1
|
Taggi V, Schäfer AM, Seibert I, Meyer zu Schwabedissen HE. St. John's Wort Extract Increases Pgp Expression in the Brain but Not in the Small Intestine or the Liver of Wistar Rats. Pharmacol Res Perspect 2025; 13:e70111. [PMID: 40325522 PMCID: PMC12052523 DOI: 10.1002/prp2.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/31/2025] [Accepted: 04/20/2025] [Indexed: 05/07/2025] Open
Abstract
St John's Wort (SJW), commonly used to treat mild depression, is known to pose a risk of drug-herb interactions through hyperforin-mediated activation of the pregnane X receptor (PXR). This induces transcription and expression of PXR target genes, including the efflux transporter P-glycoprotein (Pgp). While the activation of human PXR by the SJW constituent hyperforin is well established, there are contradictory findings on rodent PXR target genes. This study aimed to further investigate SJW effects on Pgp expression in rats. Male Wistar rats were treated for 10 days with the two commercial SJW formulations, Hyperiplant and Rebalance, which differ in their hyperforin content. Quantitative real-time PCR, western blot analysis, and immunohistochemical staining were applied to test for Pgp mRNA expression and protein abundance in the small intestine (jejunum), liver, and brain (cerebrum). Treatment with the hyperforin-rich Hyperiplant increased protein levels in the brain. However, it did not affect mRNA levels. Besides, there was no impact on Pgp protein abundance in the small intestine or the liver. The hyperforin-poor formulation Rebalance did not affect Pgp expression in any of the investigated tissues. Taken together, our results show that there is a modulation of brain Pgp protein abundance in Hyperiplant-treated animals. As such, we conclude that the inducing effect is governed by a so far unknown regulatory mechanism that most likely does not affect transcription of the transporter.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Anima M. Schäfer
- Biopharmacy, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | | |
Collapse
|
2
|
Rox K, Kühne A, Herrmann J, Jansen R, Hüttel S, Bernecker S, Hagos Y, Brönstrup M, Stadler M, Hesterkamp T, Müller R. Interaction of the Atypical Tetracyclines Chelocardin and Amidochelocardin with Renal Drug Transporters. ACS Pharmacol Transl Sci 2024; 7:2093-2109. [PMID: 39022358 PMCID: PMC11249637 DOI: 10.1021/acsptsci.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Antimicrobial resistance is expected to increase mortality rates by up to several million deaths per year by 2050 without new treatment options at hand. Recently, we characterized the pharmacokinetic (PK) and pharmacodynamic properties of two atypical tetracyclines, chelocardin (CHD) and amidochelocardin (CDCHD) that exhibit no cross-resistance with clinically used antibacterials. Both compounds were preferentially renally cleared and demonstrated pronounced effects in an ascending urinary tract infection model against E. coli. Renal drug transporters are known to influence clearance into the urine. In particular, inhibition of apical transporters in renal tubular epithelial cells can lead to intracellular accumulation and potential cell toxicity, whereas inhibition of basolateral transporters can cause a higher systemic exposure. Here, selected murine and human organic cation (Oct), organic anion (Oat), and efflux transporters were studied to elucidate interactions with CHD and CDCHD underlying their PK behavior. CHD exhibited stronger inhibitory effects on mOat1 and mOat3 and their human homologues hOAT1 and hOAT3 compared to CDCHD. While CHD was a substrate of mOat3 and mOct1, CDCHD was not. By contrast, no inhibitory effect was observed on Octs. CDCHD rather appeared to foster enhanced substrate transport on mOct1. CHD and CDCHD inhibited the efflux transporter hMRP2 on the apical side. In summary, the substrate nature of CHD in conjunction with its autoinhibition toward mOat3 rationalizes the distinct urine concentration profile compared to CDCHD that was previously observed in vivo. Further studies are needed to investigate the accumulation in renal tubular cells and the nephrotoxicity risk.
Collapse
Affiliation(s)
- Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Annett Kühne
- PortaCellTec
Biosciences GmbH, 37079 Göttingen, Germany
| | - Jennifer Herrmann
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Natural Products, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Department of Pharmacy, Saarland
University, 66123 Saarbrücken, Germany
| | - Rolf Jansen
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Stephan Hüttel
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Steffen Bernecker
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | | | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Marc Stadler
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Thomas Hesterkamp
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Translational
Product Management Office, German Center
for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Rolf Müller
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Natural Products, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Department of Pharmacy, Saarland
University, 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Lévi FA, Okyar A, Hadadi E, Innominato PF, Ballesta A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol 2024; 64:89-114. [PMID: 37722720 DOI: 10.1146/annurev-pharmtox-051920-095416] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.
Collapse
Affiliation(s)
- Francis A Lévi
- Chronotherapy, Cancers and Transplantation Research Unit, Faculty of Medicine, Paris-Saclay University, Villejuif, France;
- Gastrointestinal and General Oncology Service, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alper Okyar
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Beyazit-Istanbul, Turkey
| | - Eva Hadadi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Myeloid Cell Immunology, Center for Inflammation Research VIB, Zwijnaarde, Belgium
| | - Pasquale F Innominato
- Oncology Department, Ysbyty Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Warwick Medical School and Cancer Research Centre, University of Warwick, Coventry, United Kingdom
| | - Annabelle Ballesta
- Inserm Unit 900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech CBIO-Centre for Computational Biology, PSL Research University, Saint-Cloud, France
| |
Collapse
|
4
|
Li X, Liang Q, Wang C, Qiu H, Lin T, Li W, Zhang R, Liu Z, Zhu L. Role of P-glycoprotein in Regulating the Efficacy, Toxicity and Pharmacokinetics of Yunaconitine. Curr Drug Metab 2024; 25:317-329. [PMID: 39108114 DOI: 10.2174/0113892002302427240801072910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Yunaconitine (YAC) is a hidden toxin that greatly threatens the life safety of patients who are prescribed herbal medicines containing Aconitum species; however, its underlying mechanism remains unclear. OBJECTIVE The objective of this study is to elucidate the functions of P-glycoprotein (P-gp) in regulating the efficacy, toxicity, and pharmacokinetics of YAC. METHODS The efflux function of P-gp on YAC was explored by using Caco-2 monolayers in combination with the P-gp inhibitor verapamil. The impact of P-gp on regulating the analgesic and anti-inflammatory effects, acute toxicity, tissue distribution, and pharmacokinetics of YAC was determined via male Mdr1a gene knocked-out mice and wild-type FVB mice. RESULTS The presence of verapamil significantly decreased the efflux ratio of YAC from 20.41 to 1.07 in Caco- 2 monolayers (P < 0.05). Moreover, oral administration of 0.07 and 0.14 mg/kg YAC resulted in a notable decrease in writhing times in Mdr1a-/- mice by 23.53% and 49.27%, respectively, compared to wild-type FVB mice (P < 0.05). Additionally, the deficiency of P-gp remarkably decreased the half-lethal dose (LD50) of YAC from 2.13 to 0.24 mg/kg (P < 0.05). Moreover, the concentrations of YAC in the tissues of Mdr1a-/- mice were statistically higher than those in wild-type FVB mice (P < 0.05). Particularly, the brain accumulation of YAC in Mdr1a-/- mice significantly increased by 12- and 19-fold, respectively, after oral administration for 30 and 120 min, when compared to wild-type FVB mice (P < 0.05). There were no significant differences in the pharmacokinetic characteristics of YAC between Mdr1a-/- and wild-type FVB mice. CONCLUSION YAC is a sensitive substrate of P-gp. The absence of P-gp enhances the analgesic effect and toxicity of YAC by upregulating its brain accumulation. Co-administration with a P-gp inhibitor may lead to severe YAC poisoning.
Collapse
Affiliation(s)
- Xiaocui Li
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi Liang
- Department of Pharmacy, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518133, China
| | - Caiyan Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huawei Qiu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tingting Lin
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wentao Li
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lijun Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
5
|
Sun A, Wang J. Functional Evaluation of P-gp and Bcrp at the Murine Blood-Cerebrospinal Fluid Barrier. Pharm Res 2023; 40:2667-2675. [PMID: 37704894 PMCID: PMC11785364 DOI: 10.1007/s11095-023-03598-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE The brain is protected from circulating metabolites and xenobiotics by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Previous studies report that P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) are expressed apically or subapically at the blood-CSF barrier (BCSFB), implying a paradoxical function to mediate blood-to-CSF transport of xenobiotics. As evidence of P-gp and Bcrp activity at the BCSFB is limited, the goal of this study is to investigate functional activity of P-gp and Bcrp at the murine BCSFB using a live tissue imaging approach. METHODS The choroid plexuses (CP) forming the BCSFB were freshly isolated from mouse brain ventricles and incubated with fluorescent probes calcein-AM and BODIPY FL-Prazosin. Using quantitative fluorescence microscopy, the functional contributions of Bcrp and P-gp were examined using inhibitors and mice with targeted deletion of the Abcb1a/b or Abcg2 gene. RESULTS Apical transport of calcein-AM in choroid plexus epithelial (CPE) cells is sensitive to inhibition by elacridar and Ko143 but is unaffected by P-gp deletion. In wild-type mice, elacridar increased CPE accumulation of BODIPY FL-Prazosin by 220% whereas deletion of Bcrp increased BODIPY FL-Prazosin accumulation by 43%. There was no change in Mdr1a/1b mRNA expression in CP tissues from the Bcrp-/- mice. CONCLUSIONS This study demonstrated functional activity of Bcrp at the BCSFB apical membrane and provided evidence supporting an additional contribution by P-gp. These findings contribute to the understanding of transport mechanisms that regulate CSF drug concentrations, which may benefit future predictions of CNS drug disposition, efficacy, and toxicity.
Collapse
Affiliation(s)
- Austin Sun
- Department of Pharmaceutics, University of Washington, H272 Health Sciences Building, Seattle, WA, 98195-7610, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, H272 Health Sciences Building, Seattle, WA, 98195-7610, USA.
| |
Collapse
|
6
|
Mineiro R, Santos C, Gonçalves I, Lemos M, Cavaco JEB, Quintela T. Regulation of ABC transporters by sex steroids may explain differences in drug resistance between sexes. J Physiol Biochem 2023:10.1007/s13105-023-00957-1. [PMID: 36995571 DOI: 10.1007/s13105-023-00957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Manuel Lemos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - José Eduardo B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação Para o Desenvolvimento Do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
7
|
Kojima M, Degawa M. Sex, Organ, and Breed Differences in the mRNA Expression of Drug Transporters in the Liver and Kidney of Pigs. Biol Pharm Bull 2022; 45:508-516. [DOI: 10.1248/bpb.b21-01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Misaki Kojima
- Meat Animal Biosystem Group, Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO)
| | - Masakuni Degawa
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
8
|
Guerrero Camacho JL, Corona Vázquez T, Flores Rivera JJ, Ochoa Morales A, Martínez Ruano L, Torres Ramírez de Arellano I, Dávila Ortiz de Montellano DJ, Jara Prado A. ABCB1 gene variants as risk factors and modulators of age of onset of demyelinating disease in Mexican patients. NEUROLOGÍA (ENGLISH EDITION) 2022; 38:65-74. [PMID: 35256320 DOI: 10.1016/j.nrleng.2020.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The C1236T, G2677T/A, and C3435T variants of the ABCB1 gene alter the functioning of P-glycoprotein and the transport of endogenous and exogenous substances across the blood-brain barrier, and act as risk factors for some neurodegenerative diseases. This study aimed to determine the association between demyelinating disease and the C1236T, G2677T/A, and C3435T variants of ABCB1 and its haplotypes and combinations of genotypes. METHODS Polymerase chain reaction with restriction fragment length polymorphism analysis (PCR-RFLP) and Sanger sequencing were used to genotype 199 patients with demyelinating disease and 200 controls, all Mexicans of mixed race; frequencies of alleles, genotypes, haplotypes, and genotype combinations were compared between patients and controls. We conducted a logistic regression analysis and calculated chi-square values and 95% confidence intervals (CI); odds ratios (OR) were calculated to evaluate the association with demyelinating disease. RESULTS The TTT and CGC haplotypes were most frequent in both patients and controls. The G2677 allele was associated with demyelinating disease (OR: 1.79; 95% CI, 1.12-2.86; P = .015), as were the genotypes GG2677 (OR: 2.72; 95% CI, 1.11-6.68; P = .025) and CC3435 (OR: 1.82; 95% CI, 1.15-2.90; P = .010), the combination GG2677/CC3435 (OR: 2.02; 95% CI, 1.17-3.48; P = .010), and the CAT haplotype (OR: 0.21; 95% CI, 0.05-0.66; P = .001). TTTTTT carriers presented the earliest age of onset (23.0 ± 7.7 years, vs 31.6 ± 10.7; P = .0001). CONCLUSIONS The GG2677/CC3435 genotype combination is associated with demyelinating disease in this sample, particularly among men, who may present toxic accumulation of P-glycoprotein substrates. In our study, the G2677 allele of ABCB1 may differentially modulate age of onset of demyelinating disease in men and women.
Collapse
Affiliation(s)
- J L Guerrero Camacho
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - T Corona Vázquez
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - J J Flores Rivera
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - A Ochoa Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - L Martínez Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - I Torres Ramírez de Arellano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - D J Dávila Ortiz de Montellano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - A Jara Prado
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Ruohonen ST, Gaytan F, Usseglio Gaudi A, Velasco I, Kukoricza K, Perdices-Lopez C, Franssen D, Guler I, Mehmood A, Elo LL, Ohlsson C, Poutanen M, Tena-Sempere M. Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure. Hum Reprod 2022; 37:806-821. [PMID: 35037941 PMCID: PMC8971646 DOI: 10.1093/humrep/deab287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does direct kisspeptin signaling in the oocyte have a role in the control of follicular dynamics and ovulation? SUMMARY ANSWER Kisspeptin signaling in the oocyte plays a relevant physiological role in the direct control of ovulation; oocyte-specific ablation of kisspeptin receptor, Gpr54, induces a state of premature ovulatory failure in mice that recapitulates some features of premature ovarian insufficiency (POI). WHAT IS KNOWN ALREADY Kisspeptins, encoded by the Kiss1 gene, are essential for the control of ovulation and fertility, acting primarily on hypothalamic GnRH neurons to stimulate gonadotropin secretion. However, kisspeptins and their receptor, Gpr54, are also expressed in the ovary of different mammalian species, including humans, where their physiological roles remain contentious and poorly characterized. STUDY DESIGN, SIZE, DURATION A novel mouse line with conditional ablation of Gpr54 in oocytes, named OoGpr54−/−, was generated and studied in terms of follicular and ovulatory dynamics at different age-points of postnatal maturation. A total of 59 OoGpr54−/− mice and 47 corresponding controls were analyzed. In addition, direct RNA sequencing was applied to ovarian samples from 8 OoGpr54−/− and 7 control mice at 6 months of age, and gonadotropin priming for ovulatory induction was conducted in mice (N = 7) from both genotypes. PARTICIPANTS/MATERIALS, SETTING, METHODS Oocyte-selective ablation of Gpr54 in the oocyte was achieved in vivo by crossing a Gdf9-driven Cre-expressing transgenic mouse line with a Gpr54 LoxP mouse line. The resulting OoGpr54−/− mouse line was subjected to phenotypic, histological, hormonal and molecular analyses at different age-points of postnatal maturation (Day 45, and 2, 4, 6 and 10–11 months of age), in order to characterize the timing of puberty, ovarian follicular dynamics and ovulation, with particular attention to identification of features reminiscent of POI. The molecular signature of ovaries from OoGpr54−/− mice was defined by direct RNA sequencing. Ovulatory responses to gonadotropin priming were also assessed in OoGpr54−/− mice. MAIN RESULTS AND THE ROLE OF CHANCE Oocyte-specific ablation of Gpr54 caused premature ovulatory failure, with some POI-like features. OoGpr54−/− mice had preserved puberty onset, without signs of hypogonadism. However, already at 2 months of age, 40% of OoGpr54−/− females showed histological features reminiscent of ovarian failure and anovulation. Penetrance of the phenotype progressed with age, with >80% and 100% of OoGpr54−/− females displaying complete ovulatory failure by 6- and 10 months, respectively. This occurred despite unaltered hypothalamic Gpr54 expression and gonadotropin levels. Yet, OoGpr54−/− mice had decreased sex steroid levels. While the RNA signature of OoGpr54−/− ovaries was dominated by the anovulatory state, oocyte-specific ablation of Gpr54 significantly up- or downregulated of a set of 21 genes, including those encoding pituitary adenylate cyclase-activating polypeptide, Wnt-10B, matrix-metalloprotease-12, vitamin A-related factors and calcium-activated chloride channel-2, which might contribute to the POI-like state. Notably, the anovulatory state of young OoGpr54−/− mice could be rescued by gonadotropin priming. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Conditional ablation of Gpr54 in oocytes unambiguously caused premature ovulatory failure in mice; yet, the ultimate molecular mechanisms for such state of POI can be only inferred on the basis of RNAseq data and need further elucidation, since some of the molecular changes observed in OoGpr54−/− ovaries were secondary to the anovulatory state. Direct translation of mouse findings to human disease should be made with caution since, despite the conserved expression of Kiss1/kisspeptin and Gpr54 in rodents and humans, our mouse model does not recapitulate all features of common forms of POI. WIDER IMPLICATIONS OF THE FINDINGS Deregulation of kisspeptin signaling in the oocyte might be an underlying, and previously unnoticed, cause for some forms of POI in women. STUDY FUNDING/COMPETING INTEREST(S) This work was primarily supported by a grant to M.P. and M.T.-S. from the FiDiPro (Finnish Distinguished Professor) Program of the Academy of Finland. Additional financial support came from grant BFU2017-83934-P (M.T.-S.; Ministerio de Economía y Competitividad, Spain; co-funded with EU funds/FEDER Program), research funds from the IVIRMA International Award in Reproductive Medicine (M.T.-S.), and EFSD Albert Renold Fellowship Programme (S.T.R.). The authors have no conflicts of interest to declare in relation to the contents of this work. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland
| | - Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Andrea Usseglio Gaudi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Inmaculada Velasco
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Krisztina Kukoricza
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Cecilia Perdices-Lopez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Delphine Franssen
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Ipek Guler
- Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Arfa Mehmood
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Tena-Sempere
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
10
|
Bello F, Orozco E, Benítez-Cardoza CG, Zamorano-Carrillo A, Reyes-López CA, Pérez-Ishiwara DG, Gómez-García C. The novel EhHSTF7 transcription factor displays an oligomer state and recognizes a heat shock element in the Entamoeba histolytica parasite. Microb Pathog 2021; 162:105349. [PMID: 34864144 DOI: 10.1016/j.micpath.2021.105349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response is a conserved mechanism that allows cells to respond and survive stress damage and is transcriptionally regulated by the heat shock factors and heat shock elements. The P-glycoprotein confer the multidrug resistance phenotype; Entamoeba histolytica has the largest multidrug resistance gene family described so far; one of these genes, the EhPgp5 gene, has an emetine-inducible expression. A functional heat shock element was localized in the EhPgp5 gene promoter, indicating transcriptional regulation by heat shock factors. In this work, we determined the oligomer state of EhHSTF7 and the recognition of the heat shock element of the EhPgp5 gene. The EhHSTF7 recombinant protein was obtained as monomer and oligomer. In silico molecular docking predicts protein-DNA binding between EhHSTF7 and 5'-GAA-3' complementary bases. The rEhHSTF7 protein specifically binds to the heat shock element of the EhPgp5 gene in gel shift assays. The competition assays with heat shock element mutants indicate that 5'-GAA-3' complementary bases are necessary for the rEhHSTF7 binding. Finally, the siRNA-mediated knockdown of Ehhstf7 expression causes downregulation of EhPgp5 expression, suggesting that EhHSTF7 is likely to play a key role in the E. histolytica multidrug resistance. This is the first report of a transcription factor that recognizes a heat shock element from a gene involved in drug resistance in parasites. However, further analysis needs to demonstrate the biological relevance of the EhHSTF7 and the rest of the heat shock factors of E. histolytica, to understand the underlying regulation of transcriptional control in response to stress.
Collapse
Affiliation(s)
- Fabiola Bello
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Claudia G Benítez-Cardoza
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Absalom Zamorano-Carrillo
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - César A Reyes-López
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - D Guillermo Pérez-Ishiwara
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Consuelo Gómez-García
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico.
| |
Collapse
|
11
|
Gilmore JC, Zhang G, Cameron DW, Serghides L, Bendayan R. Impact of in-utero antiretroviral drug exposure on expression of membrane-associated transporters in mouse placenta and fetal brain. AIDS 2021; 35:2249-2258. [PMID: 34175869 DOI: 10.1097/qad.0000000000003009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although antiretroviral therapy (ART) during pregnancy is effective in limiting vertical HIV transmission, adverse outcomes persist amongst uninfected children exposed to antiretroviral drugs in utero. Membrane-associated drug transporters, metabolic enzymes, and tight junction proteins play important roles in adult antiretroviral drug disposition and toxicity; however, the fetal expression of these proteins in the context of ART, and their impact on in-utero antiretroviral drug distribution remain poorly understood. This study aimed to characterize the role of these proteins in modulating in-utero antiretroviral drug exposure. METHODS Pregnant mice were exposed to an ART regimen consisting of lamivudine, abacavir, atazanavir, and ritonavir, at clinically relevant doses. Fetal brain, liver, placenta amniotic fluid, and maternal plasma were collected on gestational day 18.5 and concentration of antiretroviral drugs in fetal tissues was measured by LC/MS/MS, whereas transporter expression was assessed by qPCR. RESULTS Abacavir and lamivudine were detected in fetal brain and amniotic fluid, whereas atazanavir and ritonavir were detected in amniotic fluid only. Robust mRNA expression of key transporters was observed in adult and fetal tissues, and sex differences were identified in the expression of Abcc1 and Slc29a1 in the placenta. Antiretroviral drug exposure was associated with a reduction in relative placental Abcg2, Abcc1, and Slc29a1 expression. CONCLUSION These findings identify a novel effect of fetal sex and antiretroviral drug treatment on the expression of placental transporters in a mouse model, and characterize the penetration of lamivudine and abacavir into fetal brain, uncovering a potential role of transporters in modulating fetal exposure to antiretroviral drugs.
Collapse
Affiliation(s)
- Julian C Gilmore
- Department of Pharmaceutical Sciences, University of Toronto, Toronto
| | - Guijun Zhang
- Clinical Investigation Unit, University of Ottawa at the Ottawa Hospital/Research Institute, Ottawa
| | - D William Cameron
- Clinical Investigation Unit, University of Ottawa at the Ottawa Hospital/Research Institute, Ottawa
| | - Lena Serghides
- Department of Immunology and Institute of Medical Sciences, University of Toronto
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto
| |
Collapse
|
12
|
Nilsson Å, Duan RD, Ohlsson L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front Nutr 2021; 8:724006. [PMID: 34490332 PMCID: PMC8417471 DOI: 10.3389/fnut.2021.724006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.
Collapse
Affiliation(s)
- Åke Nilsson
- Division of Medicine, Gastroenterology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Division of Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| | - Lena Ohlsson
- Division of Medicine, Experimental Vascular Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Frazier KS. The Impact of Functional and Structural Maturation of the Kidney on Susceptibility to Drug and Chemical Toxicity in Neonatal Rodents. Toxicol Pathol 2021; 49:1377-1388. [PMID: 34338059 DOI: 10.1177/01926233211035683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug responses are often unpredictable in juvenile animal toxicity studies; hence, optimizing dosages is challenging. Renal functional differences based on age of development will often result in vastly different toxicologic responses. Developmental changes in renal function can alter plasma clearance of compounds with extensive renal elimination. Absorption, distribution, metabolism, and excretion of drugs vary depending on animal age and kidney maturation. Toxicity can result in malformations or renal degeneration. Although renal morphologic development in humans generally occurs in utero, maximal levels of tubular secretion, acid-base equilibrium, concentrating ability, or glomerular filtration rate (GFR) are reached postnatally in humans and animals and subject to drug effects. Maturation of renal metabolism and transporters occurs postnatally and plays a critical role in detoxification and excretion. Maturation times must be considered when designing juvenile toxicity studies and may require cohorts of animals of specific ages to achieve optimal dosing schemes and toxicokinetics. In recent years, critical end points and windows of susceptibility have been established comparatively between species to better model pharmacokinetics and understand pediatric nephrotoxicity. There are examples of agents where toxicity is enhanced in neonates, others where it is diminished, and others where rat nephrotoxicity is expressed as juvenile toxicity, but in humans as gestational toxicity.
Collapse
|
14
|
Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW. Let's talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev 2021; 175:113804. [PMID: 34015416 DOI: 10.1016/j.addr.2021.05.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
Professor Henry Higgins in My Fair Lady said, 'Why can't a woman be more like a man?' Perhaps unintended, such narration extends to the reality of current drug development. A clear sex-gap exists in pharmaceutical research spanning from preclinical studies, clinical trials to post-marketing surveillance with a bias towards males. Consequently, women experience adverse drug reactions from approved drug products more often than men. Distinct differences in pharmaceutical response across drug classes and the lack of understanding of disease pathophysiology also exists between the sexes, often leading to suboptimal drug therapy in women. This review explores the influence of sex as a biological variable in drug delivery, pharmacokinetic response and overall efficacy in the context of pharmaceutical research and practice in the clinic. Prospective recommendations are provided to guide researchers towards the consideration of sex differences in methodologies and analyses. The promotion of disaggregating data according to sex to strengthen scientific rigour, encouraging innovation through the personalisation of medicines and adopting machine learning algorithms is vital for optimised drug development in the sexes and population health equity.
Collapse
Affiliation(s)
- Christine M Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Francesca K H Gavins
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
15
|
Cussotto S, Walsh J, Golubeva AV, Zhdanov AV, Strain CR, Fouhy F, Stanton C, Dinan TG, Hyland NP, Clarke G, Cryan JF, Griffin BT. The gut microbiome influences the bioavailability of olanzapine in rats. EBioMedicine 2021; 66:103307. [PMID: 33819741 PMCID: PMC8047500 DOI: 10.1016/j.ebiom.2021.103307] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background The role of the gut microbiome in the biotransformation of drugs has recently come under scrutiny. It remains unclear whether the gut microbiome directly influences the extent of drug absorbed after oral administration and thus potentially alters clinical pharmacokinetics. Methods In this study, we evaluated whether changes in the gut microbiota of male Sprague Dawley rats, as a result of either antibiotic or probiotic administration, influenced the oral bioavailability of two commonly prescribed antipsychotics, olanzapine and risperidone. Findings The bioavailability of olanzapine, was significantly increased (1.8-fold) in rats that had undergone antibiotic-induced depletion of gut microbiota, whereas the bioavailability of risperidone was unchanged. There was no direct effect of microbiota depletion on the expression of major CYP450 enzymes involved in the metabolism of either drug. However, the expression of UGT1A3 in the duodenum was significantly downregulated. The reduction in faecal enzymatic activity, observed during and after antibiotic administration, did not alter the ex vivo metabolism of olanzapine or risperidone. The relative abundance of Alistipes significantly correlated with the AUC of olanzapine but not risperidone. Interpretation Alistipes may play a role in the observed alterations in olanzapine pharmacokinetics. The gut microbiome might be an important variable determining the systemic bioavailability of orally administered olanzapine. Additional research exploring the potential implication of the gut microbiota on the clinical pharmacokinetics of olanzapine in humans is warranted. Funding This research is supported by APC Microbiome Ireland, a research centre funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan (grant no. 12/RC/2273 P2) and by Nature Research-Yakult (The Global Grants for Gut Health; Ref No. 626891).
Collapse
Affiliation(s)
- Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Jacinta Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cavanagh Pharmacy Building, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Conall R Strain
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County, Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Brendan T Griffin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cavanagh Pharmacy Building, Cork, Ireland.
| |
Collapse
|
16
|
van Groen BD, Nicolaï J, Kuik AC, Van Cruchten S, van Peer E, Smits A, Schmidt S, de Wildt SN, Allegaert K, De Schaepdrijver L, Annaert P, Badée J. Ontogeny of Hepatic Transporters and Drug-Metabolizing Enzymes in Humans and in Nonclinical Species. Pharmacol Rev 2021; 73:597-678. [PMID: 33608409 DOI: 10.1124/pharmrev.120.000071] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver represents a major eliminating and detoxifying organ, determining exposure to endogenous compounds, drugs, and other xenobiotics. Drug transporters (DTs) and drug-metabolizing enzymes (DMEs) are key determinants of disposition, efficacy, and toxicity of drugs. Changes in their mRNA and protein expression levels and associated functional activity between the perinatal period until adulthood impact drug disposition. However, high-resolution ontogeny profiles for hepatic DTs and DMEs in nonclinical species and humans are lacking. Meanwhile, increasing use of physiologically based pharmacokinetic (PBPK) models necessitates availability of underlying ontogeny profiles to reliably predict drug exposure in children. In addition, understanding of species similarities and differences in DT/DME ontogeny is crucial for selecting the most appropriate animal species when studying the impact of development on pharmacokinetics. Cross-species ontogeny mapping is also required for adequate translation of drug disposition data in developing nonclinical species to humans. This review presents a quantitative cross-species compilation of the ontogeny of DTs and DMEs relevant to hepatic drug disposition. A comprehensive literature search was conducted on PubMed Central: Tables and graphs (often after digitization) in original manuscripts were used to extract ontogeny data. Data from independent studies were standardized and normalized before being compiled in graphs and tables for further interpretation. New insights gained from these high-resolution ontogeny profiles will be indispensable to understand cross-species differences in maturation of hepatic DTs and DMEs. Integration of these ontogeny data into PBPK models will support improved predictions of pediatric hepatic drug disposition processes. SIGNIFICANCE STATEMENT: Hepatic drug transporters (DTs) and drug-metabolizing enzymes (DMEs) play pivotal roles in hepatic drug disposition. Developmental changes in expression levels and activities of these proteins drive age-dependent pharmacokinetics. This review compiles the currently available ontogeny profiles of DTs and DMEs expressed in livers of humans and nonclinical species, enabling robust interpretation of age-related changes in drug disposition and ultimately optimization of pediatric drug therapy.
Collapse
Affiliation(s)
- B D van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - J Nicolaï
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - A C Kuik
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S Van Cruchten
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - E van Peer
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - A Smits
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S Schmidt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - K Allegaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - L De Schaepdrijver
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - P Annaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - J Badée
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| |
Collapse
|
17
|
Ma C, Guo Y, Klaassen CD. Effect of Gender and Various Diets on Bile Acid Profile and Related Genes in Mice. Drug Metab Dispos 2021; 49:62-71. [PMID: 33093018 PMCID: PMC7804885 DOI: 10.1124/dmd.120.000166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Diet is an important factor for many diseases. Previous studies have demonstrated that several diets had remarkable effects on bile acid (BA) homeostasis, but no comprehensive information for both genders has been reported. Therefore, the current study characterized the nine most used laboratory animal diets fed to both genders of mice for a comparable evaluation of the topic. The results revealed that marked gender difference of BA homeostasis is ubiquitous in mice fed the various diets, and of the nine diets fed to mice, the atherogenic and calorie-restricted diets had the most marked effects on BA homeostasis, followed by the laboratory chow and essential fatty acid-deficient diets. More specifically, females had higher concentrations of total BAs in serum when fed six of the nine diets compared with male mice, and 26 of the 35 BA-related genes had marked gender difference in mice fed at least one diet. Although mice fed the calorie-restricted and atherogenic diets had increased BA, which was more pronounced in serum than liver, the intestinal farnesoid X nuclear receptor-fibroblast growth factor 15 axis changed in the opposite direction and resulted in different hepatic expression patterns of Cyp7a1 Compared with AIN-93M purified diet, higher hepatic expression of multidrug resistance-associated protein 3 was the only alteration in mice fed the laboratory chow diet. The other diets had little or no effect on BA concentrations in the liver and plasma or in the expression of BA-related genes. This study indicates that gender, the atherogenic diet, and the calorie-restricted diet have the most marked effects on BA homeostasis. SIGNIFICANCE STATEMENT: Previous evidence suggested that various diets have effect on bile acid (BA) homeostasis; however, it is not possible to directly compare these findings, as they are all from different studies. The current study was the first to systematically investigate the influence of the nine most used experimental mouse diets on BA homeostasis and potential mechanism in both genders of mice and indicates that gender, the atherogenic diet, and the calorie-restricted diet have the most marked effects on BA homeostasis, which will aid future investigations.
Collapse
Affiliation(s)
- Chong Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
18
|
Guerrero Camacho JL, Corona Vázquez T, Flores Rivera JJ, Ochoa Morales A, Martínez Ruano L, Torres Ramírez de Arellano I, Dávila Ortiz de Montellano DJ, Jara Prado A. ABCB1 gene variants as risk factors and modulators of age of onset of demyelinating disease in Mexican patients. Neurologia 2020; 38:S0213-4853(20)30216-4. [PMID: 32912743 DOI: 10.1016/j.nrl.2020.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The C1236T, G2677T/A, and C3435T variants of the ABCB1 gene alter the functioning of P-glycoprotein and the transport of endogenous and exogenous substances across the blood-brain barrier, and act as risk factors for some neurodegenerative diseases. This study aimed to determine the association between demyelinating disease and the C1236T, G2677T/A, and C3435T variants of ABCB1 and its haplotypes and combinations of genotypes. METHODS Polymerase chain reaction with restriction fragment length polymorphism analysis (PCR-RFLP) and Sanger sequencing were used to genotype 199 patients with demyelinating disease and 200 controls, all Mexicans of mixed race; frequencies of alleles, genotypes, haplotypes, and genotype combinations were compared between patients and controls. We conducted a logistic regression analysis and calculated chi-square values and 95% confidence intervals (CI); odds ratios (OR) were calculated to evaluate the association with demyelinating disease. RESULTS The TTT and CGC haplotypes were most frequent in both patients and controls. The G2677 allele was associated with demyelinating disease (OR: 1.79; 95% CI: 1.12-2.86; P=.015), as were the genotypes GG2677 (OR: 2.72; 95% CI: 1.11-6.68; P=.025) and CC3435 (OR: 1.82; 95% CI: 1.15-2.90; P=.010), the combination GG2677/CC3435 (OR: 2.02; 95% CI, 1.17-3.48; P=.010), and the CAT haplotype (OR: 0.21; 95% CI: 0.05-0.66; P=.001). TTTTTT carriers presented the earliest age of onset (23.0±7.7 years, vs. 31.6±10.7; P=.0001). CONCLUSIONS The GG2677/CC3435 genotype combination is associated with demyelinating disease in this sample, particularly among men, who may present toxic accumulation of P-glycoprotein substrates. In our study, the G2677 allele of ABCB1 may differentially modulate age of onset of demyelinating disease in men and women.
Collapse
Affiliation(s)
- J L Guerrero Camacho
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - T Corona Vázquez
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - J J Flores Rivera
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Ochoa Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - L Martínez Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - I Torres Ramírez de Arellano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - D J Dávila Ortiz de Montellano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Jara Prado
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México.
| |
Collapse
|
19
|
Walsh J, Gheorghe CE, Lyte JM, van de Wouw M, Boehme M, Dinan TG, Cryan JF, Griffin BT, Clarke G, Hyland NP. Gut microbiome-mediated modulation of hepatic cytochrome P450 and P-glycoprotein: impact of butyrate and fructo-oligosaccharide-inulin. J Pharm Pharmacol 2020; 72:1072-1081. [PMID: 32337713 DOI: 10.1111/jphp.13276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Our objective was to demonstrate microbial regulation of hepatic genes implicated in drug metabolism and transport using germ-free (GF) mice and to explore the impact of a microbial metabolite, butyrate, and a prebiotic dietary intervention on hepatic gene expression in mice. METHODS Using reverse-transcriptase PCR, we investigated cytochrome P450 (CYP) and multidrug-resistance protein 1 (MDR1) expression in conventional, GF and colonised GF mice. To investigate the effects of butyrate, sodium butyrate (3 g/l) was administered for 21 days to conventional or GF mice. In the prebiotic study, young adult and middle-aged mice received diet enriched with 10% fructo-oligosaccharide (FOS)-inulin for 14 weeks. KEY FINDINGS Colonisation of GF animals normalised expression of Cyp3a11 and Mdr1b to conventional levels. Butyrate upregulated Cyp2b10 in conventional mice (P < 0.05) but overall did not induce widespread changes in hepatic genes. FOS-inulin increased Cyp3a13 expression and had the opposite effect on Mdr1a expression in young adult mice (P < 0.05). Age, on the other hand, influenced the prebiotic effect on Cyp2a4 expression (P < 0.01). CONCLUSION The expression of hepatic genes implicated in drug metabolism and transport displays sensitivity to the microbiome, microbiome-derived metabolites and a microbial-targeted intervention. Our study may provide the impetus to explore microbiota-targeted interventions in normalising host metabolic activity and reducing inter-individual variability in drug pharmacokinetics.
Collapse
Affiliation(s)
- Jacinta Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Bueters R, Bael A, Gasthuys E, Chen C, Schreuder MF, Frazier KS. Ontogeny and Cross-species Comparison of Pathways Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Neonates (Review): Kidney. Drug Metab Dispos 2020; 48:353-367. [PMID: 32114509 DOI: 10.1124/dmd.119.089755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/04/2020] [Indexed: 02/13/2025] Open
Abstract
The kidneys play an important role in many processes, including urine formation, water conservation, acid-base equilibrium, and elimination of waste. The anatomic and functional development of the kidney has different maturation time points in humans versus animals, with critical differences between species in maturation before and after birth. Absorption, distribution, metabolism, and excretion (ADME) of drugs vary depending on age and maturation, which will lead to differences in toxicity and efficacy. When neonate/juvenile laboratory animal studies are designed, a thorough knowledge of the differences in kidney development between newborns/children and laboratory animals is essential. The human and laboratory animal data must be combined to obtain a more complete picture of the development in the kidneys around the neonatal period and the complexity of ADME in newborns and children. This review examines the ontogeny and cross-species differences in ADME processes in the developing kidney in preterm and term laboratory animals and children. It provides an overview of insights into ADME functionality in the kidney by identifying what is currently known and which gaps still exist. Currently important renal function properties such as glomerular filtration rate, renal blood flow, and ability to concentrate are generally well known, while detailed knowledge about transporter and metabolism maturation is growing but is still lacking. Preclinical data in those properties is limited to rodents and generally covers only the expression levels of transporter or enzyme-encoding genes. More knowledge on a functional level is needed to predict the kinetics and toxicity in neonate/juvenile toxicity and efficacy studies. SIGNIFICANCE STATEMENT: This review provides insight in cross-species developmental differences of absorption, distribution, metabolism, and excretion properties in the kidney, which should be considered in neonate/juvenile study interpretation, hypotheses generation, and experimental design.
Collapse
Affiliation(s)
- Ruud Bueters
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - An Bael
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Elke Gasthuys
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Connie Chen
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Michiel F Schreuder
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Kendall S Frazier
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| |
Collapse
|
21
|
Regulation of hepatic P-gp expression and activity by genistein in rats. Arch Toxicol 2020; 94:1625-1635. [DOI: 10.1007/s00204-020-02708-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
|
22
|
Koehn LM. ABC efflux transporters at blood-central nervous system barriers and their implications for treating spinal cord disorders. Neural Regen Res 2020; 15:1235-1242. [PMID: 31960802 PMCID: PMC7047801 DOI: 10.4103/1673-5374.272568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases. The family of ATP-binding cassette (ABC) transporters has been widely studied regarding efflux of medications at blood-central nervous system barriers. These efflux transporters include P-glycoprotein (abcb1), 'breast cancer resistance protein' (abcg2) and the various 'multidrug resistance-associated proteins' (abccs). Understanding which efflux transporters are present at the blood-spinal cord, blood-cerebrospinal fluid and cerebrospinal fluid-spinal cord barriers is necessary to determine their involvement in limiting drug transfer from blood to the spinal cord tissue. Recent developments in the blood-brain barrier field have shown that barrier systems are dynamic and the profile of barrier defenses can alter due to conditions such as age, disease and environmental challenge. This means that a true understanding of ABC efflux transporter expression and localization should not be one static value but instead a range that represents the complex patient subpopulations that exist. In the present review, the blood-central nervous system barrier literature is discussed with a focus on the impact of ABC efflux transporters on: (i) protecting the spinal cord from adverse effects of systemically directed drugs, and (ii) limiting centrally directed drugs from accessing their active sites within the spinal cord.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Moskalev AS, Barysheva EM, Soldatov VO, Frolova OG, Bobyntseva OV, Samgina TA, Churnosov MI, Ivanov VP, Polonikov AV, Bushueva OY. Association of C3435T (rs1045642) Polymorphism of the MDR1 Gene with the Increased Risk of Colorectal Cancer in Russian Females from Central Russia. RUSS J GENET+ 2019; 55:1514-1519. [DOI: 10.1134/s1022795419120093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/12/2019] [Accepted: 04/09/2019] [Indexed: 07/28/2024]
|
24
|
Estradiol regulation of P-glycoprotein expression in mouse kidney and human tubular epithelial cells, implication for renal clearance of drugs. Biochem Biophys Res Commun 2019; 519:613-619. [PMID: 31540689 DOI: 10.1016/j.bbrc.2019.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/07/2019] [Indexed: 11/23/2022]
Abstract
P-glycoprotein (P-gp/ABCB1) is an ATP-binding cassette drug efflux transporter expressed in a variety of tissues that affects the pharmacokinetic disposition of many drugs. Although several studies have reported gender-dependent differences in the expression of P-gp, the role of sex hormones in regulating the expression of P-gp and its transport activity has not been well understood. In this study, we demonstrated that 17β-estradiol has the ability to induce the expression of P-pg in mouse kidneys and cultured human renal proximal tubular epithelial cells. After intravenous injection of a typical P-gp substrate, digoxin, renal clearance in female mice was approximately 2-fold higher than that in male mice. The expression of murine P-gp and its mRNA (Abcb1a and Abcb1b) were also higher in female mice than in male mice. The expression of P-gp in cultured renal tissues prepared from female and male mice was significantly increased by 17β-estradiol, but not testosterone. Similar 17β-estradiol-induced expression of P-gp was also detected in cultured human tubular epithelial cells, accompanied by the enhancement of its transport activity of digoxin. The present findings suggest the contribution of estradiol to female-predominant expression of P-gp in renal cells, which is associated with sex-related disparities in the renal elimination of digoxin.
Collapse
|
25
|
Abstract
Background: A major concern for clinicians in prescribing medications to pregnant women and neonates is the possibility that drugs might have damaging effects, particularly on long-term brain development. Current understanding of drug permeability at placental and blood-brain barriers during development is poor. In adults, ABC transporters limit many drugs from entering the brain; however, little is known about their function during development. Methods: The transfer of clinically relevant doses of paracetamol (acetaminophen), digoxin and cimetidine into the brain and cerebrospinal fluid (CSF) was estimated using radiolabelled drugs in Sprague Dawley rats at three developmental stages: E19, P4 and adult. Drugs were applied intraperitoneally either acutely or following chronic exposure (for five days). Entry into brain, CSF and transfer across the placenta was measured and compared to three markers (L-glucose, sucrose, glycerol) that cross barriers by "passive diffusion". The expression of ABC transporters in the brain, choroid plexus and placenta was estimated using RT-qPCR. Results: All three drugs entered the developing brain and CSF in higher amounts than the adult brain and CSF. Comparisons with "passive" permeability markers suggested that this might be due to age-related differences in the functional capacity of ABC-efflux mechanisms. In adult animals, chronic treatment reduced digoxin (12% to 5%, p<0.01) and paracetamol (30% to 21%, p<0.05) entry compared to acute treatment, with the decrease in digoxin entry correlating with up-regulation of efflux transporter abcb1a (PGP). In fetal and newborn animals, no gene up-regulation or transfer decreases were observed. Instead, chronic paracetamol treatment resulted in increased transfer into the fetal brain (66% to 104%, p<0.001). Conclusions: These results suggest that the developing brain may be more at risk from acute drug exposure than the adult brain due to reduced efflux capacity and at greater risk from chronic treatment due to a lack of efflux mechanism regulatory capacity.
Collapse
Affiliation(s)
- Liam Koehn
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mark Habgood
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yifan Huang
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Katarzyna Dziegielewska
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Norman Saunders
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
26
|
Wang P, Liu G, Nie Y, Han S, Li J, Zhong XB, Zhang L. Epigenetic Memory Is Involved in the Persistent Alterations of Drug-Processing Genes in Adult Mice due to PCN-Activated PXR during Early Life. Toxicol Sci 2019; 172:98-108. [PMID: 31388680 DOI: 10.1093/toxsci/kfz177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Pregnane X receptor (PXR), which can be activated by xenobiotic chemicals (including pediatric drugs), plays a key role in the regulation of drug-processing genes (DPGs). The induction of DPGs due to PXR activation may reduce therapeutic efficacy or cause toxicity. This work aims to demonstrate the impact of pregnenolone 16α-carbonitrile (PCN)-mediated PXR activation during early life on DPGs expression and drug sensitivity in adulthood, as well as the underlying mechanism. In this study, mice were sacrificed at postnatal day 60 to detect the hepatic expression of selected DPGs and histone modifications in the Cyp3a11 promoter. We found that all doses of PCN treatment (50-200 mg/kg/day) at postnatal days 5-8 resulted in persistently increased CYP2B10 expression, whereas only high doses of PCN treatment (150 and 200 mg/kg/day) persistently induced the expression of CYP3A11, 1A2, and UGTA1A1. We also demonstrated that PCN treatment before postnatal day 15 had a long-term impact on the expression of CYP3A11, 2B10, ABCC4, and PAPSS2. Additionally, elevated expression of CYP3A11, SULT2A1, UGT1A1, and PAPSS2 was observed in PCN-treated groups at days 25-28. Attenuated inducibility of CYP3A11 by PCN was seen in the primary hepatocytes derived from PCN-pretreated mice. Moreover, enhanced H3K4me3 level and reduced H3K27me3 level in the PXR response elements (PXREs) of the Cyp3a11 promoter may contribute to the persistent up-regulation of CYP3A11 by neonatal PCN treatment. Overall, our study suggests that PXR activation during early life could persistently alter the hepatic expression of DPGs and epigenetic memory may be an underlying mechanism in mice.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China
| | - Guangming Liu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China
| | - Yali Nie
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China
| | - Jiangfeng Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China
| |
Collapse
|
27
|
Koehn LM, Dziegielewska KM, Møllgård K, Saudrais E, Strazielle N, Ghersi-Egea JF, Saunders NR, Habgood MD. Developmental differences in the expression of ABC transporters at rat brain barrier interfaces following chronic exposure to diallyl sulfide. Sci Rep 2019; 9:5998. [PMID: 30979952 PMCID: PMC6461637 DOI: 10.1038/s41598-019-42402-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Many pregnant women and prematurely born infants require medication for clinical conditions including cancer, cardiac defects and psychiatric disorders. In adults drug transfer from blood into brain is mostly restricted by efflux mechanisms (ATP-binding cassette, ABC transporters). These mechanisms have been little studied during brain development. Here expression of eight ABC transporters (abcb1a, abcb1b, abcg2, abcc1, abcc2, abcc3, abcc4, abcc5) and activity of conjugating enzyme glutathione-s-transferase (GST) were measured in livers, brain cortices (blood-brain-barrier) and choroid plexuses (blood-cerebrospinal fluid, CSF, barrier) during postnatal rat development. Controls were compared to animals chronically injected (4 days, 200 mg/kg/day) with known abcb1a inducer diallyl sulfide (DAS). Results reveal both tissue- and age-dependent regulation. In liver abcb1a and abcc3 were up-regulated at all ages. In cortex abcb1a/b, abcg2 and abcc4/abcc5 were up-regulated in adults only, while in choroid plexus abcb1a and abcc2 were up-regulated only at P14. DAS treatment increased GST activity in livers, but not in cortex or choroid plexuses. Immunocytochemistry of ABC transporters at the CSF-brain interface showed that PGP and BCRP predominated in neuroepithelium while MRP2/4/5 were prominent in adult ependyma. These results indicate an age-related capacity of brain barriers to dynamically regulate their defence mechanisms when chronically challenged by xenobiotic compounds.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katarzyna M Dziegielewska
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kjeld Møllgård
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elodie Saudrais
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France
| | - Nathalie Strazielle
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France.,Brain-I, Lyon, France
| | - Jean-Francois Ghersi-Egea
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France
| | - Norman R Saunders
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018; 10:pharmaceutics10040192. [PMID: 30340346 PMCID: PMC6321372 DOI: 10.3390/pharmaceutics10040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Opioids are highly effective analgesics that have a serious potential for adverse drug reactions and for development of addiction and tolerance. Since the use of opioids has escalated in recent years, it is increasingly important to understand biological mechanisms that can increase the probability of opioid-associated adverse events occurring in patient populations. This is emphasized by the current opioid epidemic in the United States where opioid analgesics are frequently abused and misused. It has been established that the effectiveness of opioids is maximized when these drugs readily access opioid receptors in the central nervous system (CNS). Indeed, opioid delivery to the brain is significantly influenced by the blood-brain barrier (BBB). In particular, ATP-binding cassette (ABC) transporters that are endogenously expressed at the BBB are critical determinants of CNS opioid penetration. In this review, we will discuss current knowledge on the transport of opioid analgesic drugs by ABC transporters at the BBB. We will also examine how expression and trafficking of ABC transporters can be modified by pain and/or opioid pharmacotherapy, a novel mechanism that can promote opioid-associated adverse drug events and development of addiction and tolerance.
Collapse
|
29
|
Yamasaki Y, Kobayashi K, Chiba K. Effect of Pregnenolone 16α-Carbonitrile on the Expression of P-Glycoprotein in the Intestine, Brain and Liver of Mice. Biol Pharm Bull 2018; 41:972-977. [PMID: 29863087 DOI: 10.1248/bpb.b18-00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-Glycoprotein (P-gp), encoded by the MDR1 (ABCB1) gene in humans and by Mdr1a and Mdr1b genes in rodents, is a member of the superfamily of ATP-binding cassette transporters. Since P-gp is constitutively expressed in numerous tissues and exhibits a broad specificity in substrate recognition, it can play a crucial role in limiting the absorption and distribution of xenobiotics by decreasing their intracellular accumulation. The expression of P-gp is regulated by various nuclear receptors such as pregnane X receptor (PXR). Although the characterization of P-gp induction by PXR ligands is a crucial goal for predicting pharmacokinetics of drugs, findings regarding the induction of P-gp by PXR ligands in vivo are still controversial. In this study, we examined the effect of pregnenolone 16α-carbonitrile (PCN), a murine PXR ligand, on the expression of Mdr1a/1b mRNA and P-gp protein in the intestine, brain and liver of mice. The results showed that PCN increased the expression of both Mdr1a/1b mRNA and P-gp protein in the intestine and the brain. The present study provided the first evidence that P-gp is inducible by PCN in the large intestine. The results also showed that P-gp protein was induced by PCN in the cortex but not in the whole brain. On the other hand, PCN increased the expression of Mdr1a/1b mRNA in the liver, although no increase was observed in the expression of P-gp protein. These results suggested different effect of PCN on the expression of P-gp protein in the intestine, brain and liver of mice.
Collapse
Affiliation(s)
- Yuki Yamasaki
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
30
|
Wang J, Xiang B, Dolinsky VW, Kardami E, Cattini PA. Cardiac Fgf-16 Expression Supports Cardiomyocyte Survival and Increases Resistance to Doxorubicin Cytotoxicity. DNA Cell Biol 2018; 37:866-877. [PMID: 30230915 DOI: 10.1089/dna.2018.4362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fibroblast growth factor (FGF) 16 gene is preferentially expressed by cardiomyocytes after birth with levels increasing into adulthood. Null mice and isolated heart studies suggest a role for FGF-16 in cardiac maintenance and survival, including increased resistance to doxorubicin (DOX)-induced injury. A single treatment with DOX was also shown to rapidly deplete endogenous rat FGF-16 mRNA at 6 h in both adult heart and neonatal cardiomyocytes. However, the effect of DOX on rat cardiac function at the time of decreased FGF-16 gene expression and the effect of FGF-16 availability on cardiomyocyte survival, including in the context of acute DOX cytotoxicity, have not been reported. The objective was to assess the effect of acute (6 and 24 h) DOX treatment on cardiac function and the effects of FGF-16 small interfering RNA "knockdown," as well as adenoviral overexpression, in the context of acute DOX cytotoxicity, including cardiomyocyte survival and DOX efflux transport. A significant decrease in heart systolic function was detected by echocardiography in adult rats treated with 15 mg DOX/kg at 6 h; however, unlike FGF-16, there was no change in atrial natriuretic peptide transcript levels. Both systolic and diastolic dysfunctions were observed at 24 h. In addition, specific FGF-16 "knockdown" in neonatal rat cardiomyocytes results in a significant increase in cell death. Conversely, adenoviral FGF-16 overexpression was associated with a significant decrease in cardiomyocyte injury as a result of 1 μM DOX treatment. A specific increase in efflux transporter gene expression and DOX efflux was also seen, which is consistent with a reduction in DOX cytotoxicity. Finally, the increased efflux and decreased DOX-induced damage with FGF-16 overexpression were blunted by inhibition of FGF receptor signaling. These observations are consistent with FGF-16 serving as an endogenous cardiomyocyte survival factor, which may involve a positive effect on regulating efflux transport to reduce cardiotoxicity.
Collapse
Affiliation(s)
- Jie Wang
- 1 Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Bo Xiang
- 2 Department of Pharmacology & Therapeutics, and Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Vernon W Dolinsky
- 2 Department of Pharmacology & Therapeutics, and Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Elissavet Kardami
- 3 Department of Human Anatomy & Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Peter A Cattini
- 1 Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
31
|
Margier M, Collet X, le May C, Desmarchelier C, André F, Lebrun C, Defoort C, Bluteau A, Borel P, Lespine A, Reboul E. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. FASEB J 2018; 33:2084-2094. [PMID: 30222077 DOI: 10.1096/fj.201800956r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Efficient intestinal absorption of dietary vitamin D is required in most people to ensure an adequate status. Thus, we investigated the involvement of ATP binding cassette subfamily B member 1 (ABCB1) in vitamin D intestinal efflux. Both cholecalciferol (D3) and 25-hydroxycholecalciferol [25(OH)D3] apical effluxes were decreased by chemical inhibition of ABCB1 in Caco-2 cells and increased by ABCB1 overexpression in Griptites or Madin-Darby canine kidney type II cells. Mice deficient for the 2 murine ABCB1s encoded by Abcb1a and Abcb1b genes ( Abcb1-/-) displayed an accumulation of 25(OH)D3 in plasma, intestine, brain, liver, and kidneys, together with an increased D3 postprandial response after gavage compared with controls. 25(OH)D3 efflux through Abcb1-/- intestinal explants was markedly decreased compared with controls. This reduction of 25(OH)D3 transfer from plasma to lumen was further confirmed in vivo in intestine-perfused mice. Docking experiments established that both D3 and 25(OH)D3 could bind with high affinity to Caenorhabditis elegans P-glycoprotein, used as an ABCB1 model. Finally, in a group of 39 healthy male adults, a single-nucleotide polymorphism (SNP) in ABCB1 (rs17064) was significantly associated with the fasting plasma 25(OH)D3 concentration. Thus, we showed here for the first time that ABCB1 is involved in neo-absorbed vitamin D efflux by the enterocytes and that it also contributes to vitamin D transintestinal excretion and likely impacts vitamin D status.-Margier, M., Collet, X., le May, C., Desmarchelier, C., André, F., Lebrun, C., Defoort, C., Bluteau, A., Borel, P., Lespine, A., Reboul, E. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux.
Collapse
Affiliation(s)
- Marielle Margier
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Xavier Collet
- INSERM, Unité Mixte de Recherche (UMR) 1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse III, Toulouse, France
| | - Cédric le May
- Institut du Thorax, INSERM, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
| | - Charles Desmarchelier
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - François André
- Institut de Biologie Intégrative de la Cellule (I2BC), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 9198, Commissariat à l'Energie Atomique et aux Energies Alternatives/Institut de Biologie Frédéric Joliot, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chantal Lebrun
- Innovations Thérapeutiques et Résistances (InTheRes), UMR 1436, Université de Toulouse, INRA, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Catherine Defoort
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France.,Criblage Biologique Marseille (CriBioM), Faculté de Médecine de la Timone, Marseille, France
| | - Alice Bluteau
- Innovations Thérapeutiques et Résistances (InTheRes), UMR 1436, Université de Toulouse, INRA, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Patrick Borel
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Anne Lespine
- Innovations Thérapeutiques et Résistances (InTheRes), UMR 1436, Université de Toulouse, INRA, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Emmanuelle Reboul
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France
| |
Collapse
|
32
|
Brzica H, Abdullahi W, Reilly BG, Ronaldson PT. Sex-specific differences in organic anion transporting polypeptide 1a4 (Oatp1a4) functional expression at the blood-brain barrier in Sprague-Dawley rats. Fluids Barriers CNS 2018; 15:25. [PMID: 30208928 PMCID: PMC6136214 DOI: 10.1186/s12987-018-0110-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Targeting endogenous blood–brain barrier (BBB) transporters such as organic anion transporting polypeptide 1a4 (Oatp1a4) can facilitate drug delivery for treatment of neurological diseases. Advancement of Oatp targeting for optimization of CNS drug delivery requires characterization of sex-specific differences in BBB expression and/or activity of this transporter. Methods In this study, we investigated sex differences in Oatp1a4 functional expression at the BBB in adult and prepubertal (i.e., 6-week-old) Sprague–Dawley rats. We also performed castration or ovariectomy surgeries to assess the role of gonadal hormones on Oatp1a4 protein expression and transport activity at the BBB. Slco1a4 (i.e., the gene encoding Oatp1a4) mRNA expression and Oatp1a4 protein expression in brain microvessels was determined using quantitative real-time PCR and western blot analysis, respectively. Oatp transport function at the BBB was determined via in situ brain perfusion using [3H]taurocholate and [3H]atorvastatin as probe substrates. Data were expressed as mean ± SD and analyzed via one-way ANOVA followed by the post hoc Bonferroni t-test. Results Our results showed increased brain microvascular Slco1a4 mRNA and Oatp1a4 protein expression as well as increased brain uptake of [3H]taurocholate and [3H]atorvastatin in female rats as compared to males. Oatp1a4 expression at the BBB was enhanced in castrated male animals but was not affected by ovariectomy in female animals. In prepubertal rats, no sex-specific differences in brain microvascular Oatp1a4 expression were observed. Brain accumulation of [3H]taurocholate in male rats was increased following castration as compared to controls. In contrast, there was no difference in [3H]taurocholate brain uptake between ovariectomized and control female rats. Conclusions These novel data confirm sex-specific differences in BBB Oatp1a4 functional expression, findings that have profound implications for treatment of CNS diseases. Studies are ongoing to fully characterize molecular pathways that regulate sex differences in Oatp1a4 expression and activity.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, P.O. Box 245050, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5050, USA
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, P.O. Box 245050, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5050, USA
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, P.O. Box 245050, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, P.O. Box 245050, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5050, USA.
| |
Collapse
|
33
|
Zhang Y, Lickteig AJ, Csanaky IL, Klaassen CD. Editor's Highlight: Clofibrate Decreases Bile Acids in Livers of Male Mice by Increasing Biliary Bile Acid Excretion in a PPARα-Dependent Manner. Toxicol Sci 2018; 160:351-360. [PMID: 28973556 DOI: 10.1093/toxsci/kfx191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fibrates and their receptor, namely peroxisome proliferator-activated receptor α (PPARα), have been reported to regulate bile acid (BA) synthesis and transport. However, the effect of fibrate treatment and PPARα activation on BA homeostasis remains controversial. In this study, both wild-type (WT) and PPARα-null male mice were treated with clofibrate (CLOF) for 4 days to evaluate the effects of short-term PPARα activation on BA homeostasis. Although a decrease in total BAs (ΣBAs) was observed in livers of CLOF-treated WT mice, it was not observed in PPARα-null mice. CLOF-mediated decrease in ΣBAs in the liver was not likely due to the reduction in BA synthesis or BA uptake, as evidenced by an increase in the BA synthetic enzyme (Cyp7a1) and 2 BA uptake transporters (Na (+)-taurocholate cotransporting polypeptide [Ntcp] and organic anion transporting polypeptide [Oatp]1b2). Instead, the decrease in liver BAs by CLOF is largely a result of increased biliary excretion of BAs, which was associated with a significant induction of the canalicular efflux transporter (bile salt export pump [Bsep]) in the liver. The PPARα-mediated increase in Cyp7a1 in CLOF-treated WT mice was not due to farnesoid X receptor (Fxr)-small heterodimer partner (Shp) signaling in the liver, but due to suppression of Fxr- fibroblast growth factor15 signaling in the ileum. Additionally, CLOF also suppressed intestinal BA transporters (apical sodium-dependent bile acid transporter and organic solute transporterβ) and cholesterol efflux transporters (Abcg5 and Abcg8) in a PPARα-dependent manner. In summary, this study provides the first comprehensive analysis on the effect of a short-term CLOF treatment on BA homeostasis, and revealed an essential role of PPARα in regulating BA synthesis, transport and signaling.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- Animals
- Bile Acids and Salts/metabolism
- Clofibrate/pharmacology
- Fibroblast Growth Factors/metabolism
- Gastrointestinal Agents/pharmacology
- Genotype
- Homeostasis
- Ileum/drug effects
- Ileum/metabolism
- Lipoproteins/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Membrane Transport Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Organic Anion Transporters, Sodium-Dependent/metabolism
- PPAR alpha/agonists
- PPAR alpha/genetics
- PPAR alpha/metabolism
- Phenotype
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Steroid 17-alpha-Hydroxylase/metabolism
- Symporters/metabolism
- Time Factors
Collapse
Affiliation(s)
- Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital & Clinics, Kansas City, Missouri 64108
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
34
|
Ozturk N, Ozturk D, Pala-Kara Z, Kaptan E, Sancar-Bas S, Ozsoy N, Cinar S, Deniz G, Li XM, Giacchetti S, Lévi F, Okyar A. The immune system as a chronotoxicity target of the anticancer mTOR inhibitor everolimus. Chronobiol Int 2018; 35:705-718. [PMID: 29400578 DOI: 10.1080/07420528.2018.1432632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The circadian timing system controls many biological functions in mammals including xenobiotic metabolism, detoxification, cell proliferation, apoptosis and immune functions. Everolimus is a mammalian target of rapamycin inhibitor, whose immunosuppressant properties are both desired in transplant patients and unwanted in cancer patients, where it is indicated for its antiproliferative efficacy. Here we sought whether everolimus circadian timing would predictably modify its immunosuppressive effects so as to optimize this drug through timing. C57BL/6J mice were synchronized with light-dark 12h:12h, with L onset at Zeitgeber Time (ZT) 0. Everolimus was administered orally to male (5 mg/kg/day) and female mice (15 mg/kg/day) at ZT1, during early rest span or at ZT13, during early activity span for 4 weeks. Body weight loss, as well as hematological, immunological and biochemical toxicities, were determined. Spleen and thymus were examined histologically. Everolimus toxicity was less severe following dosing at ZT13, as compared to ZT1, as shown with least body weight inhibition in both genders; least reductions in thymus weight both in males (p < 0.01) and females (p < 0.001), least reduction in female spleen weight (p < 0.05), and less severe thymic medullar atrophy both in males (p < 0.001) and females (p < 0.001). The mean circulating counts in total leukocytes, total lymphocytes, T-helper and B lymphocytes displayed minor and non-significant changes following dosing at ZT13, while they were decreased by 56.9% (p < 0.01), 45.5% (p < 0.01), 43.1% (p < 0.05) and 48.7% (p < 0.01) after everolimus at ZT1, respectively, in only male mice. Chronotherapy of everolimus is an effective way to increase the general tolerability and decrease toxicity on the immune system.
Collapse
Affiliation(s)
- Narin Ozturk
- a Department of Pharmacology, Faculty of Pharmacy , Istanbul University , Beyazit-Istanbul , Turkey
| | - Dilek Ozturk
- b Department of Pharmacology, Faculty of Pharmacy , Bezmialem Vakif University , Fatih-İstanbul , Turkey
| | - Zeliha Pala-Kara
- a Department of Pharmacology, Faculty of Pharmacy , Istanbul University , Beyazit-Istanbul , Turkey
| | - Engin Kaptan
- c Department of Biology, Faculty of Science , Istanbul University , Vezneciler-Istanbul , Turkey
| | - Serap Sancar-Bas
- c Department of Biology, Faculty of Science , Istanbul University , Vezneciler-Istanbul , Turkey
| | - Nurten Ozsoy
- d Department of Biochemistry, Faculty of Pharmacy , Istanbul University , Beyazit-Istanbul , Turkey
| | - Suzan Cinar
- e Department of Immunology, Aziz Sancar Institute of Experimental Medicine , Istanbul University , Sehremini- Istanbul , Turkey
| | - Gunnur Deniz
- e Department of Immunology, Aziz Sancar Institute of Experimental Medicine , Istanbul University , Sehremini- Istanbul , Turkey
| | - Xiao-Mei Li
- f INSERM UMRS 935 "Modèles de cellules souches malignes et thérapeutiques" , Campus CNRS , Villejuif-Cedex , France
| | - Sylvie Giacchetti
- g AP-HP, Hôpital Saint-Louis, Breast Disease Unit , University Paris Diderot , Paris , France
| | - Francis Lévi
- f INSERM UMRS 935 "Modèles de cellules souches malignes et thérapeutiques" , Campus CNRS , Villejuif-Cedex , France.,h Warwick Systems Biology Centre, Warwick Medical School , Cancer Chronotherapy Unit , Coventry , UK
| | - Alper Okyar
- a Department of Pharmacology, Faculty of Pharmacy , Istanbul University , Beyazit-Istanbul , Turkey
| |
Collapse
|
35
|
Nieto A, Pérez Ishiwara DG, Orozco E, Sánchez Monroy V, Gómez García C. A Novel Heat Shock Element (HSE) in Entamoeba histolytica that Regulates the Transcriptional Activation of the EhPgp5 Gene in the Presence of Emetine Drug. Front Cell Infect Microbiol 2017; 7:492. [PMID: 29238701 PMCID: PMC5712549 DOI: 10.3389/fcimb.2017.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position −170 to −111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (−151 to −136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug.
Collapse
Affiliation(s)
- Alma Nieto
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - David G Pérez Ishiwara
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Virginia Sánchez Monroy
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Consuelo Gómez García
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
36
|
Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers. Drug Metab Dispos 2017; 45:1197-1214. [PMID: 28864748 PMCID: PMC5649562 DOI: 10.1124/dmd.117.077024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) and BDE-99 (2, 2', 4, 4',5-pentabromodiphenyl ether), are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ-free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 μmol/kg) for 4 days. Following BDE-47 treatment, GF mice had higher levels of 5-OH-BDE-47 but lower levels of four other metabolites in liver than CV mice; whereas following BDE-99 treatment GF mice had lower levels of four minor metabolites in liver than CV mice. RNA sequencing demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal conditions, the lack of gut microbiome upregulated the Cyp2c subfamily but downregulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated upregulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Soowan Lee
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Sara Cade
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Li-Jung Kuo
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Irvin R Schultz
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Deepak K Bhatt
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Bhagwat Prasad
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| |
Collapse
|
37
|
Bockor L, Bortolussi G, Vodret S, Iaconcig A, Jašprová J, Zelenka J, Vitek L, Tiribelli C, Muro AF. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia. Hum Mol Genet 2017; 26:145-157. [PMID: 28025333 DOI: 10.1093/hmg/ddw375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/27/2016] [Indexed: 01/20/2023] Open
Abstract
Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Luka Bockor
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Jana Jašprová
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato, AREA Science Park, Campus Basovizza Trieste, Italy and
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
38
|
Abcb1a and Abcb1b genes function differentially in blood-testis barrier dynamics in the rat. Cell Death Dis 2017; 8:e3038. [PMID: 28880272 PMCID: PMC5636980 DOI: 10.1038/cddis.2017.435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
Abstract
During spermatogenesis, immature spermatocytes traverse the blood–testis barrier (BTB) and enter the apical apartment of seminiferous epithelium for further development. This course involves extensive junction disassembly and reassembly at the BTB. P-glycoprotein is known to be coded by two genes in rodents, namely Abcb1a and Abcb1b. Our previous studies showed that simultaneously silencing Abcb1a and Abcb1b genes in Sertoli cells impeded BTB integrity. However, the individual role of Abcb1a and Abcb1b in regulating BTB dynamics remains uninvestigated. Here, single knockdown of Abcb1a by RNAi impeded the in vitro Sertoli cell permeability barrier via redistributing TJ proteins, accelerating endocytosis, and affecting endocytic vesicle-mediated protein transportation that undermined Sertoli cell barrier. F5-peptide model was used to induce cell junction disruption and subsequent restructuring in primary Sertoli cells. F5-peptide perturbed this barrier, but its removal allowed barrier ‘resealing’. Abcb1b knockdown was found to inhibit barrier resealing following F5-peptide removal by suppressing the restore of the expression and distribution of junction proteins at BTB, and reducing the migration of internalized junction proteins back to Sertoli cell interface. In summary, Abcb1a is critical in maintaining BTB integrity, while Abcb1b is crucial for junction reassembly at the BTB.
Collapse
|
39
|
Segarra I, Modamio P, Fernández C, Mariño EL. Sex-Divergent Clinical Outcomes and Precision Medicine: An Important New Role for Institutional Review Boards and Research Ethics Committees. Front Pharmacol 2017; 8:488. [PMID: 28785221 PMCID: PMC5519571 DOI: 10.3389/fphar.2017.00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
The efforts toward individualized medicine have constantly increased in an attempt to improve treatment options. These efforts have led to the development of small molecules which target specific molecular pathways involved in cancer progression. We have reviewed preclinical studies of sunitinib that incorporate sex as a covariate to explore possible sex-based differences in pharmacokinetics and drug–drug interactions (DDI) to attempt a relationship with published clinical outputs. We observed that covariate sex is lacking in most clinical outcome reports and suggest a series of ethic-based proposals to improve research activities and identify relevant different sex outcomes. We propose a deeper integration of preclinical, clinical, and translational research addressing statistical and clinical significance jointly; to embed specific sex-divergent endpoints to evaluate possible gender differences objectively during all stages of research; to pay greater attention to sex-divergent outcomes in polypharmacy scenarios, DDI and bioequivalence studies; the clear reporting of preclinical and clinical findings regarding sex-divergent outcomes; as well as to encourage the active role of scientists and the pharmaceutical industry to foster a new scientific culture through their research programs, practice, and participation in editorial boards and Institutional Ethics Review Boards (IRBs) and Research Ethics Committees (RECs). We establish the IRB/REC as the centerpiece for the implementation of these proposals. We suggest the expansion of its competence to follow up clinical trials to ensure that sex differences are addressed and recognized; to engage in data monitoring committees to improve clinical research cooperation and ethically address those potential clinical outcome differences between male and female patients to analyze their social and clinical implications in research and healthcare policies.
Collapse
Affiliation(s)
- Ignacio Segarra
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Cecilia Fernández
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| |
Collapse
|
40
|
Carey AN, Zhang W, Setchell KD, Simmons JE, Shi T, Lages CS, Mullen M, Carroll K, Karns R, Bessho K, Sheridan R, Zhao X, Weber SN, Miethke AG. Hepatic MDR3 expression impacts lipid homeostasis and susceptibility to inflammatory bile duct obstruction in neonates. Pediatr Res 2017; 82:122-132. [PMID: 28355206 PMCID: PMC5509537 DOI: 10.1038/pr.2017.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
BackgroundHeterozygous mutations in the gene ABCB4, encoding the phospholipid floppase MDR3 (Mdr2 in mice), are associated with various chronic liver diseases. Here we hypothesize that reduced ABCB4 expression predisposes to extrahepatic biliary atresia (EHBA).MethodsLivers from neonatal wild-type (wt) and heterozygous Mdr2-deficient mice were subjected to mass spectrometry-based lipidomics and RNA sequencing studies. Following postnatal infection with rhesus rotavirus (RRV), liver immune responses and EHBA phenotype were assessed. Hepatic microarray data from 40 infants with EHBA were mined for expression levels of ABCB4.ResultsPhosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased, whereas the PC/PE ratio was decreased in neonatal Mdr2+/- mice compared with wt mice. Following RRV challenge, hepatic expression of IFNγ and infiltration with CD8+ and NK+ lymphocytes were increased in Mdr2+/- mice. Plasma total bilirubin levels and prevalence of complete ductal obstruction were higher in these mice. In infants with EHBA, hepatic gene expression of ABCB4 was downregulated in those with an inflammatory compared with a fibrosing molecular phenotype.ConclusionDecreased expression of ABCB4 causes dysregulation in (phospho)lipid homeostasis, and predisposes to aberrant pro-inflammatory lymphocyte responses and an aggravated phenotype of EHBA in neonatal mice. Downregulated ABCB4 is associated with an inflammatory transcriptome signature in infants with EHBA.
Collapse
Affiliation(s)
- Alexandra N. Carey
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | - Kenneth D.R. Setchell
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julia E. Simmons
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Tiffany Shi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Celine S. Lages
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Mary Mullen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | | | | | - Kazuhiko Bessho
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Rachel Sheridan
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | - Xueheng Zhao
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | | | - Alexander G. Miethke
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
41
|
Wajda A, Łapczuk J, Grabowska M, Pius-Sadowska E, Słojewski M, Laszczynska M, Urasinska E, Machalinski B, Drozdzik M. Cell and region specificity of Aryl hydrocarbon Receptor (AhR) system in the testis and the epididymis. Reprod Toxicol 2017; 69:286-296. [PMID: 28341572 DOI: 10.1016/j.reprotox.2017.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 11/18/2022]
Abstract
Aryl hydrocarbon receptor (AhR) plays multiple important functions in adaptive responses. Exposure to AhR ligands may produce an altered metabolic activity controlled by the AhR pathways, and consequently affect drug/toxin responses, hormonal status and cellular homeostasis. This research revealed species-, cell- and region-specific pattern of the AhR system expression in the rat and human testis and epididymis, complementing the existing knowledge, especially within the epididymal segments. The study showed that AhR level in the rat and human epididymis is higher than in the testis. The downregulation of AhR expression after TCDD treatment was revealed in the spermatogenic cells at different stages and the epididymal epithelial cells, but not in the Sertoli and Leydig cells. Hence, this basic research provides information about the AhR function in the testis and epididymis, which may provide an insight into deleterious effects of drugs, hormones and environmental pollutants on male fertility.
Collapse
Affiliation(s)
- A Wajda
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland.
| | - J Łapczuk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - M Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| | - E Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Poland
| | - M Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - M Laszczynska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| | - E Urasinska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - B Machalinski
- Department of General Pathology, Pomeranian Medical University, Poland
| | - M Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
42
|
Chew CC, Ng S, Chee YL, Koo TW, Liew MH, Chee ELC, Modamio P, Fernández C, Mariño EL, Segarra I. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice. Invest New Drugs 2017; 35:399-411. [DOI: 10.1007/s10637-017-0447-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
|
43
|
Sunitinib-paracetamol sex-divergent pharmacokinetics and tissue distribution drug-drug interaction in mice. Invest New Drugs 2017; 35:145-157. [DOI: 10.1007/s10637-016-0415-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
|
44
|
Petruzzelli M, Piccinin E, Pinto C, Peres C, Bellafante E, Moschetta A. Biliary Phospholipids Sustain Enterocyte Proliferation and Intestinal Tumor Progression via Nuclear Receptor Lrh1 in mice. Sci Rep 2016; 6:39278. [PMID: 27995969 PMCID: PMC5171812 DOI: 10.1038/srep39278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 01/02/2023] Open
Abstract
The proliferative-crypt compartment of the intestinal epithelium is enriched in phospholipids and accumulation of phospholipids has been described in colorectal tumors. Here we hypothesize that biliary phospholipid flow could directly contribute to the proliferative power of normal and dysplastic enterocytes. We used Abcb4-/- mice which lack biliary phospholipid secretion. We first show that Abcb4-/- mice are protected against intestinal tumorigenesis. At the molecular level, the transcriptional activity of the nuclear receptor Liver Receptor Homolog-1 (Lrh1) is reduced in Abcb4-/- mice and its re-activation re-establishes a tumor burden comparable to control mice. Feeding Abcb4-/- mice a diet supplemented with phospholipids completely overcomes the intestinal tumor protective phenotype, thus corroborating the hypothesis that the absence of biliary phospholipids and not lack of Abcb4 gene per se is responsible for the protection. In turn, phospholipids cannot re-establish intestinal tumorigenesis in Abcb4-/- mice crossed with mice with intestinal specific ablation of Lrh1, a nuclear hormone receptor that is activates by phospholipids. Our data identify the key role of biliary phospholipids in sustaining intestinal mucosa proliferation and tumor progression through the activation of nuclear receptor Lrh1.
Collapse
Affiliation(s)
- Michele Petruzzelli
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy
- Fondazione Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy
- National Cancer Research Center, IRCCS Istituto Oncologico “Giovanni Paolo II”, 70124 Bari, Italy
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy
| | - Claudio Pinto
- Fondazione Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
| | - Claudia Peres
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy
| | - Elena Bellafante
- Fondazione Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy
- National Cancer Research Center, IRCCS Istituto Oncologico “Giovanni Paolo II”, 70124 Bari, Italy
| |
Collapse
|
45
|
Xu YJ, Wang Y, Lu YF, Xu SF, Wu Q, Liu J. Age-associated differences in transporter gene expression in kidneys of male rats. Mol Med Rep 2016; 15:474-482. [DOI: 10.3892/mmr.2016.5970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 10/18/2016] [Indexed: 11/06/2022] Open
|
46
|
Segarra I, Modamio P, Fernández C, Mariño EL. Sunitinib Possible Sex-Divergent Therapeutic Outcomes. Clin Drug Investig 2016; 36:791-9. [PMID: 27318944 DOI: 10.1007/s40261-016-0428-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sunitinib is a tyrosine kinase inhibitor used for the treatment of renal cell carcinoma and metastatic brain tumors. Preclinical pharmacokinetic studies have shown higher sunitinib hepatic and brain exposure in female mice and higher sunitinib kidney concentrations in male mice. We explored whether sex-divergent tissue pharmacokinetics may anticipate sex-divergent therapeutic and toxicology responses in male and female patients. The review of the available scientific literature identified case reports, case series reports, clinical trials, and other studies associating sex with sunitinib outcomes. The results suggest male patients may respond better to renal cell carcinoma treatment and female patients may have better brain tumor treatment outcomes but a higher incidence of adverse events. Although more high-quality evidence is needed, these results, as anticipated by the preclinical data, may indicate possible sunitinib sex-divergent therapeutic outcomes in patients. In addition, we propose the systematic analysis of sex-based outcomes in clinical trial reports and their inclusion and review in the ethics committees and review boards to prevent, amongst others, patient burden in upcoming clinical trials.
Collapse
Affiliation(s)
- Ignacio Segarra
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain.
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| | - Cecilia Fernández
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| |
Collapse
|
47
|
Kim HJ, Kim HK, Kwon JT, Lee SH, El Park S, Gil HW, Song HY, Hong SY. Effect of MDR1 gene polymorphisms on mortality in paraquat intoxicated patients. Sci Rep 2016; 6:31765. [PMID: 27545861 PMCID: PMC4992846 DOI: 10.1038/srep31765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/27/2016] [Indexed: 01/11/2023] Open
Abstract
Paraquat is a fatal herbicide following acute exposure. Previous studies have suggested that multidrug resistance protein 1 (MDR1) might help remove paraquat from the lungs and the kidney. MDR1 single-nucleotide polymorphisms (SNPs) are involved in the pharmacokinetics of many drugs. The purpose of this study was to determine whether MDR1 SNPs were associated with the mortality in paraquat intoxicated patients. We recruited 109 patients admitted with acute paraquat poisoning. They were genotyped for C1236T, G2677T/A, and C3435T single-nucleotide polymorphisms (SNPs) of MDR1 gene. Their effects on mortality of paraquat intoxicated patients were evaluated. Overall mortality rate was 66.1%. Regarding the C1236T of the MDR1 gene polymorphism, 21 (19.3%) had the wild type MDR1 while 88 (80.7%) had homozygous mutation. Regarding the C3435T MDR1 gene polymorphism, 37(33.9%) patients had the wild type, 23 (21.1%) had heterozygous mutation, and 49 (45.0%) had homozygous mutation. Regarding the G2677T/A MDR1 gene polymorphism, 38 (34.9%) patients had the wild type, 57 (52.3%) had heterozygous mutation, and 14 (12.8%) had homozygous mutation. None of the individual mutations or combination of mutations (two or three) of MDR1 SNP genotypes altered the morality rate. The mortality rate was not significantly different among SNP groups of patients with <4.0 μg/mL paraquat. In conclusion, MDR1 SNPs have no effect on the mortality rate of paraquat intoxicated patients.
Collapse
Affiliation(s)
- Hak Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Sun-Hyo Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Sam El Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sae-Yong Hong
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
48
|
Sunitinib DDI with paracetamol, diclofenac, mefenamic acid and ibuprofen shows sex-divergent effects on the tissue uptake and distribution pattern of sunitinib in mice. Cancer Chemother Pharmacol 2016; 78:709-18. [PMID: 27495788 DOI: 10.1007/s00280-016-3120-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Pharmacokinetic interaction of sunitinib with diclofenac, paracetamol, mefenamic acid and ibuprofen was evaluated due to their P450 mediated metabolism and OATP1B1, OATP1B3, ABCB1, ABCG2 transporters overlapping features. METHODS Male and female mice were administered 6 sunitinib doses (60 mg/kg) PO every 12 h and 30 min before the last dose were administered vehicle (control groups), 250 mg/kg paracetamol, 30 mg/kg diclofenac, 50 mg/kg mefenamic acid or 30 mg/kg ibuprofen (study groups), euthanized 6 h post last administration and sunitinib plasma, liver, kidney, brain concentrations analyzed. RESULTS Ibuprofen halved sunitinib plasma concentration in female mice (p < 0.01) and showed 59 % lower concentration than male mice (p < 0.05). Diclofenac and paracetamol female mice showed 45 and 25 % higher plasma concentrations than male mice which were 27 % lower in mefenamic acid female mice. Paracetamol increased 2.2 (p < 0.05) liver and 1.4-fold (p < 0.05) kidney sunitinib concentrations in male mice that were lower in female mice (p < 0.01, p < 0.001, respectively). Ibuprofen increased 2.9-fold (p < 0.01) liver concentration in male mice that were higher than in female mice (p < 0.001). Female control mice had 35 % higher sunitinib brain concentration than male mice but the concentration decreased 37, 33, 10 and 57 % in the diclofenac, paracetamol, mefenamic acid and ibuprofen (p < 0.001), respectively. Tissue-plasma concentrations correlations were nonsignificant in control, paracetamol, mefenamic acid and ibuprofen groups but was significant in the diclofenac group in male mice (liver, brain) and female mice (liver, kidney). CONCLUSIONS These results portray gender-based sunitinib pharmacokinetic differences and NSAIDs selective effects on male or female mice, with potential clinical translatability.
Collapse
|
49
|
Li CY, Cheng SL, Bammler TK, Cui JY. Editor's Highlight: Neonatal Activation of the Xenobiotic-Sensors PXR and CAR Results in Acute and Persistent Down-regulation of PPARα-Signaling in Mouse Liver. Toxicol Sci 2016; 153:282-302. [PMID: 27413110 DOI: 10.1093/toxsci/kfw127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Safety concerns have emerged regarding the potential long-lasting effects due to developmental exposure to xenobiotics. The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are critical xenobiotic-sensing nuclear receptors that are highly expressed in liver. The goal of this study was to test our hypothesis that neonatal exposure to PXR- or CAR-activators not only acutely but also persistently regulates the expression of drug-processing genes (DPGs). A single dose of the PXR-ligand PCN (75 mg/kg), CAR-ligand TCPOBOP (3 mg/kg), or vehicle (corn oil) was administered intraperitoneally to 3-day-old neonatal wild-type mice. Livers were collected 24 h post-dose or from adult mice at 60 days of age, and global gene expression of these mice was determined using Affymetrix Mouse Transcriptome Assay 1.0. In neonatal liver, PCN up-regulated 464 and down-regulated 449 genes, whereas TCPOBOP up-regulated 308 and down-regulated 112 genes. In adult liver, there were 15 persistently up-regulated and 22 persistently down-regulated genes following neonatal exposure to PCN, as well as 130 persistently up-regulated and 18 persistently down-regulated genes following neonatal exposure to TCPOBOP. Neonatal exposure to both PCN and TCPOBOP persistently down-regulated multiple Cyp4a members, which are prototypical-target genes of the lipid-sensor PPARα, and this correlated with decreased PPARα-binding to the Cyp4a gene loci. RT-qPCR, western blotting, and enzyme activity assays in livers of wild-type, PXR-null, and CAR-null mice confirmed that the persistent down-regulation of Cyp4a was PXR and CAR dependent. In conclusion, neonatal exposure to PXR- and CAR-activators both acutely and persistently regulates critical genes involved in xenobiotic and lipid metabolism in liver.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
50
|
Akazawa T, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine. Mol Pharm 2016; 13:2443-56. [PMID: 27276518 DOI: 10.1021/acs.molpharmaceut.6b00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al. within 2.1-fold difference. Thus, intestinal mdr1a function can be reconstructed by our pharmacoproteomic modeling approach. Furthermore, we evaluated regional differences in protein expression levels of mouse intestinal transporters. Sixteen (mdr1a, mrp4, bcrp, abcg5, abcg8, glut1, 4f2hc, sglt1, lat2, pept1, mct1, slc22a18, ostβ, villin1, Na(+)/K(+)-ATPase, γ-gtp) out of 46 target molecules were detected by employing our established quantitative targeted absolute proteomics technique. The protein expression amounts of mdr1a and bcrp increased progressively from duodenum to ileum. Sglt1, lat2, and 4f2hc were highly expressed in jejunum and ileum. Mct1 and ostβ were highly expressed in ileum. The quantitative expression profiles established here should be helpful to understand and predict intestinal transporter functions.
Collapse
Affiliation(s)
- Takanori Akazawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|