1
|
Williams AL, Scorzo AV, Strawbridge RR, Davis SC, Niedre M. Two-color diffuse in vivo flow cytometer. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:065003. [PMID: 38818515 PMCID: PMC11138342 DOI: 10.1117/1.jbo.29.6.065003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Significance Hematogenous metastasis is mediated by circulating tumor cells (CTCs) and CTC clusters (CTCCs). We recently developed "diffuse in vivo flow cytometry" (DiFC) to detect fluorescent protein (FP) expressing CTCs in small animals. Extending DiFC to allow detection of two FPs simultaneously would allow concurrent study of different CTC sub-populations or heterogeneous CTCCs in the same animal. Aim The goal of this work was to develop and validate a two-color DiFC system capable of non-invasively detecting circulating cells expressing two distinct FPs. Approach A DiFC instrument was designed and built to detect cells expressing either green FP (GFP) or tdTomato. We tested the instrument in tissue-mimicking flow phantoms in vitro and in multiple myeloma bearing mice in vivo. Results In phantoms, we could accurately differentiate GFP+ and tdTomato+ CTCs and CTCCs. In tumor-bearing mice, CTC numbers expressing both FPs increased during disease. Most CTCCs (86.5%) expressed single FPs with the remainder both FPs. These data were supported by whole-body hyperspectral fluorescence cryo-imaging of the mice. Conclusions We showed that two-color DiFC can detect two populations of CTCs and CTCCs concurrently. This instrument could allow study of tumor development and response to therapies for different sub-populations in the same animal.
Collapse
Affiliation(s)
- Amber L. Williams
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Augustino V. Scorzo
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | | | - Scott C. Davis
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Oza D, Ivich F, Pace J, Yu M, Niedre M, Amiji M. Lipid nanoparticle encapsulated large peritoneal macrophages migrate to the lungs via the systemic circulation in a model of clodronate-mediated lung-resident macrophage depletion. Theranostics 2024; 14:2526-2543. [PMID: 38646640 PMCID: PMC11024852 DOI: 10.7150/thno.91062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/20/2024] [Indexed: 04/23/2024] Open
Abstract
Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.
Collapse
Affiliation(s)
- Dhaval Oza
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 360 Huntington Avenue, Northeastern University, Boston, MA 02115
- Alnylam Pharmaceuticals, 675W Kendall St, Cambridge, MA, USA 02142
| | - Fernando Ivich
- Department of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Joshua Pace
- Department of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Mikyung Yu
- Alnylam Pharmaceuticals, 675W Kendall St, Cambridge, MA, USA 02142
| | - Mark Niedre
- Department of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 360 Huntington Avenue, Northeastern University, Boston, MA 02115
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
3
|
Grishin OV, Shushunova NA, Bratashov DN, Prikhozhdenko ES, Verkhovskii RA, Kozlova AA, Abdurashitov AS, Sindeeva OA, Karavaev AS, Kulminskiy DD, Shashkov EV, Inozemtseva OA, Tuchin VV. Effect of pulsed laser parameters on photoacoustic flow cytometry efficiency in vitro and in vivo. Cytometry A 2023; 103:868-880. [PMID: 37455600 DOI: 10.1002/cyto.a.24778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 μJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated. First, the PA responses of a melanoma cell suspension in vitro were measured to directly assess the efficiency of converting laser light into an acoustic signal. After it, the same dependence with the developed murine model based on constant rate melanoma cell injection into the animal blood flow was tested. Both in vivo and in vitro experiments show that signal generation efficiency increases with laser pulse energy above 15 μJ. Shorter pulses, especially 1 ns, provide more efficient signal generation as well as higher pulse rates. A higher pulse rate also provides more efficient signal generation, but also leads to overheating of the skin. The results show the limits where the photoacoustic flow cytometry system can be effectively used for the detection of circulating tumor cells in undiluted blood both for in vitro experiments and for in vivo murine models.
Collapse
Affiliation(s)
- Oleg V Grishin
- Science Medical Center, Saratov State University, Saratov, Russia
| | | | | | | | | | | | - Arkady S Abdurashitov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga A Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anatoly S Karavaev
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio-Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
- Department of Innovative Cardiological Information Technology, Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia
| | - Danil D Kulminskiy
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio-Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny V Shashkov
- Pico-Femtoseconds Laser Laboratory, Photoelectronics Department, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Valery V Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
- Bach Institute of Biochemistry, FRC "Fundamentals of Biotechnology of the Russian Academy of Sciences", Moscow, Russia
| |
Collapse
|
4
|
Liu Z, Zhang Y, Zhao D, Chen Y, Meng Q, Zhang X, Jia Z, Cui J, Wang X. Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Disease. Viruses 2023; 15:1378. [PMID: 37376677 DOI: 10.3390/v15061378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
As science and technology continue to advance, the use of flow cytometry is becoming more widespread. It can provide important information about cells in the body by detecting and analysing them, thereby providing a reliable basis for disease diagnosis. In the diagnosis of bovine epidemic diseases, flow cytometry can be used to detect bovine viral diarrhoea, bovine leukaemia, bovine brucellosis, bovine tuberculosis, and other diseases. This paper describes the structure of a flow cytometer (liquid flow system, optical detection system, data storage and analysis system) and its working principles for rapid quantitative analysis and sorting of single cells or biological particles. Additionally, the research progress of flow cytometry in the diagnosis of bovine epidemic diseases was reviewed in order to provide a reference for future research and application of flow cytometry in the diagnosis of bovine epidemic diseases.
Collapse
Affiliation(s)
- Zhilin Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuliang Zhang
- Tongliao City Animal Quarantine Technical Service Centre, Tongliao 028000, China
| | - Donghui Zhao
- Tongliao City Animal Quarantine Technical Service Centre, Tongliao 028000, China
| | - Yunjiao Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qinglei Meng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xin Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zelin Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiayu Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
5
|
Pace J, Ivich F, Marple E, Niedre M. Near-infrared diffuse in vivo flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220101GR. [PMID: 36114606 PMCID: PMC9478904 DOI: 10.1117/1.jbo.27.9.097002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Significance Diffuse in vivo flow cytometry (DiFC) is an emerging technique for enumerating rare fluorescently labeled circulating cells noninvasively in the bloodstream. Thus far, we have reported red and blue-green versions of DiFC. Use of near-infrared (NIR) fluorescent light would in principle allow use of DiFC in deeper tissues and would be compatible with emerging NIR fluorescence molecular contrast agents. Aim We describe the design of a NIR-DiFC instrument and demonstrate its use in optical flow phantoms in vitro and in mice in vivo. Approach We developed an improved optical fiber probe design for efficient collection of fluorescence from individual circulating cells and efficient rejection of instrument autofluorescence. We built a NIR-DiFC instrument. We tested this with NIR fluorescent microspheres and cell lines labeled with OTL38 fluorescence contrast agent in a flow phantom model. We also tested NIR-DiFC in nude mice injected intravenously with OTL38-labeled L1210A cells. Results NIR-DiFC allowed detection of circulating tumor cells (CTCs) in flow phantoms with mean signal-to-noise ratios (SNRs) of 19 to 32 dB. In mice, fluorescently labeled CTCs were detectable with mean SNR of 26 dB. NIR-DiFC also exhibited orders significantly lower autofluorescence and false-alarm rates than blue-green DiFC. Conclusions NIR-DiFC allows use of emerging NIR contrast agents. Our work could pave the way for future use of NIR-DiFC in humans.
Collapse
Affiliation(s)
- Joshua Pace
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Eric Marple
- EmVision LLC, Loxahatchee, Florida, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Niedre M. Prospects for Fluorescence Molecular In Vivo Liquid Biopsy of Circulating Tumor Cells in Humans. FRONTIERS IN PHOTONICS 2022; 3:910035. [PMID: 39508030 PMCID: PMC11540420 DOI: 10.3389/fphot.2022.910035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Our team recently developed "Diffuse in vivo Flow Cytometry" (DiFC) for detection and enumeration rare circulating tumor cells (CTCs) in mice with highly-scattered fluorescent light. We have used DiFC to study dissemination of CTCs in a number of mouse models of metastasis with fluorescent protein expressing cells. Because DiFC uses diffuse light and interrogates large blood vessels in relatively deep tissue, in principle it could be translated to larger limbs, species, and even humans clinically. In this perspective, we discuss the technical challenges of human translation of DiFC in the context of the current state of the technology, as well as potential strategies for labeling of CTCs with targeted fluorescent molecular probes. We also discuss potential advantages and disadvantages of DiFC as a clinical tool. In principle, DiFC could represent a powerful complementary technique (to liquid biopsy blood draws) for accurate and sensitive measurement of changes in CTC numbers over time.
Collapse
Affiliation(s)
- Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
7
|
Patil RA, Srinivasarao M, Amiji MM, Low PS, Niedre M. Fluorescence Labeling of Circulating Tumor Cells with a Folate Receptor-Targeted Molecular Probe for Diffuse In Vivo Flow Cytometry. Mol Imaging Biol 2021; 22:1280-1289. [PMID: 32519245 DOI: 10.1007/s11307-020-01505-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE We recently developed a new instrument called "diffuse in vivo flow cytometry" (DiFC) for enumeration of rare fluorescently labeled circulating tumor cells (CTCs) in small animals without drawing blood samples. Until now, we have used cell lines that express fluorescent proteins or were pre-labeled with a fluorescent dye ex vivo. In this work, we investigated the use of a folate receptor (FR)-targeted fluorescence molecular probe for in vivo labeling of FR+ CTCs for DiFC. PROCEDURES We used EC-17, a FITC-folic acid conjugate that has been used in clinical trials for fluorescence-guided surgery. We studied the affinity of EC-17 for FR+ L1210A and KB cancer cells. We also tested FR- MM.1S cells. We tested the labeling specificity in cells in culture in vitro and in whole blood. We also studied the detectability of labeled cells in mice in vivo with DiFC. RESULTS EC-17 showed a high affinity for FR+ L1210A and KB cells in vitro. In whole blood, 85.4 % of L1210A and 80.9 % of KB cells were labeled above non-specific background with EC-17, and negligible binding to FR- MM.1S cells was observed. In addition, EC-17-labeled CTCs were readily detectable in circulation in mice with DiFC. CONCLUSIONS This work demonstrates the feasibility of labeling CTCs with a cell-surface receptor-targeted probe for DiFC, greatly expanding the potential utility of the method for pre-clinical animal models. Because DiFC uses diffuse light, this method could be also used to enumerate CTCs in larger animal models and potentially even in humans.
Collapse
Affiliation(s)
- Roshani A Patil
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Abstract
In vivo flow cytometry (IVFC) was first designed to detect circulating cells in a mouse ear. It allows real-time monitoring of cells in peripheral blood with no need to draw blood. The IVFC field has made great progress during the last decade with the development of fluorescence, photoacoustic, and multiphoton microscopy. Moreover, the application of IVFC is no longer restricted to circulating cells. IVFC based on fluorescence and photoacoustic are most widely applied in biomedical research. Methods based on fluorescence are often used for object monitoring in superficial vessels, while methods based on photoacoustics have an advantage of label-free monitoring in deep vessels. In this chapter, we introduce technical points and key applications of IVFC. We focus on the principles, labeling strategies, sensitivity, and biomedical applications of the technology. In addition, we summarize this chapter and discuss important research directions of IVFC in the future.
Collapse
|
9
|
Verkhovskii RA, Kozlova AA, Sindeeva OA, Kozhevnikov IO, Prikhozhdenko ES, Mayorova OA, Grishin OV, Makarkin MA, Ermakov AV, Abdurashitov AS, Tuchin VV, Bratashov DN. Lightsheet-based flow cytometer for whole blood with the ability for the magnetic retrieval of objects from the blood flow. BIOMEDICAL OPTICS EXPRESS 2021; 12:380-394. [PMID: 33659080 PMCID: PMC7899519 DOI: 10.1364/boe.413845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 05/04/2023]
Abstract
Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing. Carriers for targeted drug delivery were used as model objects to test the device performance. They were injected into the bloodstream of the rat, detected fluorescently, and then captured from the bloodstream by a magnetic separator prior to filtration in organs. Carriers extracted from the whole blood were studied by a number of in vitro methods.
Collapse
Affiliation(s)
| | | | - Olga A. Sindeeva
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
- Skolkovo Innovation Center, 3 Nobel str., Moscow 121205, Russia
| | | | | | - Oksana A. Mayorova
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Oleg V. Grishin
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | | | - Alexey V. Ermakov
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | | | - Valery V. Tuchin
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
- National Research Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
- Institute of Precision Mechanics and Control of the RAS, 24 Rabochaya str., Saratov 410028, Russia
| | | |
Collapse
|
10
|
Williams AL, Fitzgerald JE, Ivich F, Sontag ED, Niedre M. Short-Term Circulating Tumor Cell Dynamics in Mouse Xenograft Models and Implications for Liquid Biopsy. Front Oncol 2020; 10:601085. [PMID: 33240820 PMCID: PMC7677561 DOI: 10.3389/fonc.2020.601085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Circulating tumor cells (CTCs) are widely studied using liquid biopsy methods that analyze fractionally-small peripheral blood (PB) samples. However, little is known about natural fluctuations in CTC numbers that may occur over short timescales in vivo, and how these may affect detection and enumeration of rare CTCs from small blood samples. METHODS We recently developed an optical instrument called "diffuse in vivo flow cytometry" (DiFC) that uniquely allows continuous, non-invasive counting of rare, green fluorescent protein expressing CTCs in large blood vessels in mice. Here, we used DiFC to study short-term changes in CTC numbers in multiple myeloma and Lewis lung carcinoma xenograft models. We analyzed CTC detections in over 100 h of DiFC data, and considered intervals corresponding to approximately 1%, 5%, 10%, and 20% of the PB volume. In addition, we analyzed changes in CTC numbers over 24 h (diurnal) periods. RESULTS For rare CTCs (fewer than 1 CTC per ml of blood), the use of short DiFC intervals (corresponding to small PB samples) frequently resulted in no detections. For more abundant CTCs, CTC numbers frequently varied by an order of magnitude or more over the time-scales considered. This variance in CTC detections far exceeded that expected by Poisson statistics or by instrument variability. Rather, the data were consistent with significant changes in mean numbers of CTCs on the timescales of minutes and hours. CONCLUSIONS The observed temporal changes can be explained by known properties of CTCs, namely, the continuous shedding of CTCs from tumors and the short half-life of CTCs in blood. It follows that the number of cells in a blood sample are strongly impacted by the timing of the draw. The issue is likely to be compounded for multicellular CTC clusters or specific CTC subtypes, which are even more rare than single CTCs. However, we show that enumeration can in principle be improved by averaging multiple samples, analysis of larger volumes, or development of methods for enumeration of CTCs directly in vivo.
Collapse
Affiliation(s)
- Amber L. Williams
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | | | - Fernando Ivich
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eduardo D. Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
11
|
Tian C, Xu X, Wang Y, Li D, Lu H, Yang Z. Development and Clinical Prospects of Techniques to Separate Circulating Tumor Cells from Peripheral Blood. Cancer Manag Res 2020; 12:7263-7275. [PMID: 32884342 PMCID: PMC7434565 DOI: 10.2147/cmar.s248380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Detection of circulating tumor cells (CTC) is an important liquid biopsy technique that has advanced considerably in recent years. To further advance the development of technology for curing cancer, several CTC technologies have been proposed by various research groups. Despite their potential role in early cancer diagnosis and prognosis, CTC methods are currently used for research purposes only, and very few methods have been accepted for clinical applications because of difficulties, including CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Although current CTC technologies have not been truly implemented, they possess high potential as future clinical diagnostic techniques for individualized cancer. Here, we review current developments in CTC separation technology. We also explore new CTC detection methods based on telomerase and nanomaterials, such as in vivo flow cytometry. In addition, we discuss the difficulties that must be overcome before CTC can be applied in clinical settings.
Collapse
Affiliation(s)
- Cheng Tian
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Xinhua Xu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Yuke Wang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Dailong Li
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Haiyan Lu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Ziwei Yang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| |
Collapse
|
12
|
Fitzgerald JE, Byrd BK, Patil RA, Strawbridge RR, Davis SC, Bellini C, Niedre M. Heterogeneity of circulating tumor cell dissemination and lung metastases in a subcutaneous Lewis lung carcinoma model. BIOMEDICAL OPTICS EXPRESS 2020; 11:3633-3647. [PMID: 33014556 PMCID: PMC7510907 DOI: 10.1364/boe.395289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 05/07/2023]
Abstract
Subcutaneous (s.c.) tumor models are widely used in pre-clinical cancer metastasis research. Despite this, the dynamics and natural progression of circulating tumor cells (CTCs) and CTC clusters (CTCCs) in peripheral blood are poorly understood in these models. In this work, we used a new technique called 'diffuse in vivo flow cytometry' (DiFC) to study CTC and CTCC dissemination in an s.c. Lewis lung carcinoma (LLC) model in mice. Tumors were grown in the rear flank and we performed DiFC up to 31 days after inoculation. At the study endpoint, lungs were excised and bioluminescence imaging (BLI) was performed to determine the extent of lung metastases. We also used fluorescence macro-cryotome imaging to visualize infiltration and growth of the primary tumor. DiFC revealed significant heterogeneity in CTC and CTCC numbers amongst all mice studied, despite using clonally identical LLC cells and tumor placement. Maximum DiFC count rates corresponded to 0.1 to 14 CTCs per mL of peripheral blood. In general, CTC numbers did not necessarily increase monotonically over time and were poorly correlated with tumor volume. However, there was a good correlation between CTC and CTCC numbers in peripheral blood and lung metastases. We attribute the differences in CTC numbers primarily due to growth patterns of the primary tumor. This study is one of the few reports of CTC shedding dynamics in sub-cutaneous metastasis models and underscores the value of in vivo methods for continuous, non-invasive CTC monitoring.
Collapse
Affiliation(s)
- Jessica E. Fitzgerald
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Brook K. Byrd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Roshani A. Patil
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rendall R. Strawbridge
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
13
|
Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Ishbulatov YM, Skazkina VV, Karavaev AS, Inozemtseva OA, Bratashov DN, Abdurashitov AS, Grishin OV, Hramkov AN, Zharov VP. Comparing the spectral properties of the laser-induced acoustic responses from blood and cancer cells in vitro. RUSSIAN OPEN MEDICAL JOURNAL 2020. [DOI: 10.15275/rusomj.2020.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background ― The treatment of the cancer, especially in more aggressive metastatic forms is more effective at early disease stage. However, existing diagnostic techniques are not sensitive enough for early cancer detection. An alternative, perspective diagnostic approach can be based on photoacoustic (PA) method of irradiation of cancer cells in biotissue, blood and lymph by laser pulses. The fast thermal expansion of heated zones into cells associated with intrinsic or artificial PA contrast agents leads to generation of acoustic waves detected with ultrasound transducers. In particular, melanoma cells with melanin as a PA marker are darker than normal red blood cells and, therefore, produce greater acoustic responses. This technique can theoretically detect even a single cancer cell in the tissue and blood background; however, a robust algorithm of automated response detection is yet to be developed. Objective ― The main aim is to develop the approach for data pre-analysis that can improve the sensitivity and noise resistance of the automated in individual cancer cell detection algorithm, based on estimation of the amplitude of the acoustic responses. Methods ― Acoustic responses were obtained from a round polyurethane tube with human blood, or solution of the mouse melanoma cells in 10 mol/L concentration. In control experiments the laser was blocked by an opaque film. Many (up to 1000) acoustic responses were obtained from normal blood cells and pigmented cancer cells. Spectral analysis of the acoustic responses was used to find the spectral ranges that provide valuable diagnostic information with the sufficient signal-to-noise ratio. Results ― It was estimated that relevant diagnostics information in the acoustic responses is limited to the 0-12 MHz frequency band. Application of the 8th order low-pass Butterwort filter with 12 MHz cut-off frequency improved the signal-to-noise ratio from 21.14±10.39 to 110.81±56.94 for the cancer-related responses, and from 1.04±0.1 to 2.23±0.33 for the normal blood responses. Conclusions ― Adoption of low-pass filtering during the pre-analysis of acoustic responses results in better sensitivity of automated cancer cells detection algorithm.
Collapse
|
15
|
Mensah SA, Nersesyan AA, Harding IC, Lee CI, Tan X, Banerjee S, Niedre M, Torchilin VP, Ebong EE. Flow-regulated endothelial glycocalyx determines metastatic cancer cell activity. FASEB J 2020; 34:6166-6184. [PMID: 32167209 DOI: 10.1096/fj.201901920r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/14/2022]
Abstract
Cancer metastasis and secondary tumor initiation largely depend on circulating tumor cell (CTC) and vascular endothelial cell (EC) interactions by incompletely understood mechanisms. Endothelial glycocalyx (GCX) dysfunction may play a significant role in this process. GCX structure depends on vascular flow patterns, which are irregular in tumor environments. This work presents evidence that disturbed flow (DF) induces GCX degradation, leading to CTC homing to the endothelium, a first step in secondary tumor formation. A 2-fold greater attachment of CTCs to human ECs was found to occur under DF conditions, compared to uniform flow (UF) conditions. These results corresponded to an approximately 50% decrease in wheat germ agglutinin (WGA)-labeled components of the GCX under DF conditions, vs UF conditions, with undifferentiated levels of CTC-recruiting E-selectin under DF vs UF conditions. Confirming the role of the GCX, neuraminidase induced the degradation of WGA-labeled GCX under UF cell culture conditions or in Balb/C mice and led to an over 2-fold increase in CTC attachment to ECs or Balb/C mouse lungs, respectively, compared to untreated conditions. These experiments confirm that flow-induced GCX degradation can enable metastatic CTC arrest. This work, therefore, provides new insight into pathways of secondary tumor formation.
Collapse
Affiliation(s)
- Solomon A Mensah
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Alina A Nersesyan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Claire I Lee
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Xuefei Tan
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Selina Banerjee
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | | | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Neuroscience Department, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Bartosik PB, Fitzgerald JE, El Khatib M, Yaseen MA, Vinogradov SA, Niedre M. Prospects for the Use of Upconverting Nanoparticles as a Contrast Agent for Enumeration of Circulating Cells in vivo. Int J Nanomedicine 2020; 15:1709-1719. [PMID: 32210561 PMCID: PMC7074808 DOI: 10.2147/ijn.s243157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We recently developed a new fluorescence-based technique called "diffuse in vivo flow cytometry" (DiFC) for enumerating rare circulating tumor cells (CTCs) directly in the bloodstream. Non-specific tissue autofluorescence is a persistent problem, as it creates a background which may obscure signals from weakly-labeled CTCs. Here we investigated the use of upconverting nanoparticles (UCNPs) as a contrast agent for DiFC, which in principle could significantly reduce the autofluorescence background and allow more sensitive detection of rare CTCs. METHODS We built a new UCNP-compatible DiFC instrument (U-DiFC), which uses a 980 nm laser and detects upconverted luminescence in the 520, 545 and 660 nm emission bands. We used NaYF4:Yb,Er UCNPs and several covalent and non-covalent surface modification strategies to improve their biocompatibility and cell uptake. We tested U-DiFC with multiple myeloma (MM) and Lewis lung carcinoma (LLC) cells in tissue-mimicking optical flow phantoms and in nude mice. RESULTS U-DiFC significantly reduced the background autofluorescence signals and motion artifacts from breathing in mice. Upconverted luminescence from NaYF4:Yb,Er microparticles (UμNP) and cells co-incubated with UCNPs were readily detectable with U-DiFC in phantoms, and from UCNPs in circulation in mice. However, we were unable to achieve reliable labeling of CTCs with UCNPs. Our data suggest that most (or all) of the measured U-DIFC signal in vitro and in vivo likely arose from unbound UCNPs or due to the uptake by non-CTC blood cells. CONCLUSION UCNPs have a number of properties that make them attractive contrast agents for high-sensitivity detection of CTCs in the bloodstream with U-DiFC and other intravital imaging methods. More work is needed to achieve reliable and specific labeling of CTCs with UCNPs and verify long-term retention and viability of cells.
Collapse
Affiliation(s)
- Peter B Bartosik
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Real-time particle-by-particle detection of erythrocyte-camouflaged microsensor with extended circulation time in the bloodstream. Proc Natl Acad Sci U S A 2020; 117:3509-3517. [PMID: 32019879 DOI: 10.1073/pnas.1914913117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine offers great potential benefits for disease management but requires continuous monitoring of drugs and drug targets. For instance, the therapeutic window for lithium therapy of bipolar disorder is very narrow, and more frequent monitoring of sodium levels could avoid toxicity. In this work, we developed and validated a platform for long-term, continuous monitoring of systemic analyte concentrations in vivo. First, we developed sodium microsensors that circulate directly in the bloodstream. We used "red blood cell mimicry" to achieve long sensor circulation times of up to 2 wk, while being stable, reversible, and sensitive to sodium over physiologically relevant concentration ranges. Second, we developed an external optical reader to detect and quantify the fluorescence activity of the sensors directly in circulation without having to draw blood samples and correlate the measurement with a phantom calibration curve to measure in vivo sodium. The reader design is inherently scalable to larger limbs, species, and potentially even humans. In combination, this platform represents a paradigm for in vivo drug monitoring that we anticipate will have many applications in the future.
Collapse
|
18
|
Steenbergen W, Zharov VP. Towards Reaching the Total Blood Volume by in vivo Flow Cytometry and Theranostics. Cytometry A 2019; 95:1223-1225. [PMID: 31670875 PMCID: PMC6972999 DOI: 10.1002/cyto.a.23916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Wiendelt Steenbergen
- Biomedical Photonic Imaging, Techmed Center, Faculty of Science and Technology, University of Twente, 7500 NB, Enschede, The Netherlands
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Laboratory of Biomedical Photoacoustics, Saratov State University, Saratov, 410012, Russia
| |
Collapse
|
19
|
Kang CH, Trichili A, Alkhazragi O, Zhang H, Subedi RC, Guo Y, Mitra S, Shen C, Roqan IS, Ng TK, Alouini MS, Ooi BS. Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. OPTICS EXPRESS 2019; 27:30450-30461. [PMID: 31684293 DOI: 10.1364/oe.27.030450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Underwater wireless optical communication (UWOC) can offer reliable and secure connectivity for enabling future internet-of-underwater-things (IoUT), owing to its unlicensed spectrum and high transmission speed. However, a critical bottleneck lies in the strict requirement of pointing, acquisition, and tracking (PAT), for effective recovery of modulated optical signals at the receiver end. A large-area, high bandwidth, and wide-angle-of-view photoreceiver is therefore crucial for establishing a high-speed yet reliable communication link under non-directional pointing in a turbulent underwater environment. In this work, we demonstrated a large-area, of up to a few tens of cm2, photoreceiver design based on ultraviolet(UV)-to-blue color-converting plastic scintillating fibers, and yet offering high 3-dB bandwidth of up to 86.13 MHz. Tapping on the large modulation bandwidth, we demonstrated a high data rate of 250 Mbps at bit-error ratio (BER) of 2.2 × 10-3 using non-return-to-zero on-off keying (NRZ-OOK) pseudorandom binary sequence (PRBS) 210-1 data stream, a 375-nm laser-based communication link over the 1.15-m water channel. This proof-of-concept demonstration opens the pathway for revolutionizing the photodetection scheme in UWOC, and for non-line-of-sight (NLOS) free-space optical communication.
Collapse
|
20
|
Patil R, Tan X, Bartosik P, Detappe A, Runnels JM, Ghobrial I, Lin CP, Niedre M. Fluorescence monitoring of rare circulating tumor cell and cluster dissemination in a multiple myeloma xenograft model in vivo. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31456386 PMCID: PMC6983486 DOI: 10.1117/1.jbo.24.8.085004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/05/2019] [Indexed: 05/20/2023]
Abstract
Circulating tumor cells (CTCs) are of great interest in cancer research because of their crucial role in hematogenous metastasis. We recently developed “diffuse in vivo flow cytometry” (DiFC), a preclinical research tool for enumerating extremely rare fluorescently labeled CTCs directly in vivo. In this work, we developed a green fluorescent protein (GFP)-compatible version of DiFC and used it to noninvasively monitor tumor cell numbers in circulation in a multiple myeloma (MM) disseminated xenograft mouse model. We show that DiFC allowed enumeration of CTCs in individual mice overtime during MM growth, with sensitivity below 1 CTC mL − 1 of peripheral blood. DiFC also revealed the presence of CTC clusters (CTCCs) in circulation to our knowledge for the first time in this model and allowed us to calculate CTCC size, frequency, and kinetics of shedding. We anticipate that the unique capabilities of DiFC will have many uses in preclinical study of metastasis, in particular, with a large number of GFP-expressing xenograft and transgenic mouse models.
Collapse
Affiliation(s)
- Roshani Patil
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Xuefei Tan
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Peter Bartosik
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Alexandre Detappe
- Dana Farber Cancer Institute, Harvard Medical School, Department of Medical Oncology, Boston, Massachusetts, United States
| | - Judith M. Runnels
- Massachusetts General Hospital and Harvard Medical School, Center for Systems Biology and Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Irene Ghobrial
- Dana Farber Cancer Institute, Harvard Medical School, Department of Medical Oncology, Boston, Massachusetts, United States
| | - Charles P. Lin
- Massachusetts General Hospital and Harvard Medical School, Center for Systems Biology and Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Mark Niedre, E-mail:
| |
Collapse
|
21
|
Suo Y, Gu Z, Wei X. Advances of In Vivo Flow Cytometry on Cancer Studies. Cytometry A 2019; 97:15-23. [DOI: 10.1002/cyto.a.23851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yuanzhen Suo
- Biomedical Pioneering Innovation CenterPeking University Beijing China
- School of Life SciencesPeking University Beijing China
| | - Zhenqin Gu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xunbin Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong University Shanghai China
- School of PhysicsFoshan University Foshan 52800 China
| |
Collapse
|
22
|
Abstract
Circulating tumor cells (CTCs) are of great interest in cancer research, but methods for their enumeration remain far from optimal. We developed a new small animal research tool called “Diffuse in vivo Flow Cytometry” (DiFC) for detecting extremely rare fluorescently-labeled circulating cells directly in the bloodstream. The technique exploits near-infrared diffuse photons to detect and count cells flowing in large superficial arteries and veins without drawing blood samples. DiFC uses custom-designed, dual fiber optic probes that are placed in contact with the skin surface approximately above a major vascular bundle. In combination with a novel signal processing algorithm, DiFC allows counting of individual cells moving in arterial or venous directions, as well as measurement of their speed and depth. We show that DiFC allows sampling of the entire circulating blood volume of a mouse in under 10 minutes, while maintaining a false alarm rate of 0.014 per minute. In practice, this means that DiFC allows reliable detection of circulating cells below 1 cell per mL. Hence, the unique capabilities of DiFC are highly suited to biological applications involving very rare cell types such as the study of hematogenous cancer metastasis.
Collapse
|
23
|
Hartmann C, Patil R, Lin CP, Niedre M. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects. Phys Med Biol 2017; 63:01TR01. [PMID: 29240559 DOI: 10.1088/1361-6560/aa98f9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, 'in vivo flow cytometry' (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Collapse
Affiliation(s)
- Carolin Hartmann
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States of America. Institute of Hydrochemistry, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|