 34424517 DOI: 10.1007/978-3-030-65943-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain-insensitivity as a trait shared by several closely related African mole-rat species. In this chapter we will show how African mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
|
11
|
Smith ESJ, Park TJ, Lewin GR. Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:313-325. [PMID: 32206859 PMCID: PMC7192887 DOI: 10.1007/s00359-020-01414-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| |
Collapse
|
12
|
Crawford LK, Caterina MJ. Functional Anatomy of the Sensory Nervous System: Updates From the Neuroscience Bench. Toxicol Pathol 2019; 48:174-189. [PMID: 31554486 DOI: 10.1177/0192623319869011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The simple tripartite classification of sensory neurons as A-beta, A-delta, and C fibers fails to convey the complexity of the neurons that encode stimuli as diverse as the texture of a surface, the location of a pinprick, or the direction of hair movement as a breeze moves across the skin. It has also proven to be inadequate when investigating the molecular mechanisms underlying pain, which can encompass any combination of chemical, tactile, and thermal modalities. Beginning with a brief overview of visceral and sensory neuroanatomy, this review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system. Neuroscientists have characterized defining features of over 15 subtypes of sensory neurons that innervate the skin of the mouse. This has enabled the study of cell-specific mechanisms of pain, which suggests that diverse sensory neuron subtypes may have distinct susceptibilities to toxic injury and different roles in pathologic mechanisms underlying altered sensation. Leveraging this growing body of knowledge for preclinical trials and models of neurotoxicity can vastly improve our understanding of peripheral nervous system dysfunction, advancing the fields of toxicologic pathology and neuropathology alike.
Collapse
Affiliation(s)
- LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA, Madison, WI, USA
| | - Michael J Caterina
- Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Zheng Y, Liu P, Bai L, Trimmer JS, Bean BP, Ginty DD. Deep Sequencing of Somatosensory Neurons Reveals Molecular Determinants of Intrinsic Physiological Properties. Neuron 2019; 103:598-616.e7. [PMID: 31248728 DOI: 10.1016/j.neuron.2019.05.039] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Dorsal root ganglion (DRG) sensory neuron subtypes defined by their in vivo properties display distinct intrinsic electrical properties. We used bulk RNA sequencing of genetically labeled neurons and electrophysiological analyses to define ion channel contributions to the intrinsic electrical properties of DRG neuron subtypes. The transcriptome profiles of eight DRG neuron subtypes revealed differentially expressed and functionally relevant genes, including voltage-gated ion channels. Guided by these data, electrophysiological analyses using pharmacological and genetic manipulations as well as computational modeling of DRG neuron subtypes were undertaken to assess the functions of select voltage-gated potassium channels (Kv1, Kv2, Kv3, and Kv4) in shaping action potential (AP) waveforms and firing patterns. Our findings show that the transcriptome profiles have predictive value for defining ion channel contributions to sensory neuron subtype-specific intrinsic physiological properties. The distinct ensembles of voltage-gated ion channels predicted to underlie the unique intrinsic physiological properties of eight DRG neuron subtypes are presented.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Neuroscience Training Program, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pin Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Neuroscience Training Program, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Ca v3.2 T-Type Calcium Channels Are Physiologically Mandatory for the Auditory System. Neuroscience 2019; 409:81-100. [PMID: 31029730 DOI: 10.1016/j.neuroscience.2019.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Voltage-gated Ca2+ channels (VGCCs) play key roles in auditory perception and information processing within the inner ear and brainstem. Pharmacological inhibition of low voltage-activated (LVA) T-type Ca2+ channels is related to both age- and noise induced hearing loss in experimental animals and may represent a promising approach to the treatment of auditory impairment of various etiologies. Within the LVA Ca2+ channel subgroup, Cav3.2 is the most prominently expressed T-type channel entity in the cochlea and auditory brainstem. Thus, we performed a complete gender specific click and tone burst based auditory brainstem response (ABR) analysis of Cav3.2+/- and Cav3.2-/- mice, including i.a. temporal progression in hearing loss, amplitude growth function and wave latency analysis as well as a cochlear qPCR based evaluation of other VGCCs transcripts. Our results, based on a self-programmed automated wavelet approach, demonstrate that both heterozygous and Cav3.2 null mutant mice exhibit age-dependent increases in hearing thresholds at 5 months of age. In addition, complex alterations in WI-IV amplitudes and latencies were detected that were not attributable to alterations in the expression of other VGCCs in the auditory tract. Our results clearly demonstrate the important physiological role of Cav3.2 VGCCs in the spatiotemporal organization of auditory processing in young adult mice and suggest potential pharmacological targets for interventions in the future.
Collapse
|
15
|
Rebellato P, Kaczynska D, Kanatani S, Rayyes IA, Zhang S, Villaescusa C, Falk A, Arenas E, Hermanson O, Louhivuori L, Uhlén P. The T-type Ca 2+ Channel Ca v3.2 Regulates Differentiation of Neural Progenitor Cells during Cortical Development via Caspase-3. Neuroscience 2019; 402:78-89. [PMID: 30677486 DOI: 10.1016/j.neuroscience.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Abstract
Here we report that the low-voltage-dependent T-type calcium (Ca2+) channel Cav3.2, encoded by the CACNA1H gene, regulates neuronal differentiation during early embryonic brain development through activating caspase-3. At the onset of neuronal differentiation, neural progenitor cells exhibited spontaneous Ca2+ activity. This activity strongly correlated with the upregulation of CACNA1H mRNA. Cells exhibiting robust spontaneous Ca2+ signaling had increased caspase-3 activity unrelated to apoptosis. Inhibition of Cav3.2 by drugs or viral CACNA1H knock down resulted in decreased caspase-3 activity followed by suppressed neurogenesis. In contrast, when CACNA1H was overexpressed, increased neurogenesis was detected. Cortical slices from Cacna1h knockout mice showed decreased spontaneous Ca2+ activity, a significantly lower protein level of cleaved caspase-3, and microanatomical abnormalities in the subventricular/ventricular and cortical plate zones when compared to their respective embryonic controls. In summary, we demonstrate a novel relationship between Cav3.2 and caspase-3 signaling that affects neurogenesis in the developing brain.
Collapse
Affiliation(s)
- Paola Rebellato
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Dagmara Kaczynska
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Songbai Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Carlos Villaescusa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
16
|
Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci Rep 2019; 9:3112. [PMID: 30816223 PMCID: PMC6395820 DOI: 10.1038/s41598-019-39703-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
The T-type calcium channel, Cav3.2, is necessary for acute pain perception, as well as mechanical and cold allodynia in mice. Being found throughout sensory pathways, from excitatory primary afferent neurons up to pain matrix structures, it is a promising target for analgesics. In our study, Cav3.2 was detected in ~60% of the lamina II (LII) neurons of the spinal cord, a site for integration of sensory processing. It was co-expressed with Tlx3 and Pax2, markers of excitatory and inhibitory interneurons, as well as nNOS, calretinin, calbindin, PKCγ and not parvalbumin. Non-selective T-type channel blockers slowed the inhibitory but not the excitatory transmission in LII neurons. Furthermore, T-type channel blockers modified the intrinsic properties of LII neurons, abolishing low-threshold activated currents, rebound depolarizations, and blunting excitability. The recording of Cav3.2-positive LII neurons, after intraspinal injection of AAV-DJ-Cav3.2-mcherry, showed that their intrinsic properties resembled those of the global population. However, Cav3.2 ablation in the dorsal horn of Cav3.2GFP-Flox KI mice after intraspinal injection of AAV-DJ-Cav3.2-Cre-IRES-mcherry, had drastic effects. Indeed, it (1) blunted the likelihood of transient firing patterns; (2) blunted the likelihood and the amplitude of rebound depolarizations, (3) eliminated action potential pairing, and (4) remodeled the kinetics of the action potentials. In contrast, the properties of Cav3.2-positive neurons were only marginally modified in Cav3.1 knockout mice. Overall, in addition to their previously established roles in the superficial spinal cord and in primary afferent neurons, Cav3.2 channel appear to be necessary for specific, significant and multiple controls of LII neuron excitability.
Collapse
|
17
|
Walcher J, Ojeda‐Alonso J, Haseleu J, Oosthuizen MK, Rowe AH, Bennett NC, Lewin GR. Specialized mechanoreceptor systems in rodent glabrous skin. J Physiol 2018; 596:4995-5016. [PMID: 30132906 PMCID: PMC6187043 DOI: 10.1113/jp276608] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS An ex vivo preparation was developed to record from single sensory fibres innervating the glabrous skin of the mouse forepaw. The density of mechanoreceptor innervation of the forepaw glabrous skin was found to be three times higher than that of hindpaw glabrous skin. Rapidly adapting mechanoreceptors that innervate Meissner's corpuscles were severalfold more responsive to slowly moving stimuli in the forepaw compared to those innervating hindpaw skin. We found a distinct group of small hairs in the centre of the mouse hindpaw glabrous skin that were exclusively innervated by directionally sensitive D-hair receptors. The directional sensitivity, but not the end-organ anatomy, were the opposite to D-hair receptors in the hairy skin. Glabrous skin hairs in the hindpaw are not ubiquitous in rodents, but occur in African and North American species that diverged more than 65 million years ago. ABSTRACT Rodents use their forepaws to actively interact with their tactile environment. Studies on the physiology and anatomy of glabrous skin that makes up the majority of the forepaw are almost non-existent in the mouse. Here we developed a preparation to record from single sensory fibres of the forepaw and compared anatomical and physiological receptor properties to those of the hindpaw glabrous and hairy skin. We found that the mouse forepaw skin is equipped with a very high density of mechanoreceptors; >3 times more than hindpaw glabrous skin. In addition, rapidly adapting mechanoreceptors that innervate Meissner's corpuscles of the forepaw were severalfold more sensitive to slowly moving mechanical stimuli compared to their counterparts in the hindpaw glabrous skin. All other mechanoreceptor types as well as myelinated nociceptors had physiological properties that were invariant regardless of which skin area they occupied. We discovered a novel D-hair receptor innervating a small group of hairs in the middle of the hindpaw glabrous skin in mice. These glabrous skin D-hair receptors were direction sensitive albeit with an orientation sensitivity opposite to that described for hairy skin D-hair receptors. Glabrous skin hairs do not occur in all rodents, but are present in North American and African rodent species that diverged more than 65 million years ago. The function of these specialized hairs is unknown, but they are nevertheless evolutionarily very ancient. Our study reveals novel physiological specializations of mechanoreceptors in the glabrous skin that likely evolved to facilitate tactile exploration.
Collapse
Affiliation(s)
- Jan Walcher
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Julia Ojeda‐Alonso
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Julia Haseleu
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Maria K. Oosthuizen
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaRepublic of South Africa
| | - Ashlee H. Rowe
- Department of Biology and Program in Cellular and Behavioral NeurobiologyUniversity of OklahomaNormanOKUSA
| | - Nigel C. Bennett
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaRepublic of South Africa
| | - Gary R. Lewin
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
- Excellence Cluster NeurocureCharité Universitätsmedizin10117BerlinGermany
| |
Collapse
|
18
|
Hidaka S, Kanai Y, Takehana S, Syoji Y, Kubota Y, Uotsu N, Yui K, Shimazu Y, Takeda M. Systemic administration of α-lipoic acid suppresses excitability of nociceptive wide-dynamic range neurons in rat spinal trigeminal nucleus caudalis. Neurosci Res 2018; 144:14-20. [PMID: 29885345 DOI: 10.1016/j.neures.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Although a modulatory role has been reported for α-lipoic acid (LA) on T-type Ca2+ channels in the nervous system, the acute effects of LA in vivo, particularly on nociceptive transmission in the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous LA administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from seventeen SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was significantly and dose-dependently inhibited by LA (1-100 mM, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 5 min. These inhibitory effects lasted for approximately 10 min. These results suggest that acute intravenous LA administration suppresses trigeminal sensory transmission, including nociception, via possibly blocking T-type Ca2+ channels. LA may be used as a therapeutic agent for the treatment of trigeminal nociceptive pain.
Collapse
Affiliation(s)
- S Hidaka
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Kanai
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - S Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Syoji
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Kubota
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - N Uotsu
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - K Yui
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - Y Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - M Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
19
|
Chen W, Chi YN, Kang XJ, Liu QY, Zhang HL, Li ZH, Zhao ZF, Yang Y, Su L, Cai J, Liao FF, Yi M, Wan Y, Liu FY. Accumulation of Ca v3.2 T-type Calcium Channels in the Uninjured Sural Nerve Contributes to Neuropathic Pain in Rats with Spared Nerve Injury. Front Mol Neurosci 2018; 11:24. [PMID: 29472842 PMCID: PMC5809483 DOI: 10.3389/fnmol.2018.00024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Injuries to peripheral nerve fibers induce neuropathic pain. But the involvement of adjacent uninjured fibers to pain is not fully understood. The present study aims to investigate the possible contribution of Cav3.2 T-type calcium channels in uninjured afferent nerve fibers to neuropathic pain in rats with spared nerve injury (SNI). Aβ-, Aδ- and C-fibers of the uninjured sural nerve were sensitized revealed by in vivo single-unit recording, which were accompanied by accumulation of Cav3.2 T-type calcium channel proteins shown by Western blotting. Application of mibefradil, a T-type calcium channel blocker, to sural nerve receptive fields increased mechanical thresholds of Aβ-, Aδ- and C-fibers, confirming the functional involvement of accumulated channels in the sural nerve in SNI rats. Finally, perineural application of mibefradil or TTA-P2 to the uninjured sural nerve alleviated mechanical allodynia in SNI rats. These results suggest that axonal accumulation of Cav3.2 T-type calcium channels plays an important role in the uninjured sural nerve sensitization and contributes to neuropathic pain.
Collapse
Affiliation(s)
- Wen Chen
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Ye-Nan Chi
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Anesthesiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Jing Kang
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Qing-Ying Liu
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Hao-Lin Zhang
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zhi-Hua Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zi-Fang Zhao
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Yin Yang
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Li Su
- Neuroscience Research Institute, Peking University, Beijing, China.,Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Fei-Fei Liao
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 2017; 158:417-429. [PMID: 27902567 DOI: 10.1097/j.pain.0000000000000774] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here, it is shown that paclitaxel-induced neuropathy is associated with the development of spontaneous activity (SA) and hyperexcitability in dorsal root ganglion (DRG) neurons that is paralleled by increased expression of low-voltage-activated calcium channels (T-type; Cav3.2). The percentage of DRG neurons showing SA and the overall mean rate of SA were significantly higher at day 7 in rats receiving paclitaxel treatment than in rats receiving vehicle. Cav3.2 expression was increased in L4-L6 DRG and spinal cord segments in paclitaxel-treated rats, localized to small calcitonin gene-related peptide and isolectin B4 expressing DRG neurons and to glial fibrillary acidic protein-positive spinal cord cells. Cav3.2 expression was also co-localized with toll-like receptor 4 (TLR4) in both the DRG and the dorsal horn. T-type current amplitudes and density were increased at day 7 after paclitaxel treatment. Perfusion of the TLR4 agonist lipopolysaccharide directly activated DRG neurons, whereas this was prevented by pretreatment with the specific T-type calcium channel inhibitor ML218 hydrochloride. Paclitaxel-induced behavioral hypersensitivity to mechanical stimuli in rats was prevented but not reversed by spinal administration of ML218 hydrochloride or intravenous injection of the TLR4 antagonist TAK242. Paclitaxel induced inward current and action potential discharges in cultured human DRG neurons, and this was blocked by ML218 hydrochloride pretreatment. Furthermore, ML218 hydrochloride decreased firing frequency in human DRG, where spontaneous action potentials were present. In summary, Cav3.2 in concert with TLR4 in DRG neurons appears to contribute to paclitaxel-induced neuropathy.
Collapse
|
21
|
Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci 2017; 190:68-77. [PMID: 28964813 DOI: 10.1016/j.lfs.2017.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.
Collapse
Affiliation(s)
- Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
22
|
Bernal Sierra YA, Haseleu J, Kozlenkov A, Bégay V, Lewin GR. Genetic Tracing of Ca v3.2 T-Type Calcium Channel Expression in the Peripheral Nervous System. Front Mol Neurosci 2017; 10:70. [PMID: 28360836 PMCID: PMC5350092 DOI: 10.3389/fnmol.2017.00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/01/2017] [Indexed: 02/01/2023] Open
Abstract
Characterizing the distinct functions of the T-type ion channel subunits Cav3.1, 3.2 or 3.3 has proven difficult due to their highly conserved amino-acid sequences and the lack of pharmacological blockers specific for each subunit. To precisely determine the expression pattern of the Cav3.2 channel in the nervous system we generated two knock-in mouse strains that express EGFP or Cre recombinase under the control of the Cav3.2 gene promoter. We show that in the brains of these animals, the Cav3.2 channel is predominantly expressed in the dentate gyrus of the hippocampus. In the peripheral nervous system, the activation of the promoter starts at E9.5 in neural crest cells that will give rise to dorsal root ganglia (DRG) neurons, but not sympathetic neurons. As development progresses the number of DRG cells expressing the Cav3.2 channel reaches around 7% of the DRG at E16.5, and remains constant until E18.5. Characterization of sensory neuron subpopulations at E18.5 showed that EGFP+ cells are a heterogeneous population consisting mainly of TrkB+ and TrkC+ cells, while only a small percentage of DRG cells were TrkA+. Genetic tracing of the sensory nerve end-organ innervation of the skin showed that the activity of the Cav3.2 channel promoter in sensory progenitors marks many mechanoreceptor and nociceptor endings, but spares slowly adapting mechanoreceptors with endings associated with Merkel cells. Our genetic analysis reveals for the first time that progenitors that express the Cav3.2 T-type calcium channel, defines a sensory specific lineage that populates a large proportion of the DRG. Using our Cav3.2-Cre mice together with AAV viruses containing a conditional fluorescent reporter (tdTomato) we could also show that Cre expression is largely restricted to two functionally distinct sensory neuron types in the adult ganglia. Cav3.2 positive neurons innervating the skin were found to only form lanceolate endings on hair follicles and are probably identical to D-hair receptors. A second population of nociceptive sensory neurons expressing the Cav3.2 gene was found to be positive for the calcitonin-gene related peptide but these neurons are deep tissue nociceptors that do not innervate the skin.
Collapse
Affiliation(s)
- Yinth A Bernal Sierra
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Julia Haseleu
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Alexey Kozlenkov
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Valérie Bégay
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
23
|
Jensen LJ, Nielsen MS, Salomonsson M, Sørensen CM. T-type Ca 2+ channels and autoregulation of local blood flow. Channels (Austin) 2017; 11:183-195. [PMID: 28055302 DOI: 10.1080/19336950.2016.1273997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40-80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- a Departments of Veterinary Clinical and Animal Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Morten Schak Nielsen
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Max Salomonsson
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Charlotte Mehlin Sørensen
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
24
|
Voisin T, Bourinet E, Lory P. Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability. J Physiol 2016; 594:3561-74. [PMID: 26931411 DOI: 10.1113/jp271925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS In this study, we describe a new knock-in (KI) mouse model that allows the study of the H191-dependent regulation of T-type Cav3.2 channels. Sensitivity to zinc, nickel and ascorbate of native Cav3.2 channels is significantly impeded in the dorsal root ganglion (DRG) neurons of this KI mouse. Importantly, we describe that this H191-dependent regulation has discrete but significant effects on the excitability properties of D-hair (down-hair) cells, a sub-population of DRG neurons in which Cav3.2 currents prominently regulate excitability. Overall, this study reveals that the native H191-dependent regulation of Cav3.2 channels plays a role in the excitability of Cav3.2-expressing neurons. This animal model will be valuable in addressing the potential in vivo roles of the trace metal and redox modulation of Cav3.2 T-type channels in a wide range of physiological and pathological conditions. ABSTRACT Cav3.2 channels are T-type voltage-gated calcium channels that play important roles in controlling neuronal excitability, particularly in dorsal root ganglion (DRG) neurons where they are involved in touch and pain signalling. Cav3.2 channels are modulated by low concentrations of metal ions (nickel, zinc) and redox agents, which involves the histidine 191 (H191) in the channel's extracellular IS3-IS4 loop. It is hypothesized that this metal/redox modulation would contribute to the tuning of the excitability properties of DRG neurons. However, the precise role of this H191-dependent modulation of Cav3.2 channel remains unresolved. Towards this goal, we have generated a knock-in (KI) mouse carrying the mutation H191Q in the Cav3.2 protein. Electrophysiological studies were performed on a subpopulation of DRG neurons, the D-hair cells, which express large Cav3.2 currents. We describe an impaired sensitivity to zinc, nickel and ascorbate of the T-type current in D-hair neurons from KI mice. Analysis of the action potential and low-threshold calcium spike (LTCS) properties revealed that, contrary to that observed in WT D-hair neurons, a low concentration of zinc and nickel is unable to modulate (1) the rheobase threshold current, (2) the afterdepolarization amplitude, (3) the threshold potential necessary to trigger an LTCS or (4) the LTCS amplitude in D-hair neurons from KI mice. Together, our data demonstrate that this H191-dependent metal/redox regulation of Cav3.2 channels can tune neuronal excitability. This study validates the use of this Cav3.2-H191Q mouse model for further investigations of the physiological roles thought to rely on this Cav3.2 modulation.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Centre National pour la Recherche Scientifique UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, F-34094, France.,Institut National de la Santé et de la Recherche Médicale, U 1191, Montpellier, F-34094, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, F-34094, France
| | - Emmanuel Bourinet
- Centre National pour la Recherche Scientifique UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, F-34094, France.,Institut National de la Santé et de la Recherche Médicale, U 1191, Montpellier, F-34094, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, F-34094, France
| | - Philippe Lory
- Centre National pour la Recherche Scientifique UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, F-34094, France.,Institut National de la Santé et de la Recherche Médicale, U 1191, Montpellier, F-34094, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, F-34094, France
| |
Collapse
|
25
|
Djouhri L. Aδ-fiber low threshold mechanoreceptors innervating mammalian hairy skin: A review of their receptive, electrophysiological and cytochemical properties in relation to Aδ-fiber high threshold mechanoreceptors. Neurosci Biobehav Rev 2016; 61:225-38. [DOI: 10.1016/j.neubiorev.2015.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
|
26
|
|
27
|
Schütze S, Orozco IJ, Jentsch TJ. KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors. J Biol Chem 2016; 291:5566-5575. [PMID: 26733196 DOI: 10.1074/jbc.m115.681098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 01/17/2023] Open
Abstract
M-current-mediating KCNQ (Kv7) channels play an important role in regulating the excitability of neuronal cells, as highlighted by mutations in Kcnq2 and Kcnq3 that underlie certain forms of epilepsy. In addition to their expression in brain, KCNQ2 and -3 are also found in the somatosensory system. We have now detected both KCNQ2 and KCNQ3 in a subset of dorsal root ganglia neurons that correspond to D-hair Aδ-fibers and demonstrate KCNQ3 expression in peripheral nerve endings of cutaneous D-hair follicles. Electrophysiological recordings from single D-hair afferents from Kcnq3(-/-) mice showed increased firing frequencies in response to mechanical ramp-and-hold stimuli. This effect was particularly pronounced at slow indentation velocities. Additional reduction of KCNQ2 expression further increased D-hair sensitivity. Together with previous work on the specific role of KCNQ4 in rapidly adapting skin mechanoreceptors, our results show that different KCNQ isoforms are specifically expressed in particular subsets of mechanosensory neurons and modulate their sensitivity directly in sensory nerve endings.
Collapse
Affiliation(s)
- Sebastian Schütze
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125 Berlin and
| | - Ian J Orozco
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125 Berlin and
| | - Thomas J Jentsch
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125 Berlin and; Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
28
|
Analgesic effect of a broad-spectrum dihydropyridine inhibitor of voltage-gated calcium channels. Pflugers Arch 2015; 467:2485-93. [PMID: 26286466 DOI: 10.1007/s00424-015-1725-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023]
Abstract
Voltage-activated calcium channels are important facilitators of nociceptive transmission in the primary afferent pathway. Consequently, molecules that block these channels are of potential use as pain therapeutics. Our group has recently reported on the identification of a novel class of dihydropyridines (DHPs) that included compounds with preferential selectivity for T-type over L-type channels. Among those compounds, M4 was found to be an equipotent inhibitor of both Cav1.2 L- and Cav3.2 T-type calcium channels. Here, we have further characterized the effects of this compound on other types of calcium channels and examined its analgesic effect when delivered either spinally (i.t.) or systemically (i.p.) to mice. Both delivery routes resulted in antinociception in a model of acute pain. Furthermore, M4 was able to reverse mechanical hyperalgesia produced by nerve injury when delivered intrathecally. M4 retained partial activity when delivered to Cav3.2 null mice, indicating that this compound acts on multiple targets. Additional whole-cell patch clamp experiments in transfected tsA-201 cells revealed that M4 also effectively blocks Cav3.3 (T-type) and Cav2.2 (N-type) currents. Altogether, our data indicate that broad-spectrum inhibition of multiple calcium channel subtypes can lead to potent analgesia in rodents.
Collapse
|
29
|
Watanabe M, Ueda T, Shibata Y, Kumamoto N, Shimada S, Ugawa S. Expression and Regulation of Cav3.2 T-Type Calcium Channels during Inflammatory Hyperalgesia in Mouse Dorsal Root Ganglion Neurons. PLoS One 2015; 10:e0127572. [PMID: 25974104 PMCID: PMC4431781 DOI: 10.1371/journal.pone.0127572] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/16/2015] [Indexed: 11/22/2022] Open
Abstract
The Cav3.2 isoform of the T-type calcium channel is expressed in primary sensory neurons of the dorsal root ganglion (DRG), and these channels contribute to nociceptive and neuropathic pain in rats. However, there are conflicting reports on the roles of these channels in pain processing in rats and mice. In addition, the function of T-type channels in persistent inflammatory hyperalgesia is poorly understood. We performed behavioral and comprehensive histochemical analyses to characterize Cav3.2-expressing DRG neurons and examined the regulation of T-type channels in DRGs from C57BL/6 mice with carrageenan-induced inflammatory hyperalgesia. We show that approximately 20% of mouse DRG neurons express Cav3.2 mRNA and protein. The size of the majority of Cav3.2-positive DRG neurons (69 ± 8%) ranged from 300 to 700 μm2 in cross-sectional area and 20 to 30 μm in estimated diameter. These channels co-localized with either neurofilament-H (NF-H) or peripherin. The peripherin-positive cells also overlapped with neurons that were positive for isolectin B4 (IB4) and calcitonin gene-related peptide (CGRP) but were distinct from transient receptor potential vanilloid 1 (TRPV1)-positive neurons during normal mouse states. In mice with carrageenan-induced inflammatory hyperalgesia, Cav3.2 channels, but not Cav3.1 or Cav3.3 channels, were upregulated in ipsilateral DRG neurons during the sub-acute phase. The increased Cav3.2 expression partially resulted from an increased number of Cav3.2-immunoreactive neurons; this increase in number was particularly significant for TRPV1-positive neurons. Finally, preceding and periodic intraplantar treatment with the T-type calcium channel blockers mibefradil and NNC 55-0396 markedly reduced and reversed mechanical hyperalgesia during the acute and sub-acute phases, respectively, in mice. These data suggest that Cav3.2 T-type channels participate in the development of inflammatory hyperalgesia, and this channel might play an even greater role in the sub-acute phase of inflammatory pain due to increased co-localization with TRPV1 receptors compared with that in the normal state.
Collapse
Affiliation(s)
- Masaya Watanabe
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- * E-mail:
| | - Yasuhiro Shibata
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Natsuko Kumamoto
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
30
|
Sharif-Naeini R. Contribution of mechanosensitive ion channels to somatosensation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:53-71. [PMID: 25744670 DOI: 10.1016/bs.pmbts.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into an electrical signal, is a central mechanism to several physiological functions in mammals. It relies on the function of mechanosensitive ion channels (MSCs). Although the first single-channel recording from MSCs dates back to 30 years ago, the identity of the genes encoding MSCs has remained largely elusive. Because these channels have an important role in the development of mechanical hypersensitivity, a better understanding of their function may lead to the identification of selective inhibitors and generate novel therapeutic pathways in the treatment of chronic pain. Here, I will describe our current understanding of the role MSCs may play in somatosensation and the potential candidate genes proposed to encode them.
Collapse
Affiliation(s)
- Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
François A, Schüetter N, Laffray S, Sanguesa J, Pizzoccaro A, Dubel S, Mantilleri A, Nargeot J, Noël J, Wood JN, Moqrich A, Pongs O, Bourinet E. The Low-Threshold Calcium Channel Cav3.2 Determines Low-Threshold Mechanoreceptor Function. Cell Rep 2015; 10:370-382. [PMID: 25600872 DOI: 10.1016/j.celrep.2014.12.042] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/14/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022] Open
Abstract
The T-type calcium channel Cav3.2 emerges as a key regulator of sensory functions, but its expression pattern within primary afferent neurons and its contribution to modality-specific signaling remain obscure. Here, we elucidate this issue using a unique knockin/flox mouse strain wherein Cav3.2 is replaced by a functional Cav3.2-surface-ecliptic GFP fusion. We demonstrate that Cav3.2 is a selective marker of two major low-threshold mechanoreceptors (LTMRs), Aδ- and C-LTMRs, innervating the most abundant skin hair follicles. The presence of Cav3.2 along LTMR-fiber trajectories is consistent with critical roles at multiple sites, setting their strong excitability. Strikingly, the C-LTMR-specific knockout uncovers that Cav3.2 regulates light-touch perception and noxious mechanical cold and chemical sensations and is essential to build up that debilitates allodynic symptoms of neuropathic pain, a mechanism thought to be entirely A-LTMR specific. Collectively, our findings support a fundamental role for Cav3.2 in touch/pain pathophysiology, validating their critic pharmacological relevance to relieve mechanical and cold allodynia.
Collapse
Affiliation(s)
- Amaury François
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Niklas Schüetter
- Department of Physiology, University of Saarland, School of Medicine, Kirrberger Straße 1, 66424 Homburg, Germany
| | - Sophie Laffray
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Juan Sanguesa
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Anne Pizzoccaro
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Stefan Dubel
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, 13288 Marseille, France
| | - Joel Nargeot
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Jacques Noël
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS, 660 route des lucioles, 06560 Valbonne, France
| | - John N Wood
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, 13288 Marseille, France
| | - Olaf Pongs
- Department of Physiology, University of Saarland, School of Medicine, Kirrberger Straße 1, 66424 Homburg, Germany
| | - Emmanuel Bourinet
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France.
| |
Collapse
|
32
|
Characteristics of dorsal root ganglia neurons sensitive to Substance P. Mol Pain 2014; 10:73. [PMID: 25431155 PMCID: PMC4280706 DOI: 10.1186/1744-8069-10-73] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Substance P modulates ion channels and the excitability of sensory neurons in pain pathways. Within the heterogeneous population of Dorsal Root Ganglia (DRG) primary sensory neurons, the properties of cells that are sensitive to Substance P are poorly characterized. To define this population better, dissociated rat DRG neurons were tested for their responsiveness to capsaicin, ATP and acid. Responses to ATP were classified according to the kinetics of current activation and desensitization. The same cells were then tested for modulation of action potential firing by Substance P. RESULTS Acid and capsaicin currents were more frequently encountered in the largest diameter neurons. P2X3-like ATP currents were concentrated in small diameter neurons. Substance P modulated the excitability in 20 of 72 cells tested (28%). Of the Substance P sensitive cells, 10 exhibited an increase in excitability and 10 exhibited a decrease in excitability. There was no significant correlation between sensitivity to capsaicin and to Substance P. Excitatory effects of Substance P were strongly associated with cells that had large diameters, fired APs with large overshoots and slowly decaying after hyperpolarizations, and expressed acid currents at pH 7. No neurons that were excited by Substance P presented P2X3-like currents. In contrast, neurons that exhibited inhibitory effects of Substance P fired action potentials with rapidly decaying after hyperpolarizations. CONCLUSION We conclude that excitatory effects of Substance P are restricted to a specific neuronal subpopulation with limited expression of putative nociceptive markers.
Collapse
|
33
|
Hao J, Bonnet C, Amsalem M, Ruel J, Delmas P. Transduction and encoding sensory information by skin mechanoreceptors. Pflugers Arch 2014; 467:109-19. [PMID: 25416542 DOI: 10.1007/s00424-014-1651-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/25/2022]
Abstract
Physical contact with the external world occurs through specialized neural structures called mechanoreceptors. Cutaneous mechanoreceptors provide information to the central nervous system (CNS) about touch, pressure, vibration, and skin stretch. The physiological function of these mechanoreceptors is to convert physical forces into neuronal signals. Key questions concern the molecular identity of the mechanoelectric transducer channels and the mechanisms by which the physical parameters of the mechanical stimulus are encoded into patterns of action potentials (APs). Compelling data indicate that the biophysical traits of mechanosensitive channels combined with the collection of voltage-gated channels are essential to describe the nature of the stimulus. Recent research also points to a critical role of the auxiliary cell-nerve ending communication in encoding stimulus properties. This review describes the characteristics of ion channels responsible for translating mechanical stimuli into the neural codes that underlie touch perception and pain.
Collapse
Affiliation(s)
- Jizhe Hao
- Aix-Marseille-Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 7286, CS80011, Bd Pierre Dramard, 13344, Marseille Cedex 15, France,
| | | | | | | | | |
Collapse
|
34
|
Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Arch 2014; 467:121-32. [PMID: 24981693 PMCID: PMC4281363 DOI: 10.1007/s00424-014-1563-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/23/2023]
Abstract
Sensory cells specialized to detect extremely small mechanical changes are common to the auditory and somatosensory systems. It is widely accepted that mechanosensitive channels form the core of the mechanoelectrical transduction in hair cells as well as the somatic sensory neurons that underlie the sense of touch and mechanical pain. Here, we will review how the activation of such channels can be measured in a meaningful physiological context. In particular, we will discuss the idea that mechanosensitive channels normally occur in transmembrane complexes that are anchored to extracellular matrix components (ECM) both in vitro and in vivo. One component of such complexes in sensory neurons is the integral membrane scaffold protein STOML3 which is a robust physiological regulator of native mechanosensitive currents. In order to better characterize such channels in transmembrane complexes, we developed a new electrophysiological method that enables the quantification of mechanosensitive current amplitude and kinetics when activated by a defined matrix movement in cultured cells. The results of such studies strongly support the idea that ion channels in transmembrane complexes are highly tuned to detect movement of the cell membrane in relation to the ECM.
Collapse
|
35
|
Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci U S A 2014; 111:E1990-8. [PMID: 24778262 DOI: 10.1073/pnas.1323112111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca(2+) transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca(2+) channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca(2+) channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2(-/-)) show congenital tracheal stenosis because of incomplete formation of cartilaginous tracheal support. Conversely, Cav3.2 overexpression in ATDC5 cells enhances chondrogenesis, which could be blunted by both blocking T-type Ca(2+) channels and inhibiting calcineurin and suggests that Cav3.2 is responsible for Ca(2+) influx during chondrogenesis. Finally, the expression of sex determination region of Y chromosome (SRY)-related high-mobility group-Box gene 9 (Sox9), one of the earliest markers of committed chondrogenic cells, is reduced in Cav3.2(-/-) tracheas. Mechanistically, Ca(2+) influx via Cav3.2 activates the calcineurin/nuclear factor of the activated T-cell (NFAT) signaling pathway, and a previously unidentified NFAT binding site is identified within the mouse Sox9 promoter using a luciferase reporter assay and gel shift and ChIP studies. Our findings define a previously unidentified mechanism that Ca(2+) influx via the Cav3.2 T-type Ca(2+) channel regulates Sox9 expression through the calcineurin/NFAT signaling pathway during tracheal chondrogenesis.
Collapse
|
36
|
T-type calcium channels in chronic pain: mouse models and specific blockers. Pflugers Arch 2014; 466:707-17. [PMID: 24590509 DOI: 10.1007/s00424-014-1484-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 02/01/2023]
Abstract
Pain is a quite frequent complaint accompanying numerous pathologies. Among these pathological cases, neuropathies are retrieved with identified etiologies (chemotherapies, diabetes, surgeries…) and also more diffuse syndromes such as fibromyalgia. More broadly, pain is one of the first consequences of the majority of inherited diseases. Despite its importance for the quality of life, current pain management is limited to drugs that are either old or with a limited efficacy or that possess a bad benefit/risk ratio. As no new pharmacological concept has led to new analgesics in the last decades, the discovery of medications is needed, and to this aim the identification of new druggable targets in pain transmission is a first step. Therefore, studies of ion channels in pain pathways are extremely active. This is particularly true with ion channels in peripheral sensory neurons in dorsal root ganglia (DRG) known now to express unique sets of these channels. Moreover, both spinal and supraspinal levels are clearly important in pain modulation. Among these ion channels, we and others revealed the important role of low voltage-gated calcium channels in cellular excitability in different steps of the pain pathways. These channels, by being activated nearby resting membrane potential have biophysical characteristics suited to facilitate action potential generation and rhythmicity. In this review, we will review the current knowledge on the role of these channels in the perception and modulation of pain.
Collapse
|
37
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
38
|
Moshourab RA, Wetzel C, Martinez-Salgado C, Lewin GR. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol 2013; 591:5555-74. [PMID: 23959680 PMCID: PMC3853495 DOI: 10.1113/jphysiol.2013.261180] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3−/−:stomatin−/−, asic3−/−:stoml3−/− and asic2−/−:stomatin−/− double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both Aδ- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3−/− mice in which ∼35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3−/−:stoml3−/− mutant mice. However, Aδ-nociceptors showed much reduced mechanosensitivity in asic3−/−:stoml3−/− mutant mice compared to asic3−/− controls. Interestingly, in asic2−/−:stomatin−/− mutant mice many Aδ-nociceptors completely lost their mechanosensitivity which was not observed in asic2−/− or stomatin−/− mice. Examination of stomatin−/−:stoml3−/− mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater Aδ-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3−/− or asic2−/− mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function.
Collapse
Affiliation(s)
- Rabih A Moshourab
- G. R. Lewin: Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| | | | | | | |
Collapse
|
39
|
Abstract
The hairs of the skin not only function to prevent heat loss but also have important sensory functions. Recent work has now established that each hair of the skin is innervated by one or more of three types of mechanoreceptor ending. Each of these three mechanoreceptor types possesses distinct molecular features and detects distinctive information about skin touch, which is relayed to specific brain locations in a somatotopic fashion.
Collapse
Affiliation(s)
- Stefan G. Lechner
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gary R. Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
40
|
Francois A, Kerckhove N, Meleine M, Alloui A, Barrere C, Gelot A, Uebele VN, Renger JJ, Eschalier A, Ardid D, Bourinet E. State-dependent properties of a new T-type calcium channel blocker enhance Ca(V)3.2 selectivity and support analgesic effects. Pain 2012; 154:283-293. [PMID: 23257507 DOI: 10.1016/j.pain.2012.10.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 09/06/2012] [Accepted: 10/30/2012] [Indexed: 01/01/2023]
Abstract
T-type calcium channels encoded by the Ca(V)3.2 isoform are expressed in nociceptive primary afferent neurons where they contribute to hyperalgesia and thus are considered as a potential therapeutic target to treat pathological pain. Here we report that the small organic state-dependent T-type channel antagonist TTA-A2 efficiently inhibits recombinant and native Ca(V)3.2 currents. Although TTA-A2 is a pan Ca(V)3 blocker, it demonstrates a higher potency for Ca(V)3.2 compared to Ca(V)3.1. TTA-A2 selectivity for T-type currents was demonstrated in sensory neurons where it lowered cell excitability uniquely on neurons expressing T-type channels. In vivo pharmacology in Ca(V)3.2 knockout and wild type mice reveal that TTA-A2-mediated antinociception critically depends on Ca(V)3.2 expression. The pathophysiology of irritable bowel syndrome (IBS) was recently demonstrated to involve Ca(V)3.2 in a rat model of this disease. Oral administration of TTA-A2 produced a dose-dependent reduction of hypersensitivity in an IBS model, demonstrating its therapeutic potential for the treatment of pathological pain. Overall, our results suggest that the high potency of TTA-A2 in the depolarized state strengthen its analgesic efficacy and selectivity toward pathological pain syndromes. This characteristic would be beneficial for the development of analgesics targeting T-type channels, in particular for the treatment of pain associated with IBS.
Collapse
Affiliation(s)
- Amaury Francois
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France CNRS UMR5203, Montpellier, France INSERM, U661, Montpellier, France IFR3 Universités Montpellier I & II, Montpellier, France Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, BP 10448, F-63000 Clermont-Ferrand, France Inserm, U 766, F-63001 Clermont-Ferrand, France Merck Research Laboratories, West Point, PA, USA CHU Clermont-Ferrand, Service de Pharmacologie, F-63003 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K, Ivanovic-Burmazovic I, Nawroth PP, Bierhaus A, Reeh PW, Sauer SK. Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 2012; 287:28291-306. [PMID: 22740698 DOI: 10.1074/jbc.m111.328674] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry.
Collapse
Affiliation(s)
- Mirjam J Eberhardt
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Neurotrophin-4 modulates the mechanotransducer Cav3.2 T-type calcium current in mice down-hair neurons. Biochem J 2012; 441:463-71. [PMID: 21892923 DOI: 10.1042/bj20111147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The T-type Ca2+ channel Cav3.2 is expressed in nociceptive and mechanosensitive sensory neurons. The mechanosensitive D-hair (down-hair) neurons, which innervate hair follicles, are characterized by a large-amplitude Cav3.2 T-current involved in the amplification of slow-moving stimuli. The molecules and signalling pathways that regulate T-current expression in mechanoreceptors are unknown. In the present study, we investigated the effects of NT-4 (neurotrophin-4) on Cav3.2 T-current expression in D-hair neurons in vitro. Interruption of the supply of NT-4 with peripheral nerve axotomy induced a non-transcriptional decrease in the T-current amplitude of fluorogold-labelled axotomized sensory neurons. The T-current amplitude was restored by incubation with NT-4. Deletion of NT-4 through genetic ablation resulted in a similar selective loss of the large-amplitude T-current in NT-4-/- sensory neurons, which was rescued by the addition of NT-4. NT-4 had no effect on the T-current in Cav3.2-/- D-hair neurons. Neither the biophysical properties of the T-current nor the transcript expression of Cav3.2 were modified by NT-4. Pharmacological screening of signalling pathways activated under the high-affinity NT-4 receptor TrkB (tropomyosin receptor kinase B) identified a role for PI3K (phosphoinositide 3-kinase) in the potentiation of T-current. The results of the present study demonstrate the post-transcriptional up-regulation of the Cav3.2 T-current through TrkB activation and identify NT-4 as a target-derived factor that regulates the mechanosensitive function of D-hair neurons through expression of the T-current.
Collapse
|
43
|
Bolaños-Jiménez R, Escamilla-Ocañas C, Martínez-Menchaca H, Rivera-Silva G. Mice mechanoreceptors are modulated by Ca(v)3.2 T-type calcium channels. J Physiol 2012; 590:7. [PMID: 22210285 DOI: 10.1113/jphysiol.2011.221507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rodrigo Bolaños-Jiménez
- Neuroscience and Biotechnology Laboratory, School of Medicine, Universidad Panamericana, México DF, México.
| | | | | | | |
Collapse
|