1
|
Tougaard J. Behavioral reactions of harbor porpoises to impact pile driving noise are predicted by the auditory frequency weighted sound pressure level. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:1368-1377. [PMID: 39982768 DOI: 10.1121/10.0035916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Offshore impact pile driving is a major source of high level underwater noise that can disturb marine mammal behavior tens of kilometers away. Projects involving pile driving are therefore subject to environmental impact assessments, which include modelling of the spatial extent of the behavioral disturbance. Reliable predictions about behavioral reaction distances require robust estimates of the minimum received levels of noise above which animals are likely to respond. Studies of reactions of harbor porpoises to pile driving noise in the wild and playback in captivity were identified, and reaction thresholds were extracted. Thresholds were weighted with the auditory frequency weighting function for VHF-cetaceans, the functional hearing group to which porpoises belong. The thresholds derived from playback studies to animals in captivity could be frequency weighted directly, whereas thresholds from exposure to noise from actual pile driving activities were weighted via a range-dependent weighting factor. Seven studies of porpoise reactions provided a first estimate of a behavioral reaction threshold as a VHF-weighted received level (Lp,125 ms,VHF) in the range 95-115 dB re 1 μPa.
Collapse
Affiliation(s)
- Jakob Tougaard
- Department of Ecoscience, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
Stephens J, Accomando AW, Nease K, Branstetter BK, Robeck TR. Latencies of conditioned vocal responses to hearing test tones in killer whales ( Orcinus orca). Front Behav Neurosci 2025; 18:1495579. [PMID: 39975795 PMCID: PMC11836954 DOI: 10.3389/fnbeh.2024.1495579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/18/2024] [Indexed: 02/21/2025] Open
Abstract
Introduction Perceived loudness is challenging to study in non-human animals. However, reaction time to an acoustic stimulus is a useful behavioral proxy for the assessment of perceived loudness. Understanding the effect of sound frequency and level on perceived loudness would improve prediction and modeling of anthropogenic noise impacts on marine mammals. Methods In this study, behavioral hearing tests conducted with two killer whales were analyzed to capture conditioned vocal response latency, which is the time between the onset of the acoustic signal and the onset of the response (i.e., reaction time). Results The results showed that vocal reaction times decreased with increasing sensation level (i.e., sound pressure level above the baseline hearing threshold), while the effect of frequency on reaction time varied between the subjects. Reaction time as a function of sound duration is described, and equal-latency contours are presented. Discussion The data suggest that vocal reaction time decreases with increasing sensation level, therefore supporting the use of reaction time as a proxy for loudness perception in killer whales.
Collapse
Affiliation(s)
- Jared Stephens
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Alyssa W. Accomando
- National Marine Mammal Foundation, San Diego, CA, United States
- Naval Information Warfare Center Pacific, San Diego, CA, United States
| | - Kayla Nease
- National Marine Mammal Foundation, San Diego, CA, United States
- SeaWorld San Diego, San Diego, CA, United States
| | - Brian K. Branstetter
- National Marine Mammal Foundation, San Diego, CA, United States
- Naval Facilities Engineering Systems Command Pacific, Honolulu, HI, United States
| | | |
Collapse
|
3
|
Branstetter BK, Felice M, Robeck T, Holt MM, Henderson EE. Auditory masking of tonal and conspecific signals by continuous active sonar, amplitude modulated noise, and Gaussian noise in killer whales (Orcinus orca). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2527-2537. [PMID: 39400272 DOI: 10.1121/10.0028626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
Continuous active sonar is thought to mitigate severe acoustic impacts due to its lower sound pressure level compared to pulsed active sonar typically used by world navies. However, due to its almost continuous duty cycle, continuous active sonar could have a higher potential for auditory masking. Here, we evaluate the auditory masking potential of several noise types including a recording of continuous active sonar, amplitude modulated noise, and Gaussian noise, on signal detection in two killer whales. Signals were either a 1.5 kHz pure tone or a recording of a broadband burst-pulse killer whale call. For the 1.5 kHz tone, all noise types resulted in statistically significant masking, however, there was a release from masking of approximately 13 dB for the amplitude-modulated noise. When the killer whale call was the signal, the whales employed an off-frequency listening strategy where the whales were able to detect frequency components of the signal that did not directly overlap with the noise. However, this strategy was less useful for the continuous active sonar noise due to its broadband harmonic structure. Continuous active sonar has spectral features that considerably overlap with those of killer whale calls, making this type of noise an effective auditory masker.
Collapse
Affiliation(s)
- Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #204, San Diego, California 92106, USA
- Naval Facilities Engineering Systems Command Pacific, 528 Makalapa Drive Site 100, Honolulu, Hawaii 96860, USA
| | - Michael Felice
- SeaWorld San Diego, 500 SeaWorld Drive, San Diego, California 92109, USA
| | - Todd Robeck
- SeaWorld Parks and Entertainment, 7007 SeaWorld Drive, Orlando, Florida 21821, USA
| | - Marla M Holt
- National Oceanic and Atmospheric Administration, National Marine Fisheries Services, Northwest Fisheries Science Center, Conservation Biology Division, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
| | | |
Collapse
|
4
|
Tennessen JB, Holt MM, Wright BM, Hanson MB, Emmons CK, Giles DA, Hogan JT, Thornton SJ, Deecke VB. Males miss and females forgo: Auditory masking from vessel noise impairs foraging efficiency and success in killer whales. GLOBAL CHANGE BIOLOGY 2024; 30:e17490. [PMID: 39254237 DOI: 10.1111/gcb.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 09/11/2024]
Abstract
Understanding how the environment mediates an organism's ability to meet basic survival requirements is a fundamental goal of ecology. Vessel noise is a global threat to marine ecosystems and is increasing in intensity and spatiotemporal extent due to growth in shipping coupled with physical changes to ocean soundscapes from ocean warming and acidification. Odontocetes rely on biosonar to forage, yet determining the consequences of vessel noise on foraging has been limited by the challenges of observing underwater foraging outcomes and measuring noise levels received by individuals. To address these challenges, we leveraged a unique acoustic and movement dataset from 25 animal-borne biologging tags temporarily attached to individuals from two populations of fish-eating killer whales (Orcinus orca) in highly transited coastal waters to (1) test for the effects of vessel noise on foraging behaviors-searching (slow-click echolocation), pursuit (buzzes), and capture and (2) investigate the mechanism of interference. For every 1 dB increase in maximum noise level, there was a 4% increase in the odds of searching for prey by both sexes, a 58% decrease in the odds of pursuit by females and a 12.5% decrease in the odds of prey capture by both sexes. Moreover, all but one deep (≥75 m) foraging attempt with noise ≥110 dB re 1 μPa (15-45 kHz band; n = 6 dives by n = 4 whales) resulted in failed prey capture. These responses are consistent with an auditory masking mechanism. Our findings demonstrate the effects of vessel noise across multiple phases of odontocete foraging, underscoring the importance of managing anthropogenic inputs into soundscapes to achieve conservation objectives for acoustically sensitive species. While the timescales for recovering depleted prey species may span decades, these findings suggest that complementary actions to reduce ocean noise in the short term offer a critical pathway for recovering odontocete foraging opportunities.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, Washington, USA
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Brianna M Wright
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | | | | | - Sheila J Thornton
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| | - Volker B Deecke
- Institute of Science and Environment, University of Cumbria, Ambleside, Cumbria, UK
| |
Collapse
|
5
|
Abildtrup Nielsen N, Dawson SM, Torres Ortiz S, Wahlberg M, Martin MJ. Hector's dolphins (Cephalorhynchus hectori) produce both narrowband high-frequency and broadband acoustic signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1437-1450. [PMID: 38364047 DOI: 10.1121/10.0024820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Odontocetes produce clicks for echolocation and communication. Most odontocetes are thought to produce either broadband (BB) or narrowband high-frequency (NBHF) clicks. Here, we show that the click repertoire of Hector's dolphin (Cephalorhynchus hectori) comprises highly stereotypical NBHF clicks and far more variable broadband clicks, with some that are intermediate between these two categories. Both NBHF and broadband clicks were made in trains, buzzes, and burst-pulses. Most clicks within click trains were typical NBHF clicks, which had a median centroid frequency of 130.3 kHz (median -10 dB bandwidth = 29.8 kHz). Some, however, while having only marginally lower centroid frequency (median = 123.8 kHz), had significant energy below 100 kHz and approximately double the bandwidth (median -10 dB bandwidth = 69.8 kHz); we refer to these as broadband. Broadband clicks in buzzes and burst-pulses had lower median centroid frequencies (120.7 and 121.8 kHz, respectively) compared to NBHF buzzes and burst-pulses (129.5 and 130.3 kHz, respectively). Source levels of NBHF clicks, estimated by using a drone to measure ranges from a single hydrophone and by computing time-of-arrival differences at a vertical hydrophone array, ranged from 116 to 171 dB re 1 μPa at 1 m, whereas source levels of broadband clicks, obtained from array data only, ranged from 138 to 184 dB re 1 μPa at 1 m. Our findings challenge the grouping of toothed whales as either NBHF or broadband species.
Collapse
Affiliation(s)
- Nicoline Abildtrup Nielsen
- Marine Biological Research Center, Department of Biology, University of Southern Denmark, 5300 Kerteminde, Denmark
| | - Stephen M Dawson
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Sara Torres Ortiz
- Marine Biological Research Center, Department of Biology, University of Southern Denmark, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, Department of Biology, University of Southern Denmark, 5300 Kerteminde, Denmark
| | - Morgan J Martin
- Center for Marine Acoustics, Bureau of Ocean Energy Management, Sterling, Virginia 20166, USA
| |
Collapse
|
6
|
Branstetter BK, Nease K, Accomando AW, Davenport J, Felice M, Peters K, Robeck T. Temporal integration of tone signals by a killer whale (Orcinus orca). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3906-3915. [PMID: 38117126 DOI: 10.1121/10.0023956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
A psychophysical procedure was used to measure pure-tone detection thresholds for a killer whale (Orcinus orca) as a function of both signal frequency and signal duration. Frequencies ranged between 1 and 100 kHz and signal durations ranged from 50 μs to 2 s, depending on the frequency. Detection thresholds decreased with an increase in signal duration up to a critical duration, which represents the auditory integration time. Integration times ranged from 4 ms at 100 kHz and increased up to 241 ms at 1 kHz. The killer whale data are similar to other odontocete species that have participated in similar experiments. The results have implications for noise impact predictions for signals with durations less than the auditory integration time.
Collapse
Affiliation(s)
- Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #204, San Diego, California 92106, USA
- Naval Facilities Engineering Systems Command Pacific, 528 Makalapa Drive, Suite 100, Honolulu, Hawaii 96860, USA
| | - Kayla Nease
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #204, San Diego, California 92106, USA
- SeaWorld San Diego, 500 SeaWorld Drive, San Diego, California 92109, USA
| | - Alyssa W Accomando
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #204, San Diego, California 92106, USA
- Naval Information Warfare Center Pacific, 53560 Hull Street, San Diego, California 92152, USA
| | - Jennifer Davenport
- SeaWorld San Diego, 500 SeaWorld Drive, San Diego, California 92109, USA
| | - Michael Felice
- SeaWorld San Diego, 500 SeaWorld Drive, San Diego, California 92109, USA
| | - Ken Peters
- SeaWorld San Diego, 500 SeaWorld Drive, San Diego, California 92109, USA
| | - Todd Robeck
- SeaWorld Parks and Entertainment, 7007 SeaWorld Drive, Orlando, Florida 21821, USA
| |
Collapse
|
7
|
Winship KA, Jones BL. Acoustic Monitoring of Professionally Managed Marine Mammals for Health and Welfare Insights. Animals (Basel) 2023; 13:2124. [PMID: 37443922 DOI: 10.3390/ani13132124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Research evaluating marine mammal welfare and opportunities for advancements in the care of species housed in a professional facility have rapidly increased in the past decade. While topics, such as comfortable housing, adequate social opportunities, stimulating enrichment, and a high standard of medical care, have continued to receive attention from managers and scientists, there is a lack of established acoustic consideration for monitoring the welfare of these animals. Marine mammals rely on sound production and reception for navigation and communication. Regulations governing anthropogenic sound production in our oceans have been put in place by many countries around the world, largely based on the results of research with managed and trained animals, due to the potential negative impacts that unrestricted noise can have on marine mammals. However, there has not been an established best practice for the acoustic welfare monitoring of marine mammals in professional care. By monitoring animal hearing and vocal behavior, a more holistic view of animal welfare can be achieved through the early detection of anthropogenic sound sources, the acoustic behavior of the animals, and even the features of the calls. In this review, the practice of monitoring cetacean acoustic welfare through behavioral hearing tests and auditory evoked potentials (AEPs), passive acoustic monitoring, such as the Welfare Acoustic Monitoring System (WAMS), as well as ideas for using advanced technologies for utilizing vocal biomarkers of health are introduced and reviewed as opportunities for integration into marine mammal welfare plans.
Collapse
Affiliation(s)
- Kelley A Winship
- National Marine Mammal Foundation, 2240 Shelter Island Dr., Suite 200, San Diego, CA 92106, USA
| | - Brittany L Jones
- National Marine Mammal Foundation, 2240 Shelter Island Dr., Suite 200, San Diego, CA 92106, USA
| |
Collapse
|
8
|
Zhao L, Giorli G, Caruso F, Dong L, Gong Z, Lin M, Li S. Echolocation clicks of free-ranging Indo-Pacific finless porpoises (Neophocaena phocaenoides) in Hainan waters. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1934. [PMID: 37002078 DOI: 10.1121/10.0017655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/06/2023] [Indexed: 05/18/2023]
Abstract
The echolocation clicks of free-ranging Indo-Pacific finless porpoises (IPFPs, Neophocaena phocaenoides) have been rarely studied in the wild. This paper aims at describing the echolocation-click characteristics of IPFPs and examining whether IPFPs adapt their sonar system to the habitats in Hainan waters, China. The echolocation clicks were recorded using a 13 elements star-shaped array of hydrophones. A total of 65 on-axis clicks were identified and analyzed. IPFPs use echolocation clicks with a source level (SL) of 158 ± 9 dB re: 1 μPa peak-peak, mean peak, and centroid frequency of 134 ± 3 kHz, -3 dB bandwidth of 14 ± 2 kHz and produce at inter-click intervals of 104 ± 51 ms. The results relative to other porpoises show that finless porpoises in Hainan waters produce clicks with moderate SLs and high peak frequency. These results could be useful in detecting the presence and estimating the density of IPFPs during passive acoustic monitoring in the study area and serve to shed light on the interpopulation variation of click characteristics of finless porpoises as well.
Collapse
Affiliation(s)
- Likun Zhao
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, 572000, China
| | - Giacomo Giorli
- National Institute of Water and Atmospheric Research, Coasts and Oceans, 301 Evans Bay Parade, Greta Point, Wellington, 6021, New Zealand
| | - Francesco Caruso
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, 572000, China
| | - Lijun Dong
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, 572000, China
| | - Zining Gong
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, 572000, China
| | - Mingli Lin
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, 572000, China
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, 572000, China
| |
Collapse
|
9
|
Rabbitt RD, Bidone TC. A parametric blueprint for optimum cochlear outer hair cell design. J R Soc Interface 2023; 20:20220762. [PMID: 36789510 PMCID: PMC9929500 DOI: 10.1098/rsif.2022.0762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
The present work examines the hypothesis that cochlear outer hair cell (OHC) properties vary in precise proportions along the tonotopic map to optimize electromechanical power conversion. We tested this hypothesis using a very simple model of a single isolated OHC driving a mechanical load. Results identify three non-dimensional ratios that are predicted to optimize power conversion: the ratio of the resistive-capacitive (RC) corner to the characteristic frequency (CF), the ratio of nonlinear to linear capacitance and the ratio of OHC stiffness to cochlear load stiffness. Optimum efficiency requires all three ratios to be universal constants, independent of CF and species. The same ratios are cardinal control parameters that maximize power output by positioning the OHC operating point on the edge of a dynamic instability. Results support the hypothesis that OHC properties evolved to optimize electro-mechanical power conversion. Identification of the RC corner frequency as a control parameter reveals a powerful mechanism used by medial olivocochlear efferent system to control OHC power output. Results indicate the upper-frequency limit of OHC power output is not constrained by the speed of the motor itself but instead is probably limited by the size of the nucleus and membrane surface area available for ion-channel expression.
Collapse
Affiliation(s)
- Richard D. Rabbitt
- Biomedical Engineering, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Otolaryngology, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Neuroscience Program, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
| | - Tamara C. Bidone
- Biomedical Engineering, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Molecular Pharmaceutics, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Scientific Computing & Imaging Institute, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Jäckel D, Ortiz Troncoso A, Dähne M, Bölling C. The Animal Audiogram Database: A community-based resource for consolidated audiogram data and metadata. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1125. [PMID: 35232080 DOI: 10.1121/10.0009402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Knowledge of hearing ability, as represented in audiograms, is essential for understanding how animals acoustically perceive their environment, predicting and counteracting the effects of anthropogenic noise, and managing wildlife. Audiogram data and relevant background information are currently only available embedded in the text of individual scientific publications in various unstandardized formats. This heterogeneity makes it hard to access, compare, and integrate audiograms. The Animal Audiogram Database (https://animalaudiograms.org) assembles published audiogram data, metadata about the corresponding experiments, and links to the original publications in a consistent format. The database content is the result of an extensive survey of the scientific literature and manual curation of the audiometric data found therein. As of November 1, 2021, the database contains 306 audiogram datasets from 34 animal species. The scope and format of the provided metadata and design of the database interface were established by active research community involvement. Options to compare audiograms and download datasets in structured formats are provided. With the focus currently on vertebrates and hearing in underwater environments, the database is drafted as a free and open resource for facilitating the review and correction of the contained data and collaborative extension with audiogram data from any taxonomic group and habitat.
Collapse
Affiliation(s)
- Denise Jäckel
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, 10115, Germany
| | - Alvaro Ortiz Troncoso
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, 10115, Germany
| | - Michael Dähne
- Deutsches Meeresmuseum, Katharinenberg 14-20, Stralsund, 18439, Germany
| | - Christian Bölling
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, 10115, Germany
| |
Collapse
|
11
|
Wang ZT, Supin AY, Akamatsu T, Duan PX, Yang YN, Wang KX, Wang D. Auditory evoked potential in stranded melon-headed whales (Peponocephala electra): With severe hearing loss and possibly caused by anthropogenic noise pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113047. [PMID: 34861441 DOI: 10.1016/j.ecoenv.2021.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Highly concentrated live mass stranding events of dolphins and whales happened in the eastern coast of China between June and October 2021. The current study adopted the non-invasive auditory evoked-potential technique to investigate the hearing threshold of a stranded melon headed whale (Peponocephala electra) at a frequency range of between 9.5 and 181 kHz. It was found that, at the frequency range of from 10 to 100 kHz, hearing thresholds for the animal were between 20 and 65 dB higher than those of its phylogenetically closest species (Pygmy killer whale). The severe hearing loss in the melon headed whale was probably caused by transient intense anthropogenic sonar or chronic shipping noise exposures. The hearing loss could have been the cause for the observed temporal and spatial clustered stranding events. Therefore, there is need for noise mitigation strategies to reduce noise exposure levels for marine mammals in the coastal areas of China.
Collapse
Affiliation(s)
- Zhi-Tao Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Tomonari Akamatsu
- Ocean Policy Research Institute, the Sasakawa Peace Foundation, Tokyo, Japan
| | - Peng-Xiang Duan
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Yi-Ning Yang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Ke-Xiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China.
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China.
| |
Collapse
|
12
|
Martin MJ, Torres Ortiz S, Reyes Reyes MV, Marino A, Iñíguez Bessega M, Wahlberg M. Commerson’s dolphins (Cephalorhynchus commersonii) can relax acoustic crypsis. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03035-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Malinka CE, Tønnesen P, Dunn CA, Claridge DE, Gridley T, Elwen SH, Teglberg Madsen P. Echolocation click parameters and biosonar behaviour of the dwarf sperm whale ( Kogia sima). J Exp Biol 2021; 224:224/6/jeb240689. [PMID: 33771935 DOI: 10.1242/jeb.240689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Dwarf sperm whales (Kogia sima) are small toothed whales that produce narrow-band high-frequency (NBHF) echolocation clicks. Such NBHF clicks, subject to high levels of acoustic absorption, are usually produced by small, shallow-diving odontocetes, such as porpoises, in keeping with their short-range echolocation and fast click rates. Here, we sought to address the problem of how the little-studied and deep-diving Kogia can hunt with NBHF clicks in the deep sea. Specifically, we tested the hypotheses that Kogia produce NBHF clicks with longer inter-click intervals (ICIs), higher directionality and higher source levels (SLs) compared with other NBHF species. We did this by deploying an autonomous deep-water vertical hydrophone array in the Bahamas, where no other NBHF species are present, and by taking opportunistic recordings of a close-range Kogia sima in a South African harbour. Parameters from on-axis clicks (n=46) in the deep revealed very narrow-band clicks (root mean squared bandwidth, BWRMS, of 3±1 kHz), with SLs of up to 197 dB re. 1 µPa peak-to-peak (μPapp) at 1 m, and a half-power beamwidth of 8.8 deg. Their ICIs (mode of 245 ms) were much longer than those of porpoises (<100 ms), suggesting an inspection range that is longer than detection ranges of single prey, perhaps to facilitate auditory streaming of a complex echo scene. On-axis clicks in the shallow harbour (n=870) had ICIs and SLs in keeping with source parameters of other NBHF cetaceans. Thus, in the deep, dwarf sperm whales use a directional, but short-range echolocation system with moderate SLs, suggesting a reliable mesopelagic prey habitat.
Collapse
Affiliation(s)
- Chloe E Malinka
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Pernille Tønnesen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte A Dunn
- Bahamas Marine Mammal Research Organisation (BMMRO), Sandy Point, Abaco, Bahamas.,Sea Mammal Research Unit, University of St Andrews, St Andrews KY16 8LB, UK
| | - Diane E Claridge
- Bahamas Marine Mammal Research Organisation (BMMRO), Sandy Point, Abaco, Bahamas.,Sea Mammal Research Unit, University of St Andrews, St Andrews KY16 8LB, UK
| | - Tess Gridley
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7605, South Africa.,Sea Search Research and Conservation, Muizenberg, Cape Town 7945, South Africa
| | - Simon H Elwen
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7605, South Africa.,Sea Search Research and Conservation, Muizenberg, Cape Town 7945, South Africa
| | | |
Collapse
|
14
|
Rößler H, Tougaard J, Sabinsky PF, Rasmussen MH, Granquist SM, Wahlberg M. Are Icelandic harbor seals acoustically cryptic to avoid predation? JASA EXPRESS LETTERS 2021; 1:031201. [PMID: 36154560 DOI: 10.1121/10.0003782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Male harbor seals (Phoca vitulina) produce stereotypic underwater roars during the mating season. It remains unclear to what extent roar structures vary due to predation levels. Here, seal roars from waters with many (Iceland) and few (Denmark and Sweden) predators were compared. Most Icelandic roars included a long pulse train and a pause. Icelandic roars occurred less frequently, lasted longer (20.3 ± 6.5 s), and were recorded with lower received sound levels (98.3 ± 8.9 dB re 1 μPa root mean square) than roars from Denmark and Sweden. Local extrinsic factors may shape sound production in harbor seals more than previously reported.
Collapse
Affiliation(s)
- Helen Rößler
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jakob Tougaard
- Department for Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Puk F Sabinsky
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Marianne H Rasmussen
- University of Iceland Research Center in Húsavík, Hafnarstétt 3, 640 Húsavík, Iceland
| | - Sandra M Granquist
- Marine and Freshwater Research Institute, Fornubúðum 5, 220 Hafnarfjörður, Iceland , , , , ,
| | - Magnus Wahlberg
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
15
|
Above and below: Military Aircraft Noise in Air and under Water at Whidbey Island, Washington. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Military operations may result in noise impacts on surrounding communities and wildlife. A recent transition to more powerful military aircraft and a national consolidation of training operations to Whidbey Island, WA, USA, provided a unique opportunity to measure and assess both in-air and underwater noise associated with military aircraft. In-air noise levels (110 ± 4 dB re 20 µPa rms and 107 ± 5 dBA) exceeded known thresholds of behavioral and physiological impacts for humans, as well as terrestrial birds and mammals. Importantly, we demonstrate that the number and cumulative duration of daily overflights exceed those in a majority of studies that have evaluated impacts of noise from military aircraft worldwide. Using a hydrophone deployed near one runway, we also detected sound signatures of aircraft at a depth of 30 m below the sea surface, with noise levels (134 ± 3 dB re 1 µPa rms) exceeding thresholds known to trigger behavioral changes in fish, seabirds, and marine mammals, including Endangered Southern Resident killer whales. Our study highlights challenges and problems in evaluating the implications of increased noise pollution from military operations, and knowledge gaps that should be prioritized with respect to understanding impacts on people and sensitive wildlife.
Collapse
|
16
|
Kuroda M, Miki N, Matsuishi TF. Determinants of echolocation click frequency characteristics in small toothed whales: recent advances from anatomical information. Mamm Rev 2020. [DOI: 10.1111/mam.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mika Kuroda
- Faculty of Fisheries Sciences Hokkaido University 3‐1‐1 Minato‐cho Hakodate Hokkaido041‐8611Japan
| | - Nobuhiro Miki
- Future University Hakodate 116‐2 Kamedanakano‐cho Hakodate Hokkaido041‐8655Japan
| | - Takashi Fritz Matsuishi
- Faculty of Fisheries Sciences Hokkaido University 3‐1‐1 Minato‐cho Hakodate Hokkaido041‐8611Japan
| |
Collapse
|
17
|
Mooney TA, Smith A, Larsen ON, Hansen KA, Rasmussen M. A field study of auditory sensitivity of the Atlantic puffin, Fratercula arctica. J Exp Biol 2020; 223:jeb228270. [PMID: 32561627 DOI: 10.1242/jeb.228270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
Hearing is vital for birds as they rely on acoustic communication with parents, mates, chicks and conspecifics. Amphibious seabirds face many ecological pressures, having to sense cues in air and underwater. Natural noise conditions have helped shape this sensory modality but anthropogenic noise is increasingly impacting seabirds. Surprisingly little is known about their hearing, despite their imperiled status. Understanding sound sensitivity is vital when we seek to manage the impacts of man-made noise. We measured the auditory sensitivity of nine wild Atlantic puffins, Fratercula arctica, in a capture-and-release setting in an effort to define their audiogram and compare these data with the hearing of other birds and natural rookery noise. Auditory sensitivity was tested using auditory evoked potential (AEP) methods. Responses were detected from 0.5 to 6 kHz. Mean thresholds were below 40 dB re. 20 µPa from 0.75 to 3 kHz, indicating that these were the most sensitive auditory frequencies, similar to other seabirds. Thresholds in the 'middle' frequency range 1-2.5 kHz were often down to 10-20 dB re. 20 µPa. The lowest thresholds were typically at 2.5 kHz. These are the first in-air auditory sensitivity data from multiple wild-caught individuals of a deep-diving alcid seabird. The audiogram was comparable to that of other birds of similar size, thereby indicating that puffins have fully functioning aerial hearing despite the constraints of their deep-diving, amphibious lifestyles. There was some variation in thresholds, yet animals generally had sensitive ears, suggesting aerial hearing is an important sensory modality for this taxon.
Collapse
Affiliation(s)
- T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Adam Smith
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole Næsbye Larsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Marianne Rasmussen
- The University of Iceland's Research Center in Húsavík, 640 Húsavík, Iceland
| |
Collapse
|
18
|
Filatova OA. Independent acoustic variation of the higher- and lower-frequency components of biphonic calls can facilitate call recognition and social affiliation in killer whales. PLoS One 2020; 15:e0236749. [PMID: 32730308 PMCID: PMC7392277 DOI: 10.1371/journal.pone.0236749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/13/2020] [Indexed: 11/19/2022] Open
Abstract
Each resident-type (R-type) killer whale pod has a set of stereotyped calls that are culturally transmitted from mother to offspring. The functions of particular call types are not yet clearly understood, but it is believed that calls with two independently modulated frequency components (biphonic calls) play an important role in pod communication and cohesion at long ranges. In this study we examined the possible functions of biphonic calls in R-type killer whales. First, we tested the hypothesis that the additional component enhances the potential of a call to identify the family affiliation. We found that the similarity patterns of the lower- and higher frequency components across the families were largely unrelated. Calls were classified more accurately to their respective family when both lower- and higher-frequency components were considered. Second, we tested the long-range detectability of the lower- and higher-frequency components. After adjusting the received levels by the killer whale hearing sensitivity to different frequency ranges, the sensation level of the higher-frequency component was higher than the amplitude of the lower-frequency component. Our results suggest that the higher-frequency component of killer whale biphonic calls varies independently of the lower-frequency component, which enhances the efficiency of these calls as family markers. The acoustic variation of the higher-frequency component allows the recognition of family identity of a caller even if the shape of the lower-frequency component accidentally becomes similar in unrelated families. The higher-frequency component can also facilitate family recognition when the lower-frequency component is masked by low-frequency noise.
Collapse
Affiliation(s)
- Olga A. Filatova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
19
|
Evoked-potential audiogram variability in a group of wild Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:527-541. [PMID: 32448998 DOI: 10.1007/s00359-020-01426-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
Hearing is considered the primary sensory modality of cetaceans and enables their vital life functions. Information on the hearing sensitivity variability within a species obtained in a biologically relevant wild context is fundamental to evaluating potential noise impact and population-relevant management. Here, non-invasive auditory evoked-potential methods were adopted to describe the audiograms (11.2-152 kHz) of a group of four wild Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis) during a capture-and-release health assessment project in Poyang Lake, China. All audiograms presented a U shape, generally similar to those of other delphinids and phocoenids. The lowest auditory threshold (51-55 dB re 1 µPa) was identified at a test frequency of 76 kHz, which was higher than that observed in aquarium porpoises (54 kHz). The good hearing range (within 20 dB of the best hearing sensitivity) was from approximately 20 to 145 kHz, and the low- and high-frequency hearing cut-offs (threshold > 120 dB re l μPa) were 5.6 and 170 kHz, respectively. Compared with aquarium porpoises, wild porpoises have significantly better hearing sensitivity at 32 and 76 kHz and worse sensitivity at 54, 108 and 140 kHz. The audiograms of this group can provide a basis for better understanding the potential impact of anthropogenic noise.
Collapse
|
20
|
Houser DS, Mulsow J, Almunia J, Finneran JJ. Frequency-modulated up-chirp stimuli enhance the auditory brainstem response of the killer whale (Orcinus orca). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:289. [PMID: 31370605 DOI: 10.1121/1.5116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Previous studies suggested that frequency-modulated tonal stimuli where the frequency sweeps upward (up-chirps) may enhance auditory brainstem response (ABR) amplitudes in mammals. In this study, ABRs were measured in response to up-chirps in three killer whales (Orcinus orca) and compared to ABRs evoked by broadband clicks. Chirp durations ranged from 125 - 2000 μs. Chirp spectral content was either "uncompensated," meaning the spectrum paralleled the transmitting response of the piezoelectric transducer, or "compensated," where the spectral density level was flat (+/-4 dB) across the stimulus bandwidth (10 - 130 kHz). Compensated up-chirps consistently produced higher amplitude ABRs than uncompensated clicks with the same peak equivalent sound pressure level. ABR amplitude increased with up-chirp duration up to 1400 μs, although there was considerable variability between individuals. Results suggest that compensating stimuli for the response of transducers can have a dramatic effect on broadband ABRs, and that compensated up-chirps might be useful for testing whale species where large size makes far-field recording of ABRs at the skin surface difficult.
Collapse
Affiliation(s)
- Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - Javier Almunia
- Loro Parque Foundation, Puerto de la Cruz, 38400 Santa Cruz de Tenerife, Islas Canarias, Spain
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
21
|
Terhune J. The underwater vocal complexity of seals (Phocidae) is not related to their phylogeny. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Closely related mammalian species often make similar vocalizations, but this is not so with the underwater calls of the true seals. Some seal species have diverse underwater vocal repertoires, whereas others only make pulsed calls. Vocal complexity scores of underwater calls of 13 seal species were compared with their phylogeny and life-history traits. Waveform types, repertoire sizes, repetition and rhythm patterns, and frequency and duration measures (15 attributes, scaled 0 to 1) were summed to give a vocal complexity score. The lowest complexity group use low frequency, burst pulse or irregular waveforms and have small repertoires. The intermediate group have both sinusoidal and noisy waveforms, songs, and a single rhythm pattern in repeated element calls. The most complex group have large repertoires, sinusoidal and noisy waveforms, songs, and two or more rhythm patterns in repeated element calls. There is no evidence of a relationship between phylogeny and vocal complexity. The low vocal complexity species are serially monogamous, do not form breeding groups, breed on beaches or pack ice, and are subject to higher predation risk. Species with higher vocal complexity are promiscuous or polygamous, form breeding groups on pack or landfast ice, and have a lower predation risk.
Collapse
Affiliation(s)
- J.M. Terhune
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
22
|
Mooney TA, Smith A, Larsen ON, Hansen KA, Wahlberg M, Rasmussen MH. Field-based hearing measurements of two seabird species. J Exp Biol 2019; 222:222/4/jeb190710. [DOI: 10.1242/jeb.190710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Hearing is a primary sensory modality for birds. For seabirds, auditory data is challenging to obtain and hearing data are limited. Here, we present methods to measure seabird hearing in the field, using two Alcid species: the common murre Uria aalge and the Atlantic puffin Fratercula arctica. Tests were conducted in a portable semi-anechoic crate using physiological auditory evoked potential (AEP) methods. The crate and AEP system were easily transportable to northern Iceland field sites, where wild birds were caught, sedated, studied and released. The resulting data demonstrate the feasibility of a field-based application of an established neurophysiology method, acquiring high quality avian hearing data in a relatively quiet setting. Similar field methods could be applied to other seabirds, and other bird species, resulting in reliable hearing data from a large number of individuals with a modest field effort. The results will provide insights into the sound sensitivity of species facing acoustic habitat degradation.
Collapse
Affiliation(s)
- T. Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Adam Smith
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Ole Naesbye Larsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Magnus Wahlberg
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
23
|
Galatius A, Olsen MT, Steeman ME, Racicot RA, Bradshaw CD, Kyhn LA, Miller LA. Raising your voice: evolution of narrow-band high-frequency signals in toothed whales (Odontoceti). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anders Galatius
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Morten Tange Olsen
- Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen O, Denmark
| | | | - Rachel A Racicot
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, USA
| | - Catherine D Bradshaw
- School of Geographical Sciences, University of Bristol, Bristol, UK
- Met Office Hadley Centre, Exeter, UK
| | - Line A Kyhn
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Lee A Miller
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Coffinger S, Houser D, Finneran JJ, Mulsow J, Gentner TQ, Burkard R. Stimulus bandwidth impact on auditory evoked potential thresholds and estimated upper-frequency limits of hearing in dolphins. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:3575. [PMID: 30599667 DOI: 10.1121/1.5084043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The frequency range of hearing is important for assessing the potential impact of anthropogenic noise on marine mammals. Auditory evoked potentials (AEPs) are commonly used to assess toothed whale hearing, but measurement methods vary across researchers and laboratories. In particular, estimates of the upper-frequency limit of hearing (UFL) can vary due to interactions between the unintended spread of spectral energy to frequencies below the desired test frequency and a sharp decline in hearing sensitivity at frequencies near the UFL. To assess the impact of stimulus bandwidth on UFL measurement, AEP hearing tests were conducted in four bottlenose dolphins (Tursiops truncatus) with normal and impaired hearing ranges. Dolphins were tested at frequencies near the UFL and at a frequency 1/2-octave below the UFL, where hearing sensitivity was better (i.e., threshold was lower). Thresholds were measured using sinusoidal amplitude modulated (SAM) tones and tone-bursts of varying bandwidth. Measured thresholds varied inversely as a function of stimulus bandwidth near the UFL with narrow-band tone-bursts approximating thresholds measured using SAM tones. Bandwidth did not impact measured thresholds where hearing was more sensitive, highlighting how stimulus bandwidth and the rate of decline of hearing sensitivity interact to affect measured threshold near the UFL.
Collapse
Affiliation(s)
- Sean Coffinger
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Dorian Houser
- Department of Biologic and Bioacoustic Research, National Marine Mammal Foundation, 3131, 2240 Shelter Island Drive, San Diego, California 92106, USA
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- Department of Biologic and Bioacoustic Research, National Marine Mammal Foundation, 3131, 2240 Shelter Island Drive, San Diego, California 92106, USA
| | - Timothy Q Gentner
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Robert Burkard
- Department of Rehabilitation Science, University at Buffalo, 501 Kimball Tower, Buffalo, New York 14214, USA
| |
Collapse
|
25
|
Sørensen PM, Wisniewska DM, Jensen FH, Johnson M, Teilmann J, Madsen PT. Click communication in wild harbour porpoises (Phocoena phocoena). Sci Rep 2018; 8:9702. [PMID: 29946073 PMCID: PMC6018799 DOI: 10.1038/s41598-018-28022-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/13/2018] [Indexed: 11/09/2022] Open
Abstract
Social delphinids employ a vocal repertoire of clicks for echolocation and whistles for communication. Conversely, the less social and acoustically cryptic harbour porpoises (Phocoena phocoena) only produce narrow-band high-frequency (NBHF) clicks with properties that appear poorly suited for communication. Nevertheless, these small odontocetes likely mediate social interactions, such as mate choice and mother-calf contact, with sound. Here, we deployed six tags (DTAG3) on wild porpoises in Danish waters for a total of 96 hours to investigate if the patterns and use of stereotyped NBHF click trains are consistent with a communication function. We show that wild porpoises produce frequent (up to 27 • min-1), high-repetition rate click series with repetition rates and output levels different from those of foraging buzzes. These sounds are produced in bouts and frequently co-occur with emission of similar sounds by nearby conspecifics, audible on the tags for >10% of the time. These results suggest that social interactions are more important to this species than their limited social encounters at the surface may indicate and that these interactions are mediated by at least two broad categories of calls composed of short, high-repetition rate click trains that may encode information via the repetition rate of their stereotyped NBHF clicks.
Collapse
Affiliation(s)
- P M Sørensen
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Moellers Allé 3, DK-8000, Aarhus C, Denmark.
| | - D M Wisniewska
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Moellers Allé 3, DK-8000, Aarhus C, Denmark.,Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA
| | - F H Jensen
- Aarhus Institute of Advanced Studies, Aarhus University, DK, Høegh-Guldbergs Gade 6b, 8000, Aarhus C, Denmark
| | - M Johnson
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Moellers Allé 3, DK-8000, Aarhus C, Denmark.,Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife, KY16 8LB, United Kingdom
| | - J Teilmann
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - P T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Moellers Allé 3, DK-8000, Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, DK, Høegh-Guldbergs Gade 6b, 8000, Aarhus C, Denmark
| |
Collapse
|
26
|
Mooney TA, Castellote M, Quakenbush L, Hobbs R, Gaglione E, Goertz C. Variation in hearing within a wild population of beluga whales (Delphinapterus leucas). J Exp Biol 2018; 221:221/9/jeb171959. [DOI: 10.1242/jeb.171959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
ABSTRACT
Documenting hearing abilities is vital to understanding a species’ acoustic ecology and for predicting the impacts of increasing anthropogenic noise. Cetaceans use sound for essential biological functions such as foraging, navigation and communication; hearing is considered to be their primary sensory modality. Yet, we know little regarding the hearing of most, if not all, cetacean populations, which limits our understanding of their sensory ecology, population level variability and the potential impacts of increasing anthropogenic noise. We obtained audiograms (5.6–150 kHz) of 26 wild beluga whales to measure hearing thresholds during capture–release events in Bristol Bay, AK, USA, using auditory evoked potential methods. The goal was to establish the baseline population audiogram, incidences of hearing loss and general variability in wild beluga whales. In general, belugas showed sensitive hearing with low thresholds (<80 dB) from 16 to 100 kHz, and most individuals (76%) responded to at least 120 kHz. Despite belugas often showing sensitive hearing, thresholds were usually above or approached the low ambient noise levels measured in the area, suggesting that a quiet environment may be associated with hearing sensitivity and that hearing thresholds in the most sensitive animals may have been masked. Although this is just one wild population, the success of the method suggests that it should be applied to other populations and species to better assess potential differences. Bristol Bay beluga audiograms showed substantial (30–70 dB) variation among individuals; this variation increased at higher frequencies. Differences among individual belugas reflect that testing multiple individuals of a population is necessary to best describe maximum sensitivity and population variance. The results of this study quadruple the number of individual beluga whales for which audiograms have been conducted and provide the first auditory data for a population of healthy wild odontocetes.
Collapse
Affiliation(s)
- T. Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Manuel Castellote
- Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA 98105, USA
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98115, USA
| | - Lori Quakenbush
- Alaska Department of Fish and Game, Fairbanks, AK 99701, USA
| | - Roderick Hobbs
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98115, USA
| | | | | |
Collapse
|
27
|
Heffner HE, Heffner RS. Comments on "Killer whale (Orcinus orca) behavioral audiograms" [J. Acoust. Soc. Am. 141, 2387-2398 (2017)]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:500. [PMID: 29390732 DOI: 10.1121/1.5021771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Branstetter and his colleagues present the audiograms of eight killer whales and provide a comprehensive review of previous killer whale audiograms. In their paper, they say that the present authors have reported a relationship between size and high-frequency hearing but that echolocating cetaceans might be a special case. The purpose of these comments is to clarify that the relationship of a species' high-frequency hearing is not to its size (mass) but to its "functional interaural distance" (a measure of the availability of sound-localization cues). Moreover, it has previously been noted that echolocating animals, cetaceans as well as bats, have extended their high-frequency hearing somewhat beyond the frequencies used by comparable non-echolocators for passive localization.
Collapse
Affiliation(s)
- Henry E Heffner
- Department of Psychology, University of Toledo, Toledo, Ohio 43606, USA
| | - Rickye S Heffner
- Department of Psychology, University of Toledo, Toledo, Ohio 43606, USA
| |
Collapse
|
28
|
Branstetter BK, Van Alstyne KR, Wu TA, Simmons RA, Curtis LD, Xitco MJ. Composite critical ratio functions for odontocete cetaceans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1897. [PMID: 29092597 DOI: 10.1121/1.5006186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Critical ratios (CRs) are useful for estimating detection thresholds of tonal signals when the spectral density of noise is known. In cetaceans, CRs have only been measured for a few animals representing four odontocete species. These data are sparse, particularly for lower frequencies where anthropogenic noise is concentrated. There is currently no systematic method for implementing CR predictions (e.g., a composite frequency-dependent CR function). The current study measures CRs for two bottlenose dolphins (Tursiops truncatus) and estimates composite CR functions. The composite models can aid in predicting and extrapolating auditory masking for a broad range of frequencies.
Collapse
Affiliation(s)
- Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - Kaitlin R Van Alstyne
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - Teri A Wu
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - Rachel A Simmons
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - Lara D Curtis
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - Mark J Xitco
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 715, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
29
|
Holt MM, Hanson MB, Giles DA, Emmons CK, Hogan JT. Noise levels received by endangered killer whales Orcinus orca before and after implementation of vessel regulations. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|