1
|
Aronoff JM, LaPapa JR, Deutsch J. The relationship between interaural coherence, interaural level differences, and binaural fusion. Hear Res 2025; 460:109241. [PMID: 40117905 DOI: 10.1016/j.heares.2025.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Binaural fusion is the perception of a single auditory image when signals are presented to the two ears. Decreasing the interaural coherence of the signals often degrades binaural fusion. However, perception of interaural level differences (ILDs) is minimally affected by interaural coherence changes. This study aims to determine if there is an interaction between ILDs and binaural fusion in the presence of reduced interaural coherence. In Experiment 1, vocoded stimuli with varying envelope interaural coherences were presented containing a range of ILDs. Participants indicated the perceived size and lateralization of the auditory image they perceived. Stimuli with reduced interaural coherence were binaurally fused when there was a large ILD, even when participants indicated that the same stimulus was unfused when there was a 0 dB ILD. This suggests that signals with low interaural coherence can become binaurally fused when the stimulus has large ILDs. To determine if participants could choose to attend to only one ear for stimuli that were reported to be fused in the presence of ILDs in Experiment 1 (i.e. if complete binaural fusion occurred), participants indicated the perceived loudness in their right ear for stimuli with varying right-ear intensities in Experiment 2. When the stimulus had a left-biased ILD, participants had a reduced ability to report changes in right ear signal intensity, suggesting that largely complete binaural fusion was fostered by the presence of large ILDs.
Collapse
Affiliation(s)
- Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 S 6th St., Champaign, IL 61820, United States of America.
| | - Josephine R LaPapa
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 S 6th St., Champaign, IL 61820, United States of America.
| | - Jordan Deutsch
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 S 6th St., Champaign, IL 61820, United States of America.
| |
Collapse
|
2
|
Schnupp JWH, Buchholz S, Buck AN, Budig H, Khurana L, Rosskothen-Kuhl N. Pulse timing dominates binaural hearing with cochlear implants. Proc Natl Acad Sci U S A 2025; 122:e2416697122. [PMID: 40244669 PMCID: PMC12036976 DOI: 10.1073/pnas.2416697122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Although cochlear implants (CIs) provide valuable auditory information to more than one million profoundly deaf patients, these devices remain inadequate in conveying fine timing cues. Early deaf patients in particular struggle to use interaural time differences (ITDs) for spatial hearing and auditory scene analysis. Why CI patients experience these limitations remains controversial. One possible explanation, which we investigate here, is that the stimulation by clinical CIs is inappropriate, as it encodes temporal features of sounds only in the envelope of electrical pulse trains, not the pulse timing. We have recently demonstrated that early deaf, adult implanted rats fitted with bilateral CIs that deliver carefully timed pulses routinely develop sensitivity to very small ITDs. Here we show that, while the early deafened mammalian auditory pathway can innately easily resolve pulse timing ITDs as small as 80 µs, it is many times less sensitive to the ITDs of pulse train envelopes. Our results indicate that the stimulation strategies in current clinical use do not present ITD cues in a manner that the inexperienced auditory pathway is highly sensitive to. This may deprive early deaf CI patients of the opportunity to hone their submillisecond temporal processing skills as they learn to hear through their prosthetic devices.
Collapse
Affiliation(s)
- Jan W. H. Schnupp
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
- Gerald Choa Neuroscience Institute, Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Sha Tin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Alexa N. Buck
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Henrike Budig
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Lakshay Khurana
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg79104, Germany
| |
Collapse
|
3
|
Jing A, Xi S, Fransazov I, Goldwyn JH. Axon initial segment plasticity caused by auditory deprivation degrades time difference sensitivity in a model of neural responses to cochlear implants. J Comput Neurosci 2025:10.1007/s10827-025-00902-9. [PMID: 40244473 DOI: 10.1007/s10827-025-00902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Synaptic and neural properties can change during periods of auditory deprivation. These changes may disrupt the computations that neurons perform. In the brainstem of chickens, auditory deprivation can lead to changes in the size and biophysics of the axon initial segment (AIS) of neurons in the sound source localization circuit. This is the phenomenon of axon initial segment (AIS) plasticity. Individuals who use cochlear implants (CIs) experience periods of hearing loss, and so we ask whether AIS plasticity in neurons of the medial superior olive (MSO), a key stage of sound location processing, would impact time difference sensitivity in the scenario of hearing with cochlear implants. The biophysical changes that we implement in our model of AIS plasticity include enlargement of the AIS and replacement of low-threshold potassium conductance with the more slowly-activated M-type potassium conductance. AIS plasticity has been observed to have a homeostatic effect with respect to excitability. In our model, AIS plasticity has the additional effect of converting MSO neurons from phasic firing type to tonic firing type. Phasic firing is known to have greater temporal sensitivity to coincident inputs. Consistent with this, we find AIS plasticity degrades time difference sensitivity in the auditory deprived MSO neuron model across a range of stimulus parameters. Our study illustrates a possible mechanism of cellular plasticity in a non-peripheral stage of neural processing that could impose barriers to sound source localization by bilateral cochlear implant users.
Collapse
Affiliation(s)
- Anna Jing
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012-1185, USA
| | - Sylvia Xi
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| | - Ivan Fransazov
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| | - Joshua H Goldwyn
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA.
| |
Collapse
|
4
|
Schleich P, Wirtz C, Schatzer R, Nopp P. Similar performance in sound localisation with unsynchronised and synchronised automatic gain controls in bilateral cochlear implant recipients. Int J Audiol 2025; 64:411-417. [PMID: 39075948 DOI: 10.1080/14992027.2024.2383700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE One proposed method to improve sound localisation for bilateral cochlear implant (BiCI) users is to synchronise the automatic gain control (AGC) of both audio processors. In this study we tested whether AGC synchronisation in a dual-loop front-end processing scheme with a 3:1 compression ratio improves sound localisation acuity. DESIGN Source identification in the frontal hemifield was tested in in an anechoic chamber as a function of (roving) presentation level. Three different methods of AGC synchronisation were compared to the standard unsynchronised approach. Both root mean square error (RMSE) and signed bias were calculated to evaluate sound localisation in the horizontal plane. STUDY SAMPLE Six BiCI users. RESULTS None of the three AGC synchronisation methods yielded significant improvements in either localisation error or bias, neither across presentation levels nor for individual presentation levels. For synchronised AGC, the pooled mean (standard deviation) localisation error of the three synchronisation methods was 24.7 (5.8) degrees RMSE, for unsynchronised AGC it was 27.4 (7.5) degrees. The localisation bias was 5.1 (5.5) degrees for synchronised AGC and 5.0 (3.8) for unsynchronised. CONCLUSIONS These findings do not support the hypothesis that the tested AGC synchronisation configurations improves localisation acuity in bilateral users of MED-EL cochlear implants.
Collapse
Affiliation(s)
| | | | | | - Peter Nopp
- MED-EL Medical Electronics, Innsbruck, Austria
| |
Collapse
|
5
|
Muegge JB, McMurray B. Understanding the Process of Integration in Binaural Cochlear Implant Configurations. Ear Hear 2025:00003446-990000000-00406. [PMID: 40016877 DOI: 10.1097/aud.0000000000001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
OBJECTIVES Cochlear implant (CI) users with access to hearing in both ears (binaural configurations) tend to perform better in speech perception tasks than users with a single-hearing ear alone. This benefit derives from several sources, but one central contributor may be that binaural hearing allows listeners to integrate content across ears. A substantial literature demonstrates that binaural integration differs between CI users and normal hearing controls. However, there are still questions about the underlying process of this integration. Here, we test both normal-hearing listeners and CI users to examine this process. DESIGN Twenty-three CI users (7 bimodal, 7 bilateral, and 9 single sided deafness CI users) and 28 age-matched normal-hearing listeners completed a dichotic listening task, in which first and second formants from one of four vowels were played to each ear in various configurations: with both formants heard diotically, with one formant heard diotically, or with one formant heard in one ear and the second formant heard in the other (dichotically). Each formant heard alone should provide minimal information for identifying the vowel. Thus, listeners must successfully integrate information from both ears if they are to show good performance in the dichotic condition. RESULTS Normal-hearing listeners showed no noticeable difference in performance when formants were heard diotically or dichotically. CI users showed significantly reduced performance in the dichotic condition relative to when formants were heard diotically. A deeper examination of individual participants suggests that CI users show important variation in their integration process. CONCLUSIONS Using a dichotic listening task we provide evidence that while normal-hearing listeners successfully integrate content dichotically, CI users show remarkable differences in how they approach integration. This opens further questions regarding the circumstances in which listeners display different integration profiles and has implications for understanding variation in real-world performance outcomes.
Collapse
Affiliation(s)
- John B Muegge
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Bob McMurray
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
- Department of Linguistics, University of Iowa, Iowa City, Iowa, USA
- Department of Otolaryngology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Richardson BN, Kainerstorfer JM, Shinn-Cunningham BG, Brown CA. Magnified interaural level differences enhance binaural unmasking in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:1045-1056. [PMID: 39932277 PMCID: PMC11817532 DOI: 10.1121/10.0034869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 02/14/2025]
Abstract
Bilateral cochlear implant (BiCI) usage makes binaural benefits a possibility for implant users. Yet for BiCI users, limited access to interaural time difference (ITD) cues and reduced saliency of interaural level difference (ILD) cues restricts perceptual benefits of spatially separating a target from masker sounds. The present study explored whether magnifying ILD cues improves intelligibility of masked speech for BiCI listeners in a "symmetrical-masker" configuration, which ensures that neither ear benefits from a long-term positive target-to-masker ratio (TMR) due to naturally occurring ILD cues. ILD magnification estimates moment-to-moment ITDs in octave-wide frequency bands, and applies corresponding ILDs to the target-masker mixtures reaching the two ears at each specific time and frequency band. ILD magnification significantly improved intelligibility in two experiments: one with normal hearing (NH) listeners using vocoded stimuli and one with BiCI users. BiCI listeners showed no benefit of spatial separation between target and maskers with natural ILDs, even for the largest target-masker separation. Because ILD magnification relies on and manipulates only the mixed signals at each ear, the strategy never alters the monaural TMR in either ear at any time. Thus, the observed improvements to masked speech intelligibility come from binaural effects, likely from increased perceptual separation of the competing sources.
Collapse
Affiliation(s)
- Benjamin N Richardson
- Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Jana M Kainerstorfer
- Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Barbara G Shinn-Cunningham
- Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Christopher A Brown
- Department of Communication Science and Disorders, University of Pittsburgh, 4028 Forbes Tower, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
7
|
Reiss LAJ, Johnson AJ, Eddolls MS, Hartling CL, Fowler JR, Stark GN, Glickman B, Sanders H, Oh Y. Binaural Fusion Sharpens on a Scale of Octaves During Pre-adolescence in Children with Normal Hearing, Hearing Aids, and Bimodal Cochlear Implants, but not Bilateral Cochlear Implants. J Assoc Res Otolaryngol 2025; 26:93-109. [PMID: 39915430 PMCID: PMC11861472 DOI: 10.1007/s10162-025-00975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE The breadth of binaural pitch fusion, the integration of sounds differing in frequency across the two ears, can limit the ability to segregate and understand speech in background noise. Binaural pitch fusion is one type of central auditory processing that may still be developing in the pre-adolescent age range. In addition, children with hearing loss potentially have different trajectories of development of central auditory processing compared to their normal-hearing (NH) peers, due to disruption of auditory input and/or abnormal stimulation from hearing devices. The goal of this study was to measure and compare binaural pitch fusion changes during development in children with NH versus hearing loss and different hearing device combinations. Interaural pitch discrimination abilities were also measured to control for pitch discrimination as a potential limiting factor for fusion that may also change during development. METHODS Baseline measurements of binaural pitch fusion and interaural pitch discrimination were conducted in a total of 62 (22 female) children with NH (n = 25), bilateral hearing aids (HA; n = 10, bimodal cochlear implants (CI; n = 9), and bilateral CIs (n = 18), with longitudinal follow-up for a subset of participants (18 NH, 9 HA, 8 bimodal CI, and 15 bilateral CI). Age at the start of testing ranged from 6 to 10 years old, with a goal of repeated measurements over 3-6 years. Binaural pitch fusion ranges were measured as the range of acoustic frequencies (electrodes) presented to one ear that was perceptually fused with a single reference frequency (electrode) presented simultaneously to the other ear. Similarly, interaural pitch discrimination was measured as the range of frequencies (electrodes) that could not be consistently ranked in pitch compared to a single reference frequency (electrode) under sequential presentation to opposite ears. RESULTS Children with NH and HAs initially had broad binaural pitch fusion ranges compared to adults. With increasing age, the binaural fusion range narrowed by 1-3 octaves for children with NH, bilateral HAs, and bimodal CIs, but not for children with bilateral CIs. Interaural pitch discrimination showed no changes with age, though differences in discrimination ability were seen across groups. CONCLUSION Binaural fusion sharpens significantly on the scale of octaves in the age range from 6 to 14 years. The lack of change in interaural pitch discrimination with increasing age rules out discrimination changes as an explanation for the binaural fusion range changes. The differences in the trajectory of binaural fusion changes across groups indicate the importance of hearing device combination for the development of binaural processing abilities in children with hearing loss, with implications for addressing challenges with speech perception in noise. Together, the results suggest that pruning of binaural connections is still occurring and likely guided by hearing experience during childhood development.
Collapse
Affiliation(s)
- Lina A J Reiss
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Alicia J Johnson
- Biostatistics and Design Program, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Morgan S Eddolls
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Curtis L Hartling
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jennifer R Fowler
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Gemaine N Stark
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bess Glickman
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Holden Sanders
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yonghee Oh
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
8
|
Aronoff JM, Deutsch J, LaPapa JR. Using harmonicity to facilitate binaural fusion. JASA EXPRESS LETTERS 2025; 5:014401. [PMID: 39817819 PMCID: PMC11760666 DOI: 10.1121/10.0034883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
Harmonicity is an organizing principle in the auditory system, facilitating auditory object formation. The goal of the current study is to determine if harmonicity also facilitates binaural fusion. Participants listened to pairs of two-tone harmonic complex tones that were harmonically or inharmonically related to each other. When the components of two inharmonically related complex tones were divided between the ears, the resulting percept was not binaurally fused. In contrast, when the components of two harmonically related complex tones were divided between the ears, binaural fusion occurred, even absent interaural spectral overlap. This suggests that harmonicity can facilitate binaural fusion.
Collapse
Affiliation(s)
- Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, , ,
| | - Jordan Deutsch
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, , ,
| | - Josephine R LaPapa
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, , ,
| |
Collapse
|
9
|
Zhang Y, Johannesen PT, Molaee-Ardekani B, Wijetillake A, Attili Chiea R, Hasan PY, Segovia-Martínez M, Lopez-Poveda EA. Comparison of Performance for Cochlear-Implant Listeners Using Audio Processing Strategies Based on Short-Time Fast Fourier Transform or Spectral Feature Extraction. Ear Hear 2025; 46:163-183. [PMID: 39680489 PMCID: PMC11637581 DOI: 10.1097/aud.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/27/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES We compared sound quality and performance for a conventional cochlear-implant (CI) audio processing strategy based on short-time fast-Fourier transform (Crystalis) and an experimental strategy based on spectral feature extraction (SFE). In the latter, the more salient spectral features (acoustic events) were extracted and mapped into the CI stimulation electrodes. We hypothesized that (1) SFE would be superior to Crystalis because it can encode acoustic spectral features without the constraints imposed by the short-time fast-Fourier transform bin width, and (2) the potential benefit of SFE would be greater for CI users who have less neural cross-channel interactions. DESIGN To examine the first hypothesis, 6 users of Oticon Medical Digisonic SP CIs were tested in a double-blind design with the SFE and Crystalis strategies on various aspects: word recognition in quiet, speech-in-noise reception threshold (SRT), consonant discrimination in quiet, listening effort, melody contour identification (MCI), and subjective sound quality. Word recognition and SRTs were measured on the first and last day of testing (4 to 5 days apart) to assess potential learning and/or acclimatization effects. Other tests were run once between the first and last testing day. Listening effort was assessed by measuring pupil dilation. MCI involved identifying a five-tone contour among five possible contours. Sound quality was assessed subjectively using the multiple stimulus with hidden reference and anchor (MUSHRA) paradigm for sentences, music, and ambient sounds. To examine the second hypothesis, cross-channel interaction was assessed behaviorally using forward masking. RESULTS Word recognition was similar for the two strategies on the first day of testing and improved for both strategies on the last day of testing, with Crystalis improving significantly more. SRTs were worse with SFE than Crystalis on the first day of testing but became comparable on the last day of testing. Consonant discrimination scores were higher for Crystalis than for the SFE strategy. MCI scores and listening effort were not substantially different across strategies. Subjective sound quality scores were lower for the SFE than for the Crystalis strategy. The difference in performance with SFE and Crystalis was greater for CI users with higher channel interaction. CONCLUSIONS CI-user performance was similar with the SFE and Crystalis strategies. Longer acclimatization times may be required to reveal the full potential of the SFE strategy.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Research and Technology, Oticon Medical, Vallauris, France
| | - Peter T. Johannesen
- Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | - Aswin Wijetillake
- Department of Research and Technology, Oticon Medical, Smørum, Denmark
| | | | - Pierre-Yves Hasan
- Department of Research and Technology, Oticon Medical, Smørum, Denmark
| | | | - Enrique A. Lopez-Poveda
- Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Carlyon RP, Deeks JM, Delgutte B, Chung Y, Vollmer M, Ohl FW, Kral A, Tillein J, Litovsky RY, Schnupp J, Rosskothen-Kuhl N, Goldsworthy RL. Limitations on Temporal Processing by Cochlear Implant Users: A Compilation of Viewpoints. Trends Hear 2025; 29:23312165251317006. [PMID: 40095543 PMCID: PMC12076235 DOI: 10.1177/23312165251317006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 03/19/2025] Open
Abstract
Cochlear implant (CI) users are usually poor at using timing information to detect changes in either pitch or sound location. This deficit occurs even for listeners with good speech perception and even when the speech processor is bypassed to present simple, idealized stimuli to one or more electrodes. The present article presents seven expert opinion pieces on the likely neural bases for these limitations, the extent to which they are modifiable by sensory experience and training, and the most promising ways to overcome them in future. The article combines insights from physiology and psychophysics in cochlear-implanted humans and animals, highlights areas of agreement and controversy, and proposes new experiments that could resolve areas of disagreement.
Collapse
Affiliation(s)
- Robert P. Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John M. Deeks
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Maike Vollmer
- Department of Experimental Audiology, University Clinic of Otolaryngology, Head and Neck Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Andrej Kral
- Institute of Audio-Neuro-Technology & Department of Experimental Otology, Clinics of Otolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jochen Tillein
- Clinics of Otolaryngology, Head and Neck Surgery, J.W.Goethe University, Frankfurt, Germany
- MedEl Company, Hannover, Germany
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Schnupp
- Gerald Choa Neuroscience Institute and Department of Otolaryngology, Chinese University of Hong Kong, Hong Kong (NB Hong Kong is a Special Administrative Region) of China
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raymond L. Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Oh Y, Dean N, Gallun FJ, Reiss LAJ. Sequential auditory grouping reduces binaural pitch fusion in listeners with normal hearing, hearing aids, and cochlear implantsa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:3217-3231. [PMID: 39535240 PMCID: PMC11563690 DOI: 10.1121/10.0034366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Binaural pitch fusion, the perceptual integration of dichotically presented stimuli that evoke different pitches, can be considered a type of simultaneous grouping. Hence, auditory streaming cues such as temporally flanking stimuli that promote sequential grouping might compete with simultaneous dichotic grouping to reduce binaural fusion. Here, we measured binaural pitch fusion using an auditory streaming task in normal-hearing listeners and hearing-impaired listeners with hearing aids and/or cochlear implants. Fusion ranges, the frequency or electrode ranges over which binaural pitch fusion occurs, were measured in a streaming paradigm using 10 alterations of a dichotic reference/comparison stimulus with a diotic capture stimulus, with fusion indicated by perception of a single stream. Stimuli were pure tones or electric pulse trains depending on the hearing device, with frequency or electrode varied across trials for comparison stimuli. Fusion ranges were also measured for the corresponding isolated stimulus conditions with the same stimulus durations. For all groups, fusion ranges decreased by up to three times in the streaming paradigm compared to the corresponding isolated stimulus paradigm. Hearing-impaired listeners showed greater reductions in fusion than normal-hearing listeners. The findings add further evidence that binaural pitch fusion is moderated by central processes involved in auditory grouping or segregation.
Collapse
Affiliation(s)
- Yonghee Oh
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, Kentucky 40202, USA
| | - Nicole Dean
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Frederick J Gallun
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Lina A J Reiss
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
12
|
Reiss LAJ, Goupell MJ. Binaural fusion: Complexities in definition and measurement. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2395-2408. [PMID: 39392352 PMCID: PMC11470809 DOI: 10.1121/10.0030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Despite the growing interest in studying binaural fusion, there is little consensus over its definition or how it is best measured. This review seeks to describe the complexities of binaural fusion, highlight measurement challenges, provide guidelines for rigorous perceptual measurements, and provide a working definition that encompasses this information. First, it is argued that binaural fusion may be multidimensional and might occur in one domain but not others, such as fusion in the spatial but not the spectral domain or vice versa. Second, binaural fusion may occur on a continuous scale rather than on a binary one. Third, binaural fusion responses are highly idiosyncratic, which could be a result of methodology, such as the specific experimental instructions, suggesting a need to explicitly report the instructions given. Fourth, it is possible that direct ("Did you hear one sound or two?") and indirect ("Where did the sound come from?" or "What was the pitch of the sound?") measurements of fusion will produce different results. In conclusion, explicit consideration of these attributes and reporting of methodology are needed for rigorous interpretation and comparison across studies and listener populations.
Collapse
Affiliation(s)
- Lina A J Reiss
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
13
|
Alemu RZ, Gorodensky J, Gill S, Cushing SL, Papsin BC, Gordon KA. Binaural responses to a speech syllable are altered in children with hearing loss: Evidence from the frequency-following response. Hear Res 2024; 450:109068. [PMID: 38936172 DOI: 10.1016/j.heares.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND & RATIONALE In prior work using non-speech stimuli, children with hearing loss show impaired perception of binaural cues and no significant change in cortical responses to bilateral versus unilateral stimulation. Aims of the present study were to: 1) identify bilateral responses to envelope and spectral components of a speech syllable using the frequency-following response (FFR), 2) determine if abnormalities in the bilateral FFR occur in children with hearing loss, and 3) assess functional consequences of abnormal bilateral FFR responses on perception of binaural timing cues. METHODS A single-syllable speech stimulus (/dα/) was presented to each ear individually and bilaterally. Participants were 9 children with normal hearing (MAge = 12.1 ± 2.5 years) and 6 children with bilateral hearing loss who were experienced bilateral hearing aid users (MAge = 14.0 ± 2.6 years). FFR temporal and spectral peak amplitudes were compared between listening conditions and groups using linear mixed model regression analyses. Behavioral sensitivity to binaural cues were measured by lateralization responses as coming from the right or left side of the head. RESULTS Both temporal and spectral peaks in FFR responses increased in amplitude in the bilateral compared to unilateral listening conditions in children with normal hearing. These measures of "bilateral advantage" were reduced in the group of children with bilateral hearing loss and associated with decreased sensitivity to interaural timing differences. CONCLUSION This study is the first to show that bilateral responses in both temporal and spectral domains can be measured in children using the FFR and is altered in children with hearing loss with consequences to binaural hearing.
Collapse
Affiliation(s)
- R Z Alemu
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - J Gorodensky
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Gill
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
| | - S L Cushing
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - B C Papsin
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - K A Gordon
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Gajecki T, Nogueira W. A Fused Deep Denoising Sound Coding Strategy for Bilateral Cochlear Implants. IEEE Trans Biomed Eng 2024; 71:2232-2242. [PMID: 38376983 DOI: 10.1109/tbme.2024.3367530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cochlear implants (CIs) provide a solution for individuals with severe sensorineural hearing loss to regain their hearing abilities. When someone experiences this form of hearing impairment in both ears, they may be equipped with two separate CI devices, which will typically further improve the CI benefits. This spatial hearing is particularly crucial when tackling the challenge of understanding speech in noisy environments, a common issue CI users face. Currently, extensive research is dedicated to developing algorithms that can autonomously filter out undesired background noises from desired speech signals. At present, some research focuses on achieving end-to-end denoising, either as an integral component of the initial CI signal processing or by fully integrating the denoising process into the CI sound coding strategy. This work is presented in the context of bilateral CI (BiCI) systems, where we propose a deep-learning-based bilateral speech enhancement model that shares information between both hearing sides. Specifically, we connect two monaural end-to-end deep denoising sound coding techniques through intermediary latent fusion layers. These layers amalgamate the latent representations generated by these techniques by multiplying them together, resulting in an enhanced ability to reduce noise and improve learning generalization. The objective instrumental results demonstrate that the proposed fused BiCI sound coding strategy achieves higher interaural coherence, superior noise reduction, and enhanced predicted speech intelligibility scores compared to the baseline methods. Furthermore, our speech-in-noise intelligibility results in BiCI users reveal that the deep denoising sound coding strategy can attain scores similar to those achieved in quiet conditions.
Collapse
|
15
|
Guastamacchia A, Albera A, Puglisi GE, Nudelman CJ, Soleimanifar S, Astolfi A, Aronoff JM, Bottalico P. Impact of cochlear implants use on voice production and quality. Sci Rep 2024; 14:12787. [PMID: 38834775 DOI: 10.1038/s41598-024-63688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024] Open
Abstract
Cochlear implant users experience difficulties controlling their vocalizations compared to normal hearing peers. However, less is known about their voice quality. The primary aim of the present study was to determine if cochlear implant users' voice quality would be categorized as dysphonic by the Acoustic Voice Quality Index (AVQI) and smoothed cepstral peak prominence (CPPS). A secondary aim was to determine if vocal quality is further impacted when using bilateral implants compared to using only one implant. The final aim was to determine how residual hearing impacts voice quality. Twenty-seven cochlear implant users participated in the present study and were recorded while sustaining a vowel and while reading a standardized passage. These recordings were analyzed to calculate the AVQI and CPPS. The results indicate that CI users' voice quality was detrimentally affected by using their CI, raising to the level of a dysphonic voice. Specifically, when using their CI, mean AVQI scores were 4.0 and mean CPPS values were 11.4 dB, which indicates dysphonia. There were no significant differences in voice quality when comparing participants with bilateral implants to those with one implant. Finally, for participants with residual hearing, as hearing thresholds worsened, the likelihood of a dysphonic voice decreased.
Collapse
Affiliation(s)
| | - Andrea Albera
- Department of Surgical Sciences, Universitá degli Studi di Torino, 10100, Turin, Italy
| | | | - Charles J Nudelman
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | - Simin Soleimanifar
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | - Arianna Astolfi
- Department of Energy, Politecnico di Torino, 10129, Turin, Italy
| | - Justin M Aronoff
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | - Pasquale Bottalico
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA.
| |
Collapse
|
16
|
Aronoff JM, Soleimanifar S, Bk P. Temporal pitch matching with bilateral cochlear implants. JASA EXPRESS LETTERS 2024; 4:044401. [PMID: 38558234 PMCID: PMC10989667 DOI: 10.1121/10.0025507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Interaural pitch matching is a common task used with bilateral cochlear implant (CI) users, although studies measuring this have largely focused on place-based pitch matches. Temporal-based pitch also plays an important role in CI users' perception, but interaural temporal-based pitch matching has not been well characterized for CI users. To investigate this, bilateral CI users were asked to match amplitude modulation frequencies of stimulation across ears. Comparisons were made to previous place-based pitch matching data that were collected using similar procedures. The results indicate that temporal-based pitch matching is particularly sensitive to the choice of reference ear.
Collapse
Affiliation(s)
- Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, , ,
| | - Simin Soleimanifar
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, , ,
| | - Prajna Bk
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, , ,
| |
Collapse
|
17
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Dennison SR, Thakkar T, Kan A, Litovsky RY. Lateralization of binaural envelope cues measured with a mobile cochlear-implant research processora). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:3543-3558. [PMID: 37390320 PMCID: PMC10314808 DOI: 10.1121/10.0019879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Bilateral cochlear implant (BICI) listeners do not have full access to the binaural cues that normal hearing (NH) listeners use for spatial hearing tasks such as localization. When using their unsynchronized everyday processors, BICI listeners demonstrate sensitivity to interaural level differences (ILDs) in the envelopes of sounds, but interaural time differences (ITDs) are less reliably available. It is unclear how BICI listeners use combinations of ILDs and envelope ITDs, and how much each cue contributes to perceived sound location. The CCi-MOBILE is a bilaterally synchronized research processor with the untested potential to provide spatial cues to BICI listeners. In the present study, the CCi-MOBILE was used to measure the ability of BICI listeners to perceive lateralized sound sources when single pairs of electrodes were presented amplitude-modulated stimuli with combinations of ILDs and envelope ITDs. Young NH listeners were also tested using amplitude-modulated high-frequency tones. A cue weighting analysis with six BICI and ten NH listeners revealed that ILDs contributed more than envelope ITDs to lateralization for both groups. Moreover, envelope ITDs contributed to lateralization for NH listeners but had negligible contribution for BICI listeners. These results suggest that the CCi-MOBILE is suitable for binaural testing and developing bilateral processing strategies.
Collapse
Affiliation(s)
| | - Tanvi Thakkar
- University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA
| | - Alan Kan
- Macquarie University, Macquarie Park, New South Wales, Australia
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| |
Collapse
|
19
|
Ghosh R, Hansen JHL. Bilateral Cochlear Implant Processing of Coding Strategies With CCi-MOBILE, an Open-Source Research Platform. IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2023; 31:1839-1850. [PMID: 38046574 PMCID: PMC10691824 DOI: 10.1109/taslp.2023.3267608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
While speech understanding for cochlear implant (CI) users in quiet is relatively effective, listeners experience difficulty in identification of speaker and sound location. To assist for better residual hearing abilities and speech intelligibility support, bilateral and bimodal forms of assisted hearing is becoming popular among CI users. Effective bilateral processing calls for testing precise algorithm synchronization and fitting between both left and right ear channels in order to capture interaural time and level difference cues (ITD and ILDs). This work demonstrates bilateral implant algorithm processing using a custom-made CI research platform - CCi-MOBILE, which is capable of capturing precise source localization information and supports researchers in testing bilateral CI processing in real-time naturalistic environments. Simulation-based, objective, and subjective testing has been performed to validate the accuracy of the platform. The subjective test results produced an RMS error of ±8.66° for source localization, which is comparable to the performance of commercial CI processors.
Collapse
Affiliation(s)
- Ria Ghosh
- Center for Robust Speech Systems, CILab - Cochlear Implant Processing Lab, Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080 USA
| | - John H L Hansen
- Center for Robust Speech Systems, CILab - Cochlear Implant Processing Lab, Department of Electrical and Computer Engineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080 USA, and also with the School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080 USA
| |
Collapse
|
20
|
Thakkar T, Kan A, Litovsky RY. Lateralization of interaural time differences with mixed rates of stimulation in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1912. [PMID: 37002065 PMCID: PMC10036141 DOI: 10.1121/10.0017603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
While listeners with bilateral cochlear implants (BiCIs) are able to access information in both ears, they still struggle to perform well on spatial hearing tasks when compared to normal hearing listeners. This performance gap could be attributed to the high stimulation rates used for speech representation in clinical processors. Prior work has shown that spatial cues, such as interaural time differences (ITDs), are best conveyed at low rates. Further, BiCI listeners are sensitive to ITDs with a mixture of high and low rates. However, it remains unclear whether mixed-rate stimuli are perceived as unitary percepts and spatially mapped to intracranial locations. Here, electrical pulse trains were presented on five, interaurally pitch-matched electrode pairs using research processors, at either uniformly high rates, low rates, or mixed rates. Eight post-lingually deafened adults were tested on perceived intracranial lateralization of ITDs ranging from 50 to 1600 μs. Extent of lateralization depended on the location of low-rate stimulation along the electrode array: greatest in the low- and mixed-rate configurations, and smallest in the high-rate configuration. All but one listener perceived a unitary auditory object. These findings suggest that a mixed-rate processing strategy can result in good lateralization and convey a unitary auditory object with ITDs.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
21
|
Effect of interaural electrode insertion depth difference and independent band selection on sentence recognition in noise and spatial release from masking in simulated bilateral cochlear implant listening. Eur Arch Otorhinolaryngol 2023; 280:3209-3217. [PMID: 36695909 DOI: 10.1007/s00405-023-07845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE Inter-aural insertion depth difference (IEDD) in bilateral cochlear implant (BiCI) with continuous interleaved sampling (CIS) processing is known to reduce the recognition of speech in noise and spatial release from masking (SRM). However, the independent channel selection in the 'n-of-m' sound coding strategy might have a different effect on speech recognition and SRM when compared to the effects of IEDD in CIS-based findings. This study aimed to investigate the effect of bilateral 'n-of-m' processing strategy and interaural electrode insertion depth difference on speech recognition in noise and SRM under conditions that simulated bilateral cochlear implant listening. METHODS Five young adults with normal hearing sensitivity participated in the study. The target sentences were spatially filtered to originate from 0° and the masker was spatially filtered at 0°, 15°, 37.5°, and 90° using the Oldenburg head-related transfer function database for behind the ear microphone. A 22-channel sine wave vocoder processing based on 'n-of-m' processing was applied to the spatialized target-masker mixture, in each ear. The perceptual experiment involved a test of speech recognition in noise under one co-located condition (target and masker at 0°) and three spatially separated conditions (target at 0°, masker at 15°, 37.5°, or 90° to the right ear). RESULTS The results were analyzed using a three-way repeated measure analysis of variance (ANOVA). The effect of interaural insertion depth difference (F (2,8) = 3.145, p = 0.098, ɳ2 = 0.007) and spatial separation between target and masker (F (3,12) = 1.239, p = 0.339, ɳ2 = 0.004) on speech recognition in noise was not significant. CONCLUSIONS Speech recognition in noise and SRM were not affected by IEDD ≤ 3 mm. Bilateral 'n-of-m' processing resulted in reduced speech recognition in noise and SRM.
Collapse
|
22
|
Anderson SR, Gallun FJ, Litovsky RY. Interaural asymmetry of dynamic range: Abnormal fusion, bilateral interference, and shifts in attention. Front Neurosci 2023; 16:1018190. [PMID: 36699517 PMCID: PMC9869277 DOI: 10.3389/fnins.2022.1018190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Speech information in the better ear interferes with the poorer ear in patients with bilateral cochlear implants (BiCIs) who have large asymmetries in speech intelligibility between ears. The goal of the present study was to assess how each ear impacts, and whether one dominates, speech perception using simulated CI processing in older and younger normal-hearing (ONH and YNH) listeners. Dynamic range (DR) was manipulated symmetrically or asymmetrically across spectral bands in a vocoder. We hypothesized that if abnormal integration of speech information occurs with asymmetrical speech understanding, listeners would demonstrate an atypical preference in accuracy when reporting speech presented to the better ear and fusion of speech between the ears (i.e., an increased number of one-word responses when two words were presented). Results from three speech conditions showed that: (1) When the same word was presented to both ears, speech identification accuracy decreased if one or both ears decreased in DR, but listeners usually reported hearing one word. (2) When two words with different vowels were presented to both ears, speech identification accuracy and percentage of two-word responses decreased consistently as DR decreased in one or both ears. (3) When two rhyming words (e.g., bed and led) previously shown to phonologically fuse between ears (e.g., bled) were presented, listeners instead demonstrated interference as DR decreased. The word responded in (2) and (3) came from the right (symmetric) or better (asymmetric) ear, especially in (3) and for ONH listeners in (2). These results suggest that the ear with poorer dynamic range is downweighted by the auditory system, resulting in abnormal fusion and interference, especially for older listeners.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Frederick J. Gallun
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
23
|
Burg EA, Thakkar TD, Litovsky RY. Interaural speech asymmetry predicts bilateral speech intelligibility but not listening effort in adults with bilateral cochlear implants. Front Neurosci 2022; 16:1038856. [PMID: 36570844 PMCID: PMC9768552 DOI: 10.3389/fnins.2022.1038856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Bilateral cochlear implants (BiCIs) can facilitate improved speech intelligibility in noise and sound localization abilities compared to a unilateral implant in individuals with bilateral severe to profound hearing loss. Still, many individuals with BiCIs do not benefit from binaural hearing to the same extent that normal hearing (NH) listeners do. For example, binaural redundancy, a speech intelligibility benefit derived from having access to duplicate copies of a signal, is highly variable among BiCI users. Additionally, patients with hearing loss commonly report elevated listening effort compared to NH listeners. There is some evidence to suggest that BiCIs may reduce listening effort compared to a unilateral CI, but the limited existing literature has not shown this consistently. Critically, no studies to date have investigated this question using pupillometry to quantify listening effort, where large pupil sizes indicate high effort and small pupil sizes indicate low effort. Thus, the present study aimed to build on existing literature by investigating the potential benefits of BiCIs for both speech intelligibility and listening effort. Methods Twelve BiCI adults were tested in three listening conditions: Better Ear, Poorer Ear, and Bilateral. Stimuli were IEEE sentences presented from a loudspeaker at 0° azimuth in quiet. Participants were asked to repeat back the sentences, and responses were scored by an experimenter while changes in pupil dilation were measured. Results On average, participants demonstrated similar speech intelligibility in the Better Ear and Bilateral conditions, and significantly worse speech intelligibility in the Poorer Ear condition. Despite similar speech intelligibility in the Better Ear and Bilateral conditions, pupil dilation was significantly larger in the Bilateral condition. Discussion These results suggest that the BiCI users tested in this study did not demonstrate binaural redundancy in quiet. The large interaural speech asymmetries demonstrated by participants may have precluded them from obtaining binaural redundancy, as shown by the inverse relationship between the two variables. Further, participants did not obtain a release from effort when listening with two ears versus their better ear only. Instead, results indicate that bilateral listening elicited increased effort compared to better ear listening, which may be due to poor integration of asymmetric inputs.
Collapse
Affiliation(s)
- Emily A. Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Emily A. Burg,
| | - Tanvi D. Thakkar
- Department of Psychology, University of Wisconsin-La Crosse, La Crosse, WI, United States
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States,Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope sensitivity: Within- and across-ear envelope comparisons in listeners with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3294. [PMID: 36586876 PMCID: PMC9731674 DOI: 10.1121/10.0016365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For listeners with bilateral cochlear implants (BiCIs), patient-specific differences in the interface between cochlear implant (CI) electrodes and the auditory nerve can lead to degraded temporal envelope information, compromising the ability to distinguish between targets of interest and background noise. It is unclear how comparisons of degraded temporal envelope information across spectral channels (i.e., electrodes) affect the ability to detect differences in the temporal envelope, specifically amplitude modulation (AM) rate. In this study, two pulse trains were presented simultaneously via pairs of electrodes in different places of stimulation, within and/or across ears, with identical or differing AM rates. Results from 11 adults with BiCIs indicated that sensitivity to differences in AM rate was greatest when stimuli were paired between different places of stimulation in the same ear. Sensitivity from pairs of electrodes was predicted by the poorer electrode in the pair or the difference in fidelity between both electrodes in the pair. These findings suggest that electrodes yielding poorer temporal fidelity act as a bottleneck to comparisons of temporal information across frequency and ears, limiting access to the cues used to segregate sounds, which has important implications for device programming and optimizing patient outcomes with CIs.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
25
|
Thompson NJ, Dillon MT, Buss E, Rooth MA, Richter ME, Pillsbury HC, Brown KD. Long-Term Improvement in Localization for Cochlear Implant Users with Single-Sided Deafness. Laryngoscope 2022; 132:2453-2458. [PMID: 35174886 PMCID: PMC9514235 DOI: 10.1002/lary.30065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES/HYPOTHESIS To assess whether early, significant improvements in sound source localization observed in cochlear implant (CI) recipients with normal hearing (NH) in the contralateral ear are maintained after 5 years of CI use. STUDY DESIGN Prospective, repeated measures study. METHODS Participants were recruited from a sample of CI + NH listeners (n = 20) who received their device as part of a prospective clinical trial investigating outcomes of CI use for adult cases of single-sided deafness. Sound source localization was assessed annually after the clinical trial endpoint (1-year post-activation). Listeners were asked to indicate the perceived sound source for a broadband noise burst presented randomly at varied intensity levels from one of 11 speakers along a 180° arc. Performance was quantified as root-mean-squared (RMS) error. RESULTS Linear mixed models showed superior post-activation performance was maintained with long-term CI use as compared to preoperative abilities (P < .001). Unexpectedly, a significant improvement (P = .009) in sound source localization was observed over the long-term post-activation period (1-5 years). To better understand these long-term findings, the response patterns for the 11 participants who were evaluated at the 1- and 5-year visits were reviewed. This subgroup demonstrated a significant improvement in RMS error (P = .020) and variable error (P = .031), indicating more consistent responses at the 5-year visit. CONCLUSION Adult CI + NH listeners experience significant improvements in sound source localization within the initial weeks of listening experience, with additional improvements observed after long-term device use. The present sample demonstrated significant improvements between the 1-year and 5-year visits, with greater accuracy and consistency noted in their response patterns. LEVEL OF EVIDENCE 3 Laryngoscope, 132:2453-2458, 2022.
Collapse
Affiliation(s)
- Nicholas J Thompson
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Emily Buss
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith A Rooth
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret E Richter
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Harold C Pillsbury
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin D Brown
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
Development of Sound Localization in Infants and Young Children with Cochlear Implants. J Clin Med 2022; 11:jcm11226758. [PMID: 36431235 PMCID: PMC9694519 DOI: 10.3390/jcm11226758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cochlear implantation as a treatment for severe-to-profound hearing loss allows children to develop hearing, speech, and language in many cases. However, cochlear implants are generally provided beyond the infant period and outcomes are assessed after years of implant use, making comparison with normal development difficult. The aim was to study whether the rate of improvement of horizontal localization accuracy in children with bilateral implants is similar to children with normal hearing. A convenience sample of 20 children with a median age at simultaneous bilateral implantation = 0.58 years (0.42−2.3 years) participated in this cohort study. Longitudinal follow-up of sound localization accuracy for an average of ≈1 year generated 42 observations at a mean age = 1.5 years (0.58−3.6 years). The rate of development was compared to historical control groups including children with normal hearing and with relatively late bilateral implantation (≈4 years of age). There was a significant main effect of time with bilateral implants on localization accuracy (slope = 0.21/year, R2 = 0.25, F = 13.6, p < 0.001, n = 42). No differences between slopes (F = 0.30, p = 0.58) or correlation coefficients (Cohen’s q = 0.28, p = 0.45) existed when comparing children with implants and normal hearing (slope = 0.16/year since birth, p = 0.015, n = 12). The rate of development was identical to children implanted late. Results suggest that early bilateral implantation in children with severe-to-profound hearing loss allows development of sound localization at a similar age to children with normal hearing. Similar rates in children with early and late implantation and normal hearing suggest an intrinsic mechanism for the development of horizontal sound localization abilities.
Collapse
|
27
|
Cleary M, Bernstein JGW, Stakhovskaya OA, Noble J, Kolberg E, Jensen KK, Hoa M, Kim HJ, Goupell MJ. The Relationship Between Interaural Insertion-Depth Differences, Scalar Location, and Interaural Time-Difference Processing in Adult Bilateral Cochlear-Implant Listeners. Trends Hear 2022; 26:23312165221129165. [PMID: 36379607 PMCID: PMC9669699 DOI: 10.1177/23312165221129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) in acoustic hearing involves comparison of interaurally frequency-matched inputs. Bilateral cochlear-implant arrays are, however, only approximately aligned in angular insertion depth and scalar location across the cochleae. Interaural place-of-stimulation mismatch therefore has the potential to impact binaural perception. ITD left-right discrimination thresholds were examined in 23 postlingually-deafened adult bilateral cochlear-implant listeners, using low-rate constant-amplitude pulse trains presented via direct stimulation to single electrodes in each ear. Angular insertion depth and scalar location measured from computed-tomography (CT) scans were used to quantify interaural mismatch, and their association with binaural performance was assessed. Number-matched electrodes displayed a median interaural insertion-depth mismatch of 18° and generally yielded best or near-best ITD discrimination thresholds. Two listeners whose discrimination thresholds did not show this pattern were confirmed via CT to have atypical array placement. Listeners with more number-matched electrode pairs located in the scala tympani displayed better thresholds than listeners with fewer such pairs. ITD tuning curves as a function of interaural electrode separation were broad; bandwidths at twice the threshold minimum averaged 10.5 electrodes (equivalent to 5.9 mm for a Cochlear-brand pre-curved array). Larger angular insertion-depth differences were associated with wider bandwidths. Wide ITD tuning curve bandwidths appear to be a product of both monopolar stimulation and angular insertion-depth mismatch. Cases of good ITD sensitivity with very wide bandwidths suggest that precise matching of insertion depth is not critical for discrimination thresholds. Further prioritizing scala tympani location at implantation should, however, benefit ITD sensitivity.
Collapse
Affiliation(s)
- Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Olga A. Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Jack Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA,Department of Hearing and Speech Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA,Department of Otolaryngology, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Elizabeth Kolberg
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Hung Jeffrey Kim
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA,Matthew J. Goupell, Department of Hearing
and Speech Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
28
|
Margeta J, Hussain R, López Diez P, Morgenstern A, Demarcy T, Wang Z, Gnansia D, Martinez Manzanera O, Vandersteen C, Delingette H, Buechner A, Lenarz T, Patou F, Guevara N. A Web-Based Automated Image Processing Research Platform for Cochlear Implantation-Related Studies. J Clin Med 2022; 11:6640. [PMID: 36431117 PMCID: PMC9699139 DOI: 10.3390/jcm11226640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
The robust delineation of the cochlea and its inner structures combined with the detection of the electrode of a cochlear implant within these structures is essential for envisaging a safer, more individualized, routine image-guided cochlear implant therapy. We present Nautilus-a web-based research platform for automated pre- and post-implantation cochlear analysis. Nautilus delineates cochlear structures from pre-operative clinical CT images by combining deep learning and Bayesian inference approaches. It enables the extraction of electrode locations from a post-operative CT image using convolutional neural networks and geometrical inference. By fusing pre- and post-operative images, Nautilus is able to provide a set of personalized pre- and post-operative metrics that can serve the exploration of clinically relevant questions in cochlear implantation therapy. In addition, Nautilus embeds a self-assessment module providing a confidence rating on the outputs of its pipeline. We present a detailed accuracy and robustness analyses of the tool on a carefully designed dataset. The results of these analyses provide legitimate grounds for envisaging the implementation of image-guided cochlear implant practices into routine clinical workflows.
Collapse
Affiliation(s)
- Jan Margeta
- Research and Development, KardioMe, 01851 Nova Dubnica, Slovakia
| | - Raabid Hussain
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Paula López Diez
- Department for Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anika Morgenstern
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - Thomas Demarcy
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Zihao Wang
- Epione Team, Inria, Université Côte d’Azur, 06902 Sophia Antipolis, France
| | - Dan Gnansia
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | | | - Clair Vandersteen
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France
| | - Hervé Delingette
- Epione Team, Inria, Université Côte d’Azur, 06902 Sophia Antipolis, France
| | - Andreas Buechner
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - François Patou
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Nicolas Guevara
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France
| |
Collapse
|
29
|
American Cochlear Implant Alliance Task Force Guidelines for Clinical Assessment and Management of Adult Cochlear Implantation for Single-Sided Deafness. Ear Hear 2022; 43:1605-1619. [PMID: 35994570 PMCID: PMC9592177 DOI: 10.1097/aud.0000000000001260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The indications for cochlear implantation have expanded to include individuals with profound sensorineural hearing loss in the impaired ear and normal hearing (NH) in the contralateral ear, known as single-sided deafness (SSD). There are additional considerations for the clinical assessment and management of adult cochlear implant candidates and recipients with SSD as compared to conventional cochlear implant candidates with bilateral moderate to profound sensorineural hearing loss. The present report reviews the current evidence relevant to the assessment and management of adults with SSD. A systematic review was also conducted on published studies that investigated outcomes of cochlear implant use on measures of speech recognition in quiet and noise, sound source localization, tinnitus perception, and quality of life for this patient population. Expert consensus and systematic review of the current literature were combined to provide guidance for the clinical assessment and management of adults with SSD.
Collapse
|
30
|
Hu H, Hartog L, Kollmeier B, Ewert SD. Spectral and binaural loudness summation of equally loud narrowband signals in single-sided-deafness and bilateral cochlear implant users. Front Neurosci 2022; 16:931748. [PMID: 36071716 PMCID: PMC9444060 DOI: 10.3389/fnins.2022.931748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023] Open
Abstract
Recent studies on loudness perception of binaural broadband signals in hearing impaired listeners found large individual differences, suggesting the use of such signals in hearing aid fitting. Likewise, clinical cochlear implant (CI) fitting with narrowband/single-electrode signals might cause suboptimal loudness perception in bilateral and bimodal CI listeners. Here spectral and binaural loudness summation in normal hearing (NH) listeners, bilateral CI (biCI) users, and unilateral CI (uCI) users with normal hearing in the unaided ear was investigated to assess the relevance of binaural/bilateral fitting in CI users. To compare the three groups, categorical loudness scaling was performed for an equal categorical loudness noise (ECLN) consisting of the sum of six spectrally separated third-octave noises at equal loudness. The acoustical ECLN procedure was adapted to an equivalent procedure in the electrical domain using direct stimulation. To ensure the same broadband loudness in binaural measurements with simultaneous electrical and acoustical stimulation, a modified binaural ECLN was introduced and cross validated with self-adjusted loudness in a loudness balancing experiment. Results showed a higher (spectral) loudness summation of the six equally loud narrowband signals in the ECLN in CI compared to NH. Binaural loudness summation was found for all three listener groups (NH, uCI, and biCI). No increased binaural loudness summation could be found for the current uCI and biCI listeners compared to the NH group. In uCI loudness balancing between narrowband signals and single electrodes did not automatically result in a balanced loudness perception across ears, emphasizing the importance of binaural/bilateral fitting.
Collapse
Affiliation(s)
- Hongmei Hu
- Medizinische Physik and Cluster of Excellence “Hearing4all”, Department of Medical Physics and Acoustics, Universität Oldenburg, Oldenburg, Germany,*Correspondence: Hongmei Hu,
| | - Laura Hartog
- Medizinische Physik and Cluster of Excellence “Hearing4all”, Department of Medical Physics and Acoustics, Universität Oldenburg, Oldenburg, Germany,Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
| | - Birger Kollmeier
- Medizinische Physik and Cluster of Excellence “Hearing4all”, Department of Medical Physics and Acoustics, Universität Oldenburg, Oldenburg, Germany,Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
| | - Stephan D. Ewert
- Medizinische Physik and Cluster of Excellence “Hearing4all”, Department of Medical Physics and Acoustics, Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
31
|
Yoon YS, Drew C. Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users. Front Psychol 2022; 13:918914. [PMID: 36051201 PMCID: PMC9426545 DOI: 10.3389/fpsyg.2022.918914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
A previous study demonstrated that consonant recognition improved significantly in normal hearing listeners when useful frequency and time ranges were intensified by 6 dB. The goal of this study was to determine whether bilateral cochlear implant (BCI) and bilateral hearing aid (BHA) users experienced similar enhancement on consonant recognition with these intensified spectral and temporal cues in noise. In total, 10 BCI and 10 BHA users participated in a recognition test using 14 consonants. For each consonant, we used the frequency and time ranges that are critical for its recognition (called “target frequency and time range”), identified from normal hearing listeners. Then, a signal processing tool called the articulation-index gram (AI-Gram) was utilized to add a 6 dB gain to target frequency and time ranges. Consonant recognition was monaurally and binaurally measured under two signal processing conditions, unprocessed and intensified target frequency and time ranges at +5 and +10 dB signal-to-noise ratio and in quiet conditions. We focused on three comparisons between the BCI and BHA groups: (1) AI-Gram benefits (i.e., before and after intensifying target ranges by 6 dB), (2) enhancement in binaural benefits (better performance with bilateral devices compared to the better ear alone) via the AI-Gram processing, and (3) reduction in binaural interferences (poorer performance with bilateral devices compared to the better ear alone) via the AI-Gram processing. The results showed that the mean AI-Gram benefit was significantly improved for the BCI (max 5.9%) and BHA (max 5.2%) groups. However, the mean binaural benefit was not improved after AI-Gram processing. Individual data showed wide ranges of the AI-Gram benefit (max −1 to 23%) and binaural benefit (max −7.6 to 13%) for both groups. Individual data also showed a decrease in binaural interference in both groups after AI-Gram processing. These results suggest that the frequency and time ranges, intensified by the AI-Gram processing, contribute to consonant enhancement for monaural and binaural listening and both BCI and BHA technologies. The intensified frequency and time ranges helped to reduce binaural interference but contributed less to the synergistic binaural benefit in consonant recognition for both groups.
Collapse
|
32
|
Computed-Tomography Estimates of Interaural Mismatch in Insertion Depth and Scalar Location in Bilateral Cochlear-Implant Users. Otol Neurotol 2022; 43:666-675. [PMID: 35761459 DOI: 10.1097/mao.0000000000003538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HYPOTHESIS Bilateral cochlear-implant (BI-CI) users will have a range of interaural insertion-depth mismatch because of different array placement or characteristics. Mismatch will be larger for electrodes located near the apex or outside scala tympani, or for arrays that are a mix of precurved and straight types. BACKGROUND Brainstem superior olivary-complex neurons are exquisitely sensitive to interaural-difference cues for sound localization. Because these neurons rely on interaurally place-of-stimulation-matched inputs, interaural insertion-depth or scalar-location differences for BI-CI users could cause interaural place-of-stimulation mismatch that impairs binaural abilities. METHODS Insertion depths and scalar locations were calculated from temporal-bone computed-tomography scans for 107 BI-CI users (27 Advanced Bionics, 62 Cochlear, 18 MED-EL). RESULTS Median interaural insertion-depth mismatch was 23.4 degrees or 1.3 mm. Mismatch in the estimated clinically relevant range expected to impair binaural processing (>75 degrees or 3 mm) occurred for 13 to 19% of electrode pairs overall, and for at least three electrode pairs for 23 to 37% of subjects. There was a significant three-way interaction between insertion depth, scalar location, and array type. Interaural insertion-depth mismatch was largest for apical electrodes, for electrode pairs in two different scala, and for arrays that were both-precurved. CONCLUSION Average BI-CI interaural insertion-depth mismatch was small; however, large interaural insertion-depth mismatch-with the potential to degrade spatial hearing-occurred frequently enough to warrant attention. For new BICI users, improved surgical techniques to avoid interaural insertion-depth and scalar mismatch are recommended. For existing BI-CI users with interaural insertion-depth mismatch, interaural alignment of clinical frequency tables might reduce negative spatial-hearing consequences.
Collapse
|
33
|
Dillon MT, Rooth MA, Canfarotta MW, Richter ME, Thompson NJ, Brown KD. Sound Source Localization by Cochlear Implant Recipients with Normal Hearing in the Contralateral Ear: Effects of Spectral Content and Duration of Listening Experience. Audiol Neurootol 2022; 27:437-448. [PMID: 35439753 DOI: 10.1159/000523969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Cochlear implant (CI) recipients with normal hearing (NH) in the contralateral ear experience a significant improvement in sound source localization when listening with the CI in combination with their NH-ear (CI + NH) as compared to with the NH-ear alone. The improvement in localization is primarily due to sensitivity to interaural level differences (ILDs). Sensitivity to interaural timing differences (ITDs) may be limited by auditory aging, frequency-to-place mismatches, the signal coding strategy, and duration of CI use. The present report assessed the sensitivity of ILD and ITD cues in CI + NH listeners who were recipients of long electrode arrays that provide minimal frequency-to-place mismatches and were mapped with a coding strategy that presents fine structure cues on apical channels. METHODS Sensitivity to ILDs and ITDs for localization was assessed using broadband noise (BBN), as well as high-pass (HP) and low-pass (LP) filtered noise for adult CI + NH listeners. Stimuli were 200-ms noise bursts presented from 11 speakers spaced evenly over an 180° arc. Performance was quantified in root-mean-squared error and response patterns were analyzed to evaluate the consistency, accuracy, and side bias of the responses. Fifteen listeners completed the task at the 2-year post-activation visit; seven listeners repeated the task at a later annual visit. RESULTS Performance at the 2-year visit was best with the BBN and HP stimuli and poorer with the LP stimulus. Responses to the BBN and HP stimuli were significantly correlated, consistent with the idea that CI + NH listeners primarily use ILD cues for localization. For the LP stimulus, some listeners responded consistently and accurately and with limited side bias, which may indicate sensitivity to ITD cues. Two of the 7 listeners who repeated the task at a later annual visit experienced a significant improvement in performance with the LP stimulus, which may indicate that sensitivity to ITD cues may improve with long-term CI use. CONCLUSIONS CI recipients with a NH-ear primarily use ILD cues for sound source localization, though some may use ITD cues as well. Sensitivity to ITD cues may improve with long-term CI listening experience.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith A Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael W Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret E Richter
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J Thompson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin D Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
34
|
Ghosh R, Ali H, Hansen JHL. CCi-MOBILE: A Portable Real Time Speech Processing Platform for Cochlear Implant and Hearing Research. IEEE Trans Biomed Eng 2022; 69:1251-1263. [PMID: 34705633 PMCID: PMC8918373 DOI: 10.1109/tbme.2021.3123241] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experimental hardware-research interfaces form a crucial role during developmental stages of any medical, signal-monitoring system as it allows researchers to test and optimize output results before perfecting the design for the actual FDA approved medical device and large-scale production. These testing platforms, intake raw signals through which performance of novel algorithms can be analyzed and modified to generate the desired data points for an optimized output, allowing the advancement of the medical device. With cochlear implants (CIs) and hearing aids (HAs) becoming a more common solution for varying degrees of hearing impairment, having modern signal processing strategies tested for such speech sensitive systems is a necessity. But the rigid design requirements of commercial CI and HA processors make it difficult to explore novel algorithms for research investigations and conducting longitudinal studies. This study presents the design, development, clinical evaluation, and applications of CCi-MOBILE, a computationally powerful signal processing testing platform built for researchers in the hearing-impaired field. The custom-made, portable research platform allows researchers to design and perform complex speech processing algorithm assessment offline and in real-time. It can be operated through user-friendly, open-source software and is compatible with implants manufactured by Cochlear Corporation. The FPGA design and hardware processing pipeline for CI stimulation is discussed followed by results from an acute study with implant users' speech intelligibility in quiet and noisy conditions. The results show a consistent level of performance compared with CI users' clinical processor, thus confirming the viability of the platform in chronic CI based studies.
Collapse
|
35
|
Anderson SR, Jocewicz R, Kan A, Zhu J, Tzeng S, Litovsky RY. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. PLoS One 2022; 17:e0263516. [PMID: 35134072 PMCID: PMC8824335 DOI: 10.1371/journal.pone.0263516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to determine a sound’s location is critical in everyday life. However, sound source localization is severely compromised for patients with hearing loss who receive bilateral cochlear implants (BiCIs). Several patient factors relate to poorer performance in listeners with BiCIs, associated with auditory deprivation, experience, and age. Critically, characteristic errors are made by patients with BiCIs (e.g., medial responses at lateral target locations), and the relationship between patient factors and the type of errors made by patients has seldom been investigated across individuals. In the present study, several different types of analysis were used to understand localization errors and their relationship with patient-dependent factors (selected based on their robustness of prediction). Binaural hearing experience is required for developing accurate localization skills, auditory deprivation is associated with degradation of the auditory periphery, and aging leads to poorer temporal resolution. Therefore, it was hypothesized that earlier onsets of deafness would be associated with poorer localization acuity and longer periods without BiCI stimulation or older age would lead to greater amounts of variability in localization responses. A novel machine learning approach was introduced to characterize the types of errors made by listeners with BiCIs, making them simple to interpret and generalizable to everyday experience. Sound localization performance was measured in 48 listeners with BiCIs using pink noise trains presented in free-field. Our results suggest that older age at testing and earlier onset of deafness are associated with greater average error, particularly for sound sources near the center of the head, consistent with previous research. The machine learning analysis revealed that variability of localization responses tended to be greater for individuals with earlier compared to later onsets of deafness. These results suggest that early bilateral hearing is essential for best sound source localization outcomes in listeners with BiCIs.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rachael Jocewicz
- Department of Audiology, Stanford University, Stanford, California, United States of America
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales, Australia
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - ShengLi Tzeng
- Department of Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
36
|
Novel Approaches to Measure Spatial Release From Masking in Children With Bilateral Cochlear Implants. Ear Hear 2022; 43:101-114. [PMID: 34133400 PMCID: PMC8671563 DOI: 10.1097/aud.0000000000001080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To investigate the role of auditory cues for spatial release from masking (SRM) in children with bilateral cochlear implants (BiCIs) and compare their performance with children with normal hearing (NH). To quantify the contribution to speech intelligibility benefits from individual auditory cues: head shadow, binaural redundancy, and interaural differences; as well as from multiple cues: SRM and binaural squelch. To assess SRM using a novel approach of adaptive target-masker angular separation, which provides a more functionally relevant assessment in realistic complex auditory environments. DESIGN Children fitted with BiCIs (N = 11) and with NH (N = 18) were tested in virtual acoustic space that was simulated using head-related transfer functions measured from individual children with BiCIs behind the ear and from a standard head and torso simulator for all NH children. In experiment I, by comparing speech reception thresholds across 4 test conditions that varied in target-masker spatial separation (colocated versus separated at 180°) and listening conditions (monaural versus binaural/bilateral listening), intelligibility benefits were derived for individual auditory cues for SRM. In experiment II, SRM was quantified using a novel measure to find the minimum angular separation (MAS) between the target and masker to achieve a fixed 20% intelligibility improvement. Target speech was fixed at either +90 or -90° azimuth on the side closer to the better ear (+90° for all NH children) and masker locations were adaptively varied. RESULTS In experiment I, children with BiCIs as a group had smaller intelligibility benefits from head shadow than NH children. No group difference was observed in benefits from binaural redundancy or interaural difference cues. In both groups of children, individuals who gained a larger benefit from interaural differences relied less on monaural head shadow, and vice versa. In experiment II, all children with BiCIs demonstrated measurable MAS thresholds <180° and on average larger than that from NH children. Eight of 11 children with BiCIs and all NH children had a MAS threshold <90°, requiring interaural differences only to gain the target intelligibility benefit; whereas the other 3 children with BiCIs had a MAS between 120° and 137°, requiring monaural head shadow for SRM. CONCLUSIONS When target and maskers were separated at 180° on opposing hemifields, children with BiCIs demonstrated greater intelligibility benefits from head shadow and interaural differences than previous literature showed with a smaller separation. Children with BiCIs demonstrated individual differences in using auditory cues for SRM. From the MAS thresholds, more than half of the children with BiCIs demonstrated robust access to interaural differences without needing additional monaural head shadow for SRM. Both experiments led to the conclusion that individualized fitting strategies in the bilateral devices may be warranted to maximize spatial hearing for children with BiCIs in complex auditory environments.
Collapse
|
37
|
Tsai P, Wisener N, Papsin B, Cushing S, Gordon K. Toward a method of achieving balanced stimulation of bilateral auditory nerves: Evidence from children receiving matched and unmatched bilateral cochlear implants simultaneously. Hear Res 2022; 416:108445. [DOI: 10.1016/j.heares.2022.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
|
38
|
Pieper SH, Hamze N, Brill S, Hochmuth S, Exter M, Polak M, Radeloff A, Buschermöhle M, Dietz M. Considerations for Fitting Cochlear Implants Bimodally and to the Single-Sided Deaf. Trends Hear 2022; 26:23312165221108259. [PMID: 35726211 PMCID: PMC9218456 DOI: 10.1177/23312165221108259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
When listening with a cochlear implant through one ear and acoustically through the other, binaural benefits and spatial hearing abilities are generally poorer than in other bilaterally stimulated configurations. With the working hypothesis that binaural neurons require interaurally matched inputs, we review causes for mismatch, their perceptual consequences, and experimental methods for mismatch measurements. The focus is on the three primary interaural dimensions of latency, frequency, and level. Often, the mismatch is not constant, but rather highly stimulus-dependent. We report on mismatch compensation strategies, taking into consideration the specific needs of the respective patient groups. Practical challenges typically faced by audiologists in the proposed fitting procedure are discussed. While improvement in certain areas (e.g., speaker localization) is definitely achievable, a more comprehensive mismatch compensation is a very ambitious endeavor. Even in the hypothetical ideal fitting case, performance is not expected to exceed that of a good bilateral cochlear implant user.
Collapse
Affiliation(s)
- Sabrina H. Pieper
- Department of Medical Physics and Acoustic, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - Noura Hamze
- MED-EL Medical Electronics GmbH, Innsbruck, Austria
| | - Stefan Brill
- MED-EL Medical Electronics Germany GmbH, Starnberg, Germany
| | - Sabine Hochmuth
- Division of Otorhinolaryngology, University of Oldenburg, Oldenburg, Germany
| | - Mats Exter
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
| | - Marek Polak
- MED-EL Medical Electronics GmbH, Innsbruck, Austria
| | - Andreas Radeloff
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Division of Otorhinolaryngology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | | | - Mathias Dietz
- Department of Medical Physics and Acoustic, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
39
|
Bernstein JGW, Jensen KK, Stakhovskaya OA, Noble JH, Hoa M, Kim HJ, Shih R, Kolberg E, Cleary M, Goupell MJ. Interaural Place-of-Stimulation Mismatch Estimates Using CT Scans and Binaural Perception, But Not Pitch, Are Consistent in Cochlear-Implant Users. J Neurosci 2021; 41:10161-10178. [PMID: 34725189 PMCID: PMC8660045 DOI: 10.1523/jneurosci.0359-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/23/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information.SIGNIFICANCE STATEMENT Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.
Collapse
Affiliation(s)
- Joshua G W Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889
| | - Kenneth K Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889
| | - Olga A Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Jack H Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37232
| | - Michael Hoa
- Department of Otolaryngology Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20057
| | - H Jeffery Kim
- Department of Otolaryngology Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20057
| | - Robert Shih
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Maryland 20889
| | - Elizabeth Kolberg
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
40
|
Sparreboom M, Ausili SA, Mylanus EAM. Lateralization of interaural level differences in children with bilateral cochlear implants. Cochlear Implants Int 2021; 23:125-133. [PMID: 34872461 DOI: 10.1080/14670100.2021.2010000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To investigate the perception of interaural level differences (ILDs) in children with bilateral cochlear implants (BiCIs) and compare them to normal hearing peers. As intracranial shifts in perception of ILDs might have an effect on localization, this was further investigated. METHODS ILD responses on four different frequency bands (broadband, low-pass, mid-pass and high-pass) were measured in 9 children with BiCIs and 15 children with normal hearing. In the children with BiCIs, 7 of them were implanted sequentially and 2 of them simultaneously. The outcomes were compared with the outcomes from a previous study on advanced localization using the same stimuli as in the current study. The effect of chronological age, inter-implant delay and preoperative residual hearing were also taken into account. RESULTS No significant differences in ILD responses between children with BiCIs and children with normal hearing were found. For broadband stimuli, children with sequential BiCIs showed a significant shift in their response towards the first implant. A significant correlation was found between inter-implant delay and shift in ILD response for the broadband and high-pass stimuli. The shift in ILD response had no effect on localization. CONCLUSION Children with BiCIs are able to perceive ILD responses similar to those of normal hearing children. The inter-implant delay has a negative effect on the lateralization of the response towards the first implant side, indicative of deprivation of high-frequency sounds prior to receiving a second implant. This shift, however, is not associated with a shift in localization response.
Collapse
Affiliation(s)
- M Sparreboom
- Department of Otorhinolaryngology, Head and Neck Surgery, Hearing and Implants, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - S A Ausili
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - E A M Mylanus
- Department of Otorhinolaryngology, Head and Neck Surgery, Hearing and Implants, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
41
|
Kim GH, Aronoff JM. Using unilateral stimulation to create a reference for bilateral fusion judgments. JASA EXPRESS LETTERS 2021; 1:114401. [PMID: 34778874 PMCID: PMC8565497 DOI: 10.1121/10.0007058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Measuring binaural fusion can be challenging, especially with bilateral cochlear implant (CI) users. This study validated a technique of using unilateral stimulation to create a reference for measuring fusion. Seven bilateral CI users listened to stimuli randomly presented to the right, left, or both ears. Participants indicated the size, number, and location of the resulting image(s) they perceived. The participants had largely unitary, punctate percepts that were lateralized to the stimulated ear for unilateral stimuli. The image was centered but more diffuse when the stimuli were presented bilaterally. The results suggest unilateral stimuli can provide a reference for binaural fusion.
Collapse
Affiliation(s)
- Grace Hyerin Kim
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 S. 6thStreet, Champaign, Illinois 61801, USA ,
| | - Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 S. 6thStreet, Champaign, Illinois 61801, USA ,
| |
Collapse
|
42
|
Abstract
OBJECTIVES Currently, bilateral cochlear implants (CIs) are independently programmed in clinics using frequency allocations based on the relative location of a given electrode from the end of each electrode array. By pairing electrodes based on this method, bilateral CI recipients may have decreased sensitivity to interaural time differences (ITD) and/or interaural level differences (ILD), two cues critical for binaural tasks. There are multiple different binaural measures that can potentially be used to determine the optimal way to pair electrodes across the ears. Previous studies suggest that the optimal electrode pairing between the left and right ears may vary depending on the binaural task used. These studies, however, have only used one reference location or a single bilateral CI user. In both instances, it is difficult to determine if the results that were obtained reflect a measurement error or a systematic difference across binaural tasks. It is also difficult to determine from these studies if the differences between the three cues vary across electrode regions, which could result from differences in the availability of binaural cues across frequency regions. The purpose of this study was to determine if, after experience-dependent adaptation, there are systematic differences in the optimal pairing of electrodes at different points along the array for the optimal perception of ITD, ILD, and pitch. DESIGN Data from seven bilateral Nucleus users was collected and analyzed. Participants were tested with ITD, ILD, and pitch-matching tasks using five different reference electrodes in one ear, spaced across the array. Comparisons were conducted to determine if the optimal bilateral electrode pairs systematically differed in different regions depending on whether they were measured based on ITD sensitivity, ILD sensitivity, or pitch matching, and how those pairs differed from the pairing in the participants' clinical programs. RESULTS Results indicate that there was a significant difference in the optimal pairing depending on the cue measured, but only at the basal end of the array. CONCLUSION The results suggest that optimal electrode pairings differ depending on the cue measured to determine optimal pairing, at least for the basal end of the array. This also suggests that the improvements seen when using optimally paired electrodes may be tied to the particular percept being measured both to determine electrode pairing and to assess performance, at least for the basal end of the array.
Collapse
Affiliation(s)
- Hannah E Staisloff
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | | |
Collapse
|
43
|
McSweeny C, Cushing SL, Campos JL, Papsin BC, Gordon KA. Functional Consequences of Poor Binaural Hearing in Development: Evidence From Children With Unilateral Hearing Loss and Children Receiving Bilateral Cochlear Implants. Trends Hear 2021; 25:23312165211051215. [PMID: 34661482 PMCID: PMC8527588 DOI: 10.1177/23312165211051215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Poor binaural hearing in children was hypothesized to contribute to related cognitive and
academic deficits. Children with unilateral hearing have normal hearing in one ear but no
access to binaural cues. Their cognitive and academic deficits could be unique from
children receiving bilateral cochlear implants (CIs) at young ages who have poor access to
spectral cues and impaired binaural sensitivity. Both groups are at risk for
vestibular/balance deficits which could further contribute to memory and learning
challenges. Eighty-eight children (43 male:45 female, aged 9.89 ± 3.40 years), grouped
by unilateral hearing loss (n = 20), bilateral CI
(n = 32), and typically developing (n = 36), completed a
battery of sensory, cognitive, and academic tests. Analyses revealed that children in both
hearing loss groups had significantly poorer skills (accounting for age) on most tests
than their normal hearing peers. Children with unilateral hearing loss had more asymmetric
speech perception than children with bilateral CIs (p < .0001) but
balance and language deficits (p = .0004, p < .0001,
respectively) were similar in the two hearing loss groups (p > .05).
Visuospatial memory deficits occurred in both hearing loss groups
(p = .02) but more consistently across tests in children with unilateral
hearing loss. Verbal memory was not significantly different than normal
(p > .05). Principal component analyses revealed deficits in a main
cluster of visuospatial memory, oral language, mathematics, and reading measures
(explaining 46.8% data variability). The remaining components revealed clusters of
self-reported hearing, balance and vestibular function, and speech perception deficits.
The findings indicate significant developmental impacts of poor binaural hearing in
children.
Collapse
Affiliation(s)
- Claire McSweeny
- Archie's Cochlear Implant Lab, 7979Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon L Cushing
- Archie's Cochlear Implant Lab, 7979Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, Faculty of Medicine, University of Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, 7979Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Campos
- KITE-Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Blake C Papsin
- Archie's Cochlear Implant Lab, 7979Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, Faculty of Medicine, University of Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, 7979Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen A Gordon
- Archie's Cochlear Implant Lab, 7979Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, Faculty of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
44
|
Sagi E, Azadpour M, Neukam J, Capach NH, Svirsky MA. Reducing interaural tonotopic mismatch preserves binaural unmasking in cochlear implant simulations of single-sided deafness. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2316. [PMID: 34717490 PMCID: PMC8637719 DOI: 10.1121/10.0006446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Binaural unmasking, a key feature of normal binaural hearing, can refer to the improved intelligibility of masked speech by adding masking that facilitates perceived separation of target and masker. A question relevant for cochlear implant users with single-sided deafness (SSD-CI) is whether binaural unmasking can still be achieved if the additional masking is spectrally degraded and shifted. CIs restore some aspects of binaural hearing to these listeners, although binaural unmasking remains limited. Notably, these listeners may experience a mismatch between the frequency information perceived through the CI and that perceived by their normal hearing ear. Employing acoustic simulations of SSD-CI with normal hearing listeners, the present study confirms a previous simulation study that binaural unmasking is severely limited when interaural frequency mismatch between the input frequency range and simulated place of stimulation exceeds 1-2 mm. The present study also shows that binaural unmasking is largely retained when the input frequency range is adjusted to match simulated place of stimulation, even at the expense of removing low-frequency information. This result bears implications for the mechanisms driving the type of binaural unmasking of the present study and for mapping the frequency range of the CI speech processor in SSD-CI users.
Collapse
Affiliation(s)
- Elad Sagi
- Department of Otolaryngology-Head & Neck Surgery, New York University Grossman School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Mahan Azadpour
- Department of Otolaryngology-Head & Neck Surgery, New York University Grossman School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Jonathan Neukam
- Department of Otolaryngology-Head & Neck Surgery, New York University Grossman School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Nicole Hope Capach
- Department of Otolaryngology-Head & Neck Surgery, New York University Grossman School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Mario A Svirsky
- Department of Otolaryngology-Head & Neck Surgery, New York University Grossman School of Medicine, 550 First Avenue, New York, New York 10016, USA
| |
Collapse
|
45
|
Oh Y, Reiss LAJ. Binaural Pitch Fusion: Binaural Pitch Averaging in Cochlear Implant Users With Broad Binaural Fusion. Ear Hear 2021; 41:1450-1460. [PMID: 33136622 PMCID: PMC7501189 DOI: 10.1097/aud.0000000000000866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Individuals who use hearing aids (HAs) or cochlear implants (CIs) can experience broad binaural pitch fusion, such that sounds differing in pitch by as much as 3 to 4 octaves are perceptually integrated across ears. Previously, it was shown in HA users that the fused pitch is a weighted average of the two monaural pitches, ranging from equal weighting to dominance by the lower pitch. The goal of this study was to systematically measure the fused pitches in adult CI users, and determine whether CI users experience similar pitch averaging effects as observed in HA users. DESIGN Twelve adult CI users (Cochlear Ltd, Sydney, Australia) participated in this study: six bimodal CI users, who wear a CI with a contralateral HA, and six bilateral CI users. Stimuli to HA ears were acoustic pure tones, and stimuli to CI ears were biphasic pulse trains delivered to individual electrodes. Fusion ranges, the ranges of frequencies/electrodes in the comparison ear that were fused with a single electrode (electrode 22, 18, 12, or 6) in the reference ear, were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus. Once the fusion ranges were measured, the fused binaural pitch of a reference-pair stimulus combination was measured by finding a pitch match to monaural comparison stimuli presented to the paired stimulus ear. RESULTS Fusion pitch weighting in CI users varied depending on the pitch difference of the reference-pair stimulus combination, with equal pitch averaging occurring for stimuli closer in pitch and lower pitch dominance occurring for stimuli farther apart in pitch. The averaging region was typically 0.5 to 2.3 octaves around the reference for bimodal CI users and 0.4 to 1.5 octaves for bilateral CI users. In some cases, a bias in the averaging region was observed toward the ear with greater stimulus variability. CONCLUSIONS Fusion pitch weighting effects in CI users were similar to those observed previously in HA users. However, CI users showed greater inter-subject variability in both pitch averaging ranges and bias effects. These findings suggest that binaural pitch averaging could be a common underlying mechanism in hearing-impaired listeners.
Collapse
Affiliation(s)
- Yonghee Oh
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida, USA
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| | - Lina A. J. Reiss
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
46
|
Hartling CL, Fowler JR, Stark GN, Glickman B, Eddolls M, Oh Y, Ramsey K, Reiss LAJ. Binaural Pitch Fusion in Children With Normal Hearing, Hearing Aids, and Cochlear Implants. Ear Hear 2021; 41:1545-1559. [PMID: 33136630 PMCID: PMC9014818 DOI: 10.1097/aud.0000000000000874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Binaural pitch fusion is the perceptual integration of stimuli that evoke different pitches between the ears into a single auditory image. Adults who use hearing aids (HAs) or cochlear implants (CIs) often experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3 to 4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The main goal of this study was to measure binaural pitch fusion in children with different hearing device combinations and compare results across groups and with adults. A second goal was to examine the relationship of binaural pitch fusion to interaural pitch differences or pitch match range, a measure of sequential pitch discriminability. DESIGN Binaural pitch fusion was measured in children between the ages of 6.1 and 11.1 years with bilateral HAs (n = 9), bimodal CI (n = 10), bilateral CIs (n = 17), as well as normal-hearing (NH) children (n = 21). Depending on device combination, stimuli were pure tones or electric pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Interaural pitch match functions were measured using sequential presentation of reference and comparison stimuli, and varying the comparison stimulus to find the pitch match center and range. RESULTS Children with bilateral HAs had significantly broader binaural pitch fusion than children with NH, bimodal CI, or bilateral CIs. Children with NH and bilateral HAs, but not children with bimodal or bilateral CIs, had significantly broader fusion than adults with the same hearing status and device configuration. In children with bilateral CIs, fusion range was correlated with several variables that were also correlated with each other: pure-tone average in the second implanted ear before CI, and duration of prior bilateral HA, bimodal CI, or bilateral CI experience. No relationship was observed between fusion range and pitch match differences or range. CONCLUSIONS The findings suggest that binaural pitch fusion is still developing in this age range and depends on hearing device combination but not on interaural pitch differences or discriminability.
Collapse
Affiliation(s)
- Curtis L Hartling
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| | - Jennifer R Fowler
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| | - Gemaine N Stark
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| | - Bess Glickman
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| | - Morgan Eddolls
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| | - Yonghee Oh
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| | - Katrina Ramsey
- Biostatistics and Design Program, Oregon Health and Science University, Portland, Oregon, USA
| | - Lina A J Reiss
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
47
|
Gajecki T, Nogueira W. Enhancement of interaural level differences for bilateral cochlear implant users. Hear Res 2021; 409:108313. [PMID: 34340023 DOI: 10.1016/j.heares.2021.108313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
Bilateral cochlear implant (BiCI) users do not localize sounds as well as normal hearing (NH) listeners do. NH listeners rely on two binaural cues to localize sounds in the horizontal plane, namely interaural level differences (ILDs) and interaural time differences. BiCI systems, however, convey these cues poorly. In this work, we investigated two methods to improve the coding of ILDs in BiCIs. The first method enhances ILDs by applying an artificial current-versus-angle function to the clinical levels delivered by the basal electrodes of the CI contralateral to the target sound. The second method enhances ILDs by using bilaterally linked N-of-M band selection. Results indicate that the participants were able to discriminate the location of the sound more accurately at narrow azimuths when the ILD enhancement was applied, compared to when they were using natural ILDs. Also, the results show that linking the band selection had a positive effect on left/right discrimination accuracy at larger azimuths for three out of the 10 tested participants, when compared to unlinked band selection. Based on these results, we conclude that ILD enhancement besides linked N-of-M band selection can help some BiCI participants to discriminate sound sources on the frontal horizontal plane.
Collapse
Affiliation(s)
- Tom Gajecki
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Hannover, 30625, Germany.
| | - Waldo Nogueira
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Hannover, 30625, Germany.
| |
Collapse
|
48
|
Xu K, Willis S, Gopen Q, Fu QJ. Effects of Spectral Resolution and Frequency Mismatch on Speech Understanding and Spatial Release From Masking in Simulated Bilateral Cochlear Implants. Ear Hear 2021; 41:1362-1371. [PMID: 32132377 DOI: 10.1097/aud.0000000000000865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Due to interaural frequency mismatch, bilateral cochlear-implant (CI) users may be less able to take advantage of binaural cues that normal-hearing (NH) listeners use for spatial hearing, such as interaural time differences and interaural level differences. As such, bilateral CI users have difficulty segregating competing speech even when the target and competing talkers are spatially separated. The goal of this study was to evaluate the effects of spectral resolution, tonotopic mismatch (the frequency mismatch between the acoustic center frequency assigned to CI electrode within an implanted ear relative to the expected spiral ganglion characteristic frequency), and interaural mismatch (differences in the degree of tonotopic mismatch in each ear) on speech understanding and spatial release from masking (SRM) in the presence of competing talkers in NH subjects listening to bilateral vocoder simulations. DESIGN During testing, both target and masker speech were presented in five-word sentences that had the same syntax but were not necessarily meaningful. The sentences were composed of five categories in fixed order (Name, Verb, Number, Color, and Clothes), each of which had 10 items, such that multiple sentences could be generated by randomly selecting a word from each category. Speech reception thresholds (SRTs) for the target sentence presented in competing speech maskers were measured. The target speech was delivered to both ears and the two speech maskers were delivered to (1) both ears (diotic masker), or (2) different ears (dichotic masker: one delivered to the left ear and the other delivered to the right ear). Stimuli included the unprocessed speech and four 16-channel sine-vocoder simulations with different interaural mismatch (0, 1, and 2 mm). SRM was calculated as the difference between the diotic and dichotic listening conditions. RESULTS With unprocessed speech, SRTs were 0.3 and -18.0 dB for the diotic and dichotic maskers, respectively. For the spectrally degraded speech with mild tonotopic mismatch and no interaural mismatch, SRTs were 5.6 and -2.0 dB for the diotic and dichotic maskers, respectively. When the tonotopic mismatch increased in both ears, SRTs worsened to 8.9 and 2.4 dB for the diotic and dichotic maskers, respectively. When the two ears had different tonotopic mismatch (e.g., there was interaural mismatch), the performance drop in SRTs was much larger for the dichotic than for the diotic masker. The largest SRM was observed with unprocessed speech (18.3 dB). With the CI simulations, SRM was significantly reduced to 7.6 dB even with mild tonotopic mismatch but no interaural mismatch; SRM was further reduced with increasing interaural mismatch. CONCLUSIONS The results demonstrate that frequency resolution, tonotopic mismatch, and interaural mismatch have differential effects on speech understanding and SRM in simulation of bilateral CIs. Minimizing interaural mismatch may be critical to optimize binaural benefits and improve CI performance for competing speech, a typical listening environment. SRM (the difference in SRTs between diotic and dichotic maskers) may be a useful clinical tool to assess interaural frequency mismatch in bilateral CI users and to evaluate the benefits of optimization methods that minimize interaural mismatch.
Collapse
Affiliation(s)
- Kevin Xu
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | |
Collapse
|
49
|
Sheffield SW, Goupell MJ, Spencer NJ, Stakhovskaya OA, Bernstein JGW. Binaural Optimization of Cochlear Implants: Discarding Frequency Content Without Sacrificing Head-Shadow Benefit. Ear Hear 2021; 41:576-590. [PMID: 31436754 PMCID: PMC7028504 DOI: 10.1097/aud.0000000000000784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Single-sided deafness cochlear-implant (SSD-CI) listeners and bilateral cochlear-implant (BI-CI) listeners gain near-normal levels of head-shadow benefit but limited binaural benefits. One possible reason for these limited binaural benefits is that cochlear places of stimulation tend to be mismatched between the ears. SSD-CI and BI-CI patients might benefit from a binaural fitting that reallocates frequencies to reduce interaural place mismatch. However, this approach could reduce monaural speech recognition and head-shadow benefit by excluding low- or high-frequency information from one ear. This study examined how much frequency information can be excluded from a CI signal in the poorer-hearing ear without reducing head-shadow benefits and how these outcomes are influenced by interaural asymmetry in monaural speech recognition. DESIGN Speech-recognition thresholds for sentences in speech-shaped noise were measured for 6 adult SSD-CI listeners, 12 BI-CI listeners, and 9 normal-hearing listeners presented with vocoder simulations. Stimuli were presented using nonindividualized in-the-ear or behind-the-ear head-related impulse-response simulations with speech presented from a 70° azimuth (poorer-hearing side) and noise from 70° (better-hearing side), thereby yielding a better signal-to-noise ratio (SNR) at the poorer-hearing ear. Head-shadow benefit was computed as the improvement in bilateral speech-recognition thresholds gained from enabling the CI in the poorer-hearing, better-SNR ear. High- or low-pass filtering was systematically applied to the head-related impulse-response-filtered stimuli presented to the poorer-hearing ear. For the SSD-CI listeners and SSD-vocoder simulations, only high-pass filtering was applied, because the CI frequency allocation would never need to be adjusted downward to frequency-match the ears. For the BI-CI listeners and BI-vocoder simulations, both low and high pass filtering were applied. The normal-hearing listeners were tested with two levels of performance to examine the effect of interaural asymmetry in monaural speech recognition (vocoder synthesis-filter slopes: 5 or 20 dB/octave). RESULTS Mean head-shadow benefit was smaller for the SSD-CI listeners (~7 dB) than for the BI-CI listeners (~14 dB). For SSD-CI listeners, frequencies <1236 Hz could be excluded; for BI-CI listeners, frequencies <886 or >3814 Hz could be excluded from the poorer-hearing ear without reducing head-shadow benefit. Bilateral performance showed greater immunity to filtering than monaural performance, with gradual changes in performance as a function of filter cutoff. Real and vocoder-simulated CI users with larger interaural asymmetry in monaural performance had less head-shadow benefit. CONCLUSIONS The "exclusion frequency" ranges that could be removed without diminishing head-shadow benefit are interpreted in terms of low importance in the speech intelligibility index and a small head-shadow magnitude at low frequencies. Although groups and individuals with greater performance asymmetry gained less head-shadow benefit, the magnitudes of these factors did not predict the exclusion frequency range. Overall, these data suggest that for many SSD-CI and BI-CI listeners, the frequency allocation for the poorer-ear CI can be shifted substantially without sacrificing head-shadow benefit, at least for energetic maskers. Considering the two ears together as a single system may allow greater flexibility in discarding redundant frequency content from a CI in one ear when considering bilateral programming solutions aimed at reducing interaural frequency mismatch.
Collapse
Affiliation(s)
- Sterling W. Sheffield
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | | | - Olga A. Stakhovskaya
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD USA
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD USA
| |
Collapse
|
50
|
Park LR, Dillon MT, Buss E, O'Connell BP, Brown KD. Spatial Release From Masking in Pediatric Cochlear Implant Recipients With Single-Sided Deafness. Am J Audiol 2021; 30:443-451. [PMID: 33769866 PMCID: PMC9522323 DOI: 10.1044/2020_aja-20-00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose Children with single-sided deafness (SSD) experience difficulty understanding speech in multisource listening situations. Case reports and retrospective studies have indicated that a cochlear implant (CI) may improve masked speech recognition in children with SSD. This prospective study was conducted to determine whether providing a CI to children with SSD supports spatial release from masking (SRM), an improvement in speech recognition associated with separating the target and masker sources. Method Twenty children with at least a moderate-to-profound hearing loss in one ear and normal hearing in the contralateral ear underwent cochlear implantation. The average age of implantation was 5.5 years (range: 3.5-12.7). After 12 months of CI use, subjects completed a sentence recognition task in multitalker masker with and without the CI. The target was presented from the front, and the masker was either colocated with the target (0°) or from the side (+90° or -90°). A two-way repeated-measures analysis of variance was completed to investigate SRM with and without the CI. Results Pediatric CI recipients experienced significant SRM when the masker was directed to the normal-hearing ear or to the affected ear. Conclusions The results indicate that cochlear implantation in children with SSD supports binaural skills required for speech recognition in noise. These results are consistent with improved functional communication in multisource environments, like classrooms.
Collapse
Affiliation(s)
- Lisa R. Park
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill
| | - Margaret T. Dillon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill
| | - Emily Buss
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill
| | - Brendan P. O'Connell
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill
| | - Kevin D. Brown
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill
| |
Collapse
|